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Abstract

Distributed in-memory key-value stores such as mem-
cached have become a critical middleware application
within current web infrastructure. However, typical x86-
based systems yield limited performance scalability and
high power consumption as their architecture with its
optimization for single thread performance is not well-
matched towards the memory-intensive and parallel na-
ture of this application. In this paper we present the
design of a novel memcached architecture implemented
on Field Programmable Gate Arrays (FPGAs) which is
the first in literature to achieve 10Gbps line rate process-
ing for all packet sizes. By transformation of the func-
tionality into a dataflow architecture, the implementation
can not only provide significant speed-up but also oper-
ate at a lower power consumption than any x86. More
specifically, with our prototype we have measured an in-
crease of up to a factor of 36x in requests per second
per Watt that can be serviced in comparison to the best
published numbers for regular servers with optimized
software. Additionally, we show that through the tight
integration of network interface, memory and compute,
round trip latency can be reduced down to below 4.5 mi-
croseconds.

1 Introduction

Many well-known web-sites deploy distributed in-
memory caches, which are implemented with standard
DRAM on a large array of x86 servers, to reduce access
load on databases, improving both performance and scal-
ability of the site. As detailed in [7], [4] and discussed
in Section 2, standard cloud servers provide sub-linear
scalability to these kinds of scale-out workloads. For
memcached, which is a well-known key-value store im-
plementation, the best possible performance numbers are
still substantially below the maximum packet rate of a
10Gbps Ethernet interface. Given memcached’s stream-

ing nature, mostly moving data between network and
DRAM with little compute, we investigated a dataflow
implementation which is typically more apt for these
types of applications and commonly deployed within the
networking context.

To prove the suitability of such an architecture and to
get a full understanding of all potential limitations, we
have built a memcached compliant prototype and ana-
lyzed it for throughput, latency and power consumption.
For the implementation we utilized FPGAs which en-
able the implementation of customized integrated cir-
cuits through programming rather than designing and
manufacturing custom chips. The circuit itself is de-
signed as a custom-tailored pipeline that fully extracts
the parallelism in the application. The prototype demon-
strates full line-rate processing, handling up to 13 mil-
lion of requests per second (RPS), while providing a
round trip latency below 4.5 microseconds (us). Power
consumption of the FPGA and its subsystem is around
50Watts (W), whereby the FPGA itself consumes less
than 15W. With small exceptions, the majority of the
functionality could be successfully incorporated as dis-
cussed in section 4.

The rest of this paper is structured as follows: Section
2 provides some background and reviews related work.
Section 3 describes our architecture and implementation,
while Section 4 presents the results of the implemented
prototype. Finally, Section 5 summarizes our findings
and points towards future work.

2 Background & Related Work

Memcached implementations are almost exclusively de-
ployed using x86 servers at their basis, although it is
well-established that they are not optimized for this kind
of workload, which in essence moves data between net-
work and DRAM with little compute ([7],[4]). Low
instruction- and memory-level parallelism in scale-out
applications means that the large, 4-wide-issue super-



scalar core pipelines are often underutilized. Further-
more, the processor’s last-level data cache, which con-
sumes as much as half of the entire processor die area,
becomes ineffective given the random-access nature and
required memory size of the application, and with that
causes considerable energy waste. Finally, throughput
and latency are both heavily impacted by the high latency
of the communication stack. Other bottlenecks such as
lock mechanisms employed in the multi-threaded mem-
cached architecture have meanwhile been successfully
addressed. To the best of our knowledge, Wiggins and
Langston provide in [13] the most fine-tuned implemen-
tation available in literature. In this work a performance
of 3.15 MRPS is achieved with a median round-trip la-
tency around 200us on a dual-socket Xeon E5 processor.

To overcome key limitations of the TCP/IP-related
bottlenecks, Jose et all [10] investigated the use of
RDMA-based communication on an Infiniband QDR
network. Their work clearly illustrates that latency can
be dramatically reduced to below 12microseconds and
performance increased to roughly 1.8 MRPS for GET
operations by using high-performance networking clus-
ters. In contrast to this work, we address the bottlenecks
by rearchitecting the server while maintaining compli-
ance with the industry-standard memcached implemen-
tation.

Besides x86, several other approaches have been in-
vestigated to speed-up key-value stores. Berezecki et al.
[4] utilize a 64-core Tilera processor to run memcached.
The elimination of serializing bottlenecks on the Tilera
processor and the allocation of different cores to different
functions allow a single Tilera CPU to reach 0.335MRPS
with a round trip latency ranging from 200-400us.

GPUs are particularly adept in accelerating massively
parallel tasks, something leveraged in a combined CPU-
GPU system by Hetherington et al [8]. The paper con-
cludes that CPU/GPU hybrids outperform their respec-
tive counterparts by a factor ranging from 4 to 8 whereby
moving data between CPU and GPU is the bottleneck.

Finally, Chalamalasetti et al. presented in [5] a 1Gbps
memcached implementation using an FPGA. The cho-
sen architecture, which is in essence a centralized design,
achieves a throughput of 0.556MRPS with significantly
reduced power consumption to the compared server im-
plementations. Similarly to our approach, they utilize
the tight proximity of network and DRAM to achieve
lower latency and provide benefits in power consump-
tion through customized architectures. However, the de-
scribed architecture, which is mostly centralized around
a controller, differs fundamentally from the dataflow ar-
chitecture presented in this paper which can achieve sig-
nificantly higher throughput by exploiting task and in-
struction level parallelism while reducing latency and
providing scalability to higher rates. Additionally, we

Figure 1: Memcached dataflow pipeline

address in our work the problem of handling variable key
sizes and support further protocols (ASCII and TCP) and
operations.

3 FPGA-based Memcached Design

Our key objectives in designing an FPGA-based mem-
cached server were threefold: 10Gbps line rate process-
ing with a scalable architecture, minimal latency, and
power efficiency. To achieve these design goals, we
made specific architectural choices which are described
in Section 3.1. Section 3.2 details the implementation
with emphasis on the hash table.

3.1 Architecture
Fully pipelined dataflow architecture. As previously
mentioned, a fully pipelined dataflow architecture is de-
ployed. This applies to the macro-level architecture as
shown in Figure 1, but also to the implementation within
each individual pipeline stage. This architecture fully ex-
ploits task- and instruction-level parallelism to achieve
high data rates for streaming applications [1].Within the
networking domain, these architectures are well-known
to cater for data rates of 100Gbps. Scalability in through-
put is achieved by widening or duplication of the data
path. Thereby, our system architecture is fundamentally
designed to scale to higher rates. Besides throughput,
other key advantages of this architecture include its cut-
through operation which results in low latency. Further-
more, the customized nature of this circuit minimizes
power consumption, where the benefit stems both from
a lower power consumption per operation and a highly
efficient memory architecture. Finally, as packets are be-
ing processed in fixed order through the various pipeline
stages, arbitration conflicts on shared memory resources
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are greatly simplified, and the memory arbitration over-
head and need for locking mechanisms commonly seen
in existing software solutions essentially evaporate.

Tightly integrated network and memory interface.
As detailed in Section 2, key bottlenecks in existing x86
implementations are related to the network stack’s pro-
cessing overhead and its large latency which is the result
of the indirect access to the network via PCIe R©. On
our chosen architecture, we minimize this distance be-
tween network interface, compute resources and mem-
ory by integrating both interfaces directly on the FPGA.
The resulting tight coupling significantly reduces latency
and removes any processing overhead that would be as-
sociated with transporting data between various system
components such as network adapter and CPU.

Modular design through standardized interfaces.
Providing a modular design is essential to future-
proofing implementations and ensuring that additional
functionality can be easily added at later stages. To
achieve this, we deploy a modular approach whereby
each stage in the pipeline provides identical input and
output interface formats. These are based on the AXI-4
streaming protocol 1 and standardize how key, value, and
meta-data, are conveyed between macro-level pipeline
stages.

3.2 Implementation

As is illustrated in Figure 1, the dataflow architecture
consists of five key processing stages, namely network
interface, request parser, hash table, value store and re-
sponse formatter. Packets are received on the board on
a 10Gbps Ethernet interface and streamed back-to-back
through these processing stages before being transmit-
ted back into the network. The first stage, the network
interface, handles all related processing to Ethernet and
includes a full UDP and TCP offload engine for which
we leveraged existing third-party IP2. Only the mem-
cached requests themselves, bar all additional headers,
are passed to the request parser together with a connec-
tion identifier. The request parser analyzes the mem-
cached packets to extract key, value, and meta-data in-
formation and generates an opcode for the currently sup-
ported subset of operations. Currently only ASCII and
binary protocols are supported, however further proto-
cols can easily be added with no impact on performance.
Independent of the incoming protocol, the request parser
normalizes all packets to the format of the standard in-
terface. This information is then passed to the hash ta-
ble. The hash table’s responsibility is to produce an in-

1The protocol specification can be found at: http:

//infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.set.amba/index.html
2These are provided to us by Maxeler Technologies.

Figure 2: Hast table architecture

dex into the value store for any incoming key. The value
store simply supports read or write operations on a cor-
responding area of memory as defined by the opcode.
For SET operations, the presented value is written into
memory. In case of GET operations, the retrieved value
is added to the packet information as it streams to the
response formatter. Finally, the response formatter sup-
ports formatting of responses according to the supported
protocols.

Key challenges in the implementation are support for
flexible key sizes, collision handling, memory manage-
ment and expiration handling. To support flexible key
sizes, we stripe the keys in a hash table item over mul-
tiple DRAM locations as is shown in Figure 2 and then
match the read access bandwidth of the hash table with
the incoming packet bandwidth. This is essential to avoid
stalling of the pipeline. Collision handling is in software
solutions typically solved by chaining a flexible num-
ber of keys to a single hash table index. In hardware,
collision handling is often supported through a parallel
lookup [3] of a fixed number of keys that map to the same
hash table index. This creates a limit for the maximum
number of keys that can coexist for a given hash table in-
dex, often referred to as bucket size. In our implementa-
tion the supported bucket size is 8. As illustrated in Fig-
ure 2, the chosen approach resolves collisions only up to
a certain degree. If, however unlikely, a further key maps
to the same hash index, then the request simply fails and
an appropriate response is generated. We believe this to
be an acceptable behaviour for what is essentially equiv-
alent to a cache full/miss. Both flexible key length and
collision handling trade-off throughput and design com-
plexity with memory density. The exact penalty depends
on the actual key distribution for individual use cases,
performance of the selected hash function and fill-level
of the hash table and is with that hard to quantify. Fur-
ther discussion on this topic can be found in [9].

Memory management can in theory be handled from
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Figure 3: Performance of the FPGA for GET operations
as a function of network packet size

within the FPGA, however this involves additional mem-
ory access bandwidth. Given our current platform limi-
tations, we selected the host CPU to assist with this task.
Free addresses are pushed to the hash table via PCIe R©.
Deleted or expired items are returned in a similar man-
ner back to the host. We currently support three differ-
ent value size categories, however further categories can
easily be added to achieve better memory utilization. Fi-
nally, in regards to cache management, we implement a
completely different approach to common software al-
gorithms such as LRU [12]. These require linked list
data structures which again demand significant memory
access bandwidth. Instead, we opportunistically inspect
items which are collocated at the same memory address
when accessing the hash table for SET operations. Hash
items with an expired time are then subsequently freed.
As part of our future work, we will investigate other
strategies that can achieve better cache utilization and
move memory allocation inside the FPGA to work to-
wards standalone appliances.

4 Results

In this section, we present the results of our mem-
cached implementation with regards to throughput, la-
tency and power and compare it to existing implemen-
tations. Our experimental set-up included the follow-
ing components: The memcached server itself is imple-
mented on a Xilinx R©Virtex R©6 FPGA board. The FPGA
is directly connected to 24GBs of dedicated DDR3 mem-
ory and two 10Gbps Ethernet ports. The board is hosted
in a PCIe R©slot of a Maxeler workstation. For test-
ing protocol compliance, we relied on standard soft-
ware memcached clients (mcblaster, memaslap). For
performance and latency testing, we used a Spirent C1
network testing appliance. Finally, to measure power
consumption, we used a power meter at the wall plug,

Platform RPS Latency RPS/W
TilePRO (64 cores) 0.34M 200-400 us 3.6K
TilePRO (4x64 cores) 1.34M 200-400 us 5.8K
Intel Xeon (single socket, 8 cores) 1.4M 200-300 us 7K
Chalamalasetti FPGA 0.27M 2.4-12 us 30.04K
FPGA (board only) 13.02M 3.5-4.5 us 254.8K
FPGA (with host) 13.02M 3.5-4.5 us 106.7K

Table 1: Comparison of our FPGA solution with current
state-of-the-art ([4, 13, 5])

Xilinx’s R©power estimator tool (XPE) 3, and Maxeler’s
diagnostic tools which provide current readings for vari-
ous power rails.

Performance. In our experimental set-up, we popu-
lated the FPGA with 1 million key-value pairs of con-
stant size and issued binary GET requests for random
keys at the maximum rate the 10Gbps Ethernet connec-
tion allowed. We repeated this experiment for differ-
ent key sizes, ranging from 6 to 168 bytes which en-
compass typical use cases as described in [2]. To en-
sure a symmetric input and output data rate, values were
always equal in size with the keys. As a result, the
network packet size ranged from 96 to 258bytes. We
used UDP with its minimal overhead to ensure maxi-
mum throughput over the network. Figure 3 shows that
our system handles full 10Gbps Ethernet line-rate re-
gardless of key and value size. Expressed in number of
successfully served requests per second, we can handle
as much as 13.02MRPS for small binary UDP encoded
packets, while the number drops naturally as the packet
size increases due to network saturation. For ASCII en-
coded messages, which have lower protocol overhead,
the measured performance reaches 13.74MRPS. This
significantly outperforms other known implementations
in literature as illustrated in Table 1. For SET opera-
tions, we have measured full 10Gbps line-rate perfor-
mance as well, which translates to 12.5MRPS. The slight
discrepancy is purely caused by a slightly larger proto-
col overhead for SET operations. For mixed operations
of GETs and SETs, we need to avoid read after write
hazards when 2 or more operations on the same hash in-
dex reside within a small and critical part of the pipeline.
In this rare event, the pipeline stalls selectively the con-
flicting GET operation while allowing other operations
to overtake. The probability of this event is very small
and depends on the specific use case, in particular on the
size of the working set. This is further discussed in [9].

Round trip latency. With regards to round-trip time
(RTT), we recorded between 3.5us and 4.5us depending
on packet size. This is a two-order of magnitude im-
provement over standard x86 based approaches ([13],

3http://www.xilinx.com/products/design_tools/

logic_design/xpe.htm
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Figure 4: Power consumption of the FPGA board under
increasing load

[4]) and significantly below the typical service level
agreements which are around 1ms [13]. Similar latencies
have been achieved only by the alternative FPGA imple-
mentation [5] as well as an Infiniband-based implemen-
tation [10] which eliminates the typical latency penalty
associated with the TCP/IP communication stack. The
low access latency within the server is of significant
value when servicing GET requests with multiple keys
in the argument as the overall latency equals to the worst
case latency. Furthermore, on the application level, this
might play an important role when data structures such
as graphs reside within the key-value store that require
multiple lookups with intermediate dependencies.

Power. We measured power consumption utilizing a
wall-plug power meter, and correlated the numbers with
diagnostic reports from Maxeler, estimates from XPE
and various data sheets. In our experimental set-up, the
cache was populated with 80byte keys and 250byte val-
ues, which were subsequently read via GET commands
at different input rates (1, 5 and 10Gbps). As shown in
Figure 4, the power consumption of the FPGA subsystem
remains almost constant at around 50W with a workload
variation of below 2W. The FPGA itself consumes 15W,
the memory subsystem draws 24W and auxiliary infras-
tructure accounts for the rest4. Published x86 systems
operate significantly less efficiently as can be seen from
Table 1.

Resource utilization. Our current prototype requires
roughly speaking 80k lookup tables and 63k flip-flops,
both of which are an FPGA-specific measurement of
the device’s utilization. Expressed differently, this ac-
counts for less than 26% of the available resources in the
Virtex6 R©SX475T.

Limitations. The foremost limitation of the hardware
accelerated design is the cost of increased development
time and NRE given the low-level nature and complexity
of traditional hardware design flow. Current advances in
High Level Synthesis [6] are looking to offset this defi-
ciency through new C-based programming flows. Other
limitations are only temporary and platform related: Our

4These numbers do not include inefficiencies in the power supply.

current prototype requires light assistance from the host
CPU (below 3% of 1 core for 10% SET operations) to
handle memory management. In our case, the Sandy
Bridge host CPU is clearly over-dimensioned for the
given task. In a potential future product, an integrated
SoC such as a next generation Xilinx R©Zynq R©5 might
very well be sufficient. The chosen simplified cache
management algorithm may not result in the same cache
effectiveness as an LRU could offer. Furthermore, we
currently only support SET, GET, DELETE, and FLUSH
operations. The third party TCP offload engine limits the
number of concurrent sessions to 64. In our current work
we are investigating how to scale to thousands of ses-
sions. Finally our prototype is limited to 24GB DRAM
which is a constraint of the chosen platform. With cur-
rent and future devices, the density that can be potentially
connected to an FPGA is significantly larger and can eas-
ily accomodate typical installations.

5 Conclusions & Future Work

In this paper, we presented a novel system architecture to
implement in-memory key-value stores. By transform-
ing the pthreaded software architecture into a customized
data-flow pipeline, we can achieve consistent line rate
processing at 10Gbps for any packet size. Furthermore,
the FPGA-based implementation delivers a worst case
round trip time of 4.5us and achieves an increase of 36x
in RPS/W over the best published x86 numbers. With
energy costs being estimated to contribute over 30% to
a three-year total cost of ownership (TCO) [11], we ex-
pect TCO of an FPGA-based memcached appliance to be
substantially smaller.

The key limitation of the hardware accelerated design
is the cost of increased development time and NRE given
the low-level nature and complexity of traditional hard-
ware design flow. To address this issue, we have started
an investigation into implementation of key functions,
for which simple API support is insufficient, through new
C-based programming flows using Vivado R©HLS. High
Level Synthesis tools show promising results within
other application domains to reduce development, ver-
ification and performance optimization efforts [6]. As
part of our ongoing research efforts, we plan to evalu-
ate the effectiveness of these tools within this application
context. Additionally, we believe that the chosen archi-
tecture can scale to higher performance points. As part
of our future work, we will investigate the opportunities
with current devices (e.g. Kintex R©) at higher line rates,
aiming at 80Gbps.

5http://www.xilinx.com/products/silicon-devices/

soc/zynq-7000/
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