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Abstract
Large-scale data exploration using Big Data platforms
requires the orchestration of complex analytic workflows
composed of atomic analytic components for data selec-
tion, feature extraction, modeling and scoring. In this
paper, we propose an approach that uses a combination
of planning and machine learning to automatically deter-
mine the most appropriate data-driven workflows to ex-
ecute in response to a user-specified objective. We com-
bine this with orchestration mechanisms and automati-
cally deploy, adapt and manage such workflows across
Big Data platforms. We present results of this automated
exploration in real settings in healthcare.

1 Introduction

With the emergence of multiple Big Data platforms that
handle large volumes of streaming and stored data, it is
becoming possible to support massive data exploration
tasks in many different domains. These domains include
cybersecurity, healthcare, financial services, manufac-
turing process control, as well as several environmental
monitoring applications. More specifically, in intensive
care, healthcare providers need large-scale and real-time
exploration of medical records, test results, and physi-
ological data streams from monitored patients to detect
complications as early as possible. There are several
ways to explore this data for these detection problems.
As a result, such an exploration requires constructing and
orchestrating a large number of analytic flows, i.e. work-
flows composed of atomic analytic components for data
selection, feature extraction, modeling, and scoring. The
scale of data requires the use of a distributed setting, po-
tentially across multiple compute platforms (e.g. offline
learning on Hadoop and online scoring on a real-time
stream computing platform). This places a near insur-
mountable burden on end users and analysts who want
to utilize these platforms and analytics in their domain,

and motivates the need for autonomic management of the
analytic workflows.

In this paper we propose a solution based on auto-
nomic computing principles for creating, deploying, self-
managing and adapting analytic workflows in response to
an end-user’s high level specification of their objectives.
Specifically, we propose an approach that combines plan-
ning and machine learning to automate the composi-
tion and choreography of these workflows in large-scale
distributed data exploration tasks. The use of machine
learning in autonomic compute systems has been ex-
plored previously in limited settings related to scheduling
and resource management. In [14] [20] the authors use
reinforcement learning for fairly scheduling resources in
a large-scale production grid, and resource allocation in
distributed settings, respectively. The use of planning in
software composition with semantic constraints has been
studied in web services [18]. We build on an existing
planning-based composition tool, MARIO [15], which
was originally created to allow end-users to compose and
deploy analytics on multiple platforms.

Combinations of planning and learning have been used
in robotics [3] for exploring and partitioning complex
state spaces in noisy and stochastic settings, and for im-
itation learning [16]. However this work is primarily fo-
cused on exploring uncertain environments as opposed
to analytic workflow composition, selection, and orches-
tration, as discussed in this paper. Planning and learning
for analytic workflow selection has been recently stud-
ied in [10]. The authors use a data mining ontology to
capture an algorithm’s inductive bias, and use learning
to select the algorithm to use in different settings. How-
ever, this does not consider the problem of constructing
analytic workflows by dynamically composing such in-
dividual algorithms.

In contrast, in this paper, we focus on both the com-
position of analytic flows as well as the data-driven dy-
namic selection of appropriate flows to meet an end-user
objective. By describing atomic analytic components
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with semantic annotations, we provide end users with
the ability to specify their objectives using a business
relevant semantic vocabulary. This objective is associ-
ated with an appropriate objective or loss function that
may be used to evaluate performance. We use planning
techniques to identify feasible analytic compositions in
response to the user-specified goal. We then use online
learning to iteratively explore the space of feasible com-
positions to determine the most appropriate workflows
to deploy in a data-driven manner. We combine plan-
ning and learning with orchestration mechanisms that al-
low us to deploy and manage analytic workflows on a
large-scale, real-time, distributed stream processing plat-
form (IBM InfoSphere Streams) [19]. This automation
allows us to adapt to dynamics in the data, availability
of new analytic components, as well as system resource
constraints, while providing predictive performance.
This paper is organized as follows. We describe the

technical details of our approach and the underlying sys-
tem architecture in Section 2, including the planning
component 2.1 and the learning component 2.2. We then
describe results of using this system on real-world explo-
ration problems in a healthcare setting in Section 3 and
highlight both predictive performance as well as system
dynamics. We finally conclude with a discussion and di-
rections for future work in Section 4.

2 System Description

Our design for an autonomic system for data exploration
is based on three observations of the typical application
scenario: (i) there are multiple analysis workflows that
have different degrees of usefulness for a data analysis
objective (and that degree may change over time); (ii)
each such workflow is a combination of data sources
and analytics, including feature extraction, model build-
ing and scoring components; (iii) available computing
resources may limit the number of workflows (combina-
tions) that can be in execution at any time.

Consider a healthcare application scenario [1] in
which the objective is to predict complications in an ICU
setting ahead of time. The available data includes of-
fline data such as histories and outcomes of previous
patients, the history of the current patient; slow chang-
ing data such as results of physician ordered tests; and
live streaming data such as sensor measurements from
the patient’s monitor units (e.g., ECG, blood oxygen lev-
els, respiration rate, etc.). The system also has available
analytics that can extract both simple and complex fea-
tures from this data, build a variety of machine learning
models from this data (including but not limited to de-
cision trees, SVMs, etc.). Compositions of these algo-
rithms into workflows are required to solve the detection
problem, however only some workflows are meaningful,

Figure 1: System architecture

and moreover the choice of workflow depends on context
and varies over time. We use planning and learning to
dynamically determine the most effective analytic work-
flow to construct and deploy given our computational re-
sources, and the user specified task.
With these objectives in mind, we propose a design

described in Figure 1. There are two main components
of the system described in the remainder of this section.
The planner has access to a repository of descriptions of
analytic components and patterns available to the system.
The analytic components are semantically annotated, and
together with the constraints expressed in the patterns de-
scribe the space of analytic workflows that can be auto-
matically composed. The purpose of the planner is to
discover the set of goals and parameters that match a spe-
cific objective such as predicting patient complications,
and for each such goal to automatically compose, gen-
erate code and deploy an analytic workflow that realizes
the goal. A specific goal relevant in intensive care may
be to detect ectopic or abnormal heart beats by observing
electrocardiograms (ECG), identifying individual heart
beats, extracting spectral features, and classifying them
using a decision tree algorithm.

The learner’s mission is threefold: (i) over time, it
learns the effectiveness of the various analytic workflows
deployed for the objective; (ii) it makes a single predic-
tion for specific complications as a function of the ef-
fectiveness of the analytic workflows and their individ-
ual predictions; (iii) it samples from the space of avail-
able analytic workflows that match our computational re-
sources – the sampling is performed as a function of the
learned effectiveness of workflows. The learner will con-
tinuously re-evaluate the current mix of analytic work-
flows deployed and, when deciding to change this set,
communicate with the planner which will compose and
deploy the analytic workflows, potentially on multiple
platforms. The learner limits the total load on the sys-
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tem by limiting the number of flows that are active at
any given time, and the middleware platforms further en-
sure efficient allocation of distributed computational re-
sources to the flows selected by the learner.

In our implementation, the planner (including orches-
tration components) is running as a set of plugins in the
Equinox OSGI container, while the learner component is
running as a streams processing application on the IBM
InfoSphere Streams platform. The two components com-
municate via a REST API over HTTP. We now describe
these components in more detail.

2.1 Planning Component: MARIO
We rely on automated planning to adaptively determine
the set of available analytic workflows given changing
conditions, resources, data sources, data transforms, and
analytics. Any new analytic added to our system is au-
tomatically combined with other compatible analytics to
generate multiple new workflows. The planner also auto-
matically eliminates inefficient workflows based on esti-
mates of computational cost and reasoning about seman-
tic equivalence of results. The remaining workflows are
then made available for the learner to instantiate.

The planning, deployment orchestration, and devel-
opment environment (for describing workflow composi-
tion constraints and semantics of analytics) in our imple-
mentation are provided by MARIO (Mashup Automa-
tion with Runtime Invocation and Orchestration) [15].
MARIO is responsible for:

1. Generating the complete set of distinct, efficient and
valid analytic flows, given the set of analytics, data
sources and composition patterns.

2. Generating platform-specific code and deploying
individual selected flows with specified parameter
values when instructed by the learner.

Our implementation is capable of generating code for
IBM InfoSphere Streams and can be extended with plug-
in code generators for other Big Data platforms, such as
Apache Hadoop. In addition, MARIO provides a web
application for end users, allowing them to inspect the
results of running flows, predictions made by the learner,
and request additional processing to be deployed.

SPPL planner MARIO uses a specialized planner to
solve compositions as planning problems described in
SPPL [17]. SPPL is derived from the general-purpose
domain description language PDDL [8] and includes
modifications to improve planning performance in work-
flow composition applications. In SPPL, description of
the planning task includes description of planning do-
main, consisting of a set of actions with preconditions

and effects defined as lists of user-defined predicates, and
description of the planning problem containing the pred-
icates of the initial state and the goal state. Given the
planning task, the SPPL planner finds an optimal plan,
i.e., a partially ordered set of actions that achieve the goal
state when applied to the initial state, and optimize a lin-
ear objective subject to linear budget constraints.

Cascade composition patterns MARIO generates
SPPL descriptions automatically based on composition
patterns specified in Cascade [15] that describe com-
position constraints and software component semantics.
Composition constraints are defined by defining a flow
graph with points of variability and parameter ranges.
Figure 2 includes an example pattern described in Cas-
cade for a simple classification problem we used in ex-
periments. The graph consists of two nodes, transform
and classification, with two possible implementations of
the transform. Ranges of parameters are specified as enu-
merations separated by a vertical bar “|”. Implementa-
tions of Classification, Features DCT and Features FFT
are defined separately in Cascade by providing platform-
specific code fragments. Different choices of parameter
values or implementations of the transform can be se-
lected independently, thus generating many possible in-
dividual workflows based on the pattern.

In general, Cascade patterns can describe any di-
rected acyclic graphs and can be recursive. For example,
Classification can be defined as another pattern consist-
ing of lower-level components. Individual components,
i.e. analytics or data sources, can be implemented in
any programming language supported by MARIO. Since
MARIO only generates code for execution on target Big
Data platforms and does not process any data itself, it
places no restrictions on supported data types or the com-
plexity of analytics. MARIO does not verify schema
compatibility between connected components, and Cas-
cade Developers have to ensure that the pattern enforces
input/output compatibility of components.

2.2 Learning Component: Learner
At each step, the planner identifies the current set of
feasible analytic flows, but it cannot tell which of these
flows are useful for the current prediction problem. The
goal of the learner is to automatically explore the space
of feasible flows, learning the best current combina-
tion to deploy, subject to resource constraints. This is
achieved in a data-driven way using feedback from the
environment.

Our core learning algorithm is online gradient descent
with several improvements, including adaptive feature-
dependent gradient updates [6, 12] modified for loss non-
linearity as described in [11]. This approach works very
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composite EctopicBeatDetectionPattern(output o) {

param

string $NUM_PTS:

UserParam("Number_Of_DCT_Features","|16|32|48|");

string $MODELTYPE:

UserParam("MODELLING_TYPE","|J48|NB|");

string $MODELTRAINING:

UserParam("NUMBER_OF_TRAINING_SAMPLES",

"|500|1000|2000|");

graph

stream transform =

Features_DCT(){ param DCT_NUM_PTS: $NUM_PTS; }

| Features_FFT(){ param FFT_NUM_PTS: $NUM_PTS; }

stream o = Classification(transform){

param CLASS_NUM_PTS: $NUM_PTS;

MODELTYPE: $MODELTYPE;

MODELTRAINING: $MODELTRAINING; }

}

Figure 2: Example of a Cascade pattern.

well in high dimensional sparse feature spaces, typical in
the applications we target.
We now describe the meta-learning problem (learning

across other analytics which may themselves use learn-
ing), starting with the full information setting, when the
learner can run and observe outputs of all available ana-
lytic flows at each step. Then we discuss the exploration
problem arising from not being able to run most flows at
every step due to resource constraints.

The meta-learner operates in an online setting where it
repeatedly

1. receives input vector xt ∈ R
d , which includes the

outputs of all available analytic flows at time t,

2. makes its prediction ŷt =wt ·xt of the target variable
yt ∈ R, where wt ∈ R

d is the current linear model.

3. upon receiving feedback yt , updates

wt+1 ←wt −2ηt(ŷt − yt)xt ,

where ηt is the learning rate at time t.

While the update rule above assumes the squared loss
ℓ(ŷ,y) = (ŷ − y)2 commonly used in regression, other
loss functions are supported as well. The choice of the
loss function is driven by the prediction problem. The
gradient update actually used in the system is more com-
plex, based on a combination of improvements described
in detail in [6, 12, 11]. Other learning parameters of the
learner that govern the form of the gradient, e.g. the
learning rate can be optimized on a given problem using
progressive validation loss [2, 4].
The analytic flow exploration problem requires exten-

tions to this basic setting. Under resource constraints,
when the number of feasible flows is large, they cannot
be all instantiated together, hence the learner needs to

carefully select which flows to run. Thus instead of ob-
serving the entire vector x, the learner can only probe
into it sparingly, observing only a small subset of values
each time. Such attribute efficient learning for linear re-
gression has recently been explored [5, 9], and we build
on these for our exploration. While we omit details here,
the intuition derives from the model in the basic setting.
When properly normalized to account for the scale of
flow outputs, the learned weight vector wt indicates the
relative importance of each flow. Flows whose weights
are close to zero do not have much predictive edge for
the current prediction problem. The learner’s model wt
is continuously adapted to changes in the underlying data
distribution, as illustrated in Section 3, and this model
may be used (e.g. as a probability distribution) to control
how the flows are sampled.

There are several other open problems for this explo-
ration. First, we need to account for switching cost con-
siderations associated with starting and stopping work-
flows. Second, we need a mechanism for learning new
useful nonlinearities automatically from data. Finally,
while in many applications, the loss function is known
(as in classification or regression), there are scenarios,
e.g. contextual bandit learning [7] where the loss func-
tion has to be learned as well. We are extending our
learner component to tackle these open problems, and
our results on these extensions will be described in detail
in a separate publication.

3 Experimental Results

In this section, we describe two different types of illustra-
tive results – results on a simulated example to highlight
the adaptation and convergence of the learning based ex-
ploration, and some preliminary results on real-world
datasets in healthcare.

3.1 Convergence and Adaptation Results
To illustrate the system’s convergence and adaptation, we
generated a regression dataset consisting of five features,
x1, . . . ,x5, with values drawn independently at random
from [0,1] at every step. We then set the label at differ-
ent time periods as shown in Table 1. We set α = t−ts

te−ts .
The experiment includes both sudden as well as grad-
ual variations in the label characteristics. We create 15
analytic flows, that correspond to five self-products, and
the ten pairwise products of features x1, . . . ,x5, and use a
squared loss function ℓ(ŷ,y) = (ŷ− y)2.

Figure 3 shows the corresponding instantaneous
squared loss. The best constant’s loss in this generated
example was 0.1395, with the best constant predictor
being 0.1675. The adaptive learner gives a relative im-
provement of 96.4% in squared loss in this case. Observe
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Start(ts) End(te) y
1 4000 (x1 −x2)

2

4001 6000 (x2 −x3)
2

6001 8000 (1−α)(x2 −x3)
2 +α(x4 −x5)

2

8001 10000 (x4 −x5)
2

Table 1: Generated Data.
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Figure 3: Instantaneous squared loss

the sharp increase in loss in step 4,000 when the target
sharply changes to another function. The loss increases
smoothly when the target starts to drift away from the
learned function in step 8,000.
Figure 4 shows how the weights of different flows

evolve in this experiment. The red curve corresponds to
flow x2

1, which is predictive only in the first 4,000 steps,
while the target is x2

1 −2x1x2 + x2
2. Its weight goes down

to 0 when it no longer carries any predictive signal. The
green curve corresponds to flow x1x2; the system learned
to use it with coefficient -2 for the first target, and then
the coefficient went down to 0 when the target changed
to x2

2 −2x2x3 + x2
3. The coefficients of features x1, . . . ,x5

are close to 0 for the entire experiment.
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Figure 4: Weight evolution of different analytics

3.2 Exploring Healthcare Data

We consider an exploration problem in healthcare, fo-
cused on streaming analysis of Electro Cardiogram
(ECG) signals from hospitalized patients. The applica-
tion is focused on identifying ectopic or irregular heart-
beats, that are indicative of potential problems to the pa-
tient. Detecting such beats from ECG signals may be
viewed as a binary classification problem, and requires
online learning to adapt to the time-verying nature of the
input signals that vary with patient state, medications etc.
We make use of annotated data from the MIT Phys-

iobank [13], a database with around 135000 annotated
heartbeats (around 16000 ectopic)- corresponding to raw
ECG data from 47 patients. The analytic workflow re-
quired for ectopic beat detection includes heartbeat and
feature extraction, followed by binary classification. The
Cascade pattern is shown in Figure 2. There is a choice
between different transformations (DCT or FFT) with re-
tention of only $NUM PTS (16, 32, 64) coefficients, for
feature extraction.
As classifiers, we use Weka [21] implementa-

tions of Decision Trees (J48) and Naive Bayes (NB)
with periodic retraining - controlled by parameter
$MODELTRAINING (500, 1000, 2000), i.e. retraining of
the model is performed every $MODELTRAINING heart-
beats. Hence, the resulting analytic flow space includes
36 combinations (2 transforms, 2 classifiers, and 3 values
each for $NUM PTS, and $MODELTRAINING).
These flows are deployed on the IBM InfoSphere

Streams processing platform. We deploy a separate data
source and feature extraction job for each patient, with a
common set of classifier flows for all patients that are se-
lected dynamically by the interaction between the learner
and the planner. We deploy these jobs across a cluster
with 8 compute nodes with 8 cores each and a shared
filesystem.
We compare the prediction performance (in terms of

probability of detection pD and probability of false alarm
pF ) of this automated deployment with the best hand-
tuned deployment, achieved after multiple man-hours of
experimenting and tuning in batch mode. We also in-
clude results to indicate the impact of different resource
constraints on the deployment. These are shown in Ta-
ble 2. For each automated experiment, we were allowed
to deploy a maximum of 5 analytic flows at one time.
As we can see, the results of automated deployment ex-
periment 1 (A1) are comparable to the best handtuned
results - slightly higher pD and slightly higher pF – a
strong argument for automation. Additionally, by com-
paring A1 with A2, we observe that performance suffers
as fewer resources are available. This is explained by
the flow startup time - the time it takes since when the
flow is requested by the learner to the time it starts pro-
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Test Nodes Flow Startup Time pD pF
HandTuned 8 nodes – 0.75 0.045

A1 8 nodes 90 sec 0.77 0.05
A2 4 nodes 205 sec 0.72 0.14

Table 2: Prediction Performance.

ducing predictions. In A2, with 4 nodes, most nodes are
busy, hence it takes longer for a requested flow to be de-
ployed (on average 205 seconds, during which time the
flow misses processing around 240 beats)- and hence the
prediction performance suffers. The difference of 0.1 in
false alarm rate corresponds to around 12000 more nor-
mal beats being labeled ectopic.
We are conducting more detailed validation of these

results with a more complex analytic flow space (with
larger number of possible flows), with a dynamic change
in the available analytics, and with finer grained perfor-
mance and resource measurements.

4 Conclusion and Next Steps

We present a system that uses combinations of planning
and machine learning to automate the orchestration of
analytic workflows in Big Data settings. We use planning
to identify feasible analytic workflows given descriptions
of composition patterns and individual analytical build-
ing blocks. We use learning to explore the space of pos-
sible workflows and automatically identify appropriate
combinations of these flows to deploy in response to dy-
namically changing data characteristics. We deploy this
system to tackle a real-time ectopic beat detection prob-
lem in healthcare, and show that the automated system
is able to produce results comparable with the best hand-
tuned analytics. We are in the process of replicating these
results across other domains such as cybersecurity, and
using other Big Data platforms such as Hadoop. Interest-
ing directions for future research include the use of hier-
archical learning and planning, system resource schedul-
ing and adaptation, and combining these with domain-
specific reasoning to exploit domain expertise better.
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