
Mandatory Access Control for the Android Dalvik Virtual Machine

Aline Bousquet1, Jérémy Briffaut1, Laurent Clevy2, Christian Toinard1, Benjamin Venelle2

1 LIFO - ENSI de Bourges - first.last@ensi-bourges.fr
2 Alcatel-Lucent Bell Labs - first.last@alcatel-lucent.com

Abstract

With the growing use of smartphones and other mobile
devices, it becomes essential to be able to assure the user
that his system and applications are doing exactly what
they are supposed to do. Over the years and despite its
configuration complexity, Mandatory Access Control has
proven its efficiency in protecting systems. This paper
proposes a solution providing a generic protection that
doesn’t need to modify the applications. Moreover, in
order to face the complexity of defining an efficient MAC
policy, a tool automatizes the generation of the policies
required for the various applications.

However, to efficiently guarantee the security of a sys-
tem, each layer that composes it must be secured. There-
fore, MAC implementations should not be limited to the
operating system, but should also protect the inside of
the applications.

This paper presents Security Enhanced Dalvik
(SEDalvik), a MAC approach for the Dalvik Virtual Ma-
chine in order to control the flows inside the Java appli-
cations running in Android.

SEDalvik proposes a new mandatory protection to
block the attacks that exploit the weakness of the Dalvik
VM. By controlling the information flows between the
Java objects, SEDalvik could prevent the new vectors of
attack coming from the threat of the Java virtual machine
as explained by Kaspersky Labs1. In contrast with other
approaches, our solution corresponds to a self-organizing
system since it transparently protects existing Java appli-
cations without any modifications. An experiment on an
Android phone shows the efficiency of the protection.

Keywords

Security, Java, Mandatory Access Control, Android,
Dalvik

1 Introduction

Android is the most widely used system for smartphones
and its security is therefore an essential challenge. In-
deed, due to its considerable popularity, Android is more
and more frequently the target of attacks and the users
grow more concerned about the security of their devices.
Indeed, 96 new threats on Android were detected in Q4
2012 by F-Secure 2 and 238 in the whole year, that is to
say 79% of the threats detected on mobiles.

For instance, [5] describes a conceptual weakness in
Android that allows privilege escalations attacks. Thus,
it is possible for an unprivileged application to access a
protected resource through a privileged application. This
can happen because of the way the applications can inter-
act: when an application accesses another one’s compo-
nents, Android does not ensure that the callee’s permis-
sions form a subset of the caller’s permissions. Hence,
the calling application can indirectly obtain the callee’s
permissions.

A similar weakness is also described in [17] which ex-
plains how a privileged application can store sensitive
data on the SDCard. Since the SDCard is world read-
able (for Android versions 4.0 and earlier), the sensitive
data becomes accessible to any other application, even
an unprivileged one.

One way to handle this risk is to use Mandatory
Access Control (MAC) to block malicious information
flows inside a Dalvik Java application. SEDalvik offers
such a solution to control the permissions between the
caller and the callee objects.

SEDalvik is a new protection for Android, derived
from a previous work, SEJava [16], that aims to protect
the Java Virtual Machine (JVM). However, the Dalvik
Virtual Machine differs from the JVM. Therefore, Dalvik
requires a dedicated solution to enforce MAC policy.

Since requesting modifications of applications does
not fit with self-organizing systems, SEDalvik can reuse
an application without any change. Therefore, the pro-

tection works with all the applications.
Furthermore, regarding the complexity of the defini-

tion of the policy, a learning tool can generate the policy
automatically when an application is installed.

Section 2 introduces some key concepts of Android as
well as related works concerning the security of Android.
Then, section 3 describes SEDalvik’s concepts and im-
plementation. Finally, section 4 shows the results ob-
tained with SEDalvik, concerning both its efficiency and
its performances.

2 Background

2.1 Android

Android is a system for mobile devices that includes an
operating system based on the Linux kernel, a Java mid-
dleware and Java applications available from the Google
store.

Android also provides some tools and APIs easing
the development of third-party applications with the Java
programming language.

2.1.1 Dalvik VM

Android uses its own virtual machine, named Dalvik [2]
and acquired by Google. Dalvik is quite different from
off-the-shelf implementations of the JVM. Dalvik was
designed with optimization in mind, in order to run Java
applications on devices with little memory, limited com-
putational power and short battery life.

Dalvik is a register based virtual machine. Its instruc-
tion set contains 246 opcodes (i.e. bytecodes) which are
essentially different from the 144 opcodes defined by the
JVM specifications [15].

A standard Java compiler stores the program byte-
codes into .class files, one .class file per defined Java
class. The Android’s Java compiler uses the dx tool to
merge all .class files into one single .dex file (Dalvik
Executable - Dex).

The .dex file format aims to minimize the VM mem-
ory usage by sharing data. In contrast with the JVM,
Dalvik uses several memory pools shared among all
classes to store data according to their nature.

2.1.2 Access Control

Android provides several mechanisms limiting the inter-
actions between the system and the applications and be-
tween the applications themselves. This subsection de-
scribes these access control mechanisms.

To handle applications privileges, Android uses a spe-
cific model of permissions [7]. Each application requests

a set of permissions, allowing it to perform specific ac-
tions. For instance, an application that needs to send
SMS has to request the SEND SMS permission. This is
a security model based on capabilities.

Permissions are explicitly granted by the user during
the installation of the application. Nevertheless, since
Android does not allow a partial selection, the user must
either accept all the permissions or cancel the installa-
tion. Moreover, the user cannot change the permissions
afterwards: the only way is to uninstall the application.
A solution, described in [10], has been implemented to
allow the user to specify exactly what resources an ap-
plication can use.

Many applications request too many permissions.
There is two reasons 1) the developer usually asks for
unnecessary permissions, because of the difficulty to de-
fine a minimal set of permissions and 2) the application
is a malware that asks for illegal accesses. Since it goes
against the least privilege principle, these applications
present a damageable risk: too many privileges implies
that the application may access resources for illegitimate
purpose.

Android also implements an application sandboxing
mechanism to isolate applications from one another.
Each application runs in its own instance of the Dalvik
VM and under a unique user identifier (uid). Thus An-
droid enforces a Discretionary Access Control to restrict
accesses to the application’s resources.

However, a given uid can be used by several applica-
tions if they are signed by the same developer’s certifi-
cate. Consequently, a misuse of the developer’s certifi-
cate may disable the offered isolation.

Both Android’s permissions model and the applica-
tion’s sandboxing are mechanisms derived from Discre-
tionary Access Control (DAC). This means that the data’s
security is under the responsibility of its owner (i.e. the
application) and that a super user such as root can ac-
cess all data. Besides, a DAC system fails to guarantee
security properties [8].

Therefore, the security of Android needs to be im-
proved, as shown by the numerous studies that propose
to address these problems.

2.2 Related Works and Motivation
TaintDroid [6] is an extension of Android that enables the
tracking of information flows on Android smartphones.
TaintDroid uses data tainting to track sensible data. It
assumes that the applications installed by the user cannot
be trusted. It monitors the user’s data and aims to detect
when some data leaves the system.

YAASE [12] is a security extension for Android that
uses TaintDroid to provide a fine-grained access control
mechanism. The user defines a set of policies to con-

2

trol the propagation of data. The policies are enforced
thanks to hooks positioned in Android framework’s com-
ponents.

AppFence [9] makes privacy controls on Android
applications by retrofitting the runtime environment.
AppFence implements two systems: data shadowing, i.e.
giving an application fake data (empty contact list...) in-
stead of sensitive data, and ex-filtration blocking, i.e.
preventing sensitive data (tainted by TaintDroid) from
leaving the device.

However, these three tools produce an important num-
ber of false positives. Moreover, they cannot protect
from escalations of privileges, that are the more common
attacks on Android.

Saint [11] is a framework used to define policies for
the applications. With Saint, it is for instance possible to
restrict the access to a permission. Indeed, using Saint,
an application declaring a new permission can specify
under which conditions this permission will be granted to
another application. Moreover, Saint controls the inter-
applications communications at runtime.

Aurasium [18] is a protection solution that does not al-
ter the Android OS. Indeed, Aurasium hardens Android
applications by repackaging them in order to add its pol-
icy enforcement code. Thus, Aurasium can control ac-
cess to sensitive information, such as IMEI number, lo-
cation...

CRePE [4] presents a policy enforcement solution
based on the contextual environment (geographical lo-
cation, time of the day...). These environments are au-
tomatically detected by CRePE, and no action from the
user is requested. Thus, users can disable some functions
depending on the current situation.

SEAndroid [13, 14] is a port of SELinux on Android,
but it extends SElinux controls to Android specific fea-
tures, such as intents. SEAndroid comes with some pre-
defined security policies for system processes and sys-
tem applications. However, it has the same limitations
as SELinux: for instance, it cannot prevent advanced at-
tacks using 1) indirect information flows between appli-
cations or 2) flows inside an Android Java application.

As shown by this state of the art, a solution that mon-
itors the interactions between the Java objects is really
missing for the Dalvik VM. In contrast with the other
approaches, a MAC protection using a fine-grained pol-
icy with type enforcement such as proposed by SEDalvik
has several advantages. Firstly, SEDalvik does not re-
quire any modification of the applications, nor any byte-
code injection. Secondly, it limits the false positive de-
cisions associated with the over-approximation available
in the tainting approaches. Thirdly, it precisely controls
all kinds of flows between all the Java objects, thus sup-
porting a large range of security properties dealing with
confidentiality, integrity and escalation of privileges.

3 SEDalvik

SEDalvik extends SEJava to protect the Dalvik virtual
machine, including the Android applications. Indeed due
to major differences with the JVM, SEJava cannot work
on Dalvik. Therefore, SEDalvik proposes a novel model
of Mandatory Access Control to prevent malicious flows
between the Dalvik objects.

3.1 Mandatory Access Control for Dalvik
Inside the Dalvik VM, SEDalvik monitors the interac-
tions between a source and a target Java object i.e. an
instance of a Java class. SEDalvik associates each ob-
ject with a unique security identifier. A security identi-
fier includes the Java type, which is unique, and a unique
instance id (for example, the instance’s address). Differ-
ent instances associated with the same Java type share
the same security context. Thus, a security context cor-
responds to a Java type.

SEDalvik controls two kinds of interactions:

1. a method M1 of a source security context O1 calling
the method M2 of a target security context O2 (i.e.
an invoke permission)

2. a method M1 of a source object O1 accessing an
field F2 of a target object O2 (i.e. an access per-
mission.)

Therefore, SEDalvik controls an interaction between
two objects associated with the security contexts O1 and
O2 that can be described as follows:

O1 − { Permission } → O2
where

Permission : (M1 invoke M2) or (M1 access F2)

3.1.1 Policy files

SEDalvik defines a MAC policy using two kinds of files.

1. the .vmc files (for Virtual Machine Contexts) define
the security context for each class signature.

Here is a example of two security contexts associ-
ated with the Object and Thread classes:

Ljava/lang/Object; object_j

Ljava/lang/Thread; java_lang_thread_j

2. the .vmr files (for Virtual Machine Rules) list all the
allowed interactions. By default, all the interactions
not explicitly described in a .vmr file are forbidden
since it is a mandatory protection.

The format used to define rules is presented there-
after, as well as a sample rule allowing a thread to
create an object:

3

allow <source_context> <target_context>

from <source_method>

invoke <target_method>

allow java_lang_thread_j object_j

from (init)

invoke (init)

To ease the definition of the policy, SEDalvik helps to
learn the required policy through a dynamic computation
of 1) the security contexts and 2) the interactions between
these contexts.

3.2 Architecture
SEDalvik has two main components: a reference moni-
tor including the interception of the methods and a deci-
sion engine i.e. a C library receiving an interaction as a
request.

The interactions between the interception of the meth-
ods and the decision engine are described in figure 1.

Dalvik VM

Decision engine
(C library)

Object_A
Method_1

Object_B
Method_2

Policy files

Take a decision

Get data

Send data

Enforce decision Send decision

SEDalvik

Interception
engine

Figure 1: SEDalvik architecture.

When an interaction occurs, the interception engine
retrieves some necessary data, computes a request cor-
responding to the interaction and sends the request to the
decision engine. The decision engine checks the received
interaction against the policy and sends back a decision
to the interception engine, so that it continues (allows) or
aborts (denies) the method.

SEDalvik’s process can be summed up as follows:

1. The application is created (happens only once)

(a) The C library is loaded

(b) The security policy is loaded

2. The application runs

(a) Each interaction is intercepted

(b) A decision is taken for each interaction

The next subsections describe each of these steps.

3.3 Application Creation

When Android creates an application, SEDalvik is ini-
tialized. Some operations are performed during this
initialization: the C library for the decision engine is
loaded, as well as the policy files (the .vmc and .vmr

files). Operations unrelated to SEDalvik are also exe-
cuted, like the loading of classes.

The initialization of SEDalvik can be time-consuming,
especially when a large policy is loaded. However, this
process is done only once, when the application runs for
the first time. Indeed, when an Android application ex-
its, the system does not kill it, but only stop it. Thus,
when the application is launched again, it does not need
to be created again, and the initialization is not performed
again.

3.4 Interception of methods

To be able to intercept all the methods executed by an
application, a satisfying solution is requested for Dalvik.

Our reference monitor uses the same mechanism as
the JDWP 3 agent that comes with Dalvik and provides
debug functions for an external debugger.

The JDWP agent uses the Dalvik’s internal debugger.
They are deeply linked and the debugger is active only
when a JDWP client is connected. This default behavior
is modified so that the debugger is active when SEDalvik
is running. Thus, SEDalvik intercepts the method calls
without having the extra-cost of a running JDWP agent.

The interactions between the Dalvik’s debugger, the
JDWP agent and SEDalvik are described in figure 2.

Interpreter Debugger JDWP agent

SEDalvik

JDWP client

Dalvik

USB

Debug Machine

E
v
e
n

ts

Figure 2: Interactions between the debugger and
SEDalvik.

SEDalvik is directly connected to the Dalvik’s internal
debugger. Therefore, when an event occurs in the virtual
machine, the interpreter warns the debugger. If the event
is one of those monitored by SEDalvik - for instance,
a METHOD ENTRY event - the debugger will inform
SEDalvik. The event will then be handled as needed.

Consequently, SEDalvik is able to intercept all the
method calls occurring in the virtual machine and to han-
dle them. Moreover, the methods are intercepted at an
early stage, which is an advantage concerning the perfor-
mances.

4

3.5 Handling Events
Once a method is intercepted, SEDalvik decides whether
the operation should be allowed or blocked.

Each time a METHOD ENTRY event is emitted, Dalvik’s
debugger is warned about it. The debugger then calls
SEDalvik’s events handler functions.

SEDalvik will retrieve the callee’s and the caller’s
data. The corresponding interaction is then sent to the
decision engine that has to find a satisfying rule in the
MAC policy. When SEDalvik gets the answer back, it
can continue or abort the callee method.

3.5.1 Interaction request

Each time a method is called, SEDalvik needs to get
some data about it in order to compute the correspond-
ing interaction request. The fields to retrieve are those
needed to designate the objects, the methods and the at-
tributes involved in the interaction:

• the names of 1) the two involved methods M1 and
M2, their IDs and accessors or 2) the method M1
and attribute A2, their IDs and accessors

• the security context of the two objects O1 and O2
and their IDs

These fields enable to compute the interaction re-
quest. SEDalvik fetches these fields by interacting with
Dalvik’s internal debugger:

Indeed, Dalvik’s debugger provides an interface to get
the content of a stackframe (where the stackframes are
the elements composing the application’s call stack).

However, the debugger has to know which stackframe
is concerned. Therefore, SEDalvik uses stack inspection
to have access to the current frame (i.e. the target Java
object) as well as the previous frame (i.e. the caller).

The debugger can then query the stackframe and get
every needed field.

3.5.2 Labeling Process

In order to identify the source and target objects that
are part of an interaction, SEDalvik assigns them unique
contexts through a dedicated labeling tool. That tool pro-
vides automation to compute the label requested in the
SEDalvik policy. Indeed, our labeling tool computes the
security contexts dynamically at run time. Thus, the se-
curity officer simply reuses the computed labels. The
labeling algorithm runs as follows:

1. Check if the object has a primitive type (in this case,
the context is defined in the default policy)

2. Check if the object’s type is declared in the policy

3. If no context is found, walk through the class hier-
archy to find a parent class with a context and use
this context. If there is no such class, the default
context, object j, will be applied

For performance issues, a context is not generated
multiple times. Indeed, once a context has been created,
it is stored in Dalvik’s internal structures and will be di-
rectly fetched the next time it is needed.

3.5.3 Policy computation

The labeling tool computes the security contexts at run-
time. In order to protect an application, a security policy
is required. The SEDalvik policy consists of both a list
of available contexts and a set of rules.

Our policy tool allows SEDalvik to learn the required
contexts and rules. This learning process runs as follows:

1. The learning tool runs a first time

(a) For each encountered class, generate a context
based on the class signature (if the context has
not yet been defined).
For example, when a thread tries to create an
object, the following contexts are generated:

Ljava/lang/Object; object_j

Ljava/lang/Thread; java_lang_thread_j

2. The learning tool runs a second time

(a) For each interaction, get the previously de-
fined contexts that are involved

(b) Generate an allow rule authorizing the inter-
action.
For example, the rule for the previous interac-
tion would be:

allow java_lang_thread_j object_j

from (init)

invoke (init)

3.5.4 Decision engine

Once the requested interaction is received, the decision
engine can determine if the operation should be allowed
or forbidden.

To take this decision, the engine takes as an input the
security policy in which are declared all the allowed in-
teractions.

Then, it looks for a rule matching the request gener-
ated by the application. If a matching rule is found, the
decision engine allows the interaction. If no matching
rule is found, the engine denies the interaction.

5

3.5.5 Mobile device improvements

Since SEDalvik is targeting mobile devices, the perfor-
mance of the solution is an essential consideration.

A major improvement that is made to obtain good per-
formances is to use the METHOD EXIT events gener-
ated by Dalvik’s interpreter. This allows the use of a
stack of the method calls.

Indeed, when an METHOD ENTRY event is reached,
the caller method and object are pushed to the call stack.
On the other hand, when it is METHOD EXIT event,
the last item in the stack is removed. Thus, SEDalvik’s
reference monitor knows which object/method couple is
the caller and avoid fetching the same data several times.

Another improvement consists in a cache that stores
the data for the interaction. Once an object or a method
occurs again, the cache directly provides the requested
information. Thus, the cache avoids multiple calls to the
Dalvik’s debugger in order to the compute the request
and makes SEDalvik faster.

3.5.6 Algorithm

Figure 3 presents the final algorithm used by SEDalvik
to control the interactions between Java objects.

METHOD_ENTRY
METHOD_EXIT

Dalvik's debugger

Methods' interception tool

- Retrieve current
frame's data
- Get/Generate
a context
- Push on the
calls stack

- Retrieve previous
frame's data from
the calls stack

Decision engine

Check if interaction
is allowed by policy

- Apply the decision
Send decision

Ask for
decision

M
E
T
H

O
D

_E
N

T
R
Y

M
E
T
H

O
D

_E
X

IT

- Pop item from
calls stack

SEDalvik

Figure 3: Global algorithm.

When a METHOD ENTRY or a METHOD EXIT
event occurs, Dalvik’s interpreter warns SEDalvik.

If the event is a METHOD ENTRY, SEDalvik will
query the debugger to get the needed data. SEDalvik

will also generate a context for the called object if this
was not done in a previous call; otherwise, it will only
retrieve the existing context into the cache.

Then, SEDalvik gets the previously stacked data to get
the information about the caller, and pushes the callee’s
data on the stack for future uses.

The computed request is then sent to the engine so that
a decision can be taken. The decision engine sends back
the result so that it can be enforced.

On the other hand, if the event is a METHOD EXIT,
SEDalvik only needs to pop the last item of the stack.

4 Experiments

4.1 Usecase

This usecase is based on a well-known Android security
flaw. Indeed, the Android’s permission model can lead
to privilege escalation attacks where a malicious applica-
tion can access a component or data belonging to another
application without the corresponding permissions.

Figure 4 presents how this security flaw can be imple-
mented with two Android applications.

Name
Phone

User Address
Book

MaliciousWriteContacts

Permissions:
NONE

PrivilegedWriteContacts

Permissions:
WRITE_CONTACTS

Create
contact

1 2 3

Figure 4: Privilege Escalation Scenario.

The applications involved in the usecase are:

1. A malicious application, MaliciousWriteContacts,
is forbidden to access the address book.

This application waits for the user to enter a name
and a phone number (interaction #1).

When both fields are known, the application sends a
intent containing the data to the second application
(interaction #2)

2. A privileged application, PrivilegedWriteContacts,
has the WRITE CONTACTS permission and can thus
access the address book to perform write operations.

This application can receive an intent containing a
name and a phone number (interaction #2).

It will then create the corresponding contact in the
address book (interaction #3).

However, this privileged application is vulnerable.
Indeed, since Android’s default setting allows any

6

application to send an intent, MaliciousWriteCon-
tacts can use the privileged application to create a
contact.

These two applications show an example of a privilege
escalation attack. Indeed, the MaliciousWriteContacts
application is able to create new contacts in Android’s
address book, even without having the right permission.

In order to prevent this attack using SEDalvik, a secu-
rity policy needs to be defined.

An excerpt from the contexts defined for the usecase
can be seen in listing 1.

Lpkg/privileged/PrivilegedWriteContactActivity;

privilegedwritecontactactivity_j

Lpkg/malicious/MaliciousWriteContactActivity;

maliciouswritecontactactivity_j

Listing 1: Contexts Sample

Once the labels have been declared, the policy learning
enables to compute a security policy, such as the one in
listing 2.

allow android_widget_button_j

android_content_intent_j

from onClick

invoke (init)

allow android_widget_button_j

maliciouswritecontactactivity_j

from onClick

invoke startService

allow object_j

android_content_intent_j

from createFromParcel

invoke (init)

Listing 2: Policy Extract

The first rule allows a button’s event handler to create
an intent. The second rule allows this event handler to
send the intent (method startService()). The third rule
allows an object to create an intent from an Android Par-
cel, i.e. Android’s message container for the intents.

The obtained policy is controlling all the interactions
between Java objects. Therefore, it is quite large. This
usecase needs around 450 security contexts and 10200
security rules. These numbers include the contexts and
rules needed by Android to control all the flows of these
applications (for instance, the rules to launch an applica-
tion or to create its graphical interface).

With this policy, the following result is obtained:

[traceid=62472;stamp=27241435;pid=592]

type=allow

scontext=object_j

tcontext=android_content_intent_j

{ onClick invoke (init) }

sinstance=5328 tinstance=7472

[traceid=62507;stamp=27251525;pid=592]

type=allow

scontext=object_j

tcontext=maliciouswritecontactactivity_j

{ onClick invoke startService }

sinstance=5328 tinstance=1736

[traceid=2044;stamp=31147460;pid=609]

type=allow

scontext=object_j

tcontext=android_content_intent_j

{ createFromParcel invoke (init) }

sinstance=0944 tinstance=2120

Listing 3: Output Extract

The first two traces correspond to the sending of the
intent from the malicious application (pid=592). The
first trace is the intent creation, while the second one is
the function sending the intent.

The last trace is from the privileged application
(pid=609): it corresponds to the intent reception.

SEDalvik can block this attack by changing the pol-
icy presented in listing 2. By commenting out the sec-
ond rule, the MaliciousWriteContacts application won’t
be able to send any intent. However, a better approach
is to have an additional control to be able to block illegal
intents while allowing legal ones. Indeed intents, pass-
ing through an intermediate object that is a native library,
need an additional control as described below.

Additional control of native components transmitting
the intents To reach the PrivilegedWriteContacts, the
intent pass through a third element, Android’s Binder
that is not controlled easily since the Binder uses a na-
tive library. Therefore, an additional control is required.
As a consequence, SEDalvik needs to analyze the Binder
activity through the analysis of the traces.

Android captures the traces of the intents as displayed
in listing 4.

START {act=android.intent.action.MAIN

cat=[android.intent.category.LAUNCHER]

cmp=pkg.privileged.privilegedwritecontacts/

.PrivilegedWriteContactActivity

(has extras) u=0}

from pid 592

Listing 4: Android’s Log Extract

SEDalvik sees that the intent for the PrivilegedWrite-
Contacts application is sent by the application with
pid=592, that is to say MaliciousWriteContacts.

For this purpose, Android’s Binder is modified in or-
der to handle the intents between two applications.

The simplified sequence of the interactions for our
use-case is described in figure 5.

7

MaliciousWriteContacts

Intent

Parcel

ActivityManagerProxy

BinderProxy

PrivilegedWriteContacts

Intent

Parcel

ActivityManagerProxy

BinderProxy

1

2

3

4

5
6

WriteContacts

7
8

9

10

11

12

Binder IPC

(S
ta

rt
 A

p
p
)

Figure 5: Sequence of Interactions Leading to a Privilege
Escalation.

The plain arrows interactions (#1, 2, 5, 6, 10, 11 and
12) are the ones that need to be analyzed in order to block
the privilege escalation attack.

Therefore, by generating a trace containing the
PID/ObjectID pair for both the caller and the callee dur-
ing interaction #6, SEDalvik will be able to link the send-
ing and the receiving of an intent. Once the complete se-
quence is known, SEDalvik has all the elements to block
the interaction #6.

4.2 Benchmark
In order to test SEDalvik’s usability, the solution was
tested on a physical device. The tests were done on a
Galaxy Nexus phone, using Android 4.1.2 (Jelly Bean).

Two aspects have to be considered in order to de-
termine the overhead generated by SEDalvik: the time
needed to launch the application for the first time, and the
time needed for the other runs. The first launch of an ap-
plication is when Android loads the classes it needs and
when SEJava loads its policy (contexts and rules). There-
fore, it is always much slower than forthcoming runs.

As a consequence, the launching times will be pre-
sented for a ”first run” and for ”other runs”, that is to say
for the application’s creation (when the classes and SE-
Java are loaded) and for the next runs. Both cases are
compared with and without SEDalvik.

Four situations are considered:

1. The time Android takes to display the Mali-
ciousWriteContacts application

2. The time MaliciousWriteContacts takes to send an
intent to the second application

3. The time PrivilegedWriteContacts takes to handle
the received intent and to create a contact

4. The time Android takes to display the Privileged-
WriteContacts application

The results are presented in figure 6.
They were obtained with logcat, the monitoring tool

provided by Android. Indeed, logcat informs the user of
the amount of time an application needs to be displayed.
It also indicates the time each intent takes to be sent.

0

200

400

600

800

1000

1200

1400

1600
First Run, Without SEDalvik

Other Runs, Without SEDalvik
First Run, With SEDalvik

Other Runs, With SEDalvik

Display
MaliciousApp

Display
PrivilegedApp

Create
Contact

Send
Intent

Ti
m

e
 (

in
 m

s.
)

Figure 6: Usecase’s performances on a Galaxy Nexus.

As observed, the overhead induced by SEDalvik is
more important for the first runs.

Moreover, the overhead for the actual application’s
functions (sending an intent, creating a contact) is quite
small. Indeed, the overhead is mostly due to Android’s
internal functions and the handling of the graphical inter-
face. Therefore, an interesting improvement would be to
only control the core of an application, without control-
ling its graphical part.

By doing this, SEDalvik’s overhead would be cut
down without really degrading the offered security.

5 Conclusion

The growing number of Android threats shows the im-
portance of addressing the protection of both the Linux
and Java parts of Android. Currently the majority of the
threats on Android do not address the Dalvik Virtual Ma-
chine since the Linux and native applications of Android
are really poorly protected. Thus, hackers currently do
not need to attack Dalvik for compromising Android.
However, the recent vulnerabilities of the Java Virtual
Machines such as the one affecting Facebook and Twit-
ter 4 show that the Java parts will be one of the main
concerns for improving the security of Android. Indeed,
when the Linux part will be better protected, the attacks
will be targeting the Dalvik Virtual Machine.

This paper shows that the Java applications running
into the Dalvik Virtual Machine are as vulnerable as the
Java applications running into a classical Java Virtual
Machine. This paper presents SEDalvik, a Mandatory
Access Control implementation for the Dalvik virtual
machine, that prevents advanced threats such as privi-
leged escalations between Java objects.

SEDalvik is able to observe all the interactions be-
tween the Java objects. Thus, SEDalvik provides a
reference monitor guaranteeing that the interactions be-
tween the Java objects satisfy the required MAC policy.

8

SEDalvik eases the management of the MAC policy be-
tween the Java objects. SEDalvik does not require the
modification of the Java applications nor of the Dalvik
bytecode. It is an extensible approach that runs for any
application coming from the Google Play. The perfor-
mances show that improvements can minimize the over-
head by auditing only a limited subset of the Java com-
ponents.

Future works deal first with the connection of
SEDalvik to an external tool in order to block efficiently
the sequences of interactions such as the one observed
with the native Binder. PIGA [3, 1] is such a tool and
could be connected to SEDalvik in order to prevent com-
plex malicious activities. Secondly, SEDalvik can be
coupled with a protection at the operating system level,
such as the one offered by SEAndroid. These two MAC
protections are needed to provide an in-depth protection
going from the Java to the Linux levels.

References
[1] BLANC, M., BRIFFAUT, J., TOINARD, C., AND GROS, D.

PIGA-HIPS: Protection of a shared HPC cluster. International
journal on advances in security 4, 1 (Sept. 2011), 44–53.

[2] BORNSTEIN, D. Dalvik VM internals. In Google I/O Developer
Conference (2008), vol. 23, pp. 17–30.

[3] BRIFFAUT, J., LALANDE, J.-F., AND TOINARD, C. Formal-
ization of security properties: enforcement for MAC operating
systems and verification of dynamic MAC policies. International
journal on advances in security 2, 4 (Dec. 2009), 325–343. ISSN:
1942-2636.

[4] CONTI, M., NGUYEN, V., AND CRISPO, B. Crepe: Context-
related policy enforcement for android. Information Security
(2011), 331–345.

[5] DAVI, L., DMITRIENKO, A., SADEGHI, A., AND WINANDY,
M. Privilege escalation attacks on android. Information Security
(2011), 346–360.

[6] ENCK, W., GILBERT, P., CHUN, B. G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX conference on Oper-
ating systems design and implementation (2010), USENIX Asso-
ciation, pp. 1–6.

[7] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAG-
NER, D. Android permissions demystified. In Proceedings of the
18th ACM conference on Computer and communications security
(2011), ACM, pp. 627–638.

[8] HARRISON, M. A., RUZZO, W. L., AND ULLMAN, J. D. Pro-
tection in operating systems. Communications of the ACM 19, 8
(1976), 461–471.

[9] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications.
In Proceedings of the 18th ACM conference on Computer and
communications security (2011), ACM, pp. 639–652.

[10] NAUMAN, M., AND KHAN, S. Design and implementation of
a fine-grained resource usage model for the android platform.
The International Arab Journal of Information Technology 8, 4
(2011).

[11] ONGTANG, M., MCLAUGHLIN, S., ENCK, W., AND MC-
DANIEL, P. Semantically rich application-centric security in an-
droid. Security and Communication Networks 5, 6 (2011), 658–
673.

[12] RUSSELLO, G., CRISPO, B., FERNANDES, E., AND ZHAU-
NIAROVICH, Y. Yaase: Yet another android security extension. In
Privacy, security, risk and trust (passat), 2011 ieee third interna-
tional conference on and 2011 ieee third international conference
on social computing (socialcom) (2011), IEEE, pp. 1033–1040.

[13] SMALLEY, S. Security Enhanced (SE) Android. LinuxCon North
America 2012 (2012).

[14] SMALLEY, S., AND R2X, T. The case for se android. Linux
Security Summit 2011 (2011).

[15] TIM LINDHOLM, FRANK YELLIN, G. B., AND BUCKLEY, A.
The Java Virtual Machine Specification, Java SE 7 Edition. Ora-
cle America Inc, july 2011.

[16] VENELLE, B., BRIFFAUT, J., CLEVY, L., AND TOINARD,
C. Mandatory access control for the java virtual ma-
chine. In 16th IEEE Computer Society Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC 2013) (2013).

[17] WEIDMAN, G. Bypassing the android permission model. Hack
In Paris, 2012.

[18] XU, R., SAIDI, H., AND ANDERSON, R. Aurasium: Practical
policy enforcement for android applications. In Proceedings of
the 21st USENIX conference on Security (2012).

Notes
1http://www.kaspersky.com/about/news/virus/2012/

Oracle_Java_surpasses_Adobe_Reader_as_the_most_

frequently_exploited_software
2http://www.f-secure.com/static/doc/labs_global/

Research/Mobile\%20Threat\%20Report\%20Q4\%202012.pdf
3http://docs.oracle.com/javase/1.5.0/docs/guide/

jpda/jdwp-spec.html
4http://www.forbes.com/sites/andygreenberg/2013/02/15/facebook-

hacked-via-java-vulnerability-claims-no-user-data-compromised

9

