
NicPic: Scalable and Accurate End-Host Rate Limiting
Sivasankar Radhakrishnan∗, Vimalkumar Jeyakumar+, Abdul Kabbani†,

George Porter∗, Amin Vahdat†∗
∗ University of California, San Diego + Stanford University † Google Inc.

{sivasankar, gmporter, vahdat}@cs.ucsd.edu jvimal@stanford.edu akabbani@google.com

Abstract
The degree of multiplexing in datacenters necessitates
careful resource scheduling, and network bandwidth is
no exception. Unfortunately, today we are left with little
control to accurately schedule network traffic with low
overhead on end-hosts. This paper presents NicPic, a
system which enables accurate network traffic schedul-
ing in a scalable fashion. The key insight in NicPic is
to decouple the responsibility of state-management and
packet scheduling between the CPU and the NIC, respec-
tively. The CPU is only involved in classifying packets,
enqueueing them in per-class queues maintained in host
memory, and specifying rate limits for each traffic class.
The NIC handles packet scheduling and transmission on
a real-time basis. In this paper, we present the design
of NicPic which offers a scalable solution for transmit
scheduling in future high speed NICs.

1 Introduction

Today’s trend towards consolidating servers in dense
data centers necessitates careful resource management,
which has been notably lacking for the network. It is not
surprising that there have been several recent research
proposals to manage and allocate network bandwidth to
different services, applications, tenants and traffic flows
in data centers. The bursty nature of data center traf-
fic, together with high bandwidth and low latency net-
works has also revealed new challenges in congestion
control [9]. This has led to new ideas for congestion
control and burst mitigation in data centers to moderate
various traffic sources and avoid overwhelming shallow
buffers in commodity data center switches.

Many of these recent proposals can be realized on top
of a simple substrate of programmable rate limiters. For
example, EyeQ [6] and Gatekeeper [10] use rate limiters
between pairs of communicating virtual machines to pro-
vide rate guarantees to tenant virtual machines in a data
center. Proposals such as QCN [1], D3 [12] use explicit
feedback from the network to rate limit traffic sources
and avoid bursts while apportioning bandwidth to dif-
ferent flows. These proposals require support for rate
limiting a large number of flows or traffic classes on end-
hosts. In virtualized data centers, this number can be in
the thousands per server due to per-flow congestion con-
trol and per-source/destination VM traffic management.

Property Hardware Software
Scales to many classes × X

Works at high link speeds X ×
Low CPU overhead X ×

Precise rate enforcement X ×

Table 1: Pros and cons of current hardware and software
based approaches to rate limiting.

However, these new ideas have been hamstrung by the
inability of NIC hardware to support scalable rate limit-
ing and packet scheduling primitives. This has resulted
in delegating scheduling functionality to software, which
is unable to keep up with line rates, and diverts valuable
CPU resources away from application processing. As
networks get faster, this problem will get worse. We are
left with a compromise between precise hardware rate
limiters that are few in number [11, pg.3] and software
rate limiters that are more scalable but suffer from high
CPU overhead and burstiness (Table 1). While modern
NICs support on the order of 100 queues [5, 8], to our
knowledge, they only have a few (8–32) traffic classes
with configurable rate limits.

In this work we present NicPic, a network stack ar-
chitecture that combines the scalability of software rate
limiters with the precision and low overhead of hard-
ware rate limiters. The key insight in NicPic is to in-
vert the current duties of the host and the NIC: we store
packet queues in host memory, and have the CPU clas-
sify packets into those queues. The NIC handles packet
scheduling and proactively pulls packets via DMA from
host memory for transmission. In this model, the large
amount of host memory provides scalability to support
tens of thousands of classes, whereas the NIC enforces
precise traffic schedules and rate limits in real-time. In
the remainder of this paper, we identify the limitations
of current operating system and NIC capabilities, and
present a novel architecture that provides scalable rate
limiting with low overhead.

2 Motivation

We begin by describing the applications that motivate
NicPic, and then highlight some limitations of current
host network stacks and the operating system–NIC inter-
face that inform our design.

1

2.1 Target applications

Modern data centers house tens of thousands of servers,
each with potentially dozens of CPU cores. The growing
density of compute power drives a likewise increase in
the number of flows that the NIC must service, schedule,
transmit, and receive. Allocating network resources to
flows is a critical challenge for enabling next-generation
applications, driven in part by efforts to address the fol-
lowing challenges.

Bandwidth Management: Network bandwidth allo-
cation for different services, applications and virtual ma-
chines in data centers relies on rate limiting or weighted
bandwidth sharing [4, 6, 7, 11]. However, today’s NIC
support to handle fine-grained traffic scheduling is lim-
ited to a few (around 8–32) classes. With greater server
consolidation and increasing number of cores per server,
this situation is only going to get worse. As we place
more virtual machines on any server, we need support for
scheduling a larger number of individual flows and traf-
fic classes. This necessitates a more scalable and flexible
solution to control the transmit schedule on hosts.

Data center congestion control: Congestion control
has typically been the responsibility of end hosts, as ex-
emplified by TCP. Bursty correlated traffic at high link
speeds, and small packet buffers in commodity switches
can result in poor application performance [9]. High
bandwidth and low latency in data center networks cou-
pled with diverse workloads has led to new designs for
congestion control. QCN [1], DCTCP [2], HULL [3],
and D3 [12] demonstrate how explicit feedback from the
network can be used to moderate, rate limit or pace traffic
sources and reduce congestion. The ability to precisely
rate limit flows at a fine granularity enables new ways of
performing congestion control and allows the network to
operate at very low levels of internal buffering.

In summary, adopting new approaches to bandwidth
management and congestion control requires fine grained
control over transmission of packets to the network.

2.2 Limitations of Current Systems

Given the need for greater flexibility in scheduling packet
transmissions, we look at relevant features in modern
NICs and operating systems and discuss their limitations.

Figure 1 illustrates the packet transmit and scheduling
pipeline in a state-of-the-art system with a modern NIC
that supports multiple hardware queues. The operating
system maintains a few transmit queues in host RAM
from which packets are transferred to the NIC. When the
operating system decides to transmit a packet, it sends a
doorbell request to the NIC notifying it about the packet
and the NIC Tx ring buffer to be used. The NIC fetches
the packet descriptor from host RAM using DMA to its

Host RAM

Wire

Typically
8-32 rings

. . .

. . . Qdisc
queues

Tx ring
buffers

Packet
Scheduler

NIC

1.  DMA	 packets	 from	 host	 memory	 to	 in-‐NIC	 Tx	 ring	 buffers	
2.  Schedule	 NIC	 Tx	 ring	 buffers	
3.  Transmit	 packet	

1

2

3

Figure 1: Current systems — “Pull and Schedule” model.

internal memory. Then the NIC looks up the physical
address of the packet data, DMA’s the actual packet and
stores it in its internal Tx ring buffer. The packets in
different NIC Tx ring buffers are finally transmitted on
the wire according to a schedule computed by the NIC’s
packet scheduler.

Single queue NICs do not need hardware scheduling
and a basic “pull” model suffices. When NICs with mul-
tiqueue support for simple traffic prioritization or concur-
rent access from multiple CPU cores were introduced, a
few hardware queues sufficed. The “pull and schedule”
model which is a simple extension of the “pull” model
works with such a limited number of queues. However,
this model does not scale to support scheduling of traffic
across large number of classes as necessitated by today’s
virtualized data center environments.

2.2.1 Hardware Rate Limiting

Modern NICs support multiple hardware transmit queues
that are typically mapped to different CPU cores to en-
queue and dequeue packets independently from each
other, avoiding needless serialization through a single
shared lock. Many NICs rely on simple inbuilt algo-
rithms (such as round robin) to schedule packets from
active hardware queues. Some NICs also support rate
limiting in hardware. Each queue is configured with a
separate rate limit [5], or there are a few (8–32) traffic
classes with configurable rate limits and simple round
robin among queues within a traffic class [8]. Such NICs
provide a limited number of configurable rate limiters.

2

8 16 32 64 256 512
number of classes

0

10

20

30
Ke

rn
el

 C
PU

 U
til

. (
%

)
Rate: 1 Gb/s

8 16 32 64 256 512
number of classes

0

0.1

0.2

0.3

No
rm

al
iz

ed
 s

td
de

v Rate: 1 Gb/s htb
hwrl
hwrl+

8 16 32 64 256 512
number of classes

0

10

20

30

Ke
rn

el
 C

PU
 U

til
. (

%
)

Rate: 5 Gb/s

8 16 32 64 256 512
number of classes

0

0.1

0.2

0.3

No
rm

al
iz

ed
 s

td
de

v Rate: 5 Gb/s

8 16 32 64 256 512
number of classes

0

10

20

30

Ke
rn

el
 C

PU
 U

til
. (

%
)

Rate: 9 Gb/s

8 16 32 64 256 512
number of classes

0

0.1

0.2

0.3

No
rm

al
iz

ed
 s

td
de

v Rate: 9 Gb/s

Figure 2: Comparison of kernel CPU overhead and accuracy of Linux’s Hierarchical Token Bucket (htb) and Hardware
Rate Limiting (hwrl, hwrl+). At low rates (1Gb/s or smaller), all approaches perform well, however at high rates (5Gb/s
and 9Gb/s), hwrl performs best both in terms of CPU overhead and accuracy. Further, htb is unable to achieve more
than 6.5Gb/s of aggregate throughput, and so it is not pictured at 9Gb/s.

2.2.2 Software Rate Limiting

Operating systems also provide support for controlling
the transmit schedule. For example, Linux offers a con-
figurable queueing discipline (Qdisc) layer for enforcing
packet transmission policies. The Qdisc can be config-
ured with many traffic classes from which packets are
transmitted by the operating system. This software ap-
proach however has high CPU overhead and only sup-
ports coarse grained scheduling of traffic. The CPU over-
head stems from lock contention and frequent interrupts
used in computing and enforcing the schedule. The op-
erating system typically batches up network processing
and transfers packets to the NIC in bursts to reduce over-
heads, sacrificing precision.

The Qdisc ultimately dictates when packets are trans-
ferred from host RAM to the NIC hardware buffers, but
the actual schedule on the wire is determined by the NIC.
In addition, the operating system transfers packets to the
NIC in batches, leveraging features such as TCP Seg-
mentation Offloading (TSO). Depending on the batch
sizes and how fast the operating system transfers pack-
ets, the NIC buffers might grow quite large. Once pack-
ets are in the NIC, the operating system loses control over
packet schedules; packets may end up being transmitted

at unpredictable times on the wire, frequently as large
bursts (e.g., 64kB with 10Gb/s NICs) of back-to-back
MTU sized packets transmitted at the full line rate.

In summary, current hardware approaches to rate lim-
iting do not scale to many traffic classes, whereas soft-
ware approaches have high CPU overhead and lack ac-
curacy of rate enforcement.

2.3 Quantifying Accuracy and Overheads
To understand the CPU overheads and accuracy of rate
limiting approaches, we benchmark a software rate lim-
iter (Hierarchical Token Bucket, or htb) and a hardware
rate limiter (hwrl) on an Intel 82599 NIC. The tests were
conducted on a dual 4-core, 2-way hyperthreaded Intel
Xeon E5520 2.27GHz server running Linux 3.6.6.

We use userspace UDP traffic generators to send 1500
byte packets. We compare htb and hwrl on two metrics—
OS overhead and accuracy—for varying number of traf-
fic classes. Each class is allocated an equal rate and
we perform experiments with a total rate limit of 1Gb/s,
5Gb/s, and 9Gb/s. When the number of classes exceeds
the available hardware rate limiters (16 in our setup), we
assign classes to hardware rate limiters in a round robin
fashion (shown as hwrl+). The OS overhead is the total

3

fraction of CPU time spent in the kernel across all cores,
which includes overheads in the network stack, rate lim-
iter scheduling, and in servicing interrupts. To measure
how well traffic is paced, we use a hardware packet snif-
fer at the receiver, which records packet timestamps with
a 500 nanosecond precision. We compute the standard
deviation of inter-packet arrival times for each class and
normalize it to the class’s ideal expected inter-packet ar-
rival time. These metrics are plotted in Figure 2; the
shaded bars indicate that many classes are mapped to one
hardware rate limiter (hwrl+).

These experiments show that implementations of rate
limiting in hardware are promising and deliver accurate
rate limiting at low CPU overheads. However, they are
constrained by their design, in that their scalability is
limited by the number of queues they can maintain in
on-NIC buffers. We also find that software-based rate
limiters are impractical today at high line rates, and as
rates continue to increase, will become increasingly in-
feasible. If we can leverage the hardware to use the large
amount of host memory to store per-class queues, then
we can both pace packets accurately while scaling to very
large number of queues. In the following section, we
present NicPic, which is our design for such a system.

Host RAM

NIC

Wire

. . . FIFO queues
(or ring buffers)

Packet
Scheduler

Arbitrarily
many

1

2

3

1.  Schedule	 per-‐class	 queues	 stored	 in	 host	 RAM	
2.  DMA	 packet	 from	 host	 memory	 to	 NIC	 buffer	
3.  Transmit	 packet	

Figure 3: NicPic — “Schedule and Pull” model.

3 Design

NicPic proposes a design that delivers highly scalable
and accurate rate limiting to lots of traffic classes with
low CPU overhead. NicPic leverages the large amount of
host memory (RAM) to store packets in per-class queues,
rather than storing them on the NIC. Memory in the NIC
is used to store metadata about those queues, which is
quite small (e.g., 100s of kB for 10s of thousands of
queues), achieving scalability. At a high level, the CPU

classifies and enqueues packets in transmit queues, while
the NIC computes a schedule that obeys the rate lim-
its, pulls packets from queues in host memory and trans-
mits them on to the wire. The NIC handles all real time
per-packet operations and transmit scheduling of packets
from different classes while satisfying their rate limits.
This frees up the host CPU to batch network processing,
which reduces overall CPU utilization. The NIC simply
pulls packets from host memory using DMA when it is
time to transmit them based on the schedule. This archi-
tecture is illustrated in Figure 3. We now describe these
components in detail.

3.1 CPU functionality

As with current systems, the operating system or CPU
retains control over traffic classification on the transmit
side. Packets are classified by the operating system and
enqueued in individual transmit queues. When the CPU
enqueues a packet into a previously empty queue, it also
flags the queue as active and notifies the NIC through a
doorbell request that it should now consider this queue as
well for dequeueing packets. The operating system or an
application level process also configures rate limits for
each traffic class. If kernel bypass APIs are used, then
the operating system is responsible for granting access
to separate transmit queues to different applications as
appropriate.

3.2 NIC functionality

The NIC is responsible for all real time management
of transmit queues. The NIC is dedicated to handling
per packet operations in real time especially at higher
link speeds. However it has limited hardware buffer
resources. The NIC first computes the packet transmit
schedule based on the rate limit. It figures out the next
packet that should be transmitted, and only then pulls (or
DMAs) the packet from the per-class queue in host mem-
ory to the internal NIC hardware buffer for transmission
on to the wire. The NIC pulls packets from each queue in
host memory in FIFO order, but services different FIFO
queues based on the computed schedule.

On-demand scheduling: The NIC only schedules and
pulls packets from host memory at the access link speed.
So if the access link operates at 10Gb/s, even though a
PCIe NIC might have much higher bandwidth between
the host memory and the NIC buffers, packets are pulled
from memory to the NIC only at 10Gb/s. The schedule
is computed on demand and the NIC only computes the
order in which a small number of future packets must be
transmitted even if there are many more packets waiting
in different per-class queues.

4

This late binding reduces the amount of NIC hard-
ware buffers required for storing packets for transmis-
sion. More importantly, when a new traffic class or
queue becomes active, the NIC can immediately consider
the newly activated class for scheduling and service that
queue, based on its rate limit. This avoids head-of-line
blocking and unwarranted increases in latency between
a new packet getting queued and when it can be trans-
mitted by the NIC. In addition, this also allows the NIC
to adapt quickly to changes in configuration. If the rate
limits of some classes are reconfigured, the NIC can im-
mediately compute schedules using the updated rate lim-
its rather than still have several queued up packets using
stale rate limits. This offloading of scheduling and real
time work to the NIC is what enables NicPic to accu-
rately enforce rate limits even at high link speeds.

Metadata handling: As mentioned earlier, the NIC
needs to maintain some state about the active traffic
classes or queues which would allow it to enforce the
rate limits. This consists of global state for the packet
scheduling algorithm itself, and some per-queue meta-
data. As a simple example, if we used token buck-
ets for each queue to enforce rate limits, then the per-
queue metadata includes tokens for each queue and the
global state consists of a list of active classes which have
enough tokens to transmit the packet at the head of the
queue and another list of active classes waiting to re-
ceive tokens. The memory requirement for this metadata
is fairly small, so supporting 10s of thousands of traffic
classes requires only a few 100s of kB.

Segmentation Offload: With the new pull based ap-
proach, NicPic also modifies the NIC’s TCP Segmen-
tation Offload (TSO) feature to only pull MTU sized
chunks of data from any queue in host memory at the
time of transmission. This avoids long bursts of traffic
from a single traffic class, and enables better interleaving
and pacing of traffic. This is easily done by augmenting
per-queue metadata with a TSO-offset field that indicates
which portion of the packet at the head of the queue re-
mains to be transmitted.

Since the NIC only maintains a small buffer of pack-
ets, and only pulls MTU-sized packets from memory at
a time, it pipelines a sufficient number of DMA fetch re-
quests to keep the link busy.

Rate Enforcement: NicPic is agnostic to the specific
rate limiting algorithm used by the NIC. In addition to
enforcing rate limits, we propose that the scheduling al-
gorithm fall back gracefully to weighted sharing when
the link is oversubscribed, i.e. the sum of configured rate
limits of active traffic classes exceeds link capacity. One
way to do this is to use a modified virtual time based
weighted fair queueing scheduler which uses real time to
enforce rate limits when the link is not oversubscribed

and uses virtual time otherwise, to share bandwidth in
the ratio of configured rate limits.

4 Conclusion

We presented NicPic, an approach to enable scalable
and accurate rate limiting at end-hosts. The key idea
is to reconsider packet handling duties between the NIC
and CPU. The CPU should classify and enqueue packets
in separate queues in host memory, possibly in batches
to reduce overheads. The NIC should be responsible
for computing the packet transmit schedule and pulling
packets from per-class queues in host memory for trans-
mission. This new separation of duties will enable scal-
ing to many traffic classes while handling real time per-
packet operations and enforcing precise rate limits.

References
[1] ALIZADEH, M., ATIKOGLU, B., KABBANI, A., LAKSH-

MIKANTHA, A., PAN, R., PRABHAKAR, B., AND SEAMAN, M.
Data Center Transport Mechanisms: Congestion Control Theory
and IEEE Standardization. In 46th Annual Allerton Conference
on Communication, Control, and Computing (2008).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data Center TCP (DCTCP). In Sigcomm (2010).

[3] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B.,
VAHDAT, A., AND YASUDA, M. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center. In NSDI
(2012).

[4] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROW-
STRON, A. Towards Predictable Datacenter Networks. In Sig-
comm (2011).

[5] Intel 82599 10GbE Controller. http://www.
intel.com/content/dam/doc/datasheet/
82599-10-gbe-controller-datasheet.pdf.

[6] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D., PRAB-
HAKAR, B., KIM, C., AND GREENBERG, A. EyeQ: Practical
Network Performance Isolation at the Edge. In NSDI (2013).

[7] LAM, V. T., RADHAKRISHNAN, S., PAN, R., VAHDAT, A.,
AND VARGHESE, G. NetShare and Stochastic NetShare: Pre-
dictable Bandwidth Allocation for Data Centers. Sigcomm CCR
(June 2012).

[8] Mellanox Connect-X3. http://www.mellanox.com/
related-docs/prod_adapter_cards/ConnectX3_
EN_Card.pdf.

[9] PHANISHAYEE, A., KREVAT, E., VASUDEVAN, V., ANDER-
SEN, D. G., GANGER, G. R., GIBSON, G. A., AND SESHAN,
S. Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems. In USENIX FAST (2008).

[10] RODRIGUES, H., SANTOS, J. R., TURNER, Y., SOARES, P.,
AND GUEDES, D. Gatekeeper: Supporting Bandwidth Guaran-
tees for Multi-tenant Datacenter Networks. In WIOV (2011).

[11] SHIEH, A., KANDULA, S., GREENBERG, A., AND KIM, C.
Seawall: Performance Isolation for Cloud Datacenter Networks.
In HotCloud (2010).

[12] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND
ROWTRON, A. Better Never than Late: Meeting Deadlines in
Datacenter Networks. In Sigcomm (2011).

5

