
USENIX HotPar 2013, San Jose, CA.

But How Do We Really Debug Transactional Memory Programs?

Justin Gottschlich Rob Knauerhase Gilles Pokam

Intel Labs

Abstract

With recent announcements of hardware transactional mem-
ory (HTM) systems from IBM and Intel, HTM will soon
be available for widescale adoption. Such platforms, com-
bined with tested and stable software transactional memory
systems, are likely to make real transactional memory (TM)
systems available for the first time, which promises to be a
more attractive alternative than lock-based parallel program-
ming in terms of programmability and performance.

With these first-ever real systems come several open ques-
tions. Perhaps one of the most obvious is, “how does one
debug a TM program that uses real hardware?” While prior
research in this area exists, there are, to the best of our
knowledge, no commercially-available TM debuggers and
only a handful of research projects exploring such possibil-
ities, many of which use simulated HTMs that may utilize
unrealistic hardware. In this paper, we motivate the need for
more than traditional and ad hoc debugging support. We then
propose a novel record-and-replay system, based on exist-
ing research prototypes and demonstrate its usefulness by
reviewing several use cases in TM programming, restricting
use to real features in IBM and Intel’s HTMs.

1. Introduction

The advent of multicore processors and their far reaching
use in everything from servers to cellphones has made paral-
lel programming possible across a range of devices [1]. Yet,
current parallel programming techniques using locks have
inherent scalability limitations and are notoriously challeng-
ing to program correctly and efficiently, even for the best
programmers [5, 9].

To combat this, researchers have spent the last two decades
exploring transactional memory (TM), which promises to
avoid many of the correctness issues associated with locks
(e.g., deadlocks, priority inversion) and hopes to be as or
more efficient. A myriad of advances in the past few years
has led us to where we are today, with first generation com-
modity hardware-based TM (HTM) systems available or on
the horizon from IBM and Intel [10, 20] and a dedicated
community of experts exploring standardization of transac-
tional language constructs for the Standard C++ Program-
ming Language [2]. While these advances move us toward
a standardized programming model that may lead to more
efficient programs that are easier to reason about, they also

move us into a space where we have limited prior experi-
ence, raising the question, “how do we debug TM programs
that use real hardware?”

Prior research has explored how to debug TM systems, but
much of this TM work has been placed squarely in the
software-only (STM) space [7, 12, 22, 23]. While HTM de-
bugging research has been investigated, to the best of our
knowledge, it has been limited to simulated HTMs [3, 14],
where only hardware transactions are debugged. It is not
clear if such research is sufficient for real HTM systems,
because all of the existing commercial HTMs that we are
aware of are best-effort [4]; that is, they cannot guarantee
forward progress, requiring an STM fallback mechanism to
ensure forward progress. As such, correctness and perfor-
mance debuggers for real HTMs require the ability to handle
the complications that arise when both hardware and soft-
ware transactions execute in the same program. 1 For this
reason, debugging the concurrent execution of hardware and
software transactions is critical for real systems.

In this paper we show how traditional debugging techniques
fail to properly capture and reproduce correctness and per-
formance defects in TM programs. We then describe, at
a high-level, an industrial prototype [15, 16] hardware-
assisted record and replay (R&R) with minor modifications
that enable comprehensive correctness and performance de-
bugging for programs using real TM hardware. We exam-
ine the system’s usefulness by analyzing use cases where
hardware, software, and hardware and software transactions
execute concurrently.

2. Problems with Traditional
Debugging

A number of complications arise when applying traditional
debugging techniques to parallel programs. Perhaps the most
well-known is caused by the nondeterministic nature of
multithreaded software. That is, a multithreaded program
may yield different outcomes when using identical input
because the program’s threads may be interleaved differ-
ently across multiple executions. Therefore, an execution
may emit a bug during a production run, but may not when
later debugged even with identical input. Because of this

1 IBM’s System z HTM supports constrained transactions that do guarantee
forward progress, but, as the name implies, these transactions have strict
restrictions and are unlikely to be used as general purpose transactions.

limitation, traditional debugging techniques that work well
for sequential codes, such as using breakpoints and single-
stepping through software, are inappropriate for parallel
software.

Multithreaded debugging complexity increases when pro-
grams use transactions. First, TMs can introduce complex-
ity when their execution is speculative. This generally re-
sults in two values for every transactional write, a global (or
real) value and a speculative value. Detecting inconsistencies
between real and speculative values that can emerge from
undetected data races is useful for debugging, especially in
weakly isolated systems [18]. Second, unlike traditional con-
currency mechanisms, like locks, transactions can abort and
be retried and yield different behavior on the retried execu-
tion. Ensuring this repeatable abort-and-retry ordering can
be vital to reproduce cold-path transaction bugs. Third, the
conflict management system for an HTM, STM, or hybrid
TM system (HyTM), which uses both hardware and soft-
ware transactions, can be highly complex [17, 19]. Under-
standing how conflict management schemes affect a trans-
action’s execution, such as stalling or aborting, is crucial for
understanding why a TM program behaves in a specific fash-
ion. For example, certain TMs may abort transactions when
they perform uncontended reads to ensure opacity, a cor-
rectness criterion that prevents illegal TM memory accesses
from causing negative program side-effects [8].

Traditional debugger support is insufficient to handle these
cases. Even something as simple as extending a debugger to
provide the user with real and speculative transaction values
is not easily achievable in production HTMs. This is because
many of these systems provide limited or no support for es-
cape actions, which allow certain tagged instructions within
a transaction to execute non-transactionally [14]. Without
seeing real and speculative values, programmers are likely
to have difficulty identifying certain correctness bugs. Fur-
thermore, extending debuggers so they keep track of trans-
actional bookkeeping information during a debugged exe-
cution may be impractical due to the potential probe ef-
fect – that is, the overhead introduced by analyzing a sys-
tem – when used with HTMs or HyTMs [7, 22, 23]. Still,
even if such probe effects were minimized, universal transac-
tional bookkeeping would not be possible for all real HTMs
due to limited or no escape action support. Yet, without
some schematic view of an execution, locating and fixing
TM performance bugs will continue to be a daunting chal-
lenge.

Ad hoc parallel program debugging techniques, like us-
ing printf to capture the interleaved operations between
threads, also do not transition well, or at all, to TM pro-
grams. This is because many transactions cannot contain I/O
because such instructions are irrevocable (non-abortable) [6,
21]. Furthermore, even in cases where such ad hoc tech-
niques are allowed, they often have the side-effect of chang-

ing the contention signature of the program, because, gener-
ally speaking, two or more irrevocable transactions cannot
execute at the same time. Therefore, one of the key behaviors
of transactions is lost when such an approach is used; that
is, speculative execution is not fully realized, likely causing
certain TM bugs to lie dormant when such ad hoc debugging
techniques are used.

3. Record and Replay for TM

One approach to debugging multithreaded programs is to
record enough information during a program execution so
that, later on, the same program can be re-executed deter-
ministically. Using this approach, a program can be deter-
ministically replayed many times, which is often necessary
for programmers to first analyze and then fix complex bugs.
This technique, called record-and-replay (RnR), has pro-
vided developers with an avenue to fix both performance and
correctness bugs in multithreaded programs that would oth-
erwise be challenging, or impossible, to fix without some
form of determinism.

For RnR systems to provide deterministic replay, they gen-
erally capture two sources of non-determinism: memory
non-determinism and input non-determinism. Memory non-
determinism deals with capturing the order of shared mem-
ory accesses between threads, while input non-determinism
captures non-determinism generally found in system calls,
such as the unique identifier returned by rdtsc (i.e., read
timestamp counter). The main source of overhead in RnR
systems is usually in capturing memory non-determinism.
Researchers have found that using hardware to track mem-
ory non-determinism is an effective way to mitigate such
overhead [13, 16].

Our approach to managing this overhead in QuickRec [15]
is to use a hardware mechanism that divides a program exe-
cution into an ordered sequence of chunks, where a chunk in
each thread of execution represents a consecutive sequence
of instructions that executes without an intervening shared
memory conflict or system event. With this mechanism, the
threads’ interleaved shared-memory instructions are cap-
tured by the order of the chunks. Input non-determinism,
on the other hand, where non-deterministic program inputs
originate from either the application itself or the interactions
with the surrounding system, are captured by the operating
system that runs on top of the recording hardware. While
we believe that QuickRec is well-suited to assist in the de-
bugging of many types of parallel programming problems,
capturing and reproducing the specific events that occur in
programs that use TM present unique challenges.

3.1 Open Challenges in TM RnR

For QuickRec, a chunk is described in terms of number
of retired instructions. However, the commercially available

HTM systems considered in this study all enforce strong iso-
lation where the side-effect of an instruction execution in a
transaction is shielded until the transaction commits. This
creates new challenges in terms of interfacing an RnR sys-
tem with an HTM core. Adjacent to this issue is the fact that
input data is not visible until a transaction commits, mak-
ing it difficult to collect non-deterministic input data using
software-only approaches. In a flat nested TM space, we
need not worry about nesting level of transactions, but we
expect that such information would be helpful for perfor-
mance debugging, as well as correctness debugging. We are
actively researching solutions to these issues.

Separately, there is the integration of hardware-assisted
transactions with STM systems that are often used as a fall-
back for failed hardware transactions. Conflicting accesses
between a hardware transaction that eventually aborts a soft-
ware transaction may not necessarily have the information
needed to accurately point at which memory access was the
source of the conflict. Because the hardware is unaware of
STM activity, we may need to instrument STM libraries or
compilers and/or portions of the operating system in order
to maintain the correspondence (or lack thereof) between
accesses, potentially forcing chunk terminations at certain
points within the STM system. We discuss this further in the
following sections.

3.2 Recording Transactions

To support replay of hardware transactions, it is important
that the recording machinery ensures that each transaction
execution is described using chunk information that per-
tains only to its execution context. If this is not done, non-
transactional conflicts may cause chunk terminations leading
to false positives. Furthermore, these false conflict chunk ter-
minations may cloak true transactional conflicts because the
hardware’s conflict detection mechanism is cleared at chunk
termination.

To support transactional chunks, an RnR system would
likely need to record the hardware transactional begin and
commit events. Furthermore, we believe it will be useful
to record all transactional aborts and any error information
they contain so the replayer can provide richer debug utility
at replay-time.

A key observation is that such an RnR system would not
generate new transactional chunks for software transactions.
This is done for two reasons. First, it is not clear how RnR
hardware would natively support the recording of software
transactions without some predefined ISA support for them.
Second, as we demonstrate in Section 4, without any spe-
cialized events to record software transactions our proposed
system still provides meaningful debug information when
software transactions are used. However, in some cases, re-
ductions in precision can be observed.

3.3 Replaying Transactions

To replay transactions we propose the following high-level
design. First, in addition to the recording requirements pre-
sented in Section 3.2, an interface is needed to capture trans-
actional reads and writes for software transactions. Support-
ing this interface should be possible by augmenting the ex-
isting STM or compiler code generation that is used for soft-
ware transactions. Second, for the replayer to provide useful
debug information for hardware and software transactions it
likely needs to provide precise conflict detection information
(as described in Section 2). To achieve this, we propose the
following two data structures shown in Figure 1: AddrMap
and Global Replay Data.

The Global Replay Data (GRD) is a shared memory struc-
ture that stores the currently executing thread (Active Thread)
and its associated instruction pointer (IP). Just prior to ex-
ecuting the next instruction in the replay process, the GRD
is updated with the next instruction’s information. If the
next instruction is from a different thread, the GRD’s Active
Thread data is also updated. Because QuickRec replay is se-
rialized, we assume there is always only one active thread
and one associated IP.

The AddrMap is a dynamic array that is used to track the
memory addresses that are accessed for each transaction.
Each thread is assigned its own AddrMap at replay initial-
ization. With this information, precise transactional conflict
information can be gathered during replay, which, in many
cases, cannot be obtained during recording because of im-
precisions that may exist in the hardware, such as cache line
granularity for conflicts which do not precisely detail the
specific memory address causing a transactional conflict. A
single entry in an AddrMap has the following fields:

• Address - the memory address of the transactional ac-
cess.

• Access - the type of access (read, write, or both) associ-
ated with the memory address.

• Value - the current transactional value associated with
the memory address.

Address Access Value Active Thread IP

AddrMap Structure Global Replay Data

Figure 1. Data structures for QuickRec TM Replay.

During replay, each transactional read or write that is per-
formed, both by hardware and software transactions, is cap-
tured by adding an entry to the respective thread’s AddrMap,
which contains the information shown in Figure 1. In Sec-
tion 4 we illustrate the strengths and weaknesses of this ap-
proach and its ability to provide meaningful transactional
conflict information which is useful in the debugging of both
correctness and performance bugs for TM.

4. Transactional Memory Use Cases

At the highest level, uses cases for debugging programs
that use transactions generally come in two forms: (i) cases
where only transactions execute concurrently and (ii) cases
where a transaction executes alongside another type of con-
current access. In this paper, we focus solely on the former,
where two transactions execute at the same time. 2 Further-
more, for this paper we assume eager conflict detection and
resolution for hardware transactions, as all of the real HTMs
that we are aware of, Intel’s Haswell, IBM’s Blue Gene/Q
and System z [10, 11, 20], use such an approach. With this
in mind, our RnR techniques are still practical for lazy HTM
conflict detection and resolution, as demonstrated by Sce-
nario #3, where a lazy conflict detection and resolution STM
is used.

Scenario #1: Two Hardware Transactions 3
Scenario #1: Two HW Transactions

int x;

Thread 1 (HW TX)

atomic {

 x = ...

}

Thread 2 (HW TX)

atomic {

 x = ...

}

conflict unknown
(aborts thread 1’s
transaction)

ti
m

e

Figure 2. Scenario #1: Two hardware transactions exe-
cuting concurrently.

Figure 2 illustrates an execution where two hardware trans-
actions concurrently execute and conflict on a shared mem-
ory access to variable x. Although trivial, this example
demonstrates a fundamental limitation of real HTMs; that
is, the conflict that caused thread 1’s transaction to abort
is generally unknown when the HTM’s abort handler is in-
voked. For example, Intel’s Haswell restricted transactional
memory (RTM) abort handler contains an error code that
identifies the reason why the transaction aborted, but it does
not include the actual memory location that caused the con-
flict. The same is true for IBM’s Blue Gene/Q HTM. Yet,
identifying precise conflict locations between transactions
is critical to fixing performance and correctness bugs as ex-
plained in Section 2.

Consider the challenge of manually determining the source
of a transactional conflict if two or more transactions ac-
2 Note that while we do not discuss nested transactions, these techniques
also apply to flat nested transactions. Complications arise in closed nested
scenarios, but we do not discuss them here because all current HTMs in
which we are familiar use flat nesting.
3 This scenario has identical RnR behavior as executing one hardware
transaction in thread 1 and one software transaction in thread 2.

cess many disjoint memory locations across many functions.
What if some of these functions reside inside libraries that
the programmer cannot see into? This approach seems gen-
erally intractable, yet, it is one way debugging is currently
being performed on real HTMs. Using the RnR recording
extensions we described in Section 3.2, we can move away
from this model and instead record the necessary interleav-
ings to track precise transactional conflicts which can later
be used to provide meaningful debug information during re-
play.

HW+HW TX: Recording

int x;

Thread 1 (HW TX)

atomic {

 x = ...

}

Thread 2 (HW TX)

atomic {

 x = ...

}

ti

m
e

new tx chunk
(Bfilters cleared) new tx chunk

(Bfilters cleared)
addr added to wset

addr added to wset,
coherence protocol
hit, term chunk

terminate chunk

Chunk N
Chunk N-1

Chunk N-2

Chunk N+?

Figure 3. Scenario #1: Recording two hardware transac-
tions executing concurrently.

Figure 3 illustrates the recording process for the transac-
tions shown in Figure 2. Each rectangle represents a distinct
chunk. Chunks N and N+? are created by the recording ma-
chinery when thread 1 and 2’s respective transaction’s start.
Thread 2’s chunk label “N+?” means the chunk does not have
a precise number associated with it because it has not been
terminated yet, but it will be N plus some value. The Bfilters
in the figure refer to the Bloom filters used in QuickRec to
store read and write set accesses for a given chunk, while
wset refers to the write set associated with those Bloom fil-
ters. When thread 2 writes to variable x, the chunk in thread
1 is terminated for two reasons. First, this access results in
a conflict in thread 1’s write set Bloom filter, which causes
a chunk termination using QuickRec’s general RnR system.
Second, the same access causes the hardware transaction in
thread 1 to abort, which also invokes a chunk termination as
described in Section 3.2.

Once recorded, programs can be replay-debugged using the
additional logic we proposed in Section 3.3, which moni-
tors memory locations as they are accessed in the program
binary. As shown in Figure 4, the replay process is simi-
lar to the recording process. However, the replayer uses the
AddrMap and the Global Replay Data, described in Sec-
tion 3.3, to enhance the debugging experience.

The replay process shown in Figure 4 works in the follow-
ing way. The replayer sequentially replays each chunk of
the program, eventually stalling thread 1 at chunk N after
variable x is written to and added to thread 1’s AddrMap.
At this point, thread 2 will become active and eventually

HW+HW TX: Replaying

int x;

Thread 1 (HW TX)

atomic {

 x = ...

}

Thread 2 (HW TX)

atomic {

 x = ...

}

ti
m

e

new tx chunk
(AddrMap cleared) new tx chunk

(AddrMap cleared)
AddrMap += x

AddrMap += x

(GRD tracks active
thread and current
instruction)

Terminates transaction. Triggers
replayer AddrMap lookup to identify
source of transaction conflict.

Chunk N
Chunk N-1

Chunk N-2

Chunk N+?

Each thread has its own AddrMap.
Global Replay Data (GRD) tracks the active
thread and the current executing instruction.

Figure 4. Scenario #1: Replaying two hardware transac-
tions executing concurrently.

perform the write operation that causes thread 1’s transac-
tion to abort, sending it an HTM abort message. Thus far,
all of this behavior is nominal to HTMs and chunk-based
RnR processing [10, 16]. When the abort message is re-
ceived by thread 1, and because the replayer sequentially re-
plays chunks and tracks the current thread’s execution and
instruction in the GRD, the instruction and memory location
that caused thread 1’s transaction to terminate is known. The
replay system determines if this is a true or false conflict
by performing a lookup into thread 1’s AddrMap when the
chunk is terminated, sending it the GRD’s current instruc-
tion information as input to the lookup.

An RnR without specific TM hooks can replay this TM pro-
gram exactly as it was observed, guaranteeing that no causal
shared memory interleavings are lost. However, by extend-
ing an RnR system to record and replay transactions as de-
scribed in Sections 3.2 and 3.3, the system can also identify
the memory address and source location of the transactional
conflict, which is not possible using an RnR without such
support.

Scenario #2: Two Software Transactions. Because un-
bounded HTMs seem unlikely in the foreseeable future [20],
any debugging system for TM should also be able to handle
software transactions that are likely to execute when transac-
tions cannot be executed in hardware or have reached some
threshold of failure. Figure 5 illustrates an example similar
to Figure 2, except that instead of executing two hardware
transactions, it uses two software ones.

Like the prior example, when recording this program, as
shown in Figure 6, the chunk in thread 1 is still terminated
when thread 2 writes to variable x. However, unlike the
prior example, new chunks are not automatically constructed
when the software transactions begin because there is no
hardware event to trigger such behavior.

Because of this, there is a greater chance that conflicts out-
side the scope of the software transactions will negatively

Scenario #2: Two SW Transactions

int x;

Thread 1 (SW TX)

atomic {

 x = ...

}

Thread 2 (SW TX)

atomic {

 x = ...

}

conflict unknown
(aborts thread 1’s
transaction)

Without STM debugging, the reason for the above abort is generally known.

Gilles: do we really need to understand SW+SW TX conflicts for the HW we are
proposing?

ti
m

e

Figure 5. Scenario #2: Two software transactions execut-
ing concurrently.SW+SW TX: Recording

int x;

Thread 1 (SW TX)

atomic {

 x = ...

}

Thread 2 (SW TX)

atomic {

 x = ...

}

ti
m

e

no new chunk

no new chunk

addr added to wset

addr added to wset,
coherence protocol
hit, term chunk

terminate chunk

Chunk N

Chunk N+?

Figure 6. Scenario #2: Recording two software transac-
tions executing concurrently.

influence the precision of the transactional conflict detec-
tion mechanism of the recording system. For example, a
shared memory access might exist prior to starting a soft-
ware transaction that then prematurely causes a chunk to ter-
minate while a transaction is still in flight. If this happens,
the RnR write and read sets will be cleared, possibly pre-
venting it from capturing conflicts that exist in the actual
transaction.SW+SW TX: Replaying

int x;

Thread 1 (SW TX)

atomic {

 x = ...

}

Thread 2 (SW TX)

atomic {

 x = ...

}

ti
m

e

clear AddrMap

clear AddrMap

AddrMap += x

AddrMap += x

(GRD tracks active
thread and current
instruction)

Chunk N

Chunk N+?

Does not terminate transaction, but does
terminate chunk. With this information,
we can identify conflict in AddrMap,
leading to source of conflict. This is
because the replay system can be made
aware of the STM and its transactions.

This requires STM hooks for the replayer.

Gilles: May need the ability to terminate a tx via the STM conflict resolution system.
For example, the attacking transaction may abort itself and need to indicate that it is ending its transaction.

Figure 7. Scenario #2: Replaying two software transac-
tions executing concurrently.

To compensate for this, the STM can be augmented for re-
play so that transactional reads and writes are added to the
AddrMap as previously described in Section 3.3. Then, as
long as the AddrMap is cleared upon each new transactional
scope, as shown in Figure 7 and the transaction’s writes and
reads are added to it as they are accessed, the shared mem-
ory interleavings that are captured by the RnR’s recording
machinery will recreate the proper execution interleavings,
resulting in a deterministic replay that includes precise trans-
actional conflict information for debugging. It is important to
note that unlike Scenario #1, in this scenario the AddrMap re-
quires special knowledge of the STM memory accesses and
its begin and end events in order for the replayer to correctly
identify transactional conflicts.Scenario #4: SW and HW Transactions

int x;

Thread 1 (SW TX)

atomic {

 x = ...

}

Thread 2 (HW TX)

atomic {

 x = ...

}

conflict unknown

(aborts thread 1’s
transaction)

ti
m

e

This is a special case. For the time being, let us assume
that thread 1’s transaction will be aborted by thread 2’s.

Figure 8. Scenario #3: A software and hardware trans-
action executing concurrently.

Scenario #3: Software and Hardware Transactions. Iden-
tifying precise conflicts between transactions in an RnR sys-
tem is more challenging when such conflicts are caused by
a hardware transaction accessing a memory location that
was previously accessed by a software transaction. This is
caused, at least, by the following two complications. First,
the automatic HTM abort process, which was used to cor-
rectly replay and debug Scenario #1, does not apply to
weakly isolated STMs. Second, instrumenting an STM’s
read and write operations, as was done for Scenario #2, does
not capture these types of conflicts because the offending
operation occurs outside of the scope of a software transac-
tion. This means that, unlike both prior Scenarios #1 and #2,
this transactional conflict is not guaranteed to be precisely
identified by either the record or the replay portion of the
RnR system.

An RnR system may terminate a chunk when such a conflict
occurs, as is shown in Figure 9, however, such chunk ter-
mination cannot be guaranteed to be a transactional conflict
for the same reasons described in Scenario #2. That is, the
chunk termination may be caused by a prior shared memory
access before the software transaction started. Furthermore,
even when using an instrumented STM at replay-time, the
conflict that caused the chunk termination cannot be guaran-
teed to be a transactional one, because such a conflict origi-

SW+HW TX: Recording

int x;

Thread 1 (SW TX)

atomic {

 x = ...

}

Thread 2 (HW TX)

atomic {

 x = ...

}

ti
m

e

no new chunk
new tx chunk
(Bfilters cleared)

addr added to wset

addr added to wset,
coherence protocol
hit, term chunk

terminate chunk

Chunk N-1

Chunk N

Chunk N+?

Figure 9. Scenario #3: Recording a software and hard-
ware transaction executing concurrently.

nates from an access from a hardware transaction, which is
outside the scope of instrumenting an STM.

SW+HW TX: Replaying

int x;

Thread 1 (SW TX)

atomic {

 x = ...

}

Thread 2 (HW TX)

atomic {

 x = ...

}

ti
m

e

AddrMap cleared
new tx chunk
(AddrMap cleared)

AddrMap += x

AddrMap += x

(GRD tracks active
thread and current
instruction)

Chunk N-1

Chunk N

Chunk N+?

This operation (x = ... in Thread 2) terminates Thread 1’s
chunk, but not its transaction.

This problem has increased complexity, because the
system cannot identify the conflict with Thread 1’s
transaction until it reaches its closing transaction scope.
Meaning, precision may be reduced here.

Figure 10. Scenario #3: Replaying a software and hard-
ware transaction executing concurrently.

With this in mind, our proposed design can still pinpoint
the conflict memory location in the software transaction by
using the AddrMap in the same manner it was used for
Scenario #2. Furthermore, while it may not be possible to
locate the precise source of the conflict from the hardware
transaction, a list of potential candidate locations can be
generated. For trivial cases like the one shown in Figure 10,
the conflict location is known because the AddrMap contains
the conflicting address and we can simply match the memory
access to the source code line in thread 2. For more complex
cases, where there may be multiple conflicts from multiple
disjoint accesses, therefore the RnR system will only be
able to provide a list of potential source locations of the
conflict.

5. Conclusion

Compared to locks, TM offers a simplified programming
model and may lead to improved performance. Yet, debug-

ging TM programs is notably more complex. Traditional de-
bugging techniques, such as using breakpoints and single-
stepping through code, are a poor match for programs that
use transactions. Ad hoc debugging techniques, such as us-
ing printf to capture shared memory interleavings, are
likely to have limited suitability, or none at all, for TM pro-
grams.

Along these lines, we presented three TM scenarios that ex-
ploited weaknesses of existing traditional and ad hoc debug-
ging techniques in real HTMs. We then demonstrated how
using an existing chunk-based RnR system, with only a few
minor modifications for TM, can provide the programmer
with the memory conflict address and source code location
that caused a transaction to abort, thereby significantly re-
ducing the challenge of fixing performance and correctness
bugs in TM programs. We assert that, without something
like RnR that supports always-on recording and determin-
istic replay, TM might only be used by expert programmers
because the debugging challenge will be too great for the
average programmer.

References

[1] The first step in the multi-core revolution. Technical report,
Intel Corporation, Apr. 2005.

[2] Draft specification of transactional language constructs for
C++, 2012. Version 1.1.

[3] H. Chafi, C. C. Minh, A. McDonald, B. D. Carlstrom,
J. Chung, L. Hammond, C. Kozyrakis, and K. Olukotun.
TAPE: a transactional application profiling environment. In
Arvind and L. Rudolph, editors, ICS, pages 199–208. ACM,
2005.

[4] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience
with a commercial hardware transactional memory implemen-
tation. In ASPLOS, ASPLOS XIV, pages 157–168, New York,
NY, USA, 2009. ACM.

[5] J. E. Gottschlich and H.-J. Boehm. Generic programming
needs transactional memory. In TRANSACT. March 2013.

[6] J. E. Gottschlich and J. Chung. Optimizing the concurrent
execution of locks and transactions. In LCPC, September
2011.

[7] J. E. Gottschlich, M. P. Herlihy, G. A. Pokam, and J. G. Siek.
Visualizing transactional memory. In PACT, PACT ’12, pages
159–170, New York, NY, USA, 2012. ACM.

[8] R. Guerraoui and M. Kapalka. On the correctness of transac-
tional memory. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming,
pages 175–184, New York, NY, USA, 2008. ACM.

[9] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Elsevier, Inc., 2008.

[10] Intel Corporation. Intel architecture instruction set extensions
programming reference (Chapter 8: Transactional synchro-
nization extensions). 2012.

[11] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory
architecture and implementation for ibm system z. In Pro-
ceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’12, pages 25–36,
Washington, DC, USA, 2012. IEEE Computer Society.

[12] Y. Lev. Debugging and Profiling of Transactional Programs.
PhD thesis, Brown University, 2010.

[13] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording
and deterministically replaying shared-memory multiproces-
sor execution efficiently. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, ISCA
’08, pages 289–300, Washington, DC, USA, 2008. IEEE
Computer Society.

[14] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in logtm. In ASPLOS, ASPLOS XII,
pages 359–370, New York, NY, USA, 2006. ACM.

[15] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. King, and
J. Torrellas. QuickRec: Prototyping an Intel architecture ex-
tension for record and replay of multithreaded programs. In
ISCA, June 2013.

[16] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai,
J. Gottschlich, J. Ha, and Y. Wu. CoreRacer: A practical mem-
ory race recorder for multcore x86 processors. In MICRO,
December 2011.

[17] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Com-
mitting conflicting transactions in an STM. SIGPLAN Not.,
44(4):163–172, 2009.

[18] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. En-
forcing isolation and ordering in stm. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’07, pages 78–88, New
York, NY, USA, 2007. ACM.

[19] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott.
Conflict detection and validation strategies for software trans-
actional memory. In Proceedings of the 20th International
Symposium on Distributed Computing, Sep 2006.

[20] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael. Evaluation of blue
gene/q hardware support for transactional memories. In
PACT, PACT ’12, pages 127–136, New York, NY, USA, 2012.
ACM.

[21] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable trans-
actions and their applications. In SPAA, 2008.

[22] F. Zyulkyarov, T. Harris, O. S. Unsal, A. Cristal, and
M. Valero. Debugging programs that use atomic blocks and
transactional memory. In PPoPP, PPoPP ’10, pages 57–66,
New York, NY, USA, 2010. ACM.

[23] F. Zyulkyarov, S. Stipic, T. Harris, O. S. Unsal, A. Cristal,
I. Hur, and M. Valero. Discovering and understanding per-
formance bottlenecks in transactional applications. In PACT,
PACT ’10, pages 285–294, New York, NY, USA, 2010. ACM.

	Introduction
	Problems with Traditional Debugging
	 Record and Replay for TM
	Open Challenges in TM RnR
	Recording Transactions
	Replaying Transactions

	Transactional Memory Use Cases
	Conclusion

