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Abstract
The most popular I/O virtualization method today is

paravirtual I/O. Its popularity stems from its reasonable
performance levels while allowing the host to interpose,
i.e., inspect or control, the guest’s I/O activity.

We show that paravirtual I/O performance still signifi-
cantly lags behind that of state-of-the-art non-interposing
I/O virtualization, SRIOV. Moreover, we show that in
the existing paravirtual I/O model, both latency and
throughput significantly degrade with increasing number
of guests. This scenario is becoming increasingly impor-
tant, as the current trend of multi-core systems is towards
an increasing number of guests per host.

We present an efficient and scalable virtual I/O sys-
tem that provides all of the benefits of paravirtual I/O.
Running host functionality on separate cores dedicated
to serving multiple guest’s I/O combined with a fine-
grained I/O scheduling and exitless notifications our
I/O virtualization system provides performance which
is 1.2x–3x better than the baseline, approaching and in
some cases exceeding non-interposing I/O virtualization
performance.

1 Introduction
In recent years, hardware and software improvements for
x86 machine virtualization made it possible to run virtu-
alized workloads with performance approaching that of
a physical machine (bare-metal performance). However,
to achieve the desired bare-metal performance, I/O inten-
sive virtual workloads require direct access to a hardware
device [10]. For this purpose, modern hypervisors imple-
ment a technique called device assignment [7, 14, 30],
“PCI passthrough” or “DirectPath I/O”.

Device assignment achieves its performance by by-
passing the host software on the I/O path, but this bypass
also means giving up a lot of virtualization flexibility:
With device assignment, the host software cannot offer a
virtual device with no physical counterpart (e.g., a virtual
disk stored as a file in the host’s filesystem). Nor can it

interpose on the guest’s I/O, i.e., inspect or modify the
guest’s I/O, which is necessary for many virtualization
features such virtual networking and security scanning.
Device assignment also requires more expensive hard-
ware (an IOMMU and SRIOV) and complicates VM live
migration [31] and memory overcommitment [30]. For
these and other reasons, most real-world applications of
virtualization today—including most enterprise data cen-
ters and most cloud computing sites—do not use device
assignment.

Instead, the most popular I/O virtualization technique
today is paravirtual I/O [2], exemplified by KVM’s vir-
tio [23] and VMWare’s VMXNET3 [28]. In paravirtual
I/O, the host presents to its guests a software-based (vir-
tual) I/O device. All I/O passes through the host soft-
ware, retaining the ability to interpose on the guest’s I/O
and all the flexibility described above.

But paravirtual I/O’s interposition comes with signifi-
cant performance penalty for I/O-intensive guests, as al-
ready noted in previous work [5, 6, 13, 16, 29]. Tradi-
tional paravirtual I/O implementations suffer from two
problems: The first is the slowdown of a single guest,
mainly caused by exits [1] — switches back and forth
between guest and host context. The second is lackluster
scalability — when the host has multiple I/O-intensive
guests, the competition between these guests cause sig-
nificant reduction in throughput and increase in latency.
These problems are becoming increasingly serious, as
the current trend is towards multi-core systems with an
increasing number of guests per host, and towards faster
networks with expectation of lower latency and higher
bandwidth.

We present ELVIS (Efficient and scaLable para-
Virtual I/O System). ELVIS solves the above two prob-
lems, and provides all the benefits of paravirtual I/O with
performance approaching — and sometimes surpassing
— that of device assignment. ELVIS’s design is pre-
sented in Section 2: It is designed to be oblivious to the
type of I/O activity (e.g., block or network), to maximize
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throughput, to minimize latency, and to scale linearly in
the number of I/O-intensive guests. ELVIS alleviates the
overhead of paravirtual I/O by running host functional-
ity on dedicated cores that are separate from guest cores,
and by avoiding exits on the I/O path. ELVIS efficiently
and fairly handles multiple guests by using a new fine-
grained I/O scheduler that decides when and for how
long to serve each guest.

We describe ELVIS’s implementation in the KVM hy-
pervisor in Section 3 and experimentally evaluate it in
Section 4. We thoroughly evaluate ELVIS’s performance
using throughput-oriented and latency-oriented bench-
marks on both network-intensive and block-intensive
workloads. We evaluate its scalability by running differ-
ent experiments with up to 14 I/O-intensive guests. In the
majority of benchmarks, ELVIS improved performance
when compared with paravirtual I/O by up to 3x and was
within 90% of device assignment, and sometimes even
exceeding it. In the worst case benchmark ELVIS was
only within 70% of device assignment but still improved
paravirtual performance by 1.4x.

The main contributions of this work are as follows:

1. We demonstrate and evaluate, for the first time, how
a new feature announced for future x86 processors
— posted interrupts — can be exploited to improve
paravirtual I/O performance. We efficiently emulate
posted interrupts on today’s processors by extend-
ing our previous work on Exit-Less Interrupts [10].

2. However, we show that posted interrupts only solve
part of the problem. We contribute a novel fine-
grained I/O scheduler which together with exit-less
notifications provides a complete, efficient and scal-
able, paravirtual I/O solution.

2 ELVIS Design
In this section we introduce the design of ELVIS, our
proposed model for an Efficient and scaLable para-
Virtual I/o System. ELVIS is based on the familiar par-
avirtual I/O model [2, 23], the state-of-the-art mech-
anism for I/O virtualization with interposition. We
improve on traditional paravirtual I/O performance by
avoiding the exits associated with I/O request and reply
notifications. We improve scalability with a fine-grained
I/O scheduling mechanism, allowing a single I/O thread
to efficiently serve multiple VMs.

The design we present in this section can be applied
to different paravirtual I/O implementations in different
hypervisors. In Section 3, we present in more detail our
implementation in the KVM hypervisor, and its in-kernel
paravirtual I/O implementation, vhost.

2.1 The paravirtual I/O model
In paravirtual I/O the host interposes on the guest’s I/O,
i.e., each I/O request is handled by the host. The guest’s











Figure 1: Ideal paravirtual model.













Figure 2: Slowdown when exits require notifications.

driver (the front-end) sends each I/O request to the host
(back-end), which handles it and later returns a reply.

I/O requests are asynchronous: A guest does not block
until getting the reply. In some cases, a long time might
pass until a reply, e.g., disk reads or packet receive re-
quests. So generally, the host does not fully handle the
I/O request at the time of the request. Rather, the host
has a separate I/O thread which handles the I/O requests.

On multi-core systems, it has been shown [12, 17, 15]
that performance can be improved by dedicating a sepa-
rate core (a sidecore) for the I/O thread, instead of time-
sharing the same core for both the guest and its I/O
thread. Moving the I/O thread to a separate core not
only leaves the guest’s core with more cycles (and there-
fore improves the guest’s peak performance), it also im-
proves overall system efficiency as context switches are
avoided. SplitX [13] studied the costs associated with
such context switches, and found that in addition to their
direct cost, there is another indirect cost of cache pollu-
tion, as each of the two alternating contexts (guest and
I/O thread) runs slower for some time after each context
switch. Aiming at improved performance, ELVIS there-
fore runs the guest and the I/O thread on separate cores.

Figure 1 illustrates this ideal paravirtual I/O model:
The guest and I/O thread run on separate cores. The
two cores efficiently communicate using shared mem-
ory buffers, and additionally require some mechanism
for notifications: the guest wants to notify the I/O core
of new I/O requests, and the I/O core wants to notify the
guest when previous requests have completed.

In non-virtual environments, there is a light-weight ar-
chitectural mechanism, Inter-Processor Interrupts (IPI)
to send notifications between cores. But unfortunately,
there are no mechanisms in currently available x86 hard-
ware to send notifications to or from a running guest,
without first existing to the hypervisor. This can lead to
two exits for each I/O request, as illustrated in Figure 2:
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Figure 3: Comparing ELVIS’s fine-grained I/O schedul-
ing (top) to thread-based I/O scheduling (bottom).

When the guest wants to notify the I/O core of a new re-
quest in the shared buffer, it cannot directly send an IPI
to the I/O core so it exits to have the hypervisor do this.
Then, when the I/O core completes the operation and
wants to notify the guest, it cannot remotely inject a vir-
tual interrupt into the running guest, and needs to cause
the guest to exit first (e.g., using an IPI) so that the hyper-
visor can inject the virtual interrupt. Some implementa-
tions even suffer a third exit, when the guest completes
handling the virtual interrupt and writes to the End-of-
Interrupt (EOI) register. ELVIS improves paravirtual I/O
performance by replacing the two exit-causing notifica-
tions with new exit-less notification mechanisms, as we
explain in Sections 2.3 and 2.4 below.

2.2 Fine-grained I/O scheduling
One I/O core is often capable of handling I/O from sev-
eral I/O-intensive VMs, as we demonstrate in Section 4.
However, the common approach to handle I/O is to cre-
ate a separate I/O thread per VM and let the hypervi-
sor’s scheduler run these multiple threads on one or more
cores.

ELVIS adopts a more fine-grained approach to I/O
scheduling: A single I/O thread runs on an I/O core, and
handles the I/O requests of multiple VMs. Figure 3 il-
lustrates how fine-grained I/O scheduling differs from
thread-based scheduling. We expect fine-grained I/O
scheduling to achieve better throughputs and latencies

than thread-based I/O scheduling: When several VMs
have high I/O loads, thread-based I/O scheduling may
service one VM for a long time, delaying I/O in other
VMs until the OS decides to switch threads. Contrast
this with fine-grained I/O scheduling, which can inspect
the request queues it is serving, and can more fairly and
promptly switch between them. The benefits of fine-
grained scheduling are even more pronounced when the
I/O thread uses polling, as it often does in ELVIS as ex-
plained below.

We show in Section 4.7 that indeed fine-grained I/O
scheduling improves paravirtual I/O performance and
scalability on multi-core machines. It allows an I/O core
to handle more VMs with better throughput and latency.

2.3 Exitless I/O request notifications
In the paravirtual I/O model, the driver in the guest writes
its I/O requests to a shared memory buffer. The driver
then notifies the I/O thread that new work is pending.
The x86 architecture provides no mechanism besides an
exit for the guest to interrupt a host thread, so the request
notification involves an exit, as shown in Figure 2.

In ELVIS, we avoid request notifications (and their as-
sociated exits) by polling in the host’s I/O core [17, 5].
The guest writes its request to memory shared with the
hypervisor, as usual, and does not employ any further
exit-causing notification mechanism. The host polls this
memory from the separate I/O core, handling requests as
they are noticed.

Polling requires a dedicated I/O core, but as explained
above, we generally want to share this core among sev-
eral guests. With fine-grained I/O scheduling, ELVIS
already has one I/O thread handling requests from sev-
eral VMs, so now it needs to poll several VMs. In Sec-
tion 3 we discuss how we efficiently and fairly poll sev-
eral VMs without hurting the quality of service (namely,
throughput and latency) to individual VMs.

For workloads which are not I/O-intensive, the waste
inherent in excessive polling may outweigh the benefits
of exitless notifications. It is therefore beneficial to dy-
namically switch between polling and traditional exit-
based guest-to-host notifications. Such switching is of-
ten used in the context of interrupt mitigation [20, 24],
and has also been used for paravirtual I/O by VMWare’s
VMXNET3 [28].

2.4 Exitless I/O reply notifications
In the paravirtual I/O model, when the I/O thread com-
pletes handling an I/O request it writes its reply to the
shared memory area, and then notifies the guest.

Unfortunately, unlike the case of request notifications
above, it is not practical to simply avoid using reply no-
tifications. Avoiding these notifications means that each
guest would need to poll for new replies [5], wasting a
significant number of cycles that could otherwise be used
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to run more useful work or just kept unused to reduce
power consumption. Since we cannot avoid reply notifi-
cations, our goal is to make them as efficient as possible,
and in particular exitless.

The architectural mechanism of notifying an OS of
some event is via an interrupt. I.e., the I/O core wishes
to cause an interrupt inside a guest running on a different
core. On existing x86 processors, a hypervisor can only
inject interrupts into the guest from the same core run-
ning it, and therefore the reply notification requires caus-
ing the guest to exit (e.g., by sending an Inter-Processor
Interrupt (IPI) to the core running the guest), at which
point the hypervisor injects the desired virtual interrupt.

Intel has recently announced that unspecified future
processors will include a new feature called posted in-
terrupts. Posted interrupts will allow one core to inject a
virtual interrupt into a guest currently running on a dif-
ferent core — without the guest having to exit first. AMD
also announced a similar future mechanism in their pro-
cessors, and named it doorbell interrupts.

ELVIS avoids the reply-notification exits by emulating
posted interrupts on existing x86 processors, using the
Exit-Less Interrupts (ELI) technique [10]: When the I/O
core wishes to inject a certain virtual interrupt into the
guest running on a different core, it writes the interrupt
vector (i.e., the interrupt number) into a memory location
shared with the guest, and then sends a fixed IPI to the
guest’s core. Normally, receiving this IPI would cause
the guest to exit, but we have this interrupt delivered in
the running guest by asking the processor to deliver all
interrupts to the running guest, with the guests interrupt
descriptor table (IDT) shadowed so that only the fixed
IPI is actually delivered to the guest and the rest cause an
exit to the hypervisor. Once the fixed IPI is delivered to
the guest, the handler for the vector number stored in the
shared memory location is invoked. The ELI paper [10]
focused on assigned devices and on the interrupts they
generate but we extended this mechanism for delivering
an IPI directly to the guest.

ELI works by asking the processor to deliver all inter-
rupts to the running guest, with the guest’s interrupt de-
scriptor table (IDT) shadowed so that only the intended
IPI is actually delivered to the guest and the rest cause
an exit to the hypervisor. The ELI paper focused on as-
signed devices and on the interrupts they generate — but
we can extend this mechanism for delivering an IPI di-
rectly to the guest.

3 ELVIS Implementation
To validate the ELVIS design, we implemented it in the
KVM hypervisor. KVM [11] is implemented as a Linux
kernel module that extends the kernel with hypervisor
capabilities, driven by a QEMU [4] user process.

KVM offers two different implementations for par-

avirtual I/O devices: (1) a user-space implementation,
part of QEMU; and (2) an in-kernel implementation,
vhost. Both implement the same protocol, virtio [23],
and share the same guest drivers. We based our imple-
mentation on vhost because it performs significantly bet-
ter than the user-space alternative [27]. Vhost currently
implements two paravirtual device types — network
(vhost-net) and block device (vhost-block) and by modi-
fying only their common base (vhost), we get ELVIS for
both types of devices — as we show in Section 4.

We implemented ELVIS in KVM/vhost as follows:

3.1 Fine-grained I/O scheduling
Normally, vhost creates a separate I/O thread per paravir-
tual device, so that I/O handling can proceed in parallel
to the guest running, boosting performance on multi-core
systems. Each I/O thread potentially handles multiple
virtqueues (queues of I/O requests and their replies [23]),
e.g., a send queue and a receive queue in the paravirtual
network device vhost-net.

With fine-grained I/O scheduling, we no longer cre-
ate a separate I/O thread per device. Instead, we create
only one I/O thread per dedicated I/O core, and each such
thread now handles virtqueues from multiple virtual de-
vices and multiple VMs. All these devices share a single
work queue, to which vhost adds work when it is notified
by the guest of a new I/O request, or when vhost dis-
covers that a previous I/O request has completed (e.g.,
a packet has arrived, and can be returned to the guest).
Note that this model does not affect the isolation and se-
curity properties of vhost.

Despite the fine-grained I/O scheduling, in some cases
when one I/O thread handles many guests with very high
throughput, a large number of I/O requests may arrive
on a virtqueue before they can be handled, overflowing
the virtqueue’s ring buffers if they are not big enough.
We found that in some of the network benchmarks pre-
sented in Section 4, the rings that Qemu allocates with a
fixed default size 256 were occasionally overflowed. In-
creasing this default size to 512 was enough in all our
experiments, and we used this new default in all baseline
and ELVIS configurations in Section 4.

3.2 Mixing latency- and throughput-sensitive work-
loads

One of the challenges of implementing fine-grained
I/O scheduling is deciding when to switch between
virtqueues. Latency-sensitive workloads perform best
when we only handle a virtqueue for a very short dura-
tion, and quickly move on to the next. High-throughput
workloads, on the other hand, benefit from allowing
more processing on each virtqueue before switching to
the next. When guests are mixed — some care about la-
tency and some about throughput — we need to carefully
consider the needs of both.
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Our implementation uses several heuristics to decide
when to leave a virtqueue and proceed to the next: We
always leave a queue after doing a certain maximum
amount of work on it, even if it is not yet empty. We
may leave a queue earlier (though not before we did some
minimum amount of work on it), if we recognize that an-
other non-empty queue is stuck and therefore likely to be
latency-sensitive. We call a queue stuck if a certain time
has passed since it last received new work. A latency-
sensitive workload which waits for replies before send-
ing further requests will get “stuck” in this sense, while
a high-throughput workload which continuously creates
new requests will not be found stuck. In Section 4.6,
we show how these heuristics are indeed effective when
high-throughput and low-latency workloads are served
by the same I/O thread.

3.3 Placement of threads, memory and interrupts
Modern large multi-core systems have a multi-socket, or
NUMA, design where part of the memory is closer to
some of the cores. On such systems, performance is best
if a guest running on a particular socket is serviced by
an I/O thread running on the same socket, and if and the
virtqueues shared between them are allocated from mem-
ory closest to this socket.

Our implementation therefore dedicates one I/O core
(or more) per socket, and pins an I/O thread to each
I/O core. Each I/O thread is configured to handle
only virtqueues belonging to guests running on cores on
the same socket. We ensure that an SMP guest does
not spread across multiple sockets by limiting its vcpu
threads to only run on cores on one socket.

Finally, when the virtual device is based on a phys-
ical device (e.g., vhost-net uses the host network), per-
formance can be improved with IRQ affinity: We direct
interrupts from the physical device to the I/O core, avoid-
ing interrupts (and their exits) on guest cores and improv-
ing cache hit rates.

3.4 Exitless I/O request notifications
In KVM, the guest notifies the host of new I/O re-
quests by executing a programmable I/O (PIO) instruc-
tion, causing an exit. We avoid these exits by replacing
these notifications with polling in the I/O thread:

The virtio protocol allows the host backend to tell
the guest driver not to send notifications for a certain
virtqueue. This flag is normally used for short durations,
to avoid further notifications while the host is servicing
a particular virtqueue. But in ELVIS, we permanently
disable notifications for virtqueues which we intend to
poll. Instead of waiting for notifications, we supplement
vhost’s work queue with a new poll queue, which lists the
virtqueues that are being polled. In a round-robin fash-
ion, considering the heuristics we previously described,

we poll each virtqueue. If we discover new requests, we
handle them, just like a notification would be handled.

Even with polling enabled, the work queue continues
to be relevant: E.g., the network backend adds an item
to it when a packet arrives, so an outstanding receive re-
quest would be completed. So we interleave looking for
new work in both work and poll queues. For fairness,
any time work is done on a virtqueue for any reason, this
virtqueue is moved to the end of the poll queue.

It is important that polling be as efficient as possi-
ble, to ensure that unsuccessful polling of relatively-
idle virtqueues does not significantly hurt performance of
other virtqueues. By having the I/O thread map the mem-
ory of all polled virtqueues in its own memory space,
polling a virtqueue for newly available work becomes
nothing more than a simple memory read. To further
reduce the impact of unsuccessful polling, our imple-
mentation enables polling on a virtqueue only after ex-
ceeding a predefined notification rate, and later disables
polling (re-enabling exit-causing notifications) when ac-
tivity on this virtqueue subsides. These optimizations al-
low us not to waste precious cycles on polling virtqueues
which only infrequently see requests and exits.

3.5 Exitless I/O reply notifications
Vhost notifies the guest of a reply for a previous I/O re-
quest by injecting the guest with a virtual interrupt, com-
ing from the virtual device. When the guest is currently
running, KVM first forces it to exit by sending an inter-
processor interrupt (IPI) to the core running the guest,
and only then KVM on that core can inject the desired
virtual interrupt.

We replaced this exit-causing mechanism with our
exit-less mechanism, allowing the I/O core to send a vir-
tual interrupt to a guest running on another core without
causing the guest to exit first. Current x86 processors do
not yet support such exitless cross-core interrupt injec-
tion, known as posted interrupts. We emulated it extend-
ing an efficient software-only technique known as Exit-
Less Interrupts (ELI) [10], as explained in Section 2.4.

4 Evaluation
In this section, we experimentally evaluate and analyze
the performance of our implementation. We look at
both network-intensive and block-intensive workloads,
and consider both throughput and latency. We evaluate
scalability with experiments going up to 16 cores. We
analyze how fine-grained I/O scheduling and exitless no-
tifications contributed to the performance improvement.

The results show that ELVIS improved I/O interpo-
sition performance by 1.2x–3x compared to traditional
paravirtual I/O, and that ELVIS scaled linearly to more
guests. For most of the workloads, ELVIS interposition
overhead — how far it was from state-of-the-art non-
interposing I/O virtualization — was less than 10% when
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enough cores were dedicated to handling the I/O of mul-
tiple VMs. In the worst case, the overhead was 30%.

4.1 Experimental Setup
Our test machine is an IBM System x3550 M4, equipped
with a dual-socket, 8-cores-per-socket Intel Xeon E2660
CPU running at 2.2 GHz with hyper-threading disabled.
The system includes 56GB of memory and an Intel x520
dual port 10Gbps SRIOV NIC. We used a second iden-
tical server connected directly by two 10Gbps fibers as
the remote end of the benchmarks. We set the Max-
imum Transmission Unit (MTU) to its default size of
1500 bytes; we did not use jumbo Ethernet frames. The
host ran Linux 3.1.0 and QEMU 0.14.0. The guests used
only one VCPU and ran Linux 3.1.0. The guests’ mem-
ory was backed by huge (2 MB) pages in the host. For
setups using paravirtual I/O, we bridged the guests’ vir-
tual NICs with the host’s physical NICs using macvtap.

4.2 Experimental Methodology
Performance-minded applications would typically dedi-
cate whole cores to guests (a single VCPU per core), thus
we limited our benchmarks to this case. We compared
ELVIS against traditional paravirtual I/O to show our
performance and scalability improvements, and against
state-of-the-art non-interposing I/O virtualization to ana-
lyze the interposition overhead. Altogether, we measured
and compared four configurations:
ELVIS: This configuration measured ELVIS perfor-
mance. For it, we ran each VM with a paravirtual NIC
or block device using our ELVIS-enabled KVM. To an-
alyze ELVIS scalability and avoid performance interfer-
ence caused by NUMA, we partitioned the physical re-
sources symmetrically across the two CPU sockets. For
benchmarks with N ≤ 7 VMs we only used cores from
the first CPU socket and one 10Gb port. We dedicated a
core for each of the VMs (VCPU threads) and one core
(the I/O core) to run a single ELVIS I/O thread. We also
set the IRQ affinity to deliver the NIC’s interrupts only
to the I/O core. For benchmarks running N >7 VMs,
we enabled a second ELVIS I/O thread, used the second
10Gb port, and configured the second socket exactly in
the same way we configured the first socket. The mem-
ory of each VM was pinned to the CPU socket running
the VCPU thread. The Intel NICs were initialized with-
out SRIOV support.
Baseline: This configuration represented traditional par-
avirtual I/O. We ran each VM using the unmodified
KVM. To use the same amount of physical resources as
the ELVIS configuration, for benchmarks running N ≤7
VMs, we limited the Linux host to use only N+1 cores
and one 10Gb port; The Linux scheduler decided on
which core to run each of the VCPU and I/O threads.
Similarly, for benchmarks running N >7 VMs, we gave

the host N+2 cores and the two 10Gb ports. The In-
tel NICs were initialized without SRIOV support and the
NICs’ interrupts were balanced across the cores in use.
The NUMA node used to back the memory of each VM
was decided by the Linux kernel.
Baseline with Affinity: We used this configuration to
analyze how the Linux scheduler, IRQ balancer and
NUMA memory allocation affect traditional paravirtual
I/O. This setup is similar to Baseline except we explicitly
partitioned the physical resources. For benchmarks using
N ≤7 virtual machines we only used cores from the first
CPU socket and one 10Gb port. We dedicated a core to
run each VCPU thread and one core (the I/O core) to run
all the KVM I/O threads. We also set the IRQ affinity
to deliver the NIC’s interrupts only to the I/O core. For
benchmarks running N >7 VMs, we configured the sec-
ond socket and used the second 10Gb port exactly in the
same way we configured the first socket. The memory of
each VM was pinned to the NUMA node (CPU socket)
responsible for running the VCPU thread.
No Interposition: We used this configuration to analyze
ELVIS’s interposition overhead. For this setup we al-
located the physical resources in a similar way we did
for ELVIS: one dedicated core per VCPU and up to two
10Gb ports. We multiplex each 10Gb port across the
VMs using device assignment (SRIOV and ELI [10]) so
the hypervisor didn’t interpose on the I/O. ELVIS uses
additional dedicated cores to run the I/O threads, thus, to
make a fair comparison, we kept one core per socket un-
used for No Interposition. We count this as the ELVIS in-
herent resource overhead (1/7 in the case of eight cores).

4.3 Network throughput
We used three different and well-known benchmarks to
show ELVIS can virtualize and interpose I/O efficiently
for network intensive workloads. For these benchmarks,
ELVIS improved Baseline throughput up to 3x. Com-
pared to No Interposition, ELVIS I/O interposition over-
head was less than 10% in most of the cases and less than
30% in the worst case when we allocated sufficient cores
to handle the I/O of multiple virtual machines. In addi-
tion, ELVIS always scaled much faster than Baseline up
to 14 VMs. Baseline with Affinity didn’t scale at all.

We considered the following three network bench-
marks for the evaluation:
Netperf TCP stream opens a single TCP connection to
the remote machine, and makes repeated write() calls
of 64 bytes.
Apache is an HTTP server. We used ApacheBench to
load the server. ApacheBench ran on the remote machine
and repeatedly requested a static 4KB page from 2 con-
current threads per VM.
Memcached is an in-memory key-value storage server.
It is used by many high-profile Web sites for caching
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Figure 4: Comparing network throughput with ELVIS to that of the baseline and no-interposition configurations.
Graphs on the left show for each of the three benchmarks, running on 1 up-to 14 VMs, the total throughput from all
VMs. Graphs on the right are the same measurements shown normalized as a fraction of no-interposition performance.

results of slow database queries, thereby significantly
improving the site’s overall performance and scalabil-
ity. We used the Memslap benchmark, part of the lib-
memcached client library, to load the server and measure
its performance. Memslap runs on the remote machine,
sends a random sequence of memcached get (90%) and
set (10%) requests to the server and measures the re-
quest completion rate. We configured memslap to per-
form 32 concurrent requests per VM.

To verify ELVIS can scale using a single I/O core
per socket, we ran the experiments using 1 through 14
VMs. Figure 4 compares the results for each of the three
benchmarks using the four configurations previously de-
scribed. We show on the left the aggregated throughput
for all the VMs and on the right the same measurements
normalized as a fraction of No Interposition. ELVIS im-
proved Baseline throughput by 6%-200%. Baseline with
Affinity as well as Baseline suffered from performance
degradation due to the costly exit-based notifications and
inefficient I/O scheduling. In these two configurations
the Linux kernel couldn’t make good scheduling deci-
sions because it has no information about the content
of the virtio queues. As evident from Figure 4, Base-

line with Affinity didn’t scale because one CPU core was
used to run all the I/O threads which were competing for
CPU cycles and starving each other. In contrast, in the
Baseline case, the Linux kernel had more flexibility be-
cause threads could run on any core. The I/O threads
could be scheduled instead of VCPU threads, uninten-
tionally throttling the system. When a VCPU thread
doesn’t run, the VM doesn’t perform I/O and releases
CPU cycles to process pending I/O.

Baseline did better than Baseline with Affinity but
scaled very slowly compared to ELVIS for all the bench-
marks. ELVIS managed to scale almost perfectly for
Netperf and Apache. The reason Apache stopped scaling
after 10 VMs is because our remote machine was satu-
rated. For Memcached, ELVIS scaled up to 3 VMs. At
this point, the I/O core was saturated and ELVIS could
not scale any more with a single I/O core. With more
than 7 VMs, ELVIS used an additional dedicated core
and Memcached continued scaling up to 11 VMs.

So far we demonstrated ELVIS performed and scaled
better than traditional paravirtual I/O running network in-
tensive workloads. However, we didn’t show ELVIS I/O
interposition overhead. For this purpose, we compare

7
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ELVIS against No Interposition. We can see in Figure 4
that ELVIS results were pretty close to No Interposition.
The performance degradation caused by ELVIS I/O in-
terposition was less than 1%, 10% and 30% for Netperf
TCP stream, Apache and Memcached respectively when
the I/O cores and the remote machine were not saturated.
In the case of Memcached, ELVIS required an additional
I/O core to continue scaling after 3 VMs.

For some cases, ELVIS was even better than No In-
terposition. As we discussed in Section 3 and analyzed
later in Section 4.6, ELVIS balances between throughput
and latency by batching queued requests and coalesc-
ing the reply notifications. In the case of Netperf TCP
stream and Apache, this mechanism improved through-
put, making ELVIS up to 15% better than No Interposi-
tion. For example, when running Netperf TCP stream,
ELVIS reduced the interrupt rate of each guest from 30K
to 10K compared to No Interposition. However, in the
case of Memslap, the same mechanism degraded the per-
formance of the guests, and ELVIS performed up to 30%
worse than No Interposition when we allocated sufficient
cores to handle I/O.

Baseline suffered 142K, 109K and 146K exits/second
for Netperf, Apache and Memcached respectively when
we used only a single VM. As expected, ELVIS reduced
the exits rate to less than 800 exits/second for all the
benchmarks. Most of these remaining exits are not re-
lated to I/O — e.g., 500 of them are related to timer in-
terrupts. The number of exits per VM for Baseline and
Baseline with Affinity decreased as the number of VMs
increased. That’s because also in these setups the I/O
threads batched more requests and coalesced more noti-
fications, reducing the total number of exits/second. In
addition, in the case of Baseline, the I/O threads were
sometimes scheduled instead of VCPU threads, uninten-
tionally throttling the system and further reducing the
number of exits. For example, Baseline with 7 VMs
handled 53K, 39K, 60K exits/sec per VM for Netperf,
Apache and Memcached respectively.

4.4 Network latency
We measured ELVIS’s latency using Netperf UDP-RR
(request-response), which sends a UDP packet and waits
for a reply before sending the next. Baseline with
Affinity did not scale and latency increased to 400µsec
because the I/O threads starved each other. Baseline
managed to scale because the I/O threads could run
on any core. Figure 5 presents the results, omitting
Baseline with Affinity for clarity. With a single VM,
ELVIS reduced Baseline’s latency by 8µsec. With mul-
tiple VMs ELVIS reduced the average latency per VM
up to 28µsec. This improvement was possible be-
cause ELVIS’s fine-grained I/O scheduling, as opposed
to thread-based scheduling, combined with exitless noti-
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Figure 5: Average latency measured by UDP-RR, on 1
to 14 VMs. With ELVIS, latency is lower, and remains
low even when each I/O core serves multiple VMs.

fications managed to keep latency less than 1% worse
than No Interposition. In Section 4.7 we analyze the
performance contributions of fine-grained I/O schedul-
ing and exitless notifications separately.

We notice in Figure 5 that when running less than 6
VMs, ELVIS again out-performs No Interposition. Here,
batching and interrupt coalescing cannot explain this cu-
rious phenomenon, as it did for the network throughput
workloads. There was a different reason: the NIC’s la-
tency increased when we enabled SRIOV. We ran a single
instance of Netperf UDP-RR on bare-metal Linux with
SRIOV disabled and we did the same test with SRIOV
enabled. When SRIOV was disabled, the bare-metal
Linux used a Physical Function in the same way KVM
used it for ELVIS. But when we enabled SRIOV in bare-
metal Linux, we intentionally used a Virtual Function in
th same way the guests used them for No Interposition.
We noticed that Netperf UDP-RR latency when running
on bare-metal Linux increased by 22% when we used the
Virtual Function (SRIOV was enabled).

4.5 Block workloads

We next analyzed the performance of ELVIS under an
I/O-intensive block workload. To avoid physical disk
bottlenecks and allow the VMs to achieve their max-
imum throughput, we assigned a single 1GB ramdisk
on the host to the virtual machines using virtio. Each
VM ran four write threads and four read threads, each
of which performed 4KB random I/O on the paravirtual
device using filebench. We bypassed the guest’s buffer
cache by opening the virtio device with the O DIRECT
flag, so that all I/O requests would pass the guest-host
boundary. In this environment, we tested the ELVIS,
Baseline, and Baseline with Affinity. We did not test No
Interposition because in the case of a ramdisk, there is no
physical device to assign to the guests.
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Figure 6: Filebench random read/write performance. No
Interposition was not evaluated because the virtual disks
exposed to the guests are backed by a ramdisk in the host
(no physical device to assign).

As we can see in Figure 6, ELVIS scales perfectly up
to 14 VMs. The bottleneck for each VM in this case is
guest CPU saturation. Each VM performs about 21,613
operations/second on average, regardless of the number
of running VMs, with a standard deviation of only 128.
In addition, each VM experiences low latencies for its
block accesses (0.3ms), regardless of the number of VMs
running. For Baseline with Affinity, the I/O core is satu-
rated immediately, and so aggregate throughput does not
increase. Latency increases linearly to 3.0s and is omit-
ted from the graph to improve clarity (as in Section 4.4).
Baseline without affinity does scale, but not well. With
one VM running, it achieves 18,715 ops/s with 0.4ms
latency. When we reach 14 VMs, each achieves only
8,862 ops/s on average and the average latency doubles
to 0.8ms. With one VM, ELVIS has 17% better through-
put with 25% better latency, and with 14 VMs, ELVIS
has 2.4x better throughput with less than half the latency.

4.6 Mixed latency- and throughput-sensitive guests
Sections 4.3 and 4.4 showed ELVIS was able to run
throughput intensive and latency sensitive workloads ef-
ficiently in separated runs. However, ELVIS efficiency
handling latency sensitive workloads may be influenced
by throughput intensive workloads and vice versa when
they run concurrently. While ELVIS handles I/O for a
throughput-intensive VM, a latency-sensitive VM may
be delayed. To decrease latency, ELVIS can scan I/O
requests more often and serve latency-sensitive VMs im-

mediately, but the cycles spent for scanning pending re-
quests and switching between VMs degrades the perfor-
mance of throughput intensive VMs.

To evaluate how ELVIS deals with this situation, we
ran multiple instances of Netperf TCP stream represent-
ing throughput intensive workloads, simultaneously with
multiple instances of Netperf UDP-RR representing la-
tency sensitive workloads. We repeated the experiment
running different combinations: M VMs ran TCP stream
while N −M VMs ran UDP-RR (for N = 7, M = 1 to 6).
Figure 7 shows the TCP stream average throughput per
VM and UDP-RR average latency per VM.

We compared the average performance per VM we ob-
tained in this setup with the single VM results we ob-
tained in sections 4.3 and 4.4. As shown in Figure 4,
TCP stream achieved 1.45Gbps and 1.08Gbps when it
ran in a single VM using ELVIS and Baseline respec-
tively. Figure 7 shows that when 1 or 2 TCP stream
were competing with 5 or 6 UDP-RR, ELVIS did not de-
grade TCP stream throughput. The latency of UDP-RR
increased by 28µsec and 38µsec. In contrast, Baseline
degraded TCP stream throughput by 17% and 26% when
1 or 2 TCP stream competed with 6 or 5 UDP-RR. La-
tency increased by 28µsec and 38µsec, but still 13µsec
and 7µsec higher than ELVIS.

In general, for all the combinations, ELVIS degraded
TCP stream by 0%-32% and increased UDP-RR latency
by 28µsec-45µsec. In contrast, Baseline, degraded TCP
stream by 16%-52% and increased UDP-RR latency by
29µsec-129µsec.

In all the configurations, except No Interposition, TCP
stream throughput per VM degraded as we added more
instances of UDP-RR. And UDP-RR latency increased
when we added more TCP stream instances. As de-
picted in Figure 7, ELVIS managed to balance between
throughput and latency sensitive workloads efficiently
while Baseline and Baseline with Affinity didn’t.

4.7 Impact of fine-grained I/O scheduling and Exit-
less notifications

To analyze how fine-grained I/O scheduling and exit-
less I/O notifications contributed to the performance im-
provements, we measured Netperf TCP stream using
only fine-grained I/O scheduling and compared the re-
sults with ELVIS, Baseline and Baseline with Affinity.

Figure 8 shows the results for all the configurations
using 1 to 7 VMs. The graph on the left shows the aggre-
gated throughput while the graph on the right shows the
throughput normalized as a fraction of Baseline. Fine-
grained I/O scheduling and ELVIS improved Baseline
throughput by 2.7x and 3x respectively when running
more than one VM. As expected, with a single VM,
Baseline with Affinity performance was similar to fine-
grained I/O scheduling. That’s because in both cases we
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used one dedicated core to process I/O and one dedicated
core to run the VM. There was no need to schedule I/O
for multiple VMs, thus fine-grained I/O scheduling did
not have any impact on the performance. In this single
VM case, the performance benefits of ELVIS come from
exitless I/O request and replies. As depicted in the graph,
ELVIS over-performed Baseline with Affinity by 33%.

Baseline achieved lower performance than Baseline
with Affinity up to 3 VMs due to the overhead caused by
balancing interrupts, I/O threads and the VCPU threads
across the cores. As we discussed in Section 4.3, Base-
line performed and scaled better than Baseline with
Affinity when running more than 3 VMs because the I/O
core used by Baseline with Affinity became saturated af-
ter 2 VMs. While Baseline scaled slowly up-to 7 VMs,
it suffered from inefficient I/O scheduling. Fine-grained
I/O scheduling contributed the most to ELVIS, giving a
performance boost of 1.4x–2.7x over Baseline. The im-
provement of ELVIS against fine-grained I/O scheduling
started decreasing after 5 VMs because ELVIS was ap-
proaching line rate while fine-grained I/O scheduling had
free bandwidth to continue scaling. These results shows

that fine-grained I/O scheduling is extremely important
to scale linearly while exitless notifications are required
to improve performance.

4.8 ELVIS and NUMA
As described in Section 2, ELVIS uses dedicated cores
to handle I/O. The number of cycles consumed by the
I/O cores reading and writing to the in-memory virtio
queues is critical because the fewer cycles ELVIS spends
to read/write from/to the queues, the more cycles the
I/O core has to serve more requests. Thus, to reduce
cycles consumed by memory operations, its preferable
to handle the I/O of a given guest in the same socket
(NUMA node) in which the guest runs. Otherwise, the
I/O core will waste additional cycles to access memory
managed by a remote NUMA node. To exemplify this
phenomenon, we ran 1 to 7 instances of Netperf TCP
stream in separate guests served by a single ELVIS I/O
core. We compared two configurations: NUMA aligned
and unaligned. In the NUMA aligned configuration we
ran all the guests and handled I/O in the same socket. In
the NUMA unaligned configuration, we ran all the guests
in the one socket but handled I/O in the other socket. Fig-
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ure 9 shows the results. NUMA aligned scaled perfectly
and achieved line rate with 6 VMs. In contrast, NUMA
unaligned was saturated after 5 VMs and achieved only
70% of NUMA aligned performance with 7 VMs. In ad-
dition, even for a single VM, NUMA aligned performed
26% better than NUMA unaligned. These results con-
firm ELVIS is extremely sensitive to NUMA. To max-
imize ELVIS performance and scalability, at least one
core per socket should be dedicated to handle I/O. We
believe this constraint is fairly weak because as the num-
ber of cores per socket increases year by year the re-
source overhead for having a dedicated core per socket
will decrease. In addition, as network links continue to
be improved, we will need more cores to virtualize more
bandwidth at lower latencies.

5 Related Work
Many researchers have addressed different aspects of I/O
virtualization over the years. In this section, we focus
primarily on those works that are most closely related to
ELVIS: those that seek to improve the performance of
software-based I/O virtualization.

Menon et al. [19] and Santos et al. [25, 22] optimized
Xen’s paravirtual I/O model, focusing specifically on
networking. Their goal was to achieve 10Gb/s for a sin-
gle virtual machine, using Xen [2], which (at the time)
did not use the architectural support for virtualization,
leading to different decision considerations. Ongaro et
al. [21] looked at the impact of guest scheduling on guest
I/O performance, also in the context of Xen. VAMOS [8]
reduces the overhead of paravirtual I/O by replacing
many low-level I/O requests with fewer application-level
requests. In contrast, ELVIS does not require modify-
ing guests’ applications. Mansley et al. [18] proposed a
hybrid of paravirtual I/O and device assignment where
the slow path goes through the hypervisor and the fast
path goes directly to the device. Apart from the inher-
ent problems with device assignment (e.g., difficult live
migration), this approach does not work when there is

no physical device, e.g., a virtual disk backed by a file.
ELI [10] explored exitless interrupts in the context of de-
vice assignment but did not consider paravirtual I/O.

Dedicating cores to specific functions is well known
to increase performance under certain conditions (e.g.,
[12, 15, 3, 26]). However, when using this approach in
virtualized systems, special care has to be taken to ensure
that inter-core communication does not cause exits and is
both fast and scalable, so as not to become a bottleneck
itself. We elaborate on these issues in Section 2.1.

Several works dedicated one core to the hypervisor
and left the rest of the cores for (mostly) running guest
functionality. VPE [17] did not remove costly exits for
host-to-guest notifications and was networking specific;
SplitX [13] relied on new hardware which is not avail-
able; another [5] was block-specific and used polling
for both guest-to-host and host-to-guest notifications. In
contrast to all of the above, ELVIS uses exitless notifi-
cations for host-to-guest notifications, is agnostic to the
type of I/O protocol being used, achieves excellent per-
formance on existing hardware, does not require any new
hardware, and scales linearly in the number of guests.

In our short paper [9] we reported preliminary work
on improving paravirtual I/O performance. In this paper,
we present a complete system with new techniques and
ideas, and provide a comprehensive evaluation of both
performance and scalability for multiple workloads.

6 Conclusions and Future Work
Paravirtual I/O is the most popular I/O virtualization
model used in virtualized data centers as well as cloud
computing sites because it enables useful features such
as live migration and software-defined-networks. These
features, and many more, require from the hypervisor to
interpose on the I/O activity of its guests. The perfor-
mance and scalability of this interposition are extremely
important for cloud providers and enterprise data cen-
ters. A guest running an I/O intensive workload should
not affect the performance of other guests. The I/O re-
sources must be shared fairly among guests depending
on SLAs. The way we share the I/O resources should
not affect the performance of the guests and should not
have scalability limitations. For all these reasons we de-
signed ELVIS, a low-overhead and scalable I/O interpo-
sition mechanism. Using two dedicated cores ELVIS can
interpose on the I/O activity of up to 14 I/O-intensive
guests and achieve performance that is 1.2x–3x better
than the baseline while still scaling linearly.

We show that exitless requests and replies are required
to improve performance and fine-grained I/O schedul-
ing is required to improve scalability. Intel and AMD
have recently announced that unspecified future proces-
sors will support exitless replies. This hardware capa-
bility alone will not solve the whole problem — exitless
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requests and fine-grained I/O are also required.
In the future, we plan to improve our fine-grained

I/O scheduling to consider guests’ SLAs. In addition,
we also plan to improve ELVIS to dynamically allocate
or release I/O cores depending on the system load and
guests’ workloads.
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