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Abstract
Flash memory has been an active topic of research in
recent years, but hard information about the parameters
and behavior of both flash chips and SSDs has been dif-
ficult to obtain for those outside of the industry. In this
paper several misconceptions found in the literature are
addressed, in order to enable future researchers to avoid
some of the errors found in prior work.

We examine the following topics: flash device pa-
rameters such as page and erase block size, speed, and
reliability, as well as flash translation layer (FTL) re-
quirements and behavior under random and sequential
I/O. We have endeavored to find public sources for our
claims, and provide experimental evidence in several
cases. In doing so, we provide previously unpublished
results showing the viability of random writes on com-
modity SSDs when restricted to a sufficiently small por-
tion of the logical address space.

1 Introduction
Non-volatile memory (NVM) has become an active area
of research in the systems community, with multiple ses-
sions devoted to it at some conferences. In Figure 1 we
see the number of matches in the ACM Digital Library
for the search terms “flash memory” by year; although
the early matches are almost all accidental, the trajectory
of the graph shows the emergence of a new research field
within less than a decade.

Some NVM work being done today focuses on emerg-
ing technologies such as Phase Change Memory and
STT-MRAM, and as such must make speculative as-
sumptions about device characteristics when (or if) they
come to market. However much research addresses
NAND Flash, a fairly mature technology which is on
the market in the form of devices with definite—if some-
times unknown—characteristics. If we assume the goal
of much of this research is to develop ideas which may
eventually be implemented on real systems, then it is im-
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Figure 1: Matches for “flash memory” in ACM Digital
Library by year of publication

portant that assumptions made concerning the underlying
technology are not in significant error.

However flash technology has been progressing at
breakneck speed, sometimes documented in venues un-
familiar to the computer system research community,
and other times hidden in industry behind non-disclosure
agreements and trade secret protection. It is often diffi-
cult to obtain the information needed to ensure that re-
search is relevant or even correct, sometimes requiring
either experimentation or personal communication to ob-
tain information not publicly disclosed. In recent years
the specifications of the devices themselves (i.e. data
sheets) have been treated as confidential information by
vendors, unobtainable without a non-disclosure agree-
ment and thus difficult to use in work destined for the
open literature.

In this environment it is all too easy to base research
on out-dated assumptions, and difficult for reviewers to
determine when this is the case. In this paper we address
a number of topics which have (based on the authors best
determination) been mistaken, ignored, or confused in
parts of the literature:

• Reliability and wear-out
• Device parameters: erase block and page size
• Read, write, and erase speed, and the curious orga-
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nization of MLC pages
• FTL memory limitations
• Random write behavior of various FTLs
• The unique challenges of mobile storage

We examine each of these areas, dividing the topics
into those concerning the flash chip and its parameters,
FTL operation, and application-visible behavior from
above the FTL.

2 The flash device itself

The characteristics of the silicon devices themselves play
a large role in shaping algorithms and determining per-
formance. Issues in this domain include:
Page and block size assumptions
For years flash device page sizes were standardized at
512+16 bytes and then 2048+64 bytes [21], with block
sizes of 32 and then 64 pages; early work in the field
often made assumptions based on these sizes [17]. Re-
cently, however, these numbers have begun to fluctu-
ate widely between devices and generations; the ex-
treme values the authors are aware of to date are 8 KB
(+ spare) pages grouped in 256-page erase blocks [22].
Even power-of-two assumptions may be incorrect, as
erase blocks in TLC (three-bit cell) devices will be mul-
tiples of three pages (e.g. 192); however we are unable
to find publicly-available documents to cite. There are
strong incentives for vendors to continue to increase both
page and block size parameters: long bit lines (i.e. large
blocks) amortize the area of program and sense circuitry
over more cells, while large pages enable high program-
ming throughput despite long program latency [20].
Erase speeds
Google reports 12,700 hits for the phrase “expensive
erase operations”. However erase times have remained
in the range of 2 ms to 4 ms across many generations of
devices, while program times and block sizes have in-
creased greatly. If all pages in a block are programmed
before block erasure, the per-page amortized cost of era-
sure on today’s devices is minor; on some TLC devices
erasure may even be faster that page programming.
Read and write speeds
Work by the author [6] and Grupp et al. [11] has shown
publicly what was no doubt widely known in industry,
that the read and program latencies specified in device
data sheets are only a somewhat vague indication of ac-
tual performance, especially for MLC devices. Of the
two works cited, the author’s misses a primary source
of write latency variation—the existence of “fast” and
“slow” pages in MLC devices—which is analyzed in
Grupp. Neither work addresses systematic read latency
variations, which appear to be far more device-specific.
Both works demonstrate that performance varies in pred-

icable ways as a device wears out: write latency de-
creases significantly for SLC devices (much less so for
MLC) while erase latency increases.

These effects can be exploited in real systems. Grupp
et al. present an FTL taking advantage of fast and
slow pages, and commercial devices have been observed
which use fast pages exclusively, or only for the LBA
range used for the MSDOS FAT table.

The origin of these effects is due to the nature of the
cell write and sensing mechanisms. A value is stored as
a change in the threshold voltage Vt of a cell, which is an
input of the cell, not an output. Sensing is performed in
a read-out cycle which applies a particular voltage to all
cells in the page, and 1s and 0s are sensed for cells with
Vt below or above that voltage [9]. Since the relation-
ship between programming voltage and Vt is not direct,
incremental step pulse programming (ISPP [5]) is used:
the programming voltage is increased in steps, each fol-
lowed by a verification read-out.

In MLC devices, even-numbered pages are formed
from the most significant bit on each cell, and odd-
numbered pages from the LSBs. The precision required
for even-page programming is much less, allowing larger
and thus fewer ISPP steps. Read latency for even and odd
pages depends on how many levels must be sensed; in
one encoding an even page requires two read-outs while
an odd page requires only one [5]. The author is not
aware of any vendor disclosure of the encoding scheme
used by a particular device.
Endurance
Many works assume that flash devices have a fixed life-
time (e.g. of 104 and 105 cycles for MLC and SLC), or
that wear-out detection may be delegated to the device,
which returns an error in the case of an unsuccessful pro-
gram or erasure operation [6]. In reality wear-out is not
a binary phenomenom, where cells suddenly “die”, but
is rather in large the result of the relationship between
program/erase cycling and data retention.

Flash cells do not retain data forever; even in new
cells Vt will fall over time, resulting in a correspond-
ing increase in raw bit error rate. Program/erase cycling
increases the speed at which this loss occurs, thus de-
creasing the effective retention time. Vendor-specified
endurance figures are for 1-year retention; thus an en-
durance value such as 104 means that after 104 pro-
gram/erase cycles, data retained for 1 year will have
an uncorrectable bit error rate no greater than ε after
ECC capable of correcting k errors, where k is vendor-
specified and ε is typically 10−13 to 10−16 [23].

In this formulation it becomes clear that endurance is a
function of retention and RBER requirements: by accept-
ing lower retention times or using stronger ECC one may
increase effective endurance [19]. Conversely, longer re-
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tention requirements will reduce the effective endurance:
for commercial parts, 10-year retention is only guaran-
teed up to 1/10 the rated endurance.

Like page and block sizes, endurance ratings now vary
widely. They may be as low as 2000 or 3000 with 8 bit
per 512 byte ECC for MLC parts; conversely “E-MLC”
(enterprise MLC) devices are available with rated en-
durance of between 10K and 30K cycles. (and a rated
retention time of 3 months [29]) In addition these values
are worst-case limits, and it is known that management of
the interval between program/erase cycles can increase
lifetime significantly [24].

Since effective wearout occurs when data retention
falls below a certain point (e.g. 1 year), it is unlikely
to be detected by a program verify step microseconds af-
ter programming. It appears that devices will report suc-
cessful programming long after they cease storing data
reliably, calling into question extreme lifetime measure-
ments [6]. (Some low-end devices may in fact use pro-
gram/erase failure to detect wearout [3], risking massive
data loss.) This also calls into question absolute bit error
rates reported by Grupp, which were measured shortly
after programming; retention testing appears necessary
for accurate measurements [23].

To avoid data loss it appears to be necessary to aban-
don a block long before it fails programming or erasure,
to avoid bit error rates higher than can be handled by the
implemented ECC. This may be done by strict counting;
it also appears possible to do this by measuring errors
corrected by ECC at read time. Finally, some proposed
(and implemented? [30]) designs incorporate multiple
levels of coding [19] and/or decoding [31] depending on
retention and bit error rate; among other effects this may
cause read or write performance to fall with age.

3 FTL Design Parameters

Here we examine the constraints on FTLs themselves.
RAM requirements
“Flash translation layers must minimize their use of
costly SRAM”. This phrase may be found in the intro-
duction of many papers proposing new flash translation
layers, but in what cases is it true?

For enterprise SSDs, memory usage seems to be at
best a secondary consideration. In some cases (e.g.
Fusion IO [10]) flash translation layers take advantage
of large amounts of host DRAM. Almost all consumer
SSDs combine a controller chip with an external DRAM;
in this case the cheapest DRAMs today are 128 MB
devices [8]; SSDs examined by the author have used
DRAMs between 32 MB and 128 MB, with larger sizes
more common.

However, SD cards and USB “thumb” drives are vastly

different. Here a single-chip controller is equipped with
very limited on-board SRAM—an older USB controller,
for instance, has 5 KB of DRAM [26]. This would not
be enough for a block mapping table for e.g. 8 GB of
512 K blocks (128 pages of 4 KB), but if a virtual block
size of 4 MB is used the table (2 K 16-bit entries) will
just fit. Published SRAM sizes for newer USB and SD
controllers could not be found; however they are unlikely
to be more than a few 10s of kilobytes.
SSD overprovisioning
A few works on wear leveling assume free space is solely
for replacing blocks that wear out; in fact it is primarily
for performance. Like file systems, flash translation lay-
ers perform poorly if they have little free space, causing
large amounts of data copying [7]. Consumption of sig-
nificant amounts of this free space by bad blocks would
in fact result in substantial performance degradation.
Page spare areas
At least one proposed flash translation layer (Superblock
[15]) requires significant space in the page spare area for
data structures. As raw bit error rates grow with shrink-
ing geometries, the space needed for ECC bits has grown
greatly, leaving little space in page spare areas for FTL
metadata. (the extended Superblock paper [14] includes
a data area-only variant) In extreme cases (e.g. early
Indilinx Barefoot controllers [25]) hardware designers
have been known to effectively omit FTL access to the
spare area, requiring all metadata to be stored in page
data areas.
Scanning on startup
Some page-mapped FTLs in the open literature (e.g.
DFTL [12]) recover from unclean shut-down by scan-
ning all page spare areas on start-up. Unfortunately a
page read takes a constant time, regardless of how much
data is needed. Under very conservative assumptions—
a 128 GB SSD with 8 channels, 4 KB pages, and a 50µS
read latency— a scan of all pages would require an in-
feasible 195 seconds at power-on. A block scan, taking
slightly over a second for 128-page blocks, would how-
ever be feasible [1]; more sophisticated mechanisms [28]
can provide further improvements.

4 Application-level Behavior

Finally we address the application-level issues: which
workloads will result in best- or worst-case behavior?
And is smartphone storage really as bad as reported [16]?
Write size and alignment
On hybrid block-mapped FTLs (e.g. BAST, FAST, or
derivatives) peak performance may be achieved—even
on fragmented drives—with long sequential writes. It
seems that it should be possible to achieve this perfor-
mance for more random operations by restricting writes
to properly-aligned erase-block sizes, but it’s a bit tricky.
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Figure 2: Random write performance for page-mapped (left) and FAST-like SSDs. Random writes were restricted to
different fractions of the LBA space, ranging from the entire drive (1/1) to 1/32th of the drive.

This is almost impossible on a page-mapped FTL, as
there are no constraints on the relationship between log-
ical and physical addresses, preventing the alignment of
external writes to physical boundaries. It is possible with
block-mapped FTLs, but the problem is in finding the
actual erase block size.

The on-chip erase block size is often far different from
the effective block size - i.e. the amount of consecutively-
written data which will be erased as a unit. On small
devices this happens when multiple physical blocks are
combined into a single virtual block, to minimize mem-
ory requirements of per-block tables. On consumer and
high-end devices, however, it occurs because writes are
striped across multiple channels. Writing one block of
data on an 8-channel device1 will actually fill one-eighth
block on each of eight chips; one must fill all eight in or-
der to achieve fragmentation-free operation. One cannot
always assume a power-of-two number of channels (e.g.
Intel, with 10), or that all pages in a block hold data [1].
Random write speed
Although SSDs are famous for slow random writes, on
page-mapped devices or those using FAST [18] deriva-
tives, random write performance may be high if writes
are concentrated on a region smaller than the drive free
space. With large write working sets the drive may still
handle a burst of random writes before slowing. For Hy-
brid Log Block [17] (BAST), if the area being written
fits within the FTL’s log blocks, performance will be de-
graded by a factor of two, but no further—a much more
stringent restriction on the write working set.

In Figure 2 we see throughput for two consumer SSDs,
one page-mapped and one using a FAST-like translation
layer. For each run the drive was prepared by trimming
and then sequentially overwriting the entire LBA space,
then random 32 K writes were performed. (using Linux
2.6.35, direct I/O, and an LSI SAS1068E adapter)

1Ignoring ways per channel...

Each line corresponds to a single 10-minute run, with
random writes being targeted to a certain fraction of the
LBA space, from 100% down to 1

32 . As the fraction
of the LBA space written decreases, the time until per-
formance degradation is fairly constant, but the level to
which it falls varies widely.

Commodity SSDs may thus be able to achieve sus-
tained high throughput for random writes, if restricted to
a sufficiently small fraction of the LBA space. This ar-
gues for a re-examination of free space management and
allocation in on-SSD file systems. In particular, an allo-
cation strategy which maximizes re-use of logical blocks
(e.g. by tracking free space in LIFO order) may offer
increased performance.

At least one prior SSD measurement work (Chen et
al. [4]) restricts most random write measurements to a
small range of the device, no doubt giving results which
do not reflect more highly random workloads.
Mobile device storage
Recent work by Kim et al. [16] has shown that MicroSD
cards used as removable storage in smart phones are ex-
tremely slow, significantly degrading application perfor-
mance. Yet their experiments focus almost exclusively
on removable devices, leaving some hope that reasonable
performance might be achieved by using internal flash.

Unfortunately this does not appear to be the case. Ev-
ery Android device we have checked (e.g. [27, 13] uses
eMMC [2] flash, which is essentially a MicroSD card in
a soldered-down package. These eMMC devices have
the same problems of extremely poor random write per-
formance and high per-operation latency (for reads as
well as writes) as have been documented for SD cards,
no doubt due to similar controller limitations.

Experiments were run on a Galaxy Nexus, using a
modified Android kernel for direct I/O, and performing
sequential reads and writes of varying sizes; results are
seen in Figure 3. (random is even worse) Performance
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Figure 3: Sequential I/O on Google Nexus 7 (eMMC
storage) for varying read and write request sizes.

for small request sizes is extremely low; in the read case
this appears to be due to high per-operation latency (over
0.5 ms), while in the write case we hypothesize the use
of read-modify-write operations on large block sizes.

5 Conclusions
Flash research has been an area to date with many pit-
falls. We illuminate several of them in this paper, present
experimental results showing conditions under which
random I/O may be performed at high speed on SSDs,
and extending results of Kim et al. to demonstrate simi-
lar performance of smartphone on-board flash to that of
removable flash devices tested in their work.
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