
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 359

Improving Server Application Performance via Pure TCP ACK Receive
Optimization

Michael Chan
Department of Computer Science

Stanford University
mcfchan@stanford.edu

David R. Cheriton
Department of Computer Science

Stanford University
cheriton@cs.stanford.edu

Abstract

Network stack performance is critical to server scala-
bility and user-perceived application experience. Per-
packet overhead is a major bottleneck in scaling network
I/O. While much effort is expended on reducing per-
packet overhead for data-carrying packets, small control
packets such as pure TCP ACKs have received relatively
scarce attention. In this paper, we show that ACK receive
processing can consume up to 20% cycles in server appli-
cations. We propose a simple kernel-level optimization
which reduces this overhead through fewer memory allo-
cations and a simplified code path. Using this technique,
we demonstrate cycles savings of 15% in a Web applica-
tion, and 33% throughput improvement in reliable mul-
ticast.

1 Introduction

Performance of the endhost networking stack is critical
to server scalability and perceived user application expe-
rience. Increases in network link speeds raise concerns
over CPU utilization in keeping up with wireline data
rates. This has led to various techniques such as TCP
segmentation offloading (TSO) and generic receive of-
floading (GRO), which reduce overhead for packets car-
rying application payload. In contrast, relatively little at-
tention has been given to offloading processing of small
control packets such as pure TCP ACKs. (We define a
pure ACK as a TCP segment which does not contain any
payload, only has the ACK flag set and, if options are
present, has only the timestamp option.) While control
packets represent a minor portion of network bandwidth,
the number of such packets received by a server can far
outweigh that of packets containing application payload.

In a Web video streaming application, the client sends
a small HTTP request to the server. The server responds
with megabytes of video data encapsulated in TCP data
segments. Software updates, patches and service deploy-

ment in datacenters require regular large-scale file dis-
tribution to thousands of machines. In return, the data
source receives mostly pure ACKs.

Receive-side ACK processing predominantly incurs
per-packet overhead, namely the cost of per-packet inter-
actions between the driver and NIC, traversing the net-
work stack and protocol processing. We find that per-
packet overhead is significant — 20% CPU cycles of a
video-chunk serving workload are expended on process-
ing received packets, 99% of which are pure ACKs.

We propose a network fastpath architecture for pro-
cessing small control packets. The fastpath interface pro-
vides an entry point to a significantly simplified network-
ing stack for light-weight protocol processing. In op-
timizing pure ACK processing, the key insight is that
ACKs convey only control metadata to the associated
TCP socket, so they need not be delivered as packets.
With fastpath processing, pure ACK header values are
extracted from received packets and delivered directly
to the TCP layer. This contrasts with conventional pro-
cessing, in which the received packet is encapsulated in
a packet buffer1 and then passed up the stack. Fast-
path processing allows packet buffers to be recycled for
DMA, reducing memory operations. Moreover, bypass-
ing the bulk of the conventional network stack reduces
the number of CPU cycles expended.

We implemented one instance of a fastpath optimiza-
tion for receive processing of pure ACKs, named TCP-
PARO (Pure ACK Receive Optimization), in a recent
Linux kernel. We show that it achieves real benefits for
server workloads. TCP-PARO lowers application over-
head by saving CPU cycles. By reducing per-ACK pro-
cessing latency, TCP-PARO also improves the through-
put achievable by reliable multicast.

1For example, sk buff in Linux, commonly referred to as SKB.

1

360 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 1: Breakdown of CPU cycles per Web request.

2 ACK Processing Overhead Analysis

We quantify network processing overhead with a video
chunk serving workload and show that a significant por-
tion of the overhead is due to receive-side network stack
processing of pure ACKs.

The tests are run on a testbed with two machines. Each
machine is equipped with a quad-core Intel Nehalem pro-
cessor, 4GB RAM, and a Neterion X3210 10GE adapter.
One machine runs the nginx Web server. The 4 NIC
hardware DMA engines are bound on 4 different CPU
cores, and 4 nginx worker processes are assigned to
the cores. This configuration is sufficient to saturate
the 10GE link with the generated HTTP traffic. The
other machine simulates multiple Web clients using curl-
loader. 400 clients are run over 8 CPU threads. Each
client requests a random file from a pool of 100 files
from the server, receives the file to completion and then
repeats. We perform system-wide profiling with oprofile
on the server.

Figure 1 presents a breakdown of CPU cycles spent
per Web request across various file sizes. The mea-
surements are grouped by system components, where
RX and TX represent receive-side and transmit-side net-
work stack overhead, and Memory represents memory
operations, including SKB allocations. The figure shows
that 20% cycles are spent on network receive process-
ing. Moreover, memory and SKB operations account for
18% of all cycles. The receive processing overhead is
significant, considering that the server is mostly sending
data, and the bulk of actual application payload is pro-
cessed by the TX path. However, the receive overhead
is comparable to transmit overhead, and is even bigger
when serving 4MB and 8MB files. We found that pure
ACKs comprised more than 99% of all received packets
for all file sizes, thus network receive overhead is indeed
dominated by pure ACK processing.

Link

Network

Transport

Driver

Network
Buffer

Memory
Manager

Fast path
Module

Pure ACK
Module

Parser + Demultiplexer

ACK header
values

SKBSKB

ACK

Parse packet header
(SKB and buffer reused)Copybreak

Figure 2: Network fastpath architecture.

3 Pure ACK Receive Optimization with
Network Fastpath

We propose a network fastpath architecture which pro-
vides efficient packet parsing, packet demultiplexing,
and light-weight protocol processing. We describe its
design and implementation in Linux, and optimize pure
ACK receive processing with this architecture.

3.1 Fastpath Design and Implementation

Figure 2 shows the overall structure of the network fast-
path architecture. The fastpath is a light-weight, parallel
stack with optimized components for packet parsing, de-
multiplexing and protocol processing.

The fastpath adopts a modular design. The parser and
demultiplexer module reads and parses a packet buffer
from the receive-side DMA ring. It serves as a single
entry point for network device drivers to deliver packets
into the fastpath stack. Based on header fields obtained
from the packet, the demultiplexer looks up the fastpath
processing module and the socket for which the packet
is destined. The fastpath processing module is then in-
voked on the socket with relevant fields from the received
packet.

The fastpath provides a simple, single-function API to
device drivers:

enum n e t f a s t p a t h v e r d i c t
n e t f a s t p a t h i n (s t r u c t s k b u f f ∗ skb , u32 f l a g s)

A verdict is returned to the driver to indicate pro-
cessing outcomes. If the fastpath is able to process the
packet, the CONSUMED verdict is returned. Otherwise,
the FALLBACK verdict is returned. The driver RX rou-
tine is patched as follows:

i f (n e t f a s t p a t h i n (skb , f l a g s) == CONSUMED)
go to n e x t s k b ;

e l s e
r x w i t h o r i g i n a l s t a c k (skb) ;

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 361

Fastpath informs the driver if the packet has been pro-
cessed. If not, the original stack is the fallback. This
allows gradual adoption of light-weight processing for
additional packet types without sacrificing protocol sup-
port.

Fastpath processing has two main advantages over
traditional stack processing. First, the fastpath parses a
given SKB, extracts required data and leaves the SKB
untouched. Therefore, the SKB and the associated
packet buffer can be reused for DMA. This reduces
memory allocations. In contrast, existing receive pro-
cessing clones both the packet buffer and the SKB to
ensure isolation of the buffer from concurrent DMA
writes by the NIC; Second, the fastpath stack bypasses
much of the original stack, and hence reduces cycles
expended per packet.

Synchronizing with other kernel threads: Packet
receive processing is performed in the soft-interrupt
context, which runs concurrently with other kernel
threads. A per-socket mutex is held by a concurrent
thread accessing the socket. When that thread releases
the mutex, it processes received packets in the per-socket
backlog. Fastpath similarly introduces a per-packet
backlog ring. Parsed header fields are deposited into
ring entries. When the mutex is released, the ring
entries is flushed. The ring is statically allocated on
socket creation. If the ring is full, the earliest entry is
overwritten. In our experiments, we found that a ring
size of 8 was sufficient. Because each entry is only 32
bytes, the ring adds a modest 256 bytes to socket size.

We note that network taps and Netfilter do not work
for pure ACKs when TCP-PARO is used. However,
TCP-PARO can also be disabled via sysfs should de-
bugging with traditional tools like tcpdump be required.
We believe this is a reasonable tradeoff between perfor-
mance and functionality. Moreover, it would be feasible
to interface the fastpath stack with existing debugging
facilities, though this is beyond the scope of the paper.

3.2 Pure ACK Receive Optimization

We implement TCP-PARO (Pure ACK Receive
Optimization) on top of the fastpath architecture.

Pure ACK parsing and demultiplexing: The parser
identifies packets as pure TCP ACKs, extracts the salient
header fields and looks up the TCP socket associated
with the ACK using the source and destination address/-
port pairs. The ACK processing fastpath module is
invoked with 5 header fields from the packet — TCP
sequence number, ACK number, receiver-advertised
window and two timestamp option values. Only pure

File size Copybreak
Cycles

PARO
Cycles

Savings
(%)

512KB 0.80 0.69 14.0
1MB 1.36 1.16 14.7
2MB 2.40 2.04 15.3
4MB 4.60 3.86 16.1
8MB 9.10 7.58 16.7

Table 1: Million cycles per HTTP request.

TCP ACKs are delivered to the processing module.

ACK processing fastpath module: This compo-
nent quickly processes a pure ACK at the TCP socket
level. All link and IP layer processing are omitted,
because the ACK has already been parsed and demulti-
plexed. ACK processing consists of updating the RTT
estimate for the connection, removing acknowledged
segments from the retransmission queue, performing
congestion control and transmitting new segments.

The NIC driver delivers to the fastpath packets that
have (1) passed IP checksum test, and (2) have the cor-
rect length. In our prototype, a packet is a potential pure
ACK if its length is either 54 bytes or 66 bytes, which
are lengths of pure ACKs with or without TIMESTAMP
option on Ethernet. Some NICs can identify specific
packet types, such as pure TCP ACKs, and indicate so
in the receive descriptors. The driver can indicate this
in a flag when passing the SKB to the fastpath stack,
which can skip redundant checks. We added TCP-PARO
support to two NIC drivers — e1000e for Intel’s PCI-E
Gigabit Ethernet controllers and vxge for the Neterion
X3120 10GE adapter. Each driver patch consists of 10
lines of code. The pure ACK processing fastpath module
is written in 240 lines.

Handling a mixture of pure ACKs and other
TCP segments: Whenever a non-pure ACK, such as a
SACK, is received, the original path is used for receive
processing. Moreover, if TCP-PARO discovers the
socket backlog is non-empty, it delegates pure ACKs to
the original receive path (by returning the FALLBACK
verdict to the driver). When the mutex is released, the
fastpath backlog ring is flushed, followed by the socket
backlog. This scheme ensures all packets for the socket
are processed in receive order.

3.3 Performance Evaluation
We repeated the experiments from Section 2 with TCP-
PARO. Table 1 shows the number of CPU cycles ex-
pended per Web request. Copybreak refers to the un-
optimized stack which performs SKB and packet buffer
cloning (see Section 3.1). With TCP-PARO enabled,

3

362 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 3: Breakdown of CPU cycles per Web request
with and without TCP-PARO. File size is 2MB.

CPU cycles are saved consistently across various re-
sponse sizes. The savings increases with file size. At
8MB, cycles per request is reduced by 16.7%. This is ex-
pected because with larger files more data segments are
transmitted, eliciting more pure ACKs from the clients.

To understand the sources of cycles savings, we profile
cycle expenditure in various system components. Fig-
ure 3 shows the profile for 2MB files. TCP-PARO is
effective in reducing cycles expended in Driver RX (by
25%), Network RX (by 53%) and memory operations
(by 20%). Driver RX includes cycles spent in the driver
function for polling packets and setting up fresh RX de-
scriptors for DMA. With TCP-PARO, no SKB is allo-
cated, hence the driver receive routine is lightweight.
Network RX includes cycles spent in delivering a packet
up the stack and protocol processing. Savings here are
due to executing the fastpath processing module, instead
of traversing multiple network layers. Our tests were
conducted with minimal network stack features, i.e. no
network taps or Netfilter modules. Therefore, Network
RX for Copybreak represents the minimum cycles ex-
pended in receive processing of pure ACKs. The savings
in memory operations can be explained by fewer SKB
allocations, as SKBs are reused for DMA. Unlike Copy-
break, no SKB cloning is necessary for the parsing and
ACK header delivery.

Figure 4 presents a similar functional breakdown for
number of instructions executed. A major source of
saved cycles is from reduced instruction executed. 51%
and 24% fewer instructions respectively are executed for
network receive processing and memory operations.

4 ACK Optimization for Reliable Multi-
cast

TCP-PARO can be readily integrated with TCP-based re-
liable multicast protocols, such as TCP-SMO [6]. TCP-

Figure 4: Breakdown of instructions executed per Web
request with and without TCP-PARO. File size is 2MB.

SMO is a receiver-driven single-source reliable multi-
cast extension to TCP. The sender maintains a TCP con-
trol block (TCB) for each receiver, and aggregates in-
formation across all TCBs to produce the multicast TCP
state. This state tracks the slowest receiver’s earliest
unacknowledged number and the minimum congestion
and flow control windows. Multicast data segments are
ACKed by all receivers. ACK processing at the sender
entails updating both the receiver TCB state and the ag-
gregate multicast state.

TCP-PARO integration at the sender is straightfor-
ward. The fast path processes ACKs to update the re-
ceiver TCBs and then the multicast state. The thread
multicasting data is synchronized with the kernel threads
performing ACK processing in soft-interrupt. A single
pre-allocated ring is used for backlogging pure ACKs in
the fast path.

4.1 Performance Evaluation

We study the benefits of integrating TCP-PARO with
TCP-SMO. A gigabit Ethernet network of 9 machines
connected with a single gigabit switch is used for this
study. Each machine is equipped with a Xeon E3-1230v2
processor, 16GB RAM and an Intel 82579LM on-board
gigabit NIC. The e1000e NIC driver is augmented with
TCP-PARO support. One machine acts as the multicast
sender and the rest host the receivers.

We ran the sender process and all network processing
on a single core. Figure 5 presents a boxplot comparing
the total data transfer time with and without TCP-PARO
integration into TCP-SMO. Each data point represents 50
experiment trials. TCP-PARO enables near-linear scal-
ing of reliable multicast. The average total transfer time
grows from 2.93s to 3.09s (5.6% increase) when number
of receivers nearly doubles from 88 to 168. With more
receivers, the sender needs to maintain more per-receiver

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 363

Figure 5: Data transfer time. Sender process and network
processing on one core.

Figure 6: Per-ACK overhead (160 receivers). Sender
process and network processing on one core.

state, and the multicast state updates are more expensive.
Moreover, more ACKs are received and processed by the
sender. For reference, the black dotted line shows the
best possible transfer time on the 1GE network with lin-
ear scaling and zero protocol overhead (2.7s). In con-
trast, without TCP-PARO, the total transfer time grows
from 3.02s to 3.4s, a 12.6% increase. Figure 6 breaks
down the per-ACK processing overhead into its domi-
nating components. With TCP-PARO, nearly 50% cy-
cles and instructions are saved. The savings in RX and
Memory are due to lightweight fastpath processing and
reduced memory allocations. Sync includes synchroniza-
tion operations such as atomic primitives, spinlocks and
RCU. TCP-PARO reduces synchronization overhead by
50%, because fastpath execution minimizes lock acquisi-
tions in the original stack which are unnecessary for pure
ACK processing. The residual synchronization cost is
due to the per-socket mutex. By processing ACKs faster,
the sender is able to absorb the burst of ACKs from re-
ceivers, thus reducing the transfer time.

We next investigate the potential of parallel network

Figure 7: Data transfer time. Sender process on one core.
Network processing on multiple cores.

Figure 8: Per-ACK overhead (160 receivers). Sender
process on one core. Network processing on multiple
cores.

processing on multiple cores to alleviate ACK process-
ing cost. Figure 7 shows a similar boxplot for this setting.
The total transfer time with TCP-PARO stays the same,
the time penalty growth is similar to the single-core case,
and throughput is improved by 33%. In contrast, without
optimization, the transfer time grows much more rapidly.
The performance difference can be explained by exam-
ining per-ACK overhead. In Figure 8, we observe simi-
lar cycles savings with TCP-PARO, but L2 cache perfor-
mance worsens. L2 cache misses increase by about 4%
with TCP-PARO, and by 24% with Copybreak. The dif-
ference is due to TCP-PARO’s reusing SKBs, hence re-
ducing cache miss penalities when cores attempt to deal-
locate SKBs from other cores’ slab caches. Increased
cache misses contributed to 12% extra cycles with Copy-
break, which in turn translated into 19% increase in the
median transfer time and higher variance. On the other
hand, the increase in TCP-PARO cycles was modest,
hence it did not adversely affect the sender’s ability to
quickly process ACK bursts. These results show that,

5

364 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

with cheap onboard NICs which do not offer multiple
DMA engines for parallel processing, ACK optimization
can effectively mitigate cache effects in network process-
ing, while preserving the ability to share the NIC among
multiple cores. The trend towards smaller computing
units in the datacenter suggest that ACK-heavy work-
loads can expect to benefit from the reduced interactions
with memory managers by employing fastpath-based op-
timizations like TCP-PARO.

The small testbed limited the number of receivers to
168, beyond which the receivers become the bottleneck.
Nonetheless, contrary to conventional wisdom, our re-
sults indicate that ACK-based reliable multicast can be
scaled to non-trivial receiver group sizes, and that the
ACK implosion problem can be mitigated fairly well at
the end host. We are working on further characterizing
the behavior and performance of TCP-SMO with TCP-
PARO on 10GE and other environments.

5 Related Work

Per-packet overhead has been identified as a significant
overhead in network I/O [3] [7]. Batching optimizations
have been proposed to amortize receive-side overhead
for data packets [4][8]. Our work focuses on receive pro-
cessing of small control packets, which are not suitable
for batching. Instead, we propose a fastpath architecture
which bypasses the original stack and reduces memory
allocations.

Alternative packet I/O schemes [9][5] focus on deliv-
ering packets from NICs to software. The main motiva-
tion of these schemes is to provide a high-performance
platform for building software packet processors, such
as software routers. However, they do not address packet
multiplexing to sockets, buffering, synchronization with
multiple threads and protocol processing. They are thus
orthogonal to our work.

Partial network offloading techniques such as seg-
mentation offloading and checksum offloading [2], are
widely available. Modern NICs implement even more
features in the hardware to assist with software stack pro-
cessing. Examples include filtering packets based on net-
work protocol and performing packet steering to multi-
ple cores [1]. Future NICs can further enhance fastpath
performance by implementing packet header parsing in
hardware. This could further simplify and improve the
performance of the fastpath.

6 Conclusions

In this paper, we investigated optimizing pure TCP ACK
receive processing to improve server performance. Pure
ACKs consume a small portion of network bandwidth,

and have thus received relatively scarce attention in
network optimization. However, the rapid increase in
network bandwidth, the resultant expectation of higher
client-server ratios and the potential benefits of reliable
multicast suggest that improving ACK processing effi-
ciency is a real concern in achieving high application
performance.

We designed a network fastpath architecture for effi-
cient packet delivery and protocol processing. We imple-
mented TCP-PARO on fastpath, and demostrated 16%
cycles savings in an HTTP workload. Moreover, reliable
multicast throughput improved by 33% due to reduced
ACK processing time.

With the deployment of 40GE and then 100GE, and
the desire of lowering server power and space footprint,
it is becoming more compelling to improve efficiency of
server resource usage. In particular, processing of con-
trol packets as a CPU and memory intensive operation is
likely to increase in relative cost as link speeds increase
and servers handle more clients. Optimizations such as
TCP-PARO can be expected to play an important role in
reducing the impact of control packet processing on ap-
plication performance, both on average and in overload
cases, as can arise in reliable multicast. We are currently
studying other applications of the fastpath architecture,
such as SYN flood attack detection, packet accounting
and traffic filtering.

References

[1] Section 7, Intel i350 Gigabit Ethernet Controller
Datasheet. April 2012.

[2] CHASE, J., GALLATIN, A., AND YOCUM, K. End system
optimizations for high-speed tcp. Communications Maga-
zine, IEEE 39, 4 (apr 2001), 68 –74.

[3] FOONG, A. P., HUFF, T. R., HUM, H. H., PATWARD-
HAN, J. R., AND REGNIER, G. J. TCP Performance Re-
visited. ISPASS ’03, pp. 70–79.

[4] GROSSMAN, L. Large Receive Offload Implementation in
Neterion 10GbE Ethernet Driver. In Ottawa Linux Sympo-
sium (2005), pp. 195–200.

[5] HAN, S., JANG, K., PARK, K., AND MOON, S. Packet-
Shader: a GPU-accelerated software router. SIGCOMM
’10, pp. 195–206.

[6] LIANG, S., AND CHERITON, D. TCP-SMO: extending
TCP to support medium-scale multicast applications. IN-
FOCOM ’02, pp. 1356 – 1365.

[7] LIAO, G., ZNU, X., AND BNUYAN, L. A new server I/O
architecture for high speed networks. HPCA ’11, pp. 255–
265.

[8] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP
receive performance. USENIX ATC’08, pp. 85–98.

[9] RIZZO, L. Netmap: A Novel Framework for Fast Packet
I/O. USENIX ATC’12, pp. 101–112.

6

