
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 157

Characterization of Incremental Data Changes for Efficient Data Protection

Hyong Shim, Philip Shilane, and Windsor Hsu

Backup Recovery Systems Division

EMC Corporation

Abstract

Protecting data on primary storage often requires cre-

ating secondary copies by periodically replicating the

data to external target systems. We analyze over 100,000

traces from 125 customer block-based primary storage

systems to gain a high-level understanding of I/O char-

acteristics and then perform an in-depth analysis of over

500 traces from 13 systems that span at least 24 hours.

Our analysis has the twin goals of minimizing overheads

on primary systems and improving data replication effi-

ciency. We compare our results with a study a decade

ago [20] and provide fresh insights into patterns of incre-

mental changes on primary systems over time.

Primary storage systems often create snapshots as

point-in-time copies in order to support host I/O while

replicating changed data to target systems. However,

creating standard snapshots on a primary storage system

incurs overheads in terms of capacity and I/O, and we

present a new snapshot technique called a replication

snapshot that reduces these overheads. Replicated data

also requires capacity and I/O on the target system, and

we investigate techniques to significantly reduce these

overheads. We also find that highly sequential or ran-

dom I/O patterns have different incremental change char-

acteristics. Where applicable, we present our findings as

advice to storage engineers and administrators.

1 Introduction

Protecting data on primary storage systems often re-

quires periodically creating secondary copies by trans-

ferring changed data to external target systems, which

may be in the same facility or remotely located. How-

ever, as the size of data to be protected continues to grow

exponentially, the traditional approach to data protection,

e.g., copying all the data on the primary storage system

to a target system (such as backup servers) at regular in-

tervals, is fast becoming infeasible. A better approach

is to only copy the data blocks that have been modified

since the last transfer, unlike standard backup software

that copies modified files or whole directories. So, un-

derstanding how data changes on primary storage over

time is key to both improving existing data protection

solutions and enabling new solutions.

Specifically, we analyzed the size, rate, and pattern of

data changes over time under various host I/O access pat-

terns on EMC Symmetrix VMAX systems [8], a tier-1

block-based primary storage system. We analyzed over

100,000 traces from 125 enterprise systems from some

of the world’s largest corporations to gain high-level in-

sights into storage characteristics. We then selected over

500 traces that spanned at least 24 hours from 13 systems

to analyze various incremental transfer intervals. We be-

lieve the number of traces and systems used for analysis

is substantially larger than in previously published stud-

ies and our results are of value to any organization de-

signing or configuring data protection architectures.

Replicating changed data from a primary system to a

target system may take a substantial amount of time, de-

pending on the change rate and transfer throughput. Dur-

ing the transfer period, the primary system must main-

tain the point-in-time version of storage until the transfer

completes, even while hosts write to the primary system.

Snapshots [2, 5, 10, 22] are a general purpose mecha-

nism to capture the point-in-time view of data, and trans-

ferring snapshots to target storage is one technique for

data protection [20]. As two examples, snapshots kept

within primary storage allow a user to recover acciden-

tally deleted files, and snapshots are increasingly used

to maintain a consistent state of the system to be copied

to target storage while a primary system continues oper-

ation. We have focused our analysis on snapshot over-

heads when used for replication.

We found that using standard snapshots for replica-

tion incurs significant overhead in terms of space usage

and I/O. We observe that only the point-in-time state of

the changed blocks (instead of all of the blocks) needs

to be maintained, so we can relax the semantics of snap-

shots, which we call a replication snapshot. A repli-

cation snapshot protects the changed blocks that need to

be replicated without necessarily maintaining the values

of blocks that do not need to be copied to target storage.

Typical snapshot implementations are designed to cre-

ate semi-persistent versions, while replication snapshots

are designed specifically to support periodic replication

and are then released. Also, implementing replication

snapshots along with a replication protocol allows sepa-

rate primary storage and target storage vendors to jointly

support efficient replication.

Storage overheads on primary storage can be avoided

when host writes are protected with a synchronous re-

mote mirroring mechanism [14], in which host writes

are, in effect, sent to both primary and target storage.

158 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

1. 8% of capacity needs to be reserved for snapshot overheads to support incremental transfers every 12 hours. The reserve is as low as

2% of capacity with replication snapshots.

2. Primary I/O should be over-provisioned by 100% to support copy-on-write related write-amplification of host writes during replication.

The over-provision can be as low as 20% with a replication snapshot.

3. Having a write buffer effectively decreases snapshot I/O overheads but has little impact on storage overheads.

4. The daily transfer size with small blocks is generally 40% of what hosts write.

5. Scheduling at least 6 hours between transfers allows blocks to achieve nearly peak dirtiness.

6. Scheduling at least 12 hours between transfers drastically reduces peak network bandwidth requirements.

Volume capacity is not predictive of bandwidth requirements.

7. Target storage must support as much as 20% of the I/O per second capabilities of primary storage when the replication interval

is at least one hour.

Table 1: Rules-of-thumb from our analysis

Such a mechanism, however, typically requires that tar-

get system have storage capacity and I/O performance

similar to those of the primary system, which does not

scale well to transferring data changes over a long dis-

tance to protect against site disasters. Our analysis fo-

cuses on data-protection cases where target systems have

larger capacity but potentially lower I/O capabilities than

primary systems. This is because data protection systems

must be large enough to hold multiple versions of pri-

mary storage such as daily copies for a month or longer.

As guidance to storage engineers and administrators, we

summarize our findings in a set of rules-of-thumb, which

are presented in Table 1. Our contributions include: a de-

tailed analysis of data change characteristics for a large

set of traces collected from deployed systems, a design

for replication snapshots to reduce overheads on primary

storage, and an evaluation of overheads on primary and

target storage to guide design and configuration.

A related study by Patterson et al. [20] investigated

how to efficiently create primary system snapshots at re-

mote systems. The main differences between the present

work and Patterson’s include our investigation of using

various units of data aggregation to transport changed

data and their impact on the size of transferred data and

I/O rate on the target system. We also investigate how

incremental data changes are impacted by different host

write I/O patterns used to produce the data change. Im-

portantly, it has been a decade since the earlier study,

and it is worth revisiting this analysis to understand how

I/O properties have changed using a newer, larger set of

traces.

2 Collected Traces

We collected I/O traces from over 100,000 logical vol-

umes from 125 EMC Symmetrix VMAX [8] systems in-

stalled at enterprise customer sites. The number of log-

ical volumes captured for each primary storage system

ranged from 12 to over 14,000. These systems supported

database, email, file system, and other business applica-

tions. Unfortunately, no other information is available re-

garding which applications wrote to and read from which

logical volumes. While such information would have

been useful, enterprise primary storage systems should

be designed to support a wide range of applications.

Traced data includes sector-level read/write I/O re-

quests received by primary storage systems as applica-

tions performed I/O operations on their hosts connected

to the primary systems in, for example, storage area net-

works (SANs). Traced data was collected into a trace file

per volume. The trace file (or simply trace) contains a

number of records, each of which contains the following

data fields: timestamp from the beginning of the trace,

read/write command, port at which I/O is received, logi-

cal volume number, logical sector address (ranging from

0 to largest address), and number of sectors to read or

write.

Table 2 and Table 3 summarize I/O activities, rate, and

throughput in the traced systems. See the captions of

the tables for the descriptions of analyzed I/O properties.

Each row of the tables corresponds to a subset of logi-

cal volumes that share some common properties and are

analyzed together. The trace sets are:

1hr 1Wrt: logical volumes traced for at least 1 hour and

that received at least 1 write I/O

1hr 1GBWrt: a subset of 1hr 1Wrt, which includes

volumes traced for at least 1 hour and that received

at least 1GB worth of writes

24hr 1GBWrt a subset of 1hr 1GBWrt, which in-

cludes volumes traced for at least 24 hours and that

received at least 1GB worth of writes

24hr 1GBWrt Random: a subset of 24hr 1GBWrt,

which includes volumes that received largely ran-

dom write I/O requests (See Section 2.1)

24hr 1GBWrt Sequential: a subset of 24hr 1GBWrt,

which includes volumes that received largely se-

quential write I/O requests (See Section 2.1)

The 24hr 1GBWrt* trace sets were selected for de-

tailed analysis because they provide a consistent basis for

a wide range of simulations across replication intervals.

As the large standard deviations in the tables indicate,

the traced volumes widely vary in host I/O activities they

supported. The tables do confirm the long-held view that

hosts issue more read I/O requests than write I/O requests

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 159

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 4 8 16 32 64 128
256

512
1024

P
e
rc

e
n
ta

g
e
 o

f
V

o
lu

m
e
s

Size (GB)

capacity estimated with largest address
write footprint

Figure 1: Storage capacity estimates and write footprint

for 1hr 1GBWrt.

and (not surprisingly) read more data than they write.

Note in the W rlen column of Table 2 that the average

run length of dirty data written after a random seek is

much longer for 1hr 1Wrt and 1hr 1GBWrt trace sets

than for the 24hr 1GBWrt sets. This is because a small

fraction of volumes included in these sets received long

bursts of sequential writes that skewed the average values

for the entire sets. This can be seen in the standard de-

viations, which are 10 times the corresponding averages.

Such volumes are excluded from the 24hr 1GBWrt sets

as their trace periods are shorter than 24 hours.

We do not have access to the configured volume size,

so the storage capacity of each volume is estimated with

the largest logical address found in the corresponding

trace. Figure 1 shows the estimated storage capacity dis-

tribution for the 16,100 volumes in the 1hr 1GBWrt set.

For comparison, we also show the write footprint distri-

bution as percentage of volumes. The write footprint is

the number of unique sectors written converted to bytes.

Most volumes only had a few gigabytes of unique writes,

though volumes were estimated as hundreds of gigabytes

in capacity.

2.1 Sequential vs Random I/O

To determine if host I/O pattern has any significant im-

pact on our major findings, we further distinguish traces

in the 24hr 1GBWrt set into sequential and random.

Intuitively, a sequential trace is the result of a host writ-

ing data to consecutive locations. From surveying the

literature, we have found multiple definitions of sequen-

tial I/O (e.g., [1, 4, 12, 17, 21, 23, 24]). For our metric,

we measure how much data are written, on average, after

seeking to a random sector. By random sector, we mean

a sector that is not consecutive with the last sector written

based on logical address.

Figure 2 shows the average sequential write size

after a random seek for >500 logical volumes in

24hr 1GBWrt. The volumes are arranged on the x-

axis in increasing order of the average sequential write

size. Towards the right end of the x-axis, hosts write

>102KB of data in sequence after making a random

seek in 11% of the volumes. Towards the left end of

 8
 32

 128

 256

 1 50 100 150 200 250 300 350 400 450 500

A
v
e
ra

g
e
 W

ri
te

 S
iz

e
 p

e
r

R
a
n
d
o
m

 S
e
e
k
 (

K
B

)

Logical Volumes

< >

< Random
> Sequential

Figure 2: Average write size per random seek. We define

random and sequential volumes as having <8.5KB and

>102KB average writes per seek, respectively.

the x-axis, hosts write <8.5KB of data in sequence af-

ter making a random seek in 11% of the volumes. Un-

fortunately, there is not a clear division between se-

quential and random host I/O shown in the figure, so

for the purpose of our analysis, we use the average se-

quential write sizes of >102KB and <8.5KB as thresh-

old values in determining sequential volumes and ran-

dom volumes respectively. The sequential and ran-

dom volumes are denoted as 24hr 1GBWrt Sequential

and 24hr 1GBWrt Random in Table 2. In the re-

mainder of the paper, the 24hr 1GBWrt trace set is re-

ferred to as All, 24hr 1GBWrt Sequential as Seq and

24hr 1GBWrt Random as Random.

One drawback of our definition of sequential access

is that it does not account for interleaving writes from

different hosts because our tracing was lower in the stor-

age system. Nevertheless, we have adopted this approach

based on our observation that sequential write I/O re-

quests often appear together in sequence in trace files.

Another potential weakness of our trace analysis is that

we have not specifically analyzed time-of-day effects.

Partly, this is an artifact of our trace collection process

that has retained relative, not absolute time stamps, so

our replication intervals begin at the start of each trace.

Since we have a relatively large number of traces, such

effects are likely averaged out, but a future analysis could

clarify the impact by comparing results after offsetting

the start time.

3 Analysis Methodology

While analyzing logical volume traces, we have tracked

incremental changes over time and measured various

statistics. Our simulation entails three main components:

replication intervals, blocks, and transfer throughput.

The top half of Figure 3 illustrates host I/O as a sequence

of writes and reads, and the bottom half shows affected

sectors and blocks in a logical volume.

A replication interval simulates the fact that data pro-

tection mechanisms in primary systems often keep track

of dirty data for a user-defined period of time and repli-

cates dirty data to target storage at the end of each pe-

3

160 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Trace Set #Vol. #Sys. Dur.

(hrs)

Est.Cap.

(GB)

#W reqs

(1000s)

W size

(GB)

W fp

(GB)

W rlen

(KB)

#R reqs

(1000s)

R size

(GB)

R fp

(GB)

R rlen

(KB)

1hr 1Wrt 109263 125 30.4

[78.3]

71

[203]

72.2

[510.4]

1.7

[31.0]

0.7

[11.2]

947.0

[9230.3]

166.5

[1962.8]

5.2

[65.7]

2.2

[18.9]

667.0

[11301.9]

1hr 1GBWrt 16100 120 7.7

[6.7]

132

[262]

429.0

[1270.7]

10.7

[80.1]

4.6

[28.9]

948.5

[9270.8]

796.0

[4986.7]

24.9

[166.3]

9.8

[45.0]

491.2

[11065.7]

24hr 1GBWrt

All

508 13 24.4

[1.2]

318

[439]

1802.8

[4838.7]

51.1

[337.6]

19.9

[103.7]

284.6

[256.1]

7824.3

[23875.4]

241.5

[763.2]

91.3

[172.1]

132.7

[3078.8]

24hr 1GBWrt

Random

58 9 24.2

[0.8]

238

[328]

1365.5

[1819.7]

9.9

[13.8]

7.2

[12.1]

8.1

[0.4]

5677.1

[8587.6]

97.0

[111.2]

66.5

[84.2]

35.6

[27.3]

24hr 1GBWrt

Sequential

54 9 24.9

[1.4]

343

[591]

2542.1

[7567.2]

280.2

[993.9]

102.6

[301.8]

461.4

[193.4]

2292.1

[7533.8]

247.8

[963.5]

64.1

[191.3]

687.9

[9118.1]

Table 2: Summary of I/O activities. The first four columns denote the number of logical volumes in a trace set, the

number of primary systems, the average trace period, and the average estimated storage capacity. The rest of the

columns show average I/O requests the host has issued. Footprint (fp) is the sum of unique sectors written or read at

least once, while run length (rlen) indicates the average size of data accessed in sequence after a random seek. The

values in square brackets are standard deviations for the corresponding averages.

I/O Request Rate (1000s/sec) I/O Request Throughput (MB/sec)

Trace Set Avg.

W rate

Peak

W rate

1 sec

Peak

W rate

10 ms

Avg

R rate

Peak

R rate

1 sec

Peak

R rate

10 ms

Avg.

W tput

Peak

W tput

1 sec

Peak

W tput

10 ms

Avg.

R tput

Peak

R tput

1 sec

Peak

R tput

10 ms

1hr 1Wrt 0.0007

[0.008]

0.2

[0.6]

1.8

[2.6]

0.002

[0.03]

0.3

[0.8]

1.7

[2.5]

0.02

[0.4]

6.5

[26.0]

64.0

[1669.7]

0.05

[0.8]

10.5

[85.5]

107.3

[8089.5]

1hr 1GBWrt 0.02

[0.04]

0.9

[1.3]

4.4

[4.4]

0.03

[0.1]

0.9

[1.4]

3.6

[4.1]

0.4

[1.8]

30.2

[60.6]

224.1

[4342.7]

0.9

[3.7]

32.8

[216.2]

359.7

[21K]

24hr 1GBWrt

All

0.02

[0.06]

1.5

[1.8]

9.0

[8.2]

0.09

[0.3]

2.0

[2.5]

5.6

[7.0]

0.6

[3.9]

44.3

[76.7]

325.0

[460.7]

2.8

[8.8]

122.42

[1188.2]

5644.6

[119K]

24hr 1GBWrt

Random

0.02

[0.02]

1.6

[1.4]

6.8

[5.6]

0.07

[0.1]

1.3

[1.0]

4.2

[3.9]

0.1

[0.2]

15.9

[13.5]

143.4

[326.6]

1.1

[1.3]

32.5

[50.0]

166.5

[316.9]

24hr 1GBWrt

Sequential

0.03

[0.08]

1.2

[1.7]

5.3

[4.9]

0.03

[0.08]

1.5

[2.0]

4.3

[4.3]

3.2

[11.4]

98.1

[121.1]

584.7

[817.4]

2.8

[11.1]

70.4

[107.1]

517.6

[880.5]

Table 3: Summary of I/O rate and throughput. The peak values for each volume are selected by considering every

10ms and 1 second period. The peak values for a given set are the average of peak values of individual volumes.

riod. In our trace analysis, we model how host write I/O

requests are collected for a given replication interval, and

one or more dirty sectors are determined from those re-

quests. Reads are ignored. We have used the following

replication intervals for analysis in this paper: 24 hours,

12 hours, 6 hours, 3 hours, 1 hour, 30 minutes, and 15

minutes. We have performed some analysis down to 1

minute replication intervals, though to simplify figures,

we generally do not show the intervals below 15 minutes.

Organizations typically select a replication interval based

on their recovery point objective, which defines the time

period for which they can tolerate losing data changes

due to a disaster. Organizations would like to shrink the

replication interval to as short as possible while consid-

ering the cost and infrastructure requirements.

In addition, as shown in Figure 3, dirty sectors are

mapped to a larger unit, called a block in our model. A

block is a sequence of n consecutive sectors in logical

volume space, where n >= 1. Blocks simulate the fact

that many storage systems and data protection mecha-

nisms aggregate dirty sectors into a larger unit and copy

those units when replicating modified data to target stor-

age. They do so to reduce memory and storage resources

r w ww w r w wr w r w wr r w r ww w r r w …

…

…

…

Replication Interval 1

Transfer

Period

may cause snapshot storage and I/O

Trace Timeline (w = Write I/O, r = Read I/O)

Logical Volume
Block Sectors

Replication Interval 2

Block …

Figure 3: Example of processing a logical volume trace

by removing read requests and recording affected sectors

and blocks. The red ’w’ indicates overwriting requests.

required to maintain, for example, a map of dirty sectors.

Block sizes around 128KB are common in some storage

systems [26]. For a 1TB volume, the memory require-

ments for bit vector tracking are: 512B blocks require

256MB of RAM, 128KB blocks require 1MB of RAM,

and 1MB blocks require 128KB of RAM.

A block is called ’dirty’ if it has one or more dirty sec-

tors, and the figure shows dirty blocks in a darker shade

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 161

for Replication Interval 1. When determining the number

of dirty sectors (and blocks) during a replication inter-

val, over-writes to a given sector (and block) are counted

once. For space and figure clarity reasons, we only show

the results for extreme block-size values of 512B and

1MB, unless otherwise noted, because results changed

in a gradual manner with block size.

We also consider the impact of transfer throughput

within our model, which we define very broadly as the

throughput from reading dirty blocks on the primary sys-

tem, transferring across a network (LAN or WAN), and

storing on a target system. Based on the transfer through-

put and amount of data to transfer, we can determine the

transfer period (see Figure 3) during which a primary

system must maintain a consistent view of dirty blocks

until transfer completes. I/O from the host during the

transfer period may cause snapshot I/O (shown in the fig-

ure), and those modifications will be recorded and trans-

ferred at the end of Replication Interval 2. Note that all

modified blocks will be transferred, but because of the

point-in-time nature of transferring a snapshot, we have

to carefully manage which version of a block exists when

a snapshot is created. Managing multiple block versions

causes snapshot I/O and storage overheads.

We have analyzed throughputs between 1.5Mb/s (T1)

and 40Gb/s and typically discuss results for 1.5Mb/s (T1)

and 1Gb/s representing WAN and LAN scenarios, re-

spectively. Note that this throughput is per volume, and

storage systems can have over 10,000 volumes. If all

10,000 volumes were replicated at T1 bandwidth indi-

vidually, this would require 15Gb/s, which is impractical

for many customers. Even with that consideration, our

analysis provides general results for volumes selected for

replication.

With the described trace analysis methodology and

storage system model, we can determine how much data

should be copied to a target system at the end of each

replication interval. To determine the number of write

I/O requests needed to copy the data, we assume the

underlying data transfer protocol has an upper limit on

transfer size, which is assumed to be 1MB, so a larger

data run is split.

4 Findings for Primary Storage

At the end of a replication interval, the primary system

begins transferring changed blocks to the target, which

can take seconds to hours depending on the replica-

tion interval, the number of changed blocks, and trans-

fer throughput. During that time, the primary system

must maintain an accurate point-in-time representation

of those changed blocks, while also supporting incoming

host writes that may be directed at blocks that are in the

process of being transferred as well as blocks not being

transferred. In this section, we characterize storage and

I/O overheads for primary storage while changed blocks

are transferred to target storage under a variety of config-

urations.

For a logical volume, snapshots are a general pur-

pose technique to preserve the values for all sectors,

usually with a mapping from logical to physical sec-

tor addresses [2, 5, 10, 22]. Snapshots are often used

to preserve copies on a primary system but are also in-

creasingly being leveraged indirectly for data protection.

While there are multiple ways snapshots could be im-

plemented, copy-on-write and redirect-on-write are two

prevalent implementations. Suppose snapshot st is cre-

ated at time t. A host write to the volume at time t + 1

causes the version of the block at time t to be copied

into the snapshot (copy-on-write) or the write at t + 1 is

redirected to a snapshot (redirect-on-write). Snapshot st

has meta data indicating whether the appropriate version

of a block is in the main volume or exists in a snapshot

region.

Depending on how sectors are modified, both snap-

shots techniques could be close to empty (no modified

sectors) or as large as the active volume (all modified

blocks). In terms of I/O, copy-on-write requires I/O to

perform the read and write of the earlier block value.

Redirect-on-write may require I/O for read-modify-write

when a write is less than the block size, and redirect-on-

write affects data locality. Creating a clone is an alter-

native to creating a snapshot, but a clone is less space

efficient because it is a full point-in-time copy.

4.1 Replication Snapshot

While this paper focuses on transferring changed blocks,

standard snapshot functionality is not designed for this

purpose in that any incoming write I/O causes a copy-

on-write or redirect-on-write. For replication snapshots,

we finely track which blocks need to be transferred for a

given replication interval (those that have changed since

the last transfer). Only application writes to those blocks

cause copy-on-write or redirect-on-write during the time

it takes for a transfer to complete. Application writes to

non-tracked blocks can happen normally, and all modifi-

cations will be transferred in the next replication interval.

We present results from the baseline snapshot approach

as well as from two versions of replication snapshots,

which relax some of the requirements for generic snap-

shots such that only data that needs to be transferred are

tracked.

When describing snapshot techniques, we refer to an

example volume shown in Figure 4. Blocks shaded in

blue are changed at the end of a replication interval and

need to be transferred. Also, their values need to be pre-

served until replication completes while allowing host

I/O to continue.

5

162 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0
Logical volume state before transfer takes place

1 2 3 4Block:

= Modified block to be transferred

Figure 4: Changed blocks 0, 1, and 4 are transferred to

target storage at the end of a replication interval, and a

snapshot maintains their state while host I/O continues.

Baseline Snapshot: The standard approach performs

snapshot I/O for all incoming host writes regardless of

whether the affected block is being transferred or not.

In Figure 4, host writes to any block (0 − 4) result in

snapshot I/O the first time. All blocks are released from

snapshot protection once the three changed blocks are

transferred.

Changed Block Replication Snapshot (CB): Only the

changed blocks being transferred at the end of a replica-

tion interval are tracked, so host write I/O to these blocks

causes snapshot I/O. Importantly, host write I/O to clean

blocks is processed without snapshot I/O. In our exam-

ple, host writes to blocks 0, 1, and 4 cause snapshot I/O,

but writes to blocks 2 and 3 do not. All blocks are re-

leased from snapshot protection once the three changed

blocks are transferred.

Changed Block with Early Release Replication Snap-

shot (CBER): Similar to the previous version, only

changed blocks are tracked, but a block is released

from replication snapshot tracking immediately once it

is transferred, instead of waiting for the entire transfer to

complete. In the figure, host writes to blocks 0, 1, and 4

will cause a snapshot I/O only if those blocks have not

yet been transferred based on block-by-block tracking of

transfer status.

Note that for all three snapshot versions, repeated host

I/O to the same block only causes a single snapshot I/O.

Also, the amount of data transferred is identical for all

three snapshot techniques. The only difference is the

overhead for snapshot I/O and storage. A property af-

fecting snapshot performance is the transfer throughput,

which affects how long a snapshot persists. In simula-

tion, we have explored a range of throughputs described

in Section 3 but only present a subset of results due to

space limitations.

While CBER has lower overheads than CB in our ex-

periments, there is extra tracking information required.

There is also more communication with target storage

to confirm when individual blocks have been transferred

so that blocks can be released from replication snapshot

tracking. We leave such analysis to future work. De-

pending on specific storage system implementations, one

type of replication snapshot may be more appropriate

than another.

4.2 Storage Overhead

We performed experiments to measure the amount of ex-

tra storage space required for blocks written due to snap-

shots, which is the same for copy-on-write and redirect-

on-write. This storage overhead is required to maintain

block values while changed blocks are transferred to a

target system. Figure 5 shows results for a throughput

of 1.5Mb/s for block sizes of 512B and 1MB and three

snapshot alternatives for Random 5a, All 5b, and Se-

quential 5c hosts.

For all configurations, as the replication interval in-

creases on the horizontal axis from 15 minutes to 12

hours, the average fraction of capacity required for snap-

shots increases. For Figure 5b, we see an average stor-

age overhead of 8% for the Baseline approach with 1MB

blocks at 12 hours, and we have even found a peak over-

head of 100% in some traces. Unsurprisingly, we see

a consistent pattern that the storage overhead is larger

for 1MB blocks than 512B blocks. Replication snapshot

techniques such as CB and CBER reduce storage over-

head because of finer-grained tracking of block transfer

state. Considering 1MB blocks at 12 hours, storage over-

heads decrease from 8% to 4% to 2% respectively, and

we see the same trend for 512B blocks.

Our general conclusions hold for Random and Se-

quential traces, though there are several interesting dif-

ferences. For Random traces, 512B blocks have very low

capacity overheads because of the lower change rate for

Random traces. For Sequential traces, the block size has

little impact because blocks tend to be fully dirty.

Although not shown for space reasons, the trends are

identical at a higher throughput of 1Gb/s. Larger blocks

require more capacity overheads than smaller blocks, and

finer-grained snapshots reduce overhead. Because of the

higher throughput, transfer time is shorter (seconds ver-

sus minutes or hours), and storage overhead is a few per-

cent on average for every configuration.

Rule-of-thumb 1: 8% of capacity needs to be re-

served for snapshot overheads to support incremental

transfers every 12 hours. The reserve is as low as 2%

of capacity with replication snapshots.

4.3 I/O Overhead

We have further analyzed the I/O overhead for snapshots

by measuring the fraction of host write I/O that causes

a snapshot I/O during the transfer period. This can be

thought of as I/O amplification because a host write can

cause a read and second write for copy-on-write. For

redirect-on-write, there may be a read-modify-write due

to writes smaller than the block size as well as decreased

data locality.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 163

 0

 2

 4

 6

 8

 10

 12

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 2

 4

 6

 8

 10

 12

%
 V

o
lu

m
e
 C

a
p
a
c
it
y

 f
o
r

S
n
a
p
s
h
o
t

Replication Interval

Storage Overhead
 Tput=1.5Mb/s(T1)

 0

 2

 4

 6

 8

 10

 12

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 2

 4

 6

 8

 10

 12

%
 V

o
lu

m
e
 C

a
p
a
c
it
y

 f
o
r

S
n
a
p
s
h
o
t

Replication Interval

Storage Overhead
 Tput=1.5Mb/s(T1)

512B Baseline
1MB Baseline

512B CB
1MB CB

512B CBER
1MB CBER

 0

 2

 4

 6

 8

 10

 12

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 2

 4

 6

 8

 10

 12

%
 V

o
lu

m
e
 C

a
p
a
c
it
y

 f
o
r

S
n
a
p
s
h
o
t

Replication Interval

Storage Overhead
 Tput=1.5Mb/s(T1)

a. Random b. All c. Sequential

Figure 5: Snapshot storage overhead due to host write I/O for Random, All, and Sequentially written systems.

 0

 20

 40

 60

 80

 100

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 20

 40

 60

 80

 100

%
 W

ri
te

 I
/O

 C
a
u
s
in

g
C

o
p

y
-O

n
-W

ri
te

 I
/O

Replication Interval

Copy-On-Write I/O Overhead
 Tput=1Gb/s

512B Baseline
1MB Baseline

512B CB
1MB CB

512B CBER
1MB CBER

Figure 6: Fraction of host write I/O that causes copy-on-

write I/O during the transfer period. The plotted lines are

for 24hr 1GBWrt All.

As shown in Figure 6, copy-on-write I/O can be al-

most 100% of the host I/O for 512B blocks and Baseline

snapshots. In general, we find that smaller blocks cause a

larger number of copy-on-write I/Os than larger blocks,

though transferring larger blocks will include sectors that

were not modified. This is because host write I/O tends

to be at least somewhat sequential, and only the first I/O

to a block causes a copy-on-write I/O. We also find a con-

sistent pattern, in which improving the replication snap-

shot technique decreases the copy-on-write I/O overhead

across block sizes and replication intervals.

In contrast, redirect-on-write has different patterns

than copy-on-write, because redirect-on-write can cause

read-modify-write operations as shown in Figure 7. We

analyzed 4KB blocks instead of 512B blocks since there

is never a read-modify-write for 512B blocks. We find

that 1MB blocks have a higher fraction of read-modify-

write I/O because host I/O sizes tend to be kilobytes.

These results presented for 1Gb/s throughput are qual-

itatively similar to results for lower transfer through-

puts. One difference is that I/O overheads are larger for

high throughput than low throughput, which may seem

counter-intuitive. We present a representative transfer

period with the Baseline snapshot technique in Figure 8

for one trace (System 1799). The horizontal axis shows

 0

 10

 20

 30

 40

 50

 60

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 10

 20

 30

 40

 50

 60

%
 W

ri
te

 I
/O

 C
a
u
s
in

g
R

e
a

d
-M

o
d

if
y
-W

ri
te

 I
/O

Replication Interval

Read-Modify-Write I/O Overhead
 Tput=1Gb/s

4KB Baseline
1MB Baseline

4KB CB
1MB CB

4KB CBER
1MB CBER

Figure 7: Fraction of host write I/O that causes read-

modify-write I/O during the transfer period. The plotted

lines are for 24hr 1GBWrt All.

 0
 20
 40
 60
 80

 100

 10 20 30 40 50 60 70 80 90 100
 0
 20
 40
 60
 80
 100

C
um

ul
at

iv
e

%
 H

os
t W

rit
e

I/O

 C
au

si
ng

 S
na

ps
ho

t I
/O

% Transfer Period

Sys=1799, Block=512B

Tput = 1Gb/s, Transfer Time = 8sec
Tput = 1.5Mb/s, Transfer Time = 1hr 40min

Figure 8: For high throughput, most host write I/Os

cause a copy-on-write I/O, while at lower throughputs,

there is less I/O overhead.

transfer time normalized to 100%, and the vertical axis

shows the cumulative fraction of host I/O that causes a

copy-on-write I/O for both 1.5Mb/s and 1Gb/s through-

puts. For the 1Gb/s result, each mark represents a single

I/O, while for 1.5Mb/s, each mark represents 1,000 I/Os.

Transfer periods can be quite short with 1Gb/s

throughputs (8 seconds in this example) such that there

are few I/Os during that time and those I/Os tend to be

to unique blocks, which causes a copy-on-write I/O. At

1Gb/s throughput, 12-19% of systems did not experience

7

164 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

any host I/O during the transfer period for block sizes of

512B-1MB respectively. For slower throughputs, trans-

fer time is longer (1 hour and 40 minutes for the T1 ex-

ample), there are more I/Os, and many I/Os affect the

same block. Over 99% of systems had at least some host

write I/O during transfer at 1.5Mb/s.

Rule-of-thumb 2: Primary I/O should be over-

provisioned by 100% to support copy-on-write re-

lated write-amplification of host writes during repli-

cation. The over-provision can be as low as 20% with

a replication snapshot.

4.4 Analysis with Write Buffers

Our analysis thus far has not included the impact of

buffering host write I/O on the primary storage server

during incremental transfer. Write-buffering is common

in practice [3], with flushes to disk either scheduled peri-

odically or triggered through a storage API. To simulate

the impact of buffering host write I/O, we have added

a FIFO queue to our analysis throughout the replication

interval. As host writes take place during transfer time,

the corresponding blocks are added to the queue. When

our queue fills, the oldest block is evicted from the queue

and is written to storage, which causes a copy-on-write

or redirect-on-write (for the first write to a block) with

related snapshot I/O and storage overheads.

Snapshot I/O overhead for 1.5Mb/s throughput and a

12 hour replication interval is shown in Figure 9. Snap-

shot I/O overhead decreases rapidly as the write buffer

increases from 0% to 1% of the volume’s estimated ca-

pacity. Increasing the write buffer would further decrease

overheads, but write buffers are typically much less than

1% of storage capacity due to differences in cost between

memory and persistent storage. In contrast to snapshot

I/O, we found that storage overhead for snapshots was

nearly unaffected by buffer size because only the first

write to a block requires snapshot storage space. We

did find that both I/O and storage overheads decrease

with improved replication snapshot techniques. A stor-

age overhead figure is not shown due to space limitations.

Rule-of-thumb 3: Having a write buffer effectively

decreases snapshot I/O overheads but has little im-

pact on storage overheads.

5 Findings for Target Storage

Besides improving storage overheads for primary sys-

tems, we can also analyze how target data protection

storage is impacted. How frequently can replication run?

How much data will be stored? How much bandwidth

is required? Answering these questions will guide the

design of future data protection systems.

5.1 Transfer Size Analysis

We first investigate the amount of data to be transferred

and stored for each replication interval. We investigate

 0

 5

 10

 15

 20

 25

 30

0% 0.1% 0.5% 1%
 0

 5

 10

 15

 20

 25

 30

%
 H

o
s
t

W
ri
te

 I
/O

 C

a
u
s
in

g
 S

n
a
p
s
h
o
t

I/
O

Write-Buffer Size (% Volume Capacity)

I/O Overhead
 Repl.Interval=12hrs, Tput=1.5Mb/s(T1)

512B Baseline
1MB Baseline

512B CB
1MB CB

512B CBER
1MB CBER

Figure 9: Snapshot I/O overhead decreases rapidly as

write buffer size increases.

10

50

100

500

1000

5000

15 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

10

50

100

500

1000

5000

D
a

ta
 T

ra
n

s
fe

rr
e
d
 /

D
a

ta
 W

ri
tt
e

n
 (

%
)

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 10: Data transferred as a fraction of data written

gradually decreases as the replication interval increases.

the size of data transferred in Figure 10. Note that the

vertical axis shows the normalized data transferred (log

scale). For normalization, we divide the dirty blocks to

be transferred by the amount of data written by the host

to the primary system. Values will be less than 100%

when a host writes to the same block multiple times, and

the block only has to be transferred once because of write

collapsing.

For a block size of 512 bytes across all volumes (the

512B All line overlaps with Seq), the data transferred

starts at about 100% of the data written with the inter-

val of 15 minutes and gradually decreases to about 40%

with a 24-hour interval. For sequentially accessed logical

volumes (Seq), results are consistent across block sizes:

data transferred is >=100% of the data written when the

interval is 15 minutes and gradually reaches about 40%

of the data written at 24 hours. This is because sequen-

tial host write I/O tends to produce more completely dirty

blocks than other I/O patterns.

Data transferred can be more than 100% because all of

the sectors in a dirty block are transferred even if only a

single sector in the block is actually dirty. As the inter-

val increases, blocks are ’filled up’ with more dirty data.

Figure 11 shows that 512B blocks are always fully dirty

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 165

 0

 20

 40

 60

 80

 100

15 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

 0

 20

 40

 60

 80

 100
A

v
g
.

B
lo

c
k
 D

ir
ti
n
e
s
s
 (

%
)

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 11: Except for the block size of 512B, dirty blocks

are likely to contain various amounts of ’clean data,’ with

larger blocks more so than smaller blocks.

(line across the top). On the other hand, 1MB blocks be-

come dirtier as the time between transfers increases, with

most of the change in the first six hours. As expected,

sequentially written volumes have much more fully dirty

blocks than randomly written volumes, and block dirti-

ness is related to the reduction in normalized data trans-

ferred. Though not shown due to space limitations, we

also found a distinct pattern that blocks were either fully

dirty or dirty in multiples of 4KB or 8KB, likely due to

file system and database allocation units.

These results suggest that using a large block size with

a short interval can incur a significant overhead in trans-

ferring changed data to target storage. Even for small

block sizes, >40% of data written daily is transferred to

external systems.

Rule-of-thumb 4: The daily transfer size with small

blocks is generally 40% of what hosts write.

Rule-of-thumb 5: Scheduling at least 6 hours be-

tween transfers allows blocks to achieve nearly peak

dirtiness.

Comparison to previous study

A previous study in the SnapMirror system [20] of 12

file system servers examined reduction in data size to be

transferred to a remote mirroring site over a range of

replication intervals. In their study, the block size was

fixed at 4KB. In Figure 12, our result for over 500 log-

ical volumes (500 Avg (New)) with a 4KB block size is

plotted along with a reproduction of their figure.

We find the reduction in data size to be much smaller

than the SnapMirror results for intervals between 1

minute and 6 hours. Specifically, the SnapMirror study

reports that all 12 systems achieve at least 30% reduction

by 1 hour, while the average reduction for our traces is

less than 20%. At longer intervals, our results are closer.

For example, SnapMirror found a reduction in data size

 0

 20

 40

 60

 80

 100

1 m
in

1 hr
6 hr

12 hr

24 hr

 0

 20

 40

 60

 80

 100

D
a
ta

 T
ra

n
s
fe

rr
e
d
 /

D
a
ta

 W
ri
tt

e
n
 (

%
)

Replication Interval

500 Avg (New)
Build1

Cores1
Bench

Cores2

Cores3
Build2
Pubs

Users1
Bug

Source
Users2
Users3

Figure 12: The 500 Avg (New) line plots the data trans-

ferred normalized to data written by the host for each

replication interval with our traces, while the other lines

are reproduced from Patterson et al. [20]. All results are

with 4KB blocks.

at 24-hour intervals to be between 53% and 98%, while

we observe an average reduction of 60%.

In summary, our results are qualitatively similar, with

transfer savings increasing with replication interval. The

observed discrepancies are most likely due to different

workloads used for analysis. The smaller number of sys-

tems studied for SnapMirror mostly supported software

development and related applications, e.g., source code

tree, bug tracking database, and engineer home direc-

tories, while the systems in our study support a mix of

business and consumer applications and file systems.

5.2 Bandwidth Requirements

Transferring data requires sufficient bandwidth for the

transfer to complete before the next replication interval

or a cascade of failures occurs. Peak bandwidth was

calculated for each trace, and the 90th percentile across

traces is plotted in Figure 13. Results are per volume,

so bandwidth for a storage system with many volumes

would be higher. Logical volumes supporting sequen-

tial hosts require the most network bandwidth across all

replication intervals. For replication interval > 6hours,

the required bandwidth for the logical volumes in the

Random set is similar to that for the volumes in the All

set. For sequential hosts, the number of logical volumes

that can simultaneously transfer changed data is largely

bound by network bandwidth, while for the other vol-

umes, the choice of block size has a significant impact.

Based on the results from Figure 10, storage administra-

tors can calculate how much bandwidth they will need

to transfer changed data, which is a sizable fraction (ap-

proximately 40%) of what hosts write to primary storage.

There is clearly a relationship between the amount

of data written by the host to primary storage and the

9

166 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

1 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

R
e
q
u
ir
e
d

 N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
M

b
/s

)

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 13: 90th-percentile peak network bandwidth

needed to successfully transfer dirty blocks. Bandwidth

is per logical volume, and the y-axis has a log scale of

base 2.

amount transferred to target storage, and analyzing 512B

blocks shows a 99% correlation up to 30 minutes. The

correlation is lower (62-85% depending on replication

interval) for 1MB blocks, likely due to clean data also

transferred in large blocks. We found a fairly low corre-

lation (30-53%) between estimated volume capacity and

transferred data, so capacity is less predictive of band-

width requirements than other properties such as host

write throughput.

Rule-of-thumb 6: Scheduling at least 12 hours

between transfers drastically reduces peak network

bandwidth requirements. Volume capacity is not pre-

dictive of bandwidth requirements.

5.3 I/O Analysis

A significant difference between primary storage and tar-

get storage designed for data protection is the I/O re-

quirements of each system. Primary storage is designed

to optimize for host I/O requirements related to email or

web servers, shared file systems, or databases. While

capacity matters, I/O per second is often a more critical

feature. In comparison, target storage is designed for ca-

pacity and high throughput [26], so I/O per second may

be of lower priority.

Figure 14 shows how the replication interval affects

I/O per second requirements for target storage that is not

log structured. The vertical axis is normalized relative to

host I/O rates. Specifically, it shows the number of write

I/O requests needed to transfer dirty blocks to the target

as a percentage of the number of host write I/O requests

for the same period in the original trace. See Section 3

for detailed information on how we compute write I/O to

target storage.

For even a fifteen minute interval, the transfer I/O rate

drops to between 10% and 40% of the host I/O rate, de-

pending on the block size and write pattern. This sharp

drop for a short interval is because we first order the dirty

 0

 10

 20

 30

 40

 50

15 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

 0

 10

 20

 30

 40

 50

T
a
rg

e
t

w
ri
te

 I
O

P
S

 /
 H

o
s
t

W
ri
te

 I
O

P
S

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 14: Ratio of target write IOPS to host write IOPS.

sectors accumulated over the interval by their logical ad-

dresses to compute write I/O needed for transfer to target

storage. This ordering results in longer runs of sequential

dirty sectors than created by original host write I/O re-

quests (up to the assumed maximum 1MB transfer size).

I/O savings continue up to 24 hours measured, though

there is little change between 6 hours and 24, and the

I/O rate for a larger block size is consistently lower than

that of a smaller block size. Collecting host I/Os for a

period of time is a well studied technique to reduce I/O

requirements [3].

For sequentially accessed logical volumes, the trans-

fer I/O rates for different block sizes are almost indis-

tinguishable across all the intervals. This is because se-

quential host write I/O, along with our ordering of dirty

sectors, produces runs of sequential dirty sectors that are

>> 1MB in size, so the 1MB network transfer size lim-

itation becomes the dominating factor. For randomly ac-

cessed logical volumes, block size has a large impact on

I/O requirements, requiring from 12% to 40% at 1 hour.

These results indicate that it is worthwhile to configure

block sizes and replication intervals for mixed and ran-

domly accessed volumes.

While our work focuses on asynchronous replication

to reduce I/O and storage requirements for target sys-

tems, an alternative is to consider synchronous replica-

tion. Synchronous replication requires a target system to

have 100% of the I/O capabilities of the primary system,

which would be a horizontal line added to Figure 14 at

100% on the vertical axis. Asynchronous replication can

be more efficient than synchronous replication for two

reasons: collapsing multiple writes to the same block be-

fore replication to reduce transferred data and reordering

writes to reduce random I/O. We leave it as future work

to explore the impact of each reason.

Rule-of-thumb 7: Target storage must support as

much as 20% of the I/O per second capabilities of pri-

mary storage when the replication interval is at least

one hour.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 167

6 Related Work

Over the years, there have been many studies of storage

workloads in various computing environments including

aspects of file access and caching [3, 4, 11, 19, 23]. Le-

ung et al. [17] analyzed I/O trace data collected from

networked file servers deployed in a data center. An-

derson [1] presented new techniques for collecting large,

detailed traces. Analysis of high performance comput-

ing (i.e. supercomputing) workloads focused on band-

width, I/O request inter-arrival times, idle time, and ac-

cess rates [6, 7, 15, 16, 18]. Gulati et al. [9] studied

characteristics and consolidation strategies for virtual-

ized systems. Analysis for database workloads [12] has

shown qualitatively similar properties to file systems.

Numerous studies have measured disk access prop-

erties including block lifetimes, access rates, response

time, sequential patterns, and caching [23, 24]. Riska

and Riedel [21] analyzed how I/O workloads on disk

drives change depending on applications and computing

environments, e.g., enterprise servers vs. desktop com-

puters vs. consumer electronics.

Unlike these earlier works, we specifically focus on

characterizing the overheads and I/O properties in trans-

ferring incremental changes on primary storage to tar-

get storage. Specifically, we analyze data changes at the

physical (block) level, in part, because creating backups

at the physical level is more efficient than doing so at

the logical (file) level [13]. Roselli et al. [23] studied

block lifetimes but not in the context of data protection.

A study a decade ago by Patterson et al. [20] character-

ized changed data at the block level for a similar goal; see

Section 5.1. Wallace et al. [26] described backup work-

load characteristics, though they intermixed full and in-

cremental workloads.

Snapshots are a common technique to create a point-

in-time version of data. WAFL [10], ZFS [5] and

BTRFS [22] all natively support snapshots with copy-

on-write as means of ensuring data consistency on disk

and enabling fast restart after system crash. In these sys-

tems, snapshots are first-class objects that can be named

and accessed by the end user. In the case of ZFS and

BTRFS, snapshots are writable and can be updated in-

dependently from the original. In addition, snapshots

are taken at the logical level, e.g., the entire file system,

directories, and/or individual files. In contrast, a repli-

cation snapshot is mainly comprised of blocks written

since the last transfer, is not writable, and does not per-

sist; once the transfer is completed, the space allocated

for copied-on-write blocks is reclaimed for use by pri-

mary storage or later snapshots.

There are several publications on snapshot overheads.

Azagury et al. [2] and Shah [25] both report up to 7%

degradation in I/O rate due to copy-on-write. We an-

alyzed replication snapshots as a technique to reduce

overheads of standard snapshots during replication. Our

two versions of replication snapshots can be classified as

write-coalescing batches with atomic update in a tax-

onomy for remote mirroring defined by Ji et. al. [14],

with the batch size determined by replication intervals.

Our asynchronous technique allows for write coalescing

to reduce write size and I/O rate on target storage.

Synchronous remote mirroring [14] can also be used

for protection of data changes, especially when the

change rate is low and/or the geographical distance be-

tween primary and target systems is relatively short,

e.g., [27, 28]. In this paper, we analyze an asynchronous

approach to allow target systems whose I/O performance

and storage capacity are characteristically different from

primary storage, e.g., purpose-built backup appliances.

7 Discussion and Conclusion

In this paper, we have analyzed I/O traces from over

100,000 logical volumes in customer block-based pri-

mary storage systems to understand I/O characteristics

and performed a detailed analysis of over 500 traces

spanning at least 24 hours to gain a better understanding

of incremental change patterns. New insights can help

data protection expand from the realm of daily backups

to more frequent updates.

Our analysis has uncovered several new findings for

both primary and target storage. Overheads on pri-

mary storage due to snapshots can require both capacity

and I/O to preserve point-in-time copies, though a write

buffer decreases I/O requirements. For target storage,

storage requirements depend on the write patterns of the

host and can vary from 40% for most hosts to 100% for

hosts that write sequentially. Replication requires band-

width, which we have shown grows proportionally with

the write-throughput of hosts. We have found that access

patterns can change from highly sequential to highly ran-

dom across different replication intervals, with a large

change in data transfer characteristics. Given that the

transfer interval is often statically configured by the tar-

get system administrator, our observations argue for dy-

namically changing block sizes and replication intervals

at run time based on the host I/O access pattern.

Many findings about data patterns align with previous

results: dirty blocks tend to be overwritten again within

minutes or hours, the change rate grows less rapidly with

longer replication intervals, and volumes tend to be mod-

ified in multiples of 4KB or 8KB. From the analysis of

over 100,000 traces, we found that there is great diversity

in storage requirements in terms of capacity, numbers of

writes and reads, as well as average and peak throughput

and I/O per second.

11

168 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Acknowledgments
We would like to thank Fred Douglis, Kadir Ozdemir,

Steve Smaldone, Grant Wallace, Ian Wigmore, and our

reviewers for their feedback. We also thank Bill Glynn

and the EMC VMAX team for providing the traces.

References

[1] E. Anderson. Capture, conversion, and analysis of an in-

tense NFS workload. In Proc. of the 7th USENIX Conf.

on File and Storage Tech., 2009.

[2] A. Azagury, M. E. Factor, J. Satran, and W. Micka. Point-

in-time copy: Yesterday, today and tomorrow. In Proc.

IEEE/NASA Conf. Mass Storage Systems, 2002.

[3] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and

M. Seltzer. Non-volatile memory for fast, reliable file

systems. ACM SIGPLAN Notices, 27(9):10–22, 1992.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,

and J. K. Ousterhout. Measurements of a distributed file

system. In Proc. of the 13th ACM Symposium on Operat-

ing Systems Principles, October 1991.

[5] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and

M. Shellenbaum. The zettabyte file system. In Proc. of

the 2nd Usenix Conference on File and Storage Technolo-

gies, 2003.

[6] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,

R. Latham, and R. Ross. Understanding and improving

computational science storage access through continuous

characterization. ACM Trans. on Storage, 7(3), October

2011.

[7] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and

K. Riley. 24/7 Characterization of Petascale I/O Work-

loads. In Proc. of the 1st Works. on Interfaces and Ab-

stractions for Scientific Data Storage, 2009.

[8] EMC. EMC Symmetrix VMAX. http:

//www.emc.com/storage/symmetrix-vmax/

symmetrix-vmax.htm, 2013.

[9] A. Gulati, C. Kumar, and I. Ahmad. Storage workload

characterization and consolidation in virtualized environ-

ments. In Proc. of the 2nd Inter. Workshop on Virtualiza-

tion Performance: Analysis, Characterization, and Tools,

2009.

[10] D. Hitz, J. Lau, and M. Malcolm. File system design

for an nfs file server appliance. In Proceedings of the

USENIX Winter 1994 Technical Conference, pages 235–

246, 1994.

[11] W. W. Hsu and A. Smith. The performance impact of I/O

optimizations and disk improvements. IBM Journal of

Research and Development, pages 255–289, March 2004.

[12] W. W. Hsu, A. J. Smith, and H. C. Young. I/O reference

behavior of production database workloads and the TPC

benchmarks - an analysis at the logical level. ACM Trans.

on Database Systems, 26:96–143, 2001.

[13] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris,

D. Hitz, S. Kleiman, and S. O’Malley. Logical vs. physi-

cal file system backup. In Proc. of the 3rd Symposium on

Operating Systems Design and Implementation, 1999.

[14] M. Ji, A. Veitch, J. Wilkes, et al. Seneca: remote mirror-

ing done write. In Proc. of the USENIX Annual Technical

Conf., 2003.

[15] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow,

Z. Zhang, and B. W. Settlemeyer. Workload characteriza-

tion of a leadership class storage cluster. In Proc. of the

5th Petascale Data Storage Workshop, 2010.

[16] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and

W. Allcock. I/O performance challenges at leadership

scale. In Proc. of Supercomputing, November 2009.

[17] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.

Measurement and analysis of large-scale network file sys-

tem workloads. In Proc. of the USENIX Annual Technical

Conf., 2008.

[18] E. L. Miller, R. H. Katz, and Y. H. Katz. Analyzing

the I/O behavior of supercomputer applications. In Proc.

of the 11th IEEE Symposium on Mass Storage Systems,

1991.

[19] J. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,

M. Kupfer, and J. G. Thompson. A Trace-Driven Anal-

ysis of the UNIX 4.2 BSD File System. In Proc. of the

10th Symposium on Operating System Principles, 1985.

[20] H. Patterson, S. Manley, M. Federwisch, D. Hitz,

S. Kleiman, and S. Owara. SnapMirror: file system based

asynchronous mirroring for disaster recovery. In Proc. of

the 1st USENIX Conf. on File and Storage Tech., 2002.

[21] A. Riska and E. Riedel. Disk drive level workload char-

acterization. In Proc. of the USENIX Annual Technical

Conf., 2006.

[22] O. Rodeh, J. Bacik, and C. Mason. Brtfs: The linux b-

tree filesystem. Technical report, IBM Research Report

RJ10501 (ALM1207-004), 2012.

[23] D. Roselli, J. Lorch, and T. E. Anderson. A comparison

of file system workloads. In Proc. of the USENIX Annual

Technical Conf., 2000.

[24] C. Ruemmler and J. Wilkes. Unix disk access patterns. In

Proc. of the Winter USENIX Conf., 1993.

[25] B. Shah. Disk performance of copy-on-write snapshot

logical volumes. PhD thesis, The University Of British

Columbia, 2006.

[26] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,

M. Chamness, and W. Hsu. Characteristics of backup

workloads in production systems. In Proc. of the 10th

USENIX Conf. on File and Storage Tech., 2012.

[27] H. Weatherspoon, L. Ganesh, T. Marian, M. Balakrish-

nan, and K. Birman. Smoke and mirrors: reflecting files

at a geographically remote location without loss of per-

formance. In Proc. of the 7th USENIX Conf. on File and

Storage Tech., 2009.

[28] M. Zhang, Y. Liu, and Q. Yang. Cost-effective remote

mirroring using the iSCSI protocol. In 21st IEEE Conf.

on Mass. Storage Systems and Tech., 2004.

12

