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Abstract

In this paper we carry out a stability analysis of a
previously introduced market-oriented cloud computing
model. We introduce a necessary condition for the
asymptotic stability of the system, and provide a math-
ematical proposition that enables the use of passivity for
the analysis of stability in this model. Moreover, we
prove that the system is Input-to-State Stable and verify
our theoretical results through simulations.

1 Introduction

In the last few years, control theory has had a produc-
tive but still limited relationship with computing theory
and systems. Control theory is being used in problems
such as managing power consumption for microproces-
sors [2], data centers [10, 11], application performance
[3, 8] and management of resources in cloud computing
[1, 11].

At the cloud computing level, and within the ”Infras-
tructure as a Service” framework (IaaS) [7], the costumer
controls the software running over a virtual server and
instantiated by a resource provider. Resources are usu-
ally leased and might consist of application and stor-
age servers. Currently available services include Ama-
zon Elastic Compute Cloud (EC2), Google Cloud and
Joyent. In some services the users must rely on coarse-
grained visibility of the system [5, 7]. A common control
theory-based approach involves model identification and
optimal control [7, 9] where, under certain assumptions
a model of the cloud is estimated in order to control and
optimize some performance measure,e.g., latency and
throughput. The problem of virtual resource allocation
to regulate application performance may then be studied
as discussed in [4, 5, 9].

In the recent paper [6], the author proposes a passivity
framework to ensure asymptotic stability of a feedback
controlled system where the controller regulates power

while guaranteeing response time management in the
cloud. The author proposes a market-oriented discrete-
time model to describe the routing of the consumer’s
workload in the cloud through the interaction ofbrokers
and servers. Roughly speaking, the servers communi-
cate with the brokers to let them know how busy they
are, while the brokers distribute the consumer’s work-
load to be processed between the servers based on the
current status of the servers. This framework takes ad-
vantage of the passivity inherited by a system formed by
interconnecing passive subsystems.

Following the ideas proposed by [6] we present a num-
ber of enhancements related to the analysis of the market-
oriented cloud model. Among other results, we provide
mathematical propositions to justify the use of passivity
theory to the analysis of this problem, and an additional
necessary condition to guarantee the asymptotic stability
of the system. Furthermore, we provide comments about
the stability of the system in the presence of time-varying
consumer’s workload.

The paper is organized as follows: Section 2 describes
the market-oriented cloud model as presented in [6].
In Section 3 we present passivity analysis to study the
asymptotic stability of the system. Section 4 analyzes a
counter-example to illustrate the need for an additional
necessary condition for stability. Such condition is ex-
plicitly provided and proven. In Section 5, we prove that
the system is robust to time-varying consumer’s work-
load as long as such workload is bounded. In Section 6
we present simulation results to validate our approach.
Finally, in Section 7 we provide our conclusions.

2 Market-Oriented Cloud Model

The discrete-time model for the cloud based on a market-
oriented view was proposed in [6]. The block diagram in
Fig. 1, illustrates the dynamics corresponding to a setB

of N brokers and a setS of M servers. A consumer’s
workload vectorw(k) ∈ R

N serves as a reference input
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Figure 1: Block diagram of the market-oriented cloud
proposed in [6].

for the system at timek. The amount of workload that
should be routed to the servers is calculated by the set of
brokers. The set of brokers send the vectory(k) ∈ R

N

with the dispatched workload and the servers receive a
fraction of the consumer’s workload through the vector
ŷ(k) ∈R

M. The fraction of the workload that is not com-
pleted is buffered and the servers send a throttling signal
vectorû(k) ∈ R

M that tells the brokers the current load
at the servers. Thus, the brokers receive the vector sig-
nal u(k) ∈ R

N and, based on it, calculate the fraction of
w(k) that should be routed to the servers in the next time
iteration.

The following state-space equations for thej-th broker
were proposed in [6]. The stated j(k)with j = 1,2, . . . ,N,
corresponds to themaximum dispatch levelat time in-
stantk∈ Z

+, and the dynamics are given by:

d j(k+1) =
[

(1−β1 j)d j(k)+β1 jwj(k)−β2 ju j(k)
]+

,
(1)

with β1 j ∈ (0,1)⊂ R andβ2 j(0,∞)⊂ R. The projection
operator is defined as[·]+ = max(·,0) and the output is
given by,

y j(k) = min{wj(k),d j (k)}. (2)

Similarly, the state-space model of thei-th server is
defined by two state variables, namely,bi(k) and si(k)
with i = 1,2, . . .M. bi(k) corresponds to the amount of
pending workload to be processed by thei-th server.si(k)
corresponds to the maximum amount of workload that
the i-th server processes at ime instantk and is upper
bounded by the physical limit service ¯si . Thus, the state-

space equations are given by,

bi(k+1) = [bi(k)+ ŷi(k)− si(k)]
+ , (3)

si(k+1) = min{s̄i ,(1−σi)si(k)+bi(k)+ ŷi(k)}.

(4)

with σi ∈ (0,1). The designed output in [6] is given by,

ûi(k) = 2σibi(k)+2σisi(k). (5)

This system may be expressed in matrix form as,

ξi(k+1) = min{ξ̄i , [A iξi(k)+Bi ŷi(k)]
+}, (6)

ûi(k) = Cξi(k). (7)

where,

ξi(k) =

(

bi(k)
si(k)

)

, ξ̄i =

(

∞
s̄i

)

,

A i =

(

1 1
σi 1−σi

)

,

Bi =

(

1
σi

)

,C = (2σi ,2σi).

The broker and server blocks are connected through
the matricesR(k) ∈R

M×N andQ(k) ∈R
N×M. Such ma-

trices allow for the consideration of a different number
of brokers and servers in the model. The entries of the
matrices, namely,Ri j (k) andQ ji (k) satisfy∑i Ri j (k) = 1
and∑ j Q ji (k) = 1.

From now on, we omit the subindicesj and i when
referencing thej-th andi-th entries of the corresponding
vectors in the systems of brokers and servers. To analyze
the passivity of thej-th broker, [6] proposes the follow-
ing storage function,

V1(d) = d2(k),

and assuming that the reference input of the system
w(k) = 0 and the projection in (1) is inactive we have
that

∆V1 ≤ u(k)d(k)+ ((1−β1)
2−1)d(k),

which indicates that the system is output strictly passive.
Notice that((1−β1)

2−1)d2 ≤ 0 sinceβ1 ∈ (0,1).
By assuming that the projection in (1) is active, the

difference of the storage function becomes,

∆V1 =−d2(k) ≤ u(k)d(k)−d2(k),

and [6] concludes that the broker system is output strictly
passive.

Analyzing the passivity of the server system, [6] also
proposes the following storage function,

V2(ξ ) = ξ T(k)Pξ (k), (8)
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with the positive definite matrix,

P=

(

σ −σ/2
−σ/2 1

)

.

The projection in (3) is assumed to be inactive and the
first difference of (8) satisfies the following inequality,

∆V2 ≤ û(k)ŷ(k).

Similarly, using the same storage function but assum-
ing that the projection in (3) is active, [6] concludes that

∆V2 ≤ û(k)ŷ(k),

and the system is shown to be passive. Therefore, from
Proposition 1 and Proposition 2 in [6] the origin of the
feedback system withw(k) = 0 is asymptotically stable.
One interesting result of the passivity approach, is the
utilization of passivity concepts to calculate acertificate
that once satisfied, guarantees the stable operation of the
system.

3 About Passivity Analysis

Even though the passivity approach was already applied
in this problem, it is worth asking the following question:
Is it possible to apply passivity analysis to the market-
oriented cloud system? The answer is yes, but we must
be careful. Recall that the output of thej-th broker is
y(k) = min{d(k),w(k)}, thenw(k) is an input of the bro-
ker system as shown in Fig. 1. When carrying out the
passivity analysis in [6], the reference input is assumed
to bew(k) = 0 theny(k) = 0.

Sincey(k) = d(k) if and only if d(k) ≤ w(k), special
care should be taken before directly applying the pas-
sivity propositions to show asymptotic stability as pre-
sented in [6]. However, if we are able to prove that there
exists a finite number of time stepsN ∈ Z

+ such that
y(k) = d(k),∀k≥ k0+N, we can eliminate the inputw(k)
indicated by the dashed blue arrow in Fig. 1, and make
sure thaty(k) = d(k) as described next.

Proposition 1 Consider the state-space dynamics of the
j-th broker defined by (1) and (2). For any initial condi-
tion d(k0) such that d(k0) > w(k) = w> 0 with w∈ R

+

constant, there exists N< ∞, N ∈ Z
+ such that y(k) =

min{w,d(k)} = d(k),∀k≥ k0+N.

Proof Let us define a new state variable

d0(k) = d(k)−w(k)+
β2

β1
u(k), (9)

therefore, we obtain the new dynamical equation,

d0(k+1) = (1−β1)d0(k), β1 ∈ (0,1). (10)

Now, let us propose the following Lyapunov function
candidate,

V3(d0) = d2
0(k),

and the first difference gives,

∆V3 = (−1+(1−β1)
2)d2

0(k)≤ 0, (11)

and the origin of (10) is asymptotically stable.
Let us assume an initial conditiond0(k)> w. Further-

more, from (11) we know that for anyd0(k) > 0 there
existsη ∈ R

+ such that

∆V3 < (−1+(1−β1)
2)d2

0(k)<−η ,

therefore,
V3(k+1)−V3(k)<−η ,

and solving the recurrence equation we get,

V3(k)≤V3(k0)− (k− k0)η , (12)

If we take any feasibleδ ∈R
+ in the trajectory ofd(k)

such thatd(k0) > δ > 0 we getV3(δ ) = δ 2. Therefore,
if starting from the initial conditiond(k0) we arrive at
d(k) = δ for somek, we get from (12) that,

δ 2 ≤V3(d(k0))− (k− k0)η ,

therefore,

k≤ k0+
V3(k0)− δ 2

η
< ∞.

Then, the number of steps required to go from any ini-
tial stated0(k0)> 0 to another stated0(k)> 0 in the tra-
jectory of the solution of (10) is finite. From (9) we con-
clude that starting from an initial stated(k0), there exists
N ∈ Z

+,N < ∞ such that 0< d(k) ≤ w, ∀k > k0 +N,
therefore,y(k) = min{w,d(k)}= d(k)> 0, ∀k> k0+N.
�

Remark 1 Notice that for the case w(k) = w = 0 the
foregoing Proposition does not apply, since from [6],
d(k)→ 0 as k→ ∞ asymptotically,i.e., in infinite time.

Remark 2 Notice that in Proposition 1 we do not con-
sider the case where the projection of d(k) is active be-
cause we have assumed that d(k)> 0.

4 Effect of Equilibrium Points in Stability

As mentioned before, based on [6], the market-oriented
cloud described in Section 2 was shown to be asymp-
totically stable. However, let us implement the forego-
ing model assuming only one broker and one server with
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Figure 2: Non-asymptotically stable example that sat-
isfies the sufficient conditions for asymptotic stability
given in [6].

β1 = 0.9,β2= 0.9,w(k) =w= 40,s̄= 50 and initial con-
ditionsd(k0) = 45,b(k0) = 20,s(k0) = 5. Furthermore,
let us replace (5) by,

û1(k) = 2σb(k)+2σs(k)+σ ŷ(k).1 (13)

with σ = 0.9.
We obtain the plot shown in Fig. 2, which does not

show an asymptotically stable trajectory. In order to ex-
plain the result, we provide the following Proposition,

Proposition 2 A necessary condition to guarantee the
asymptotic stability of the feedback connection between
the broker system given by (1) and (2), and the server
system given by (3), (4) and (13) is,

0< β2u(k)≤ β1w(k). (14)

Proof let us calculate the equilibrium points of thej-th
broker and thej-th server,

deq = w(k)−
β2

β1
u(k), (15)

beq = 0, (16)

seq = y(k). (17)

Now, let us assume

0< w(k) <
β2

β1
u(k), (18)

but from the projection in (1) the equilibrium pointdeq≥
0, which contradicts (18). Therefore,

w(k)≥
β2

β1
u(k)≥ 0, (19)

1See Appendix A for a justification for using (13)

and the necessary condition (14) follows. �

Examining the plots ofuβ (k) =
β2
β1

u(k) and w(k) in
Fig. 2, we see that at every oscillation, the inequality (19)
is not satisfied at some time intervals, therefore, asymp-
totic stability cannot be guaranteed.

5 Effect of Time-Varying w(k)

Now, we consider our last question: Do bounded inputs
guarantee bounded states in the market-oriented model?
This property is termed Input-to-State Stability (ISS) and
is related to the capacity of the states of the system to re-
main in the neighborhood of its equilibrium points. In
this specific case, we are assumingw(k) in (1) is a time-
varying vector function. Although the simulation results
shown in [6] hint that the system might be ISS, this needs
to be formally proven as described in the following re-
sult.

Proposition 3 Given the feedback connection in Fig. 1
defined by the broker system with dynamics (1) and (2)
with 0 < β1 < 1, β1 ∈ R and0 < β2, β2 ∈ R, and the
server system with dynamics (3),(4) and (13) withσ ∈
(0,1)⊂ R, the resulting system is ISS.

Furthermore, if 0 < β2u(k) < β2w(k), the system
tracks the equilibrium points (15)–(17) asymptotically.

Proof Let us study the broker system defined by (1) and
(2), and let us define,

e1 = w(k)−
β2

β1
u(k),

then, the system (1) may be rewritten as,

d(k+1) = [(1−β1)d(k)+β1e1]
+ .

Assuming no active projection in (5), we note that the
system is Linear Time Invariant (LTI). It was proven in
[6] that the broker system is output-strictly passive with
a positive definite storage function. Since it is zero-state
observable as well, the origin withe1(k) = 0 is asymp-
totically stable. Since the system is LTI we conclude
that it is Bounded-Input-Bounded-Output (BIBO) stable
as well.

Similarly, the server system given by (3), (4) and (13)
was proven to be passive with a positive definite storage
function, and therefore its origin is stable with ˆy(k) = 0.
Assuming no active projection, the dynamics are given
by (6) and (7) which describe an LTI system, therefore
the system is BIBO stable. Assuming an active projec-
tion in the server system the system matrixA becomes,

A =

(

0 0
σi 1−σi

)

,
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Figure 3: Simulation results showing that the market-
oriented cloud model proposed in [6] is ISS.

and the system is LTI, therefore it is BIBO stable.
Furthermore, withy(k) < ∞ and ŷ(k) = R(k)y(k)

where all the entries ofR(k), namely,Ri j (k)∈ [0,1], then
ŷ(k) < ∞. Sinceu(k) = Q(k)û1(k) where the entries of
Q(k), namely,Q ji (k) ∈ [0,1], thenu(k)< ∞.

Finally, since we know thatβ2
β1

u(k)< ∞ andw(k)< ∞,

thenw(k)− β2
β2

u(k)< ∞, and the system is ISS.
If in addition, (14) is satisfied, then the system tracks

the equilibrium points asymptotically. �

6 Simulation Results

In Fig. 6, we present simulation results using two bro-
kers and three servers withβ1 = 0.95,β2 = 0.1, σ = 0.5,
s̄= 20 andw(k) = 12.5+12.5sin(2πk

100). Notice that (19)

is being fulfilled, since we are plottinguβ (k) =
β2
β1

u(k)
represented by the purple dotted line, which avoids un-
damped oscillating behaviors. Note that all the other
states are in the neighborhood of their respective equi-
librium points given by (15)–(17). Note also that the
subindices in the plot of Fig. 6, indicate that we are plot-
ting the inputs and outputs of broker 1 and server 2 re-
spectively.

Furthermore, now that we have shown that the sys-
tem is ISS stable, we are able to assure that the states
remain bounded, as long as the consumer’s workload
stays bounded. In comparison with the results shown
in [6] we carry out simulations using three brokers and
five servers. The parameters areβ1 = 0.95, β2 = 0.1,
σ = 0.5 ands̄= 20. The consumer’s workload is mod-
eled as a Gaussian white noise with meanµ = 2 and vari-
anceσ2

g = 1. At time stepk = 100 the mean ofw(k)
abruptly changes toµ = 25 and atk = 210 it goes back
to µ = 2. Later, atk = 425 the mean goes toµ = 16
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Figure 4: Simulation showing boundedd(k) with ran-
dom and boundedw(k).
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Figure 5: Simulation showing boundedb(k)with random
and boundedw(k).

and atk= 632 it returns toµ = 2. As anticipated by the
theory, the system is ISS. In Fig. 4, 5 and 6 we observe
that all states remain bounded. However, and as opposed
to the simulation in Fig. 6, we can no longer assure raw
asymptotic tracking of the equilibrium points (15)–(17)
because the natural oscillations due to the stochastic na-
ture of the process do not guarantee that condition (14)
is satisfied.

7 Conclusions

We have presented an in depth analysis of the passivity
framework introduced in [6] for power control and re-
sponse time management in the cloud. We enhanced the
original theoretical result with a detailed analysis of the
stability and stabilization of the system. We have for-
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Figure 6: Simulation showing boundeds(k) with random
and boundedw(k).

mally provided an additional necessary condition for the
asymptotic stability of the market oriented cloud model,
as well as additional assumptions to justify the use of
the passivity approach to guarantee asymptotic stability.
Furthermore, we have formally proven the Input-to-State
stability of the proposed cloud model in the presence of
time-varying consumer’s workload vectors.
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Appendix A: Recalculation of û(k)

In order to satisfy the sufficient conditions derived from
the passivity approach in [6] some adjustments must be
carried out in (5). By using the storage function (8) and
assuming that projection in (3) is inactive the first differ-
ence of (8) gives,

∆V2 ≤ ξ T(k+1)Pξ (k+1)− ξ T(k)Pξ (k)
= ξ T(k)(ATPA−P)ξ (k)+2ξ TATPBŷ(k)

+ŷ(k)BTPBŷ(k)

= 2ξ TATPBŷ(k)+ ŷ(k)BTPBŷ(k)

= 2σb(k)ŷ(k)−σs(k)ŷ(k)+σ ŷ2(k)

≤ 2σb(k)ŷ(k)+2σs(k)ŷ(k)+σ ŷ2(k)

= û1(k)ŷ(k).

with,
û1(k) = 2σb(k)+2σs(k)+σ ŷ(k).

Now, using the same storage function but assuming
that the projection in (3) is active we obtain,

∆V2 ≤ σ(σ −1)(s(k)−b(k))2+2σb(k)ŷ(k)

+2σs(k)ŷ(k)

≤ 2σb(k)ŷ(k)+2σs(k)ŷ(k)+σ ŷ2(k)

= û1(k)ŷ(k).

and the server system is still passive with the output (13).
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