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Abstract
This paper presents a case for applying the principles
of Software-Defined Networking (SDN) to middleboxes
and end hosts. The challenges of configuring network-
ing on network hosts resemble those addressed by SDN
– numerous multi-vendor components, each with its own
syntax and idiosyncratic corner cases, must be orches-
trated smoothly. We have developed a prototype called
NativeClick, a novel use of the Click Modular Router
language, to orchestrate Linux networking tools. Na-
tiveClick demonstrates that, while existing SDN efforts
have produced insufficient Abstractions to cover a wide
range of networking behavior, SDN-like abstractions can
make host configurations modular.

1 Introduction

Software Defined Networking (SDN) is unraveling the
complexities of today’s networks. While the term SDN
is sometimes used to refer to a specific set of tech-
nologies [6], we believe that its power lies in its ba-
sic idea, which is to enable modular network configura-
tion through the use of software abstractions [12]. SDN
achieves modularity by cleanly separating the network
“control plane” from its “data plane” through a well-
defined interface. This modularity makes control plane
configurations amenable to standard software engineer-
ing practices, and potentially leads to implementations
that are simpler to debug, reason about, and extend.

This paper argues that while SDN has so far been ap-
plied to the configuration and management of compo-
nents within the network, it can be taken much further.
The problem of network configuration does not stop at
the network interface (be it virtual or physical); to be
truly end-to-end, it must also include the ability to con-
figure the network subsystems of the end hosts and mid-
dleboxes that connect to the network.

Network hosts typically run commodity operating sys-
tems. This is an understandable choice, as these OSes
contain full-featured, robust, and flexible networking
stacks. They provide a wide variety of established

and experimental transport protocols, L2/L3 forwarding,
packet translation (e.g., NAT), packet filtering, traffic
shaping, tunneling, and more. The portability of UNIX-
based OSes such as Linux and NetBSD makes them a
good choice for network appliances such as wireless ac-
cess points, enterprise gateways, web caches, transparent
web proxies, and traffic monitors. Most have distributed,
open source development models that lead to fast integra-
tion with new technological standards as well as cutting
edge techniques from academia and industry.

The power of commodity OS networking comes at the
price of complexity. For example, Linux presents sys-
tem builders with a rich variety of standard networking
tools: iptables, iproute, tc, ip tunnel, dnsmasq, ebtables
various traffic generators, load balancers, and transparent
proxies. These tools are stable and offer immense flexi-
bility. However, most of these tools have been developed
independently; each tool incorporates idiosyncratic con-
cepts and syntax; and many are poorly documented. The
task of assembling heterogeneous tools is laborious, and
leads to legacy configurations that are hard to modify and
evolve.

At first glance it may seem unnatural to conflate the
problem of configuring network hosts with the problem
of configuring switches in the network – each involves
a different set of technologies and its own development
ecosystem. Our experience managing network hosts has
led us to think that the problems with configuring them
are strongly reminiscent of those facing traditional, pre-
SDN network configuration. There are many parallels
between the two worlds:

• It is a requirement to leverage existing, mature com-
ponents that are currently in production use.

• Components from multiple vendors or developers
need to coordinate to forward packets.

• Each component is configured in isolation using its
own specific configuration method and syntax.

• It is difficult to visualize network packet flow at a
high level, such as in a graph representation.



A unified programming model that runs end-to-end
would address these concerns that are common to both
settings. In the specific context of end-host configura-
tion, what we mean by unified network configuration is
something that meets two requirements:

1. In the spirit of SDN, it must provide a clean, ab-
stract, and most importantly, holistic view of the
network stack’s configuration.

2. It must leverage the existing, high-performance,
production-quality, full-featured, widely-used OS
networking stacks and configuration tools, as these
tools are the main reason the OSes were chosen in
the first place.

A number of systems have attempted to enable holis-
tic network configuration in the past, among them the
Click Modular Router [5]. Click abstractly represents
network configuration as a graph of modular elements
that perform specific packet processing functions; pack-
ets flow along the edges of the graph. We believe that
Click can aptly satisfy our first requirement. Unfortu-
nately, Click as originally proposed does not meet the
second requirement: Click’s runtime layer replaces the
existing networking stack. It seems almost certain that
the network stack of the Linux kernel, with its thousands
of developers and widespread production use, is more
stable, portable, and standards-compliant than Click.

Seeing this limitation, we pose a question: is it pos-
sible to use the Click language to configure the Linux
networking stack? To answer this question, we designed
and developed a prototype called NativeClick that ad-
dresses the key challenges of using Click without its run-
time layer. NativeClick compiles a Click specification to
a collection of scripts that invokes standard Linux tools.
A key requirement of our approach is to be able to mod-
ularize Linux tools as Click elements and to direct traffic
between the elements. We achieve this through the use
of a novel mechanism that combines OS-level containers
and virtual point-to-point (VPPP) interfaces. When used
together, these ideas modularize the Linux networking
stack into a Click-like packet flow graph.

NativeClick solves a specific problem, but in doing so
it adopts SDN’s mission of using clean, modular abstrac-
tions to orchestrate production-quality networking com-
ponents. The fact that existing SDN efforts currently lack
similar abstractions raises several questions:

• What is the appropriate user interface to visualize
and configure networks end-to-end?

• Is it possible to define an SDN framework on end
hosts that plugs into OpenFlow – a key enabler of
SDN in the network?

• Can Click be used as a unified, end-to-end network
programming language?

• Can the Click language be used to specify networks
that leverage OpenFlow as a low level packet for-
warding mechanism?

We devote much of the remainder of the paper to dis-
cussing specific challenges on end hosts, presenting the
design of NativeClick along with a preliminary perfor-
mance analysis. We then revisit our long term vision and
discuss open problems.

2 Challenges

Our ultimate goal is to define a programming framework
in which it is possible to implement complex configura-
tions with some programming skills and a good under-
standing of basic network concepts—arcane knowledge
of vendor-specific tools should not be a requirement. The
Linux networking stack and the tools that configure it,
as they stand, are far removed from this level of usabil-
ity. We have anecdotal evidence to suggest that the chal-
lenges facing Linux also apply to other UNIX-based op-
erating systems. While we think it would be interesting
to evaluate the applicability of our work to other OSes,
for now we defer it as future work and focus our attention
on the Linux network stack.

In this section, we enumerate the challenges in the path
of achieving our goal. Each challenge is accompanied by
an example to illustrate its impact in practice. along with
a solution based on a software abstraction. The examples
reflect some of our own experiences using the Linux net-
working stack in practice. The abstractions collectively
make up the design of NativeClick.

Challenge: Orchestrating multiple network manage-
ment tools is laborious and error prone.

On Linux, networking is implemented through an in-
terplay of management tools. For example, the device
configuration tool sets the IP address and queue lengths
of various network devices, the iptables tool configures
the network stack with packet filtering and classification
rules, and the tc tool shapes traffic. The tools have de-
pendencies; in this example, iptables may classify traffic
based on the address assigned to the network device and
tc might use the ensuing classes to shape traffic. Keeping
track of these dependencies can be a daunting task, and
the resulting configurations fragile. Each individual tool
has its own specific method of configuration and its own
syntax.

Example: When the IP address of a network interface
is changed, all entries in the route table and the traffic
policy table that involve that device are silently dropped,
requiring a restart of those services.
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Solution: Consolidated configuration using the Click
modular router.

As mentioned earlier, our solution to this problem is to
consolidate the configuration of all aspects of network-
ing through a unified programming framework inspired
by the Click Modular Router. Click is an elegant ap-
proach to modular network configuration, modeling net-
work processing as a packet flow graph of self-contained
elements.

The Click design consists of an architecture, a lan-
guage, and a runtime system. In the Click architecture,
a network configuration is defined as a graph of fine-
grained processing operations called elements. The ba-
sic interface of an element is a set of input and output
ports. Packets are handed off by an element via its out-
put ports to other elements via their input ports. The ba-
sic interface can be extended to expose properties of the
element’s state, such as buffer sizes and queue lengths.
The Click language allows the user to specify a graph of
elements using a simple and intuitive syntax. Although
it contains many advanced features, any Click configu-
ration can be written using three constructs for defining
elements, ports, and the connections between ports. Fi-
nally the Click runtime implements a library of useful el-
ements, along with the architectural framework required
to compose them into a graph.

NativeClick adopts the architecture of Click and its
language, but discards its runtime. The architecture of
Click satisfies our needs for configuring network pro-
cessing in an abstract and holistic manner. Ths Click lan-
guage helps specify an entire networking configuration
in a single program with an intuitive syntax, as opposed
to Linux, in which configurations are scattered across
multiple files. In Click, the dependencies between ele-
ments are explicit – so for instance in the example above,
elements with dependencies could be reloaded when one
of the dependencies changed.

Challenge: Traffic flow is implicit, inflexible and hard to
visualize.

The flow of packets through the Linux network stack
is implicit and hard to visualize. It may be argued that
the underlying problem is scant documentation – and that
exactly what path packets follow through various mod-
ules in the network stack can be discerned from source
code. Even though this may be true for a specific ver-
sion of Linux, since the notion of a path is not formally
defined, it is problematic to ensure that the same paths
are preserved between versions. Moreover, the path that
packets take is inflexible. It is impossible to reverse the
direction of packets between two processing steps, even
if both directions preserve the semantics of the protocols
involved. The ability to visualize traffic flow at an ab-
stract, tool-independent level would be a significant step

towards bringing this type of configuration to a wider au-
dience, in addition to simplifying it for experts.

Example: Packet filtering in the Linux network stack
does not affect UDP packets generated by some DHCP
daemons. This is because the daemons generate these
packets over raw sockets, and the raw sockets receive the
packets before the packet filtering modules have acted on
them.

In a Click specification, by contrast, the path that pack-
ets take can be traced precisely from the traffic source to
terminal processing elements. Users have complete free-
dom in changing this path. They can do so simply by
changing the connections between element ports. The
explicit hand off of packets from one element to the next
also gives Click the familiarity of a general purpose pro-
gramming language. Elements in Click act on a packet
like functions and procedures act on input values in a
general purpose program.

The challenge for NativeClick is to start with a Click
specification containing explicit packet processing paths,
and enforce these same processing paths in the Linux OS.

Solution: Use virtual point-to-point (VPPP) links.
A virtual link is a pair of point to point devices that

acts like a local tunnel. Packets entering one device are
emitted on the other and vice versa. Since all of the
Linux networking tools have the ability to operate on a
given network device, tools that need to be connected can
simply be placed on the two sides of a virtual link.

For NativeClick, VPPP links implement the ports and
graph edges of Click’s architecture. A port equals a
VPPP device inside a container, and the VPPP links con-
nect the containers into a network. Packets flow across a
VPPP link into a container, are processed by the element
that resides there, and are forwarded on a different VPPP
link or another network device.

Challenge: Linux tools can interfere in unpredictable
ways due to the lack of modular interfaces.

Linux tools do not have a well-defined interface that
they can use to interoperate safely. Instead, they inter-
operate by committing changes to the global state of the
network stack. These changes can conflict, and as a re-
sult, compositions of tools can behave in unpredictable
ways.

Example: The network stack can be configured via sev-
eral global configuration parameters. One of these pa-
rameters rp filter enables defense against IP spoofing,
and is turned on by several firewalls. We have encoun-
tered cases in which IP spoofing was used as an ex-
ploratory mechanism. Painstaking debugging was nec-
essary to reveal the conflict.
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Click addresses this problem by clearly defining fine-
grained modular units of processing called elements that
perform a single function, such as packet encapsulation
or address rewriting. The challenge for NativeClick in
modularizing Linux tools as Click elements is twofold:
to break down complex tools into simple, Click-like op-
erations, and to encapsulate these operations in a modu-
lar interface.

Solution: Modularize elements as executable scripts in
OS-level containers.

NativeClick elements are executable scripts that can
be written in a general-purpose language. The scripts
invoke the networking tools in simple ways – for exam-
ple, an element might invoke a single iptables rule or
set up a single traffic shaping queue with tc. Therefore
NativeClick elements have roughly the same processing
granularity as those of Click. To start an element, Na-
tiveClick runs the appropriate script inside a container
with several command-line arguments: the start flag, a
set of input and output ports (mapping to virtual links al-
ready created in the container by NativeClick), and a set
of named configuration parameters.

NativeClick enforces isolation between elements by
encapsulating them in OS-level containers. In Linux, an
OS-level container is an enhanced process with its own
virtualized network stack, file system mounts, system
variables such as the hostname, etc. – in addition to hav-
ing its own copies of resources virtualized by traditional
processes, e.g. virtual memory and the file descriptor
table. The virtualized network stack includes network
interfaces, the route table, stack configuration flags, and
traffic filtering and shaping rules. The greatest benefit
of using this type of virtualization in NativeClick is its
low overhead, which is comparable to that of traditional
processes.

Placing each element in a container gives elements
free rein to configure the stack in arbitrary ways, while
preventing elements from interacting with each other. In
essence, containers give NativeClick the modularity of
the Click architecture.

To sum up, Figure 1 illustrates the basic ideas be-
hind NativeClick. Part (a) shows a portion of a standard
Click graph with elements connected by ports; the Click
runtime implements these components in C++. Part (b)
shows an equivalent graph in NativeClick, with elements
implemented by Python scripts running inside OS con-
tainers and wrapping Linux networking tools, and ports
mapping to VPPP links.

3 Performance

There are two possible sources of overhead in Na-
tiveClick: the packaging of processing operations as el-

OS	  Containers	  

Virtual	  links	  

Python	  script	  

C++	  Element	  

Ports	  

(a)	  

(b)	  

Figure 1: Intuition behind NativeClick

ements, and the interfaces that connect elements. Na-
tiveClick elements do not add any new processing to the
data path; the performance of an element simply reflects
the performance of the underlying mechanism it wraps.
In some cases, it may be less efficient to compose simple
elements to perform a function rather than directly us-
ing a specialized element designed for the purpose. Such
tradeoffs were examined in the original Click work, and
were found to be insignificant in their implementation.
In the future we plan to evaluate similar tradeoffs and
possible optimizations for NativeClick.

Unlike elements themselves, interfaces between el-
ements do constitute additional processing in the data
path. Interfaces help realize the explicit hand off of pack-
ets, which is indispensable for enabling the use of the
graph paradigm, so they cannot be fully eliminated. The
best we can do is to keep their overhead low, and to that
end, we make use of lightweight constructs, namely OS
level containers and virtual links.

Preliminary microbenchmarks show that these over-
heads are not prohibitively high. Our apparatus consisted
of a single 12 core Xeon server with 48GB of RAM
running the 3.x series of the Linux kernel. Our experi-
ment created chains of NativeClick elements of varying
lengths, and tested UDP throughput through these chains
using iperf.

For a chain length of 0 (i.e. no interfaces) the through-
put in one direction was 810Mbps. This amounts to
1.6Gbps of total packet processing throughput, since
both client and server were running on a single host.
For a chain length of 10, the throughput reduced to
745Mbps, or 8.6% below the original throughput, which
we believe does not constitute an unacceptable perfor-
mance degradation.

We see two opportunities for optimizing NativeClick’s
performance. The first involves avoiding the use of con-
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tainers and virtual links when they are not required. For
example, in cases in which the path of packets in the
Linux network stack exactly matches the expected path
between two elements, the elements can be merged. The
second consists of optimizations enabled by virtue of
having a global view of networking. Many such opti-
mizations are already covered by the Click work [4].

From this preliminary testing, we conclude that it is
feasible to pursue NativeClick’s approach to imposing
modularity on the Linux network stack and tools. We
plan to perform a more thorough evaluation through mac-
robenchmarks and more varied traffic in the future.

4 Related Work

Open vSwitch (OVS) [10] is a software implementation
of an OpenFlow switch, now a part of the Linux ker-
nel, that is designed for dynamic, multi-server virtual-
ization environments (a.k.a. “the Cloud”). Its goal is
to enable cluster-wide logical abstractions by providing
a unified framework for configuring packet forwarding,
traffic shaping, tunneling, and flow monitoring on end
hosts. OVS only subsumes functionality related to L2/L3
packet forwarding; in contrast, NativeClick provides a
holistic view of the entire Linux networking stack.

Modular abstractions for programmable host network-
ing go back at least 20 years. The x-kernel [8] was a
modular framework for implementing network protocols
within a commodity OS. A follow-on project, the Scout
OS [7], used the path abstraction to make processing of
packet flows explicit via chains of modules. Our think-
ing about network configuration was inspired by these
systems as well as by Click.

Due to their negligible I/O overhead, OS containers
are a natural choice for virtualizing the networking stack
on end hosts. The VINI testbed [1, 2] leverages OS con-
tainers as lightweight virtual machines that can act as
programmable routers. The Mininet simulation frame-
work [3] uses network namespaces and virtual links to
build virtual software-defined networks of up to 4096
hosts and switches on a single PC. We expect that Na-
tiveClick will be able to support configurations consist-
ing of thousands of elements.

5 Beyond the Network Host

The key principle of SDN is to define modular inter-
faces through software abstractions that run across net-
work components. Our approach with NativeClick di-
rectly applies this principle: we overlay abstractions de-
veloped in the Click Modular Router (Click elements and
ports) onto Linux mechanisms (containers, virtual links,

executable scripts) to modularize the Linux toolset. For
this reason, we place our work in the broad SDN effort.

The commodity OSes that run on these hosts play a
significant role in the creation of networks today: their
problems are therefore also the problems of networking
at large. We have examined a small part of this prob-
lem by modularizing the Linux network stack in the form
of Click packet flow graphs. In doing so, we hope to
have demonstrated that networking on OSes has prob-
lems similar to the ones on networks, and that these prob-
lems are not solved using networking abstractions.

A good illustration of this point is the Open vSwitch
(OVS) software [11], which is a virtual OpenFlow switch
implementation for Linux. One of the goals of OVS is
to bring SDN principles to the end host. While there
are compelling benefits to using OVS, especially in the
realm of VM orchestration in Cloud environments, these
benefits are restricted to the networking side of the prob-
lem. OVS does not replace the rich library of powerful
and mature tools available on commodity OSes, and the
decision not to aim for this objective is by design [9].

Given the full span of problems that run from network
switches and routers to end host network stacks, finding
the abstractions for a programming model that truly takes
a holistic view without neglecting the extremities is an
open problem. One of the key messages of this paper is
that SDN currently lacks abstractions that cover network
host functionalities and that it would be beneficial for the
systems community to expore such abstractions.

Moving forward, we would like to explore the idea of
using the Click language as a framework for holistic pro-
gramming that includes components in the network as
well as tools on the end host. NativeClick takes two im-
portant steps in this direction. First, it implements the
host side of the programming environment. Second, it
unbundles the Click language from its runtime. We do
not fully understand the challenges involved in packag-
ing network components as Click elements, but we now
have a framework for evaluating various possibilities,
such as connecting via the OpenFlow interface or defin-
ing vendor-specific elements.

References
[1] BAVIER, A., FEAMSTER, N., HUANG, M., PETERSON, L.,

AND REXFORD, J. In VINI Veritas: Realistic and Controlled
Network Experimentation. In Proceedings ACM SIGCOMM
2006 Conference (Pisa, Italy, Sep 2006).

[2] BHATIA, S., MOTIWALA, M., MUHLBAUER, W., MUNDADA,
Y., VALANCIUS, V., BAVIER, A., FEAMSTER, N., PETERSON,
L., AND REXFORD, J. Trellis: A platform for building flexible,
fast virtual networks on commodity hardware. In Proc. ROADS
2008/CoNEXT 2008 (Madrid, Spain, Dec 2008).

[3] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., LANTZ, B.,
AND MCKEOWN, N. Reproducible Network Experiments using

5



Container-Based Emulation. In Proceedings of CoNEXT 2012
(Nice, France, Dec 2012).

[4] KOHLER, E., MORRIS, R., AND CHEN, B. Programming Lan-
guage Optimizations for Modular Router Configurations. In Pro-
ceedings of the 10th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (San Jose, California, Oct 2002).

[5] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. ACM Trans-
actions on Computer Systems 18, 3 (Aug 2000), 263–297.

[6] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review 38,
2 (2008), 69–74.

[7] MOSBERGER, D., AND PETERSON, L. L. Making Paths Ex-
plicit in the Scout Operating System. In Proceedings of the Sec-
ond USENIX Symposium on Operating System Design and Imple-
mentation (OSDI) (Seattle, Washington, Oct 1996), pp. 153–167.

[8] PETERSON, L. x-kernel Home Page.
http://www.cs.arizona.edu/xkernel/.

[9] PETIT, J. Openvswitch mailing list. Jun 2011.
http://openvswitch.org/pipermail/discuss/2011-
June/005341.html. .

[10] PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending Networking into the Virtual-
ization Layer. In Proceedings of HotNets–VIII (New York, New
York, Oct 2009).

[11] PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending networking into the virtual-
ization layer. Proc. HotNets (October 2009) (2009).

[12] SHENKER, S. The Future of Networking, and the Past of Proto-
cols. http://opennetsummit.org/talks/shenker-tue.pdf.

6


