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Message from the Program Co-Chairs

Welcome to the 2013 International Conference on Autonomic Computing! This year marks the 10th anniversary of 
ICAC since its inception in 2004. As it has for the past decade, ICAC continues to receive a great deal of interest 
from researchers and practitioners in the international community. In summary, we received a total of 90 submis-
sions, a 34% increase over the submissions from last year. The increased submission was partly due to the effort to 
expand the scope of the conference by the addition of two special tracks, Management of Big Data Systems and Self-
Aware Internet of Things, which together attracted 17 submissions. Authors were from both academic and industrial 
institutions in about a dozen countries spread over four continents.

We had a great program committee: a total of 47 members, 31 from academia and 16 from industry. PC members 
were allowed to submit papers, and there were no submissions from the two PC co-chairs. The committee worked 
dilligently in the review process, which consisted of three phases. Phase 1: Each PC member was assigned 7–8 
reviews, generating a total of 345 reviews, for an average of 4–5 reviews per paper. Around 50 external  reviewers 
 offered additional assistance in the initial review phase. Phase 2: The PC members exchanged opinions using 
HotCRP during a 10-day online discussion phase, mostly focusing on those papers with divergent ratings. Phase 3: 
The committee had a virtual PC meeting on April 10th via WebEx and teleconference to make final recommenda-
tions for the papers that were still under debate. During the meeting, shepherds were assigned to five of the papers 
to ensure reviewer concerns were addressed in the final papers. Authors and reviewers are who define the research 
community for ICAC, and we thank you for your contributions to this year’s technical program.

From the 73 papers submitted to the main track, the program committee selected 16 full papers, with a 22% accep-
tance rate. In addition, 10 short papers were accepted, and one was recommended for the MBDS track. These papers 
cover autonomic computing theories, techniques, and deployments across a variety of systems and application domains, 
including data centers, clouds, hardware architecture, software-defined networks, and mobile environments. These 
papers will be presented in nine technical sessions. From the 17 papers submitted to the two special tracks, four 
papers were accepted to each of the tracks, adding two additional sessions. We also attempted to include both papers 
with mature results and thorough evaluations as well as early-stage papers that propose new concepts/problems or 
reach into new areas. In addition, ICAC ’13 will offer daily keynote speeches from Carl Waldspurger, Alon Halevy,  
and Dilma Da Silva, a panel on Big Data Systems, a poster and demo session, and a Ph.D. forum.

We would also like to thank the following organizations and systems that helped us along the way. First, thanks to 
USENIX for sponsoring ICAC and hosting it as part of the Federated Conference Week this year. The USENIX 
staff has been very helpful and supportive during the whole process; without them our jobs would have been much 
harder. Second, we thank our corporate sponsors and partners, including VMware (Silver Sponsor), HP (Bronze 
Sponsor), Google (General Sponsor), SPEC Research, and DMTF. Third, we appreciate the variety of features 
 offered by the HotCRP system that significantly reduced the overhead of running the PC. Last but not least, we want 
to thank everyone else in the ICAC ’13 organizing committee, who helped put together a strong technical program. 
Thank you for your involvement and participation in the ICAC community, and enjoy the conference!

Calton Pu, Georgia Institute of Technology
Xiaoyun Zhu, VMware
ICAC ’13 Program Co-Chairs

viii 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association
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Application Placement and Demand Distribution in a Global Elastic Cloud:
A Unified Approach

Hangwei Qian
VMWare

Palo Alto, CA, 94304

Michael Rabinovich
Case Western Reserve University

Cleveland, OH 44106

Abstract
Efficient hosting of applications in a globally distributed

multi-tenant cloud computing platform requires policies to de-
cide where to place application replicas and how to distribute
client requests among these replicas in response to the dynamic
demand. We present a unified method that computes both poli-
cies together based on a sequence of min-cost flow models.
Further, since optimization problems are generally very large-
scale in this environment, we propose a novel demand cluster-
ing approach to make them computationally practical. An ex-
perimental evaluation, both through large-scale simulation and
a prototype in a testbed deployment, shows significant promise
of our approach for the targeted environment.

1 Introduction
An important benefit of cloud computing is that it al-
lows Internet application providers to obtain global foot-
print and elastic capacity without the need to deploy and
maintain their own infrastructure. This service is of-
ten referred to as IaaS (“Infrastructure as a Service”).
Cloud providers can offer IaaS efficiently by deriving
the economy of scale though multiplexing their shared
platforms among multiple applications. A number of
cloud providers, including Google, Microsoft, and Ama-
zon, offer some variation of this capability.

These geo-distributed multi-tenant hosting platforms
need to be able to effectively distribute the hosted ap-
plications across multiple data centers and direct client
demand to the appropriate application replicas. Specif-
ically, this task involves the following two key policies:
(i) At how many and which data centers should each ap-
plication be deployed? We refer to this as the (global) ap-
plication placement problem; and (ii) How should client
demand be distributed to these application replicas? This
is commonly referred to as demand distribution or, inter-
changeably, server selection problem.

Much prior work has targeted environments address-
ing one or the other of these aspects (see § 8). However,
an elastic cloud must deal with both issues simultane-
ously because it distributes demand among dynamically
changing sets of application instances. Consequently, we
propose a unified framework to compute these two poli-
cies simultaneously. A comparison with an existing ap-
proach that also addressed both policies but computed

them in isolation showed a significant advantage of our
approach (§ 6.6).

Computing these policies in a hosting cloud brings
an additional challenge. Because request processing in-
volves accesses of application-specific back-end servers,
the proximity of a request to data centers depends not
just on the client’s location but also on the location of the
back-end servers and hence on the requested application.
This increases the scale of the optimization problems by
orders of magnitude (§ 4). We propose a novel demand
clustering approach we call permutation prefix cluster-
ing, and show that it makes global optimization practical
in many environments.

In summary, this work addresses the application
placement and demand distribution problems in a geo-
distributed and globally-shared cloud platform, and
makes the following contributions: (i) We propose and
evaluate a unified framework to jointly solve the appli-
cation placement and demand distribution problems; (ii)
A novel clustering technique is introduced to scale our
optimization model to realistic platform sizes, which we
believe will prove valuable for other optimization mod-
els as well; and (iii) We prototype our approach and
demonstrate its operation in a testbed deployment.

2 System Overview
The high-level view of our targeted environment is
shown in Fig. 1. Each client connects to a request-
routing component (e.g., DNS server or HTTP redirec-
tor), which directs it to a data center hosting requested
application. Known mechanisms (such as one provided
in WebLogic [1]) ensure continued session state avail-
ability even if a client is redirected to a new instance
mid-session. When processing requests, the application
is assumed to access back-end database located at the
premises of the application providers for security or legal
reasons (the extended version of this paper also consid-
ers the hosted database scenario [27]). Thus, we aggre-
gate the network distances from clients to data centers
and from data centers to databases when calculating the
network delay for the requests. Note, obtaining the dis-
tance information efficiently is a complicated task and an
important part of the providers’ know-how. We assume
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this information is supplied by a separate measurement
component (not considered here).

To effectively manage the proximity information of
all the Internet clients, we assume the platform groups
its clients by the IP prefixes found in multiple BGP ta-
bles [19], with each group dubbed a client cluster (CC).
A key part of our work is to aggregate demand fur-
ther so that computing the application placement and
demand distribution policies becomes tractable. Also,
many cloud providers concentrate their platforms in a
small number of strategically located mega data centers,
leading to the factors of 5 to 7 decrease in the opera-
tional cost [12]. For example, Amazon EC2 is deployed
in four locations (US-East, US-West, Ireland, and Singa-
pore); other infrastructure providers, such as Limelight
and AT&T, have a couple dozens data centers. We as-
sume roughly this number of data centers (around 20).
We do not target platforms such as Akamai with pres-
ence in thousands of locations.

We focus on the business models (e.g., auto-scaling
option in EC2 or Google’s AppEngine), in which the
cloud itself makes the decisions on the number and loca-
tion of various application instances, to maximize the ap-
plication performance and minimize the number of data
centers where these applications are deployed. Remov-
ing underutilized application instances reduces the cus-
tomer costs and frees up resources for other applications.
Another objective is to reduce the number of placement
changes in consecutive configurations. Despite recent
advances in reducing overhead of starting a virtual ma-
chine [21] or an application server [9], deploying an ap-
plication instance remains a heavy-weight operation in
terms of CPU costs and system reconfiguration.

In making placement decisions, we only consider
whether or not an application is deployed in a data center.
Others have addressed the problem of resource alloca-
tion among applications within a data center [37, 26, 33].
In the rest of the paper, an “application instance” means
that the application is deployed at the data center, regard-
less of the amount of resources it is assigned locally.

Resource allocation decisions require monitoring the
demand and utilization of data centers. We assume a
central controller collects this information periodically
from each data center. Like any platform based on re-
quest routing, our target environment requires translation
between requests and service demands; this so-called ap-
plication modeling problem has been studied intensively
(e.g., [32, 34, 35]) and we assume the use of one of these
existing technologies. We also assume that our applica-
tions (i.e., web sites) are sufficiently popular so that even
if different requests to a web site have different service
demands, for a reasonable request rate (e.g., higher than
the deletion threshold - see § 5), these requests will re-
sult in a representative request mix. (If this assumption

Database

Client

Data 
Center nData 

Center 2 

Data 
Center 1 

Figure 1: Overview

does not hold for an application, its requests must be split
into classes with similar service demands and each class
modeled separately.) Meanwhile, request rates for dif-
ferent applications are normalized so that the same (nor-
malized) request rate will result in the same resource uti-
lization regardless of the application. Thus, a request
rate translates to the proportional resource usage and can
be used to measure the capacity and the utilization of
data centers. (This assumption is supported by our expe-
rience with prototype in § 7.)

2.1 Problem Statement
Let D be the number of data centers, A the number of
applications and C the number of client clusters. The
placement policy can be described as an A × D matrix
P , with element Pij = 1 if application i is deployed at
data center j; Pij = 0, otherwise. The demand distribu-
tion policy is an A × C × D matrix R, whose element
Ramn is the fraction of requests from client cluster m for
application a to be directed to data center n. The system
enacts the distribution policy by directing a request from
client cluster m for application a to data center n with
probability Ramn. Let ram be the request rate for appli-
cation a from client cluster m. Assume each request is
associated with a cost Camn if it is served at data cen-
ter n, and un is the utilization of the data center. We
formulate our problem as a multi-objective optimization
problem [23] fulfilling the following competing objec-
tives:

Minimize

A∑
a=1

C∑
m=1

ram

D∑
n=1

RamnCamn (1)

Minimize

A∑
a=1

D∑
n=1

Pan (2)

Minimize

A∑
a=1

D∑
n=1

|Pan − P prev
an | (3)

subject to
A∑

a=1

C∑
m=1

ramRamn ≤ un, n = 1, 2, . . . , D (4)
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0 ≤ Ramn ≤ 1;

D∑
n=1

Ramn = 1 (5)

Pan ∈ {0, 1}; Ramn > 0 implies Pan = 1 (6)

where P prev
an is the previous placement policy. Objec-

tive (1) minimizes the overall cost. While Camn is an
abstract cost function, we use aggregate distance (mea-
sured as network latency) as the cost function thus try-
ing to minimize the overall user-perceived network la-
tency. Objective (2) minimizes the number of data cen-
ters with deployed application replicas and objective (3)
minimizes the number of placement changes.

While multi-objective optimization problems are
commonly handled by combining all the objectives into
a single one with some weights assigned to each ob-
jective, in our case, this would transform the problem
to a mixed integer programming formulation (in fact, a
variant of a multicommodity capacitated facility location
problem [8]), which is NP-hard. Further, choosing ap-
propriate weights for different objectives is difficult in
our context as their effect on the final policies is indi-
rect and non-intuitive. Instead, we handle the problem
heuristically as follows.

2.2 Framework
Our heuristic approach to arbitrate among the competing
objectives involves two steps. First, we compute optimal
request distribution among data centers assuming every
application is deployed at every data center (full deploy-
ment). Here any optimization technique can be applied.
We explore a centralized approach based on a min-cost
max-flow model (§ 3).

Second, given the optimal demand distribution pol-
icy, we attempt to remove underutilized instances. We
introduce a Deletion Threshold (DT) as the level of de-
mand that justifies the cost of running an application at a
data center (note that the DT can be selected indepen-
dently for each application and has an easily grasped
intuitive meaning). We try to remove instances whose
demand after the first step is below DT by reassigning
their flows to remaining instances in an optimal manner
(§ 5). We also attempt to reduce the number of place-
ment changes in this step by assigning lower deletion
threshold to already-deployed instances (§ 5.3).

3 Full Deployment
We begin by obtaining optimal demand distribution pol-
icy with full deployment. We use a min-cost max-flow
optimization model for this purpose. This model rep-
resents the system as a directed network, with source
nodes generating demand, sink nodes consuming this de-
mand, and demand flowing from sources to sinks along
edges labeled with (cost, capacity). An edge label in-
dicates the maximum amount of demand that can tra-

  



  

 


  





 


  


   

 
 





 





 
 



  


 

 


 





 










 







Figure 2: Min-cost network model

verse this edge and the unit cost of such traversal. There
are efficient algorithms that solve the min-cost max-flow
problem, i.e., find the assignment of demand to edges
that maximizes the total satisfied demand while mini-
mizing the total cost. Refer to [7] for details on min-cost
flow problem and [2] for transforming it to a min-cost
max-flow problem; we use both terms interchangeably.
We utilize the tool [4] in our implementation, which uses
an algorithm with complexity O(V 2Elog(V Cap)) [16]
where V and E are the number of nodes and edges and
Cap is the maximum edge capacity.

3.1 Problem Modeling
We would like to forward client requests to closest data
centers and at the same time avoid overloading any data
centers. We assume the service does not degrade ap-
preciably as long as data center utilization is below its
capacity. (In reality, this means that utilization must stay
below a certain watermark, which for now we view as
capacity but set as a parameter in the simulation – see
§ 6.) Under this notion, we model our problem as the
following min-cost flow network.

Because of different back-end servers, requests for
different applications from the same client may have
different aggregate distances to the same data center.
Thus our model can not simply consider all demand
from the same client cluster as a whole. Therefore,
as shown in Figure 2, we have a pair-node Yam, a =
1, 2, ...A,m = 1, 2, ...C for each application and client
cluster pair (a,m). Also, each data center n has a node
DCn. Finally, we have a source node S and sink node T .
From source S to each pair-node Yam, we add an edge
with cost 0 and capacity ram, the latter being the request
rate from client cluster m for application a. Then we
add an edge from each pair-node Yam to each data cen-
ter node DCn, with cost being the aggregate distance
damn when client cluster m accesses the application a
at data center n, and capacity equal to the full request
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rate from this client cluster for this application (since the
actual data center capacity is enforced by the subsequent
edge), i.e., ram. By connecting each pair-node with ev-
ery data center, we allow the demand from the corre-
sponding client cluster to be potentially split among any
of the data centers. Finally, there is an edge from every
data center node DCn to sink T , with cost 0 and capacity
equal to the capacity of data center un.

We try to move the total amount of flow∑A
a=1

∑C
m=1 ram from source S to sink T with

minimum cost. After we obtain the solution, flow famn

on the edge between nodes Yam and DCn represents the
amount of requests from client cluster m for application
a that should be forwarded to data center n.

4 Permutation Prefix Clustering
The size of the min-cost flow problem in Fig. 2 is ex-
tremely large, with A · C + D + 2 nodes and A · C +
A · C ·D +D edges. According to [19], there were on
the order of 400,000 client clusters in 2000. Then, for
C = 400, 000 client clusters, A = 100 applications, and
D = 20 data centers, the number of nodes and edges are
in the order of 4 × 107 and 8 × 108 respectively, mak-
ing this problem intractable. We address the scalability
problem in this section.

4.1 Basic Idea
With aggregate distance, each pair-node Yam has its own
preference of data centers in terms of proximity, produc-
ing a permutation of data centers. For example, permuta-
tion {1,4,2,3,6,5} means requests for application a from
client cluster m are the closest to DC1, the second clos-
est to DC4, and so on. We define each permutation as
a region, and client requests with the same preference of
data centers are in the same region. There is a region for
each pair-node in Fig. 2. We propose permutation prefix
clustering to reduce the number of regions and thus the
number of edges in Fig. 2.

In this method, we merge regions if their permu-
tations share the same prefix of certain length. For
example, for six data centers, let region1 have per-
mutation {1,4,2,3,6,5} and region2 have permutation
{1,4,2,3,5,6}. With prefix length 4, we could merge
them into region12 with prefix {1,4,2,3}. (Note that
requests from the same client cluster for different ap-
plications may end up in different regions since their
data center preferences may be different due to differ-
ent back-end servers.) After merging, we compute the
distance from the new region to each data center, includ-
ing those beyond the prefix, as the weighted average of
the distances from region1 and region2, with request
rate from each region as the weight.

Our observation is that unless most data centers are
highly loaded, requests for an application will only go

  


  

 

 











 



 


 





 




 










 









 
   





Figure 3: Clustered network model

to a few closest data centers. So for each client request,
we only need to consider the front part of its correspond-
ing permutation. Admittedly, there would be proximity
penalty when the flows do need to go to the data centers
beyond the prefix. However, this happens when most
data centers are highly loaded, in which case the prox-
imity becomes less of a priority as we need to satisfy all
the demand first. Moreover, our use of the weighted av-
erage distance to all data centers, including those beyond
the prefix, significantly reduces this penalty (see § 6.3).

4.2 Application to Min-Cost Model
To illustrate how permutation prefix clustering is applied
in our min-cost flow model, suppose we want to merge
the regions for pair-nodes Y1C and Yam in Fig. 2 because
their permutations share a prefix. We remove nodes Y1C

and Yam along with all their adjacent edges and replace
them with a new node Y ′. An edge is added from source
node S to node Y ′, and from Y ′ to each node DCn, n =
1, 2, ...D. The cost of the edge from S to Y ′ is still zero
and capacity is the sum of the capacities of the edges
(S, Y1C) and (S, Yam), or r′ = r1C + ram. The cost
of the edge (Y ′, DCn), n = 1, 2, ...D is the weighted
average of cost of edges (Y1C , DCn) and (Yam, DCn),
or d′n = d1Cn∗r1C+damn∗ram

r1C+ram
, and capacity is r′. The

updated network is shown in Fig. 3. This technique gen-
eralizes trivially to merging more than two pair-nodes.

Let L be the length of the permutation prefix. Then
the total number of possible regions after merging is:

Min{A ∗ C,
L−1∏
i=0

(D − i)}

which means the same number of merged pair-nodes Y ′.
Also, the dominant element of the total number of edges
in Fig. 2 is reduced from A · C ·D to:

D ∗Min{A ∗ C,
L−1∏
i=0

(D − i)}

Since A ∗C is very large, the total number of nodes and
edges in Fig. 3 are in the order of

∏L−1
i=0 (D − i) and
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D ∗
∏L−1

i=0 (D − i) respectively, depending on D and L
only. Generally, the smaller the prefix length, the smaller
the problem size but the larger the potential proximity
penalty. We study these effects in § 6.3.

5 Partial Application Placement
A solution to the model of Fig. 3 provides a demand dis-
tribution policy assuming full deployment. Our next step
is to remove underutilized application instances.

Let fan be the amount of request flow of application
a assigned to data center n. If fan ≥ DT , we call it
normal flow and keep the instance of application a at data
center n. We denote the set of data centers with these
instances as Ua. We can immediately remove an instance
with zero demand (e.g., if fan = 0). The rest of this
section handles instances with demand 0 < fan < DT .
We call them tiny instances and their flows tiny flows.

5.1 Heuristics
Let set Va = {DCn|0 < fan < DT} contain data cen-
ters with a tiny instance of application a. Also let hn

be the number of normal flows at data center DCn. We
first assume that all tiny instances are removed (unless
all instances of an application are tiny, in which case one
instance with the largest flow is retained) along with their
flows and increase the residual capacities of the affected
data centers accordingly. We then attempt to distribute
these flows (referred to as residual demand) to data cen-
ters with residual capacities. Our procedure is guided by
the following observations:

1. We should try to remove the instances with the smallest
flows first because the reassignment of small flows will
affect fewer requests. In particular, it means that (1a) de-
mand for a tiny instance should not be reassigned to an
even tinier instance, and (1b) we should try to accommo-
date smaller flows (across all applications) first.

2. If we must retain some tiny instances (because data cen-
ters in Ua reach their capacity), we should keep the tiny
instances with the largest flows first. This is again moti-
vated by the desire to keep the largest amount of demand
assigned to the nearest data centers.

3. When selecting data centers in Ua to assign residual de-
mand, we should favor those with smaller hn because
their residual capacity is harder to utilize (since a data
center can only accept additional demand for the applica-
tions it hosts).

While the above set of heuristics may suggest a sim-
ple greedy procedure, where we reassign flows in the
increasing size order and distribute them to normal in-
stances first and then to the largest tiny instance with
residual capacity, this may result in highly suboptimal
flow assignment. Instead, we again build a min-cost flow
model for this problem, so that we reassign the residual
demand optimally, and at the same time manipulate the
costs in the model to follow the above heuristics.
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Figure 4: Residual demand distribution network

5.2 Tiny Flow Removal
Our min-cost flow model for tiny flow removal is shown
in Fig. 4. Each tiny flow fan has a corresponding node
RDan, referred to as demand node. From source S, we
add an edge to every demand node. Also, from each
demand node RDan, there is an edge to data center node
DCk if the latter has an instance of application a and
fak >= fan. By not including edges to data centers with
smaller flows (note the absence of edges from RDan to
DC1 and DCD−1 in Fig. 4), we enforce heuristic 1a.
Finally, each data center node is connected to sink T .

For edges from source node S to demand node RDan,
the capacity is fan, and the cost is 0 - this represents the
demand to be satisfied. All edges from demand node
RDan to data center nodes have capacity fan (this de-
mand could potentially be satisfied by any of these data
centers), and the edges from data center nodes to the sink
have capacities equal to the residual capacity rcn of each
data center. For data center DCk ∈ Ua, the cost of the
edge from node RDan to DCk is 0 (since it already has
an instance and we would like to assign as much demand
as possible to these nodes – see the edge from RDan to
DC2 in the figure). The cost of other edges is chosen in
a way such that:

1. For any two tiny flows fan and fa′n′ , if fan < fa′n′ then
costi,j of edges going from demand node RDan to data
center nodes in Va is larger than costi′,j′ of edges going
from RDa′n′ to data center nodes in Va′ . In this way,
flow fan would have an advantage over fa′n′ when com-
peting for residual capacity of data centers with instances
of both applications, thus following heuristic 1b.

2. The cost of edges going from residual node RDan to
DCk ∈ Va is inversely proportional to fak. In this way,
the min-cost flow algorithm will try to follow heuristic 2.

3. For the edge from data center node DCn to sink T , the
cost is the number of normal flows hn at data center
DCn. This makes the algorithm follow heuristic 3.

4. Because heuristics 1 and 2 have higher priority than 3,
we make sure that the cost of edges from demand nodes
RDan to data center nodes in Va dominates the cost of
edges from data center nodes in Va to the sink node.
In Fig. 4, Ca,n >> hk and Ca,D >> hk for all
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k = 1, 2, ...D.
After solving this problem, we remove all the tiny in-

stances that became idle (assigned no demand).

5.3 Hysteresis Placement
As described so far, our scheme computes a new place-
ment policy only based on the current demand distribu-
tion, regardless of the previous placement. This can re-
sult in large number of placement changes.

We propose hysteresis placement to control the num-
ber of placement updates. We introduce a parameter
hysteresis ratio (HR) when categorizing flows. If ap-
plication a is deployed at data center n in the previous
placement, we consider fan as tiny instance only when
fan < DT

HR , where HR ≥ 1. In this way, if applica-
tion a is currently deployed at data center n, then it is
more likely to be kept in place in the new placement.
This added ”stickiness” may result in some increase in
the number of application instances and some response
time penalty. We evaluate these effects in § 6.5.

5.4 Further Fine-Tuning
Our scheme so far aggregates demand into flows from
coarse-grained regions and does not distinguish between
requests within a flow. So, when a flow is assigned
to multiple data centers, rather than sending requests
to these data centers at random, we can split this flow
among its assigned data centers according to request
proximity preferences as long as this does not violate
the overall demand distribution. We skip details due to
space limitation but provide them in the extended ver-
sion of this paper [27]. Our evaluation study includes
this optimization in all the experiments.

6 Evaluation
We study the performance of our approach using large-
scale simulation built on CSIM [6], a discrete-event sim-
ulation package. Mimicking the actual system, our sim-
ulator has a decision component and a request routing
component. The decision component periodically up-
dates application placement and server selection policy
(every 30s by default). There is also a workload com-
ponent that generates requests according to load patterns
discussed later. The routing component forwards each
request to the appropriate data center according to the
policy generated by decision component.

6.1 Cloud Model
We simulate a global cloud platform across 20 data cen-
ters hosting 100 applications (except for the scalability
experiments in § 6.7). We parameterize our model as fol-
lows. We got all pingable IP addresses – 157803 total –
from the Gnutella peer list compiled at the University of
Oregon [3] and found their geographical locations using

the GeoIP database (commercial version)[5]. We ”de-
ploy” our 20 data centers in countries according to their
client distribution, i.e., nine data centers in US, three in
China, etc. For the US, we use a similar procedure to
distribute the data centers among states.

We then selected 20 PlanetLab nodes in the same lo-
cales as our data centers and measured ping latencies
from each such PlanetLab node to each client. We were
able to obtain complete distances to 100546 clients. We
then used these clients to represent the locations of client
clusters, the 20 PlanetLab nodes to mimic our data cen-
ters, and the measured ping latencies as the network dis-
tances. Since back-end databases are assumed to stay
outside the cloud (see § 2), we randomly select 100 Plan-
etLab nodes to mimic the databases and use ping laten-
cies from the 20 PlanetLab nodes representing data cen-
ters to these 100 PlanetLab nodes as distances between
data centers and databases.

We divide the world into 20 geographic regions, each
with a data center. Client clusters that share a common
closest data center fall into the same geographic region
with the data center. We also divide applications into two
categories, regional and global. Regional applications
are particularly popular within a specific geographic re-
gion (hot region), e.g., the website of a state govern-
ment; global applications are universally popular. For a
regional application, we define regional rate as the por-
tion of requests it receives from its hot region. We use
regional rate of 0.9.

6.2 Workload
Each data center can serve 10,000 requests peer second
(req/s), resulting in the total capacity of all data centers
of 200,000 req/s. These rates are dictated by the scala-
bility of the simulator itself, but are sufficient to evalu-
ate our approach. We define load factor as the ratio of
the total request rate of all data centers to the total ca-
pacity. Each (normalized –see § 2) request is assumed
to have service time 0.03 second, so every data center in
the simulator has 300 CSIM facilities that mimic servers.
We set the queue length of each facility to 150; requests
are distributed among servers in a data center in a round-
robin fashion and are dropped when arriving at a facility
with full queue. In the optimization models, we assume
the capacity watermark of 0.9, that is, the system tries to
keep each data center utilization within 9,000 req/s.
Demand Generation. We assume applications’ popu-
larity follows Zipf law with parameter 1. The top ap-
plication is global and the remaining 99 are regional,
thus the global application generates around 20% of to-
tal demand. Given the target total request rate, r, de-
termined by the load factor, the workload generates re-
quests sequentially with exponentially distributed inter-
arrival time with mean t = 1/r. For each request, it first
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Figure 5: Performance of prefix clustering

selects an application according to the power law prob-
ability distribution. Then if the selected application is
regional, it assigns the request to a random client clus-
ter from its hot region with probability of regional rate
and to a randomly selected client cluster from outside
its hot region otherwise. If the application is global, the
request is assigned to a random client cluster.
Dynamic Demand Patterns. During simulations, the
demand pattern changes every T seconds. We use the
following dynamic load patterns in our experiments:
1) Vary-All-App: starting from the initial distribution
generated as described above, the demand for each ap-
plication changes randomly within ±∆%, where ∆ is
a parameter controlling the extent of variability. This
workload is an extended version of vary-all-apps in [33].
2) Rank-Exchange: popularity rankings of k randomly
picked pairs of applications are swapped, where k con-
trols the extent of demand variability. This workload
mimics the change of popularity among applications.
3) Reshuffle-All: in each cycle, the rankings of the appli-
cations are reset to a random permutation and each re-
gional application is remapped to a new random region.
This workload mimics extreme case of change, where
the demand pattern in each cycle is completely indepen-
dent of the pattern in previous cycle.

6.3 Clustering Performance
We begin with the evaluation of permutation prefix clus-
tering. In each experiment, we initially generate the re-
quests that would occur in one second and re-send these
requests repeatedly every logical second for ten logical
seconds, at which point we recompute the demand to be
used for the next ten seconds, and so on. While we use
the same demand pattern, the demand will be different
due to new random coin tosses during generation. To
factor out the effects of stale demand data, the experi-
ments in this subsection as well as § 6.4 and § 6.5 re-
compute the policy every time the demand is recomputed
(every 10 second here) and use the upcoming demand
data as input. We defer considering online policy com-
putation based on prior demand until policy evaluation
and prototype testing (§ 6.6 and § 7). The simulation

lasts 50 logical seconds. To concentrate on clustering
effect on server selection, all experiments in this subsec-
tion assume full deployment for each application, dele-
tion threshold 0 req/s, and hysteresis ratio 1.

Fig. 5 shows performance effects as clustering level
changes from the extreme case when only the closest
server is considered (prefix 1) to no clustering (prefix
20, although no clustering occurred beyong prefix 18).
We measure the number of dropped requests (although
we did not observe any) and the average response time.
Fig. 5a shows the response time penalty from cluster-
ing (also called delay penalty below), expressed as the
relative difference between average response times with
and without clustering. As seen from the figure, for a
given level of clustering (i.e., the prefix length value),
the penalty is smaller for lower load factors. (The line for
load factor 0.4 deviates slightly from this trend for initial
values of the prefix length. Since the penalty variations
involved are very small - within 1% - we view it as a sta-
tistical aberration.) This makes sense because with low
load, most demand is satisfied by the closest server, and
the discrimination among more distant servers becomes
unimportant. However, even for high loads, the cluster-
ing penalty is small, never exceeding 10%, and drops
quickly with the prefix length. We attribute this to the
effect of our distance aggregation for all members of the
cluster: even when client-application pairs are clustered,
their proximity to servers beyond the common prefix is
still accounted for through aggregated distances. Indeed,
Fig. 5b shows the delay penalty increases significantly
when all distances to data centers beyond the prefix are
assumed equal. Finally, Fig. 5c depicts the effect of clus-
tering on the algorithm execution time. It shows that
clustering trades these small delay penalties for a dra-
matic reduction in the execution time. For instance, for
load factor 0.6, going from no clustering (prefix 20) to
clustering with prefix 3 reduces the execution time from
552.4s to 2.3s, at the expense of only 1.3% delay penalty.
We study the scalability of our approach further in § 6.7.

In summary, our experiments show that prefix cluster-
ing is a promising general technique for aggregating de-
mand. Given these results, we use prefix size 3 for sub-
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Figure 6: The effects of the deletion threshold

sequent experiments, which allows us to solve the min-
cost problem efficiently while keeping the delay penalty
small - within 4% in the above experiments.

6.4 Deletion Threshold
We now study the deletion threshold (DT) effect. A
higher DT tends to remove more instances but leads to
greater performance penalty, as requests that used to go
to the underutilized instances will now be routed to more
distant data centers, while DT = 0 means no tiny instance
removal, i.e., only completely idle instances are dropped.
We use prefix 3 (see § 6.3) and hysteresis ratio 1 for these
experiments.

Fig. 6 quantifies these effects by showing the total
number of instances and delay penalty for different DT
values. The workload is the same as in the previous sub-
section. Since each simulation run involves five recom-
putations of the demand, each data point represents the
average total number of application instances across the
whole run. The figure shows that as the deletion thresh-
old increases, the number of total instances plunges in
the beginning, but then decreases very slowly. The de-
lay penalty behaves the opposite way, although at low
load the penalty does not flatten. In general, this result
indicates that with an appropriate deletion threshold, our
scheme can drastically reduce the number of application
instances with small performance penalty. We choose
deletion threshold 150 req/s throughout our subsequent
experiments as it obtains factor of 5-7 reduction in the
number of application instances while keeping the delay
penalty under 8% for all loads.

6.5 Hysteresis Placement Effects
We now evaluate the hysteresis ratio effects, using dele-
tion threshold 150 req/s (see § 6.4) and prefix length 3
(see § 6.3) in the experiments.

We use the following workload. At the first logical
second, we generate a demand. At the next second, we
remap the regional applications randomly to regions and
recompute the demand. At all the subsequent seconds,
we recompute the demand with new random coin tosses
but keep the same pattern. So the workload changes dra-
matically in the second second, but keeps stable (except
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Figure 7: The effects of the hysteresis ratio

for statistical variations) in the remaining time. The ap-
plication placement is computed every second: with our
focus on placement changes, this allows us to shorten the
experiment without affecting the results. The experiment
lasts 20s. In Fig. 7, each data point represents the mean
over five simulation runs with different seeds.

Fig. 7a shows the number of placement changes as
the hysteresis ratio increases. For comparison, the fig-
ure also includes results for a heuristic application place-
ment from [29] at 0 point on the x-axis. We see that with
the increase of the hysteresis ratio, the number of place-
ment updates drops but the total number of instances in-
creases. When hysteresis ratio reaches 3, our approach
results in fewer placement updates than algorithm from
[29], even though the latter computes the new placement
by adjusting the current configuration. Admittedly, as
Fig. 7b shows, this comes at the expense of a certain in-
crease in the number of instances, especially at higher
load factors (a third more instances). We argue that this
modest increase is justified by a significantly better per-
formance of our approach, as we will see in the § 6.6.
Interestingly, the delay penalty is negligible - less than
2% – and is not shown here. We use hysteresis ratio 3
for the rest of our experiments.

6.6 Policy Evaluation
This section compares the quality of the policies pro-
duced by our approach and prior work. To our knowl-
edge, the only works that jointly address the problems of
demand distribution and application placement are [29]
and [25]. Since our approach and [25] are not directly
comparable ([25] aims at minimizing the replica load im-
balance rather than optimizing the proximity), we com-
pare our approach with [29]. The latter represents a dras-
tically different approach from ours: it heuristically ad-
justs current placement by replicating or migrating in-
stances and modifies server selection strategy according
to the observed demand.

In these experiments, we use the dynamic load pat-
terns in § 6.2 with load factor 0.5 and regional rate
0.9. Experiments start with full deployment and every
request is forwarded to the closest data center. We gen-
erate the initial demand according to § 6.2. For the first
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Figure 8: Policy performance (Vary-All-App)

15 logical seconds, the system is in a warm-up stage,
where we update the policies every second so that the
policies reflect the initial demand pattern after this stage.
This is done for fairness to [29] as it adopts to the desired
configuration incrementally. Then the system goes into
the measurement stage, lasting 900 logical seconds, in
which the demand is recomputed every 150 sec. accord-
ing to the dynamic load pattern used, and the policies are
updated every 30 sec. When computing the policies, we
collect request rates through the statistics from all data
centers as in reality. We use exponential moving average
(smoothing factor 0.6) to maintain these statistics.

Fig. 8, 9 show the average response time and number
of dropped requests for the two approaches, for the first
two workloads (Reshuffle-All is not shown due to the
space limit and is included in the extended version [27]).
The curves corresponding to our approach and the ap-
proach of [29] are labeled, respectively, ”min-cost” and
”heuristic”. The results show dramatic performance ad-
vantage of our approach for both metrics. The average
response time shows improvements at least by a factor of
2, and dropped requests reduce by orders of magnitude.

6.7 Scalability
We turn to the scalability of our approach. Our baseline
setup of the system includes 100,546 client clusters, 20
data centers and 100 applications. We measure the exe-
cution time of our algorithms by increasing one of these
parameters and keeping the other two constant. For the
purpose of simulations, whenever we add a new entity
to the setup and need a network delay between it and
other entities, we pick the delay at random between 0
and 500ms. We utilize Dell PowerEdge 2950 server with
8 cores and 16G memory in the experiments.

The results are presented in Fig. 10. They show that
the execution time grows almost linearly with the num-
ber of client clusters and applications, but superlinearly
with the number of data centers. The latter makes sense
since, for the prefix length 3 we used, the size of the
min-cost flow model of Fig. 3 grows as the power of 4 of
the number of data centers (§ 4.2). Meanwhile, when the
number of client clusters and applications increases, the
size of the min-cost flow problem used in the first phase
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(optimization with full deployment) does not change, but
the size of the problems used in the second phase (ap-
plication placement) and in the flow-splitting phase in-
crease linearly. As shown, the execution time remains
within tens of seconds for thousands of applications, mil-
lions of client clusters, and tens of data centers.

We argue this reflects realistic platform sizes and ac-
ceptable execution time. Indeed, Krishnamurthy and
Wang found roughly 400K client clusters on the In-
ternet [19], and most infrastructure providers, such as
Limelight and AT&T, operate up to 20-30 data centers.
Execution time in the order of tens of seconds also seems
acceptable: Oppenheimer et al., considering three real
workloads, recommend application placement be done
in the order of every 30 min. [24]; Wendell et al. found
demand to be fairly stable on the 10-min. time scale [36].

7 Prototype
To demonstrate the operation of our system, we imple-
mented our approach and deployed a testbed that mim-
ics a global platform. We use five machines to emulate
five data centers: one in Japan, one in UK, one in Aus-
tralia, one in California and one in New York. We use
another five machines to mimic the clients at these lo-
cations. To emulate global deployment, we hard-code
the distances between the machines representing clients
and data centers using measured ping RTTs between
PlanetLab nodes in the mimicked locations. We used
MyXDNS [10], a DNS server configurable with external
server selection policies, as a request router.

In the prototype, a decision component collects uti-
lization and demand distribution from data centers, pe-
riodically computes placement and server selection poli-
cies using our approach, and uploads the new server se-
lection policy into MyXDNS. MyXDNS and our deci-
sion component both run on a separate machine, updat-
ing the policy every 30 seconds. On machines that mimic
data centers, we install the WebSphere application server
running the TPC-W benchmark (with the browsing mix
workload) as the application. We set server capacity to
100 req/s and capacity watermark at 70%. Yet we report
results in terms of actual server utilization, thus justify-
ing (at least for this application) our assumption about
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Figure 10: Scalability of Policy Computation

feasibility of using request rates as measure of demand
and utilization. We use the following two scenarios to
demonstrate how our system responds to the dynami-
cally changing demand.

7.1 Demand Shift
Our first scenario shows the ability of the system to han-
dle demand shifts from one region to another. In this
scenario, we generate requests from only one location at
a time and at a level that a single data center can cope
with, but we change the location every 120s.

Fig. 11 shows the CPU utilization of the five machines
imitating data centers. It indicates that the system han-
dles this scenario successfully. Indeed, the application
placement follows the demand after the delay induced
by the periodicity of policy updates. Only one instance
of the application is deployed at a time except during
transitions, since our prototype is careful not to enact in-
stance deletion until it completes pending requests - this
is seen from an overlap in utilization curves.

7.2 Flash Crowd
Our second scenario imitates a flash crowd coming from
one region. In this experiment, we generate requests
from a single fixed location throughout the experiment
but the amount of requests increases in the first 220s,
then stays constant for 120s, and then drops in the final
220s. The application is initially placed in the data cen-
ter in the region that generates the demand.

Fig. 12 shows the CPU utilization of the data centers
in this scenario, again demonstrating successful opera-
tion of the system. Initially, data center DC1, the near-
est to client demand, is sufficient to handle the work-
load. As its utilization exceeds the watermark, the ap-
plication is deployed at two more data centers - first at
the second closest data center DC2 and then at DC3,
the third closest. Once the flash crowd subsides, the sys-
tem removes the application from the two distant data
centers, first from DC3 and then from DC2. Note that
during the flash crowd, the two closest data centers are
utilized equally (up to their capacity watermark) and the
more distant data center DC3 receives only the overflow
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demand. Also note transient effects around 60 and
150 seconds, due to periodicity in policy recomputation
(hence an inherent lag in reaction to changing demand)
and an occasional unpredictable change in demand. E.g.,
at around 120 sec, the request rate produced by the de-
mand generator unexpectedly dropped (not following the
workload pattern), causing the system to lower selection
probability of DC2. But right after that, the workload
increased back to normal, leading to spike in utilization
of DC1, while leaving DC2 only modestly utilized.

8 Related Work
While many efforts have addressed application place-
ment and server selection, they mostly consider only one
of these two problems. Schemes in [28, 22, 14, 15,
17, 18, 20] address the placement problem assuming re-
quests are always forwarded to the closest replica. This
makes these approaches suboptimal in practice as servers
have limited capacity. Some works formulate global op-
timization problems [28, 14] but use them only as the ba-



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 11

sis for comparison since they are impractical due to com-
putational cost. Our prefix clustering approach makes
global optimization practical in many cases.

Other approaches focus on the server selection assum-
ing a given set of replicas [11, 36, 30, 13, 31]. None of
them take into account the distance between server and
back-end database, partly because they mostly consider
server selection for CDNs, which do not have this is-
sue. In particular, [36] proposes an optimal decentral-
ized server selection algorithm done by a set of mapping
nodes. We address a joint placement and selection prob-
lem in a centralized manner but handle the scale issue
through a novel prefix clustering technique. In [11], the
authors use a min-cost flow model to generate the server
selection strategy. However, they assume that the place-
ment of applications is fixed while our approach includes
the placement aspect. Furthermore, unlike our clustering
technique, their approach to scalability depends on a for-
tuitous placement configuration.

Among the few works that tackle both placement and
server selection, [25] proposes distributed placement and
server selection algorithms. However, their server selec-
tion aims to balance load without considering proxim-
ity. In [29], the authors propose decentralized placement
and centralized server selection algorithms that take into
account both server load and proximity but compute both
policies in isolation. Our unified approach showed per-
formance advantages over it. None of them considers
the distance between server and back-end database.

9 Conclusion and Future Work
This paper addresses a problem of efficient hosting
of multiple applications in a globally distributed cloud
computing platform and makes two main contributions.
First, we design a unified approach for application place-
ment and demand distribution policies and show its
promise through both simulation experiments and a pro-
totype testbed demonstration. Second, we propose a
novel demand clustering technique and show that it
makes policies based on global optimization models
practical for realistic-size environments. We hope our
clustering technique will be found useful beyond its ap-
plication to the particular algorithms discussed here.

Important issues for future work include extending
out approach to account for energy consumption, con-
sider inter-dependencies among hosted applications, al-
low applications to have different priorities, and ensure
pre-defined quality of service levels.
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Abstract—Infrastructure-as-a-Service (IaaS) clouds offer di-
verse instance purchasing options. A user can either run instances
on demand and pay only for what it uses, or it can prepay
to reserve instances for a long period, during which a usage
discount is entitled. An important problem facing a user is
how these two instance options can be dynamically combined to
serve time-varying demands at minimum cost. Existing strategies
in the literature, however, require either exact knowledge or
the distribution of demands in the long-term future, which
significantly limits their use in practice. Unlike existing works,
we propose two practical online algorithms, one deterministic and
another randomized, that dynamically combine the two instance
options online without any knowledge of the future. We show that
the proposed deterministic (resp., randomized) algorithm incurs
no more than 2  ↵ (resp., e/(e  1 + ↵)) times the minimum
cost obtained by an optimal offline algorithm that knows the exact
future a priori, where ↵ is the entitled discount after reservation.
Our online algorithms achieve the best possible competitive ratios
in both the deterministic and randomized cases, and can be
easily extended to cases when short-term predictions are reliable.
Simulations driven by a large volume of real-world traces show
that significant cost savings can be achieved with prevalent IaaS
prices.

I. INTRODUCTION

Enterprise spending on Infrastructure-as-a-Service (IaaS)
cloud is on a rapid growth path. According to [1], the public
cloud services market is expected to expand from $109 billion
in 2012 to $207 billion by 2016, during which IaaS is the
fastest-growing segment with a 41.7% annual growing rate [2].
IaaS cost management therefore receives significant attention
and has become a primary concern for IT enterprises.

Maintaining optimal cost management is especially chal-
lenging, given the complex pricing options offered in today’s
IaaS services market. IaaS cloud vendors, such as Amazon
EC2, ElasticHosts, GoGrid, etc., apply diverse instance (i.e.,
virtual machine) pricing models at different commitment
levels. At the lowest level, cloud users launch on-demand
instances and pay only for the incurred instance-hours, without
making any long-term usage commitments, e.g., [3], [4], [5].
At a higher level, there are reserved instances wherein users
prepay a one-time upfront fee and then reserve an instance for
months or years, during which the usage is either free, e.g.,
[4], [5], or is priced under a significant discount, e.g., [3].
Table I gives a pricing example of on-demand and reserved
instances in Amazon EC2.

Acquiring instances at the cost-optimal commitment level
plays a central role for cost management. Simply operating the
entire load with on-demand instances can be highly inefficient.

TABLE I
PRICING OF ON-DEMAND AND RESERVED INSTANCES (LIGHT

UTILIZATION, LINUX, US EAST) IN AMAZON EC2, AS OF FEB. 10, 2013.

Instance Type Pricing Option Upfront Hourly

Standard Small On-Demand $0 $0.08
1-Year Reserved $69 $0.039

Standard Medium On-Demand $0 $0.16
1-Year Reserved $138 $0.078

For example, in Amazon EC2, three years of continuous on-
demand service cost 3 times more than reserving instances
for the same period [3]. On the other hand, naively switching
to a long-term commitment incurs a huge amount of upfront
payment (more than 1,000 times the on-demand rate in EC2
[3]), making reserved instances extremely expensive for spo-
radic workload. In particular, with time-varying loads, a user
needs to answer two important questions: (1) when should I
reserve instances (timing), and (2) how many instances should
I reserve (quantity)?

Recently proposed instance reservation strategies, e.g., [6],
[7], [8], heavily rely on long-term predictions of future
demands, with historic workloads as references. These ap-
proaches, however, suffer from several significant limitations
in practice. First, historic workloads might not be available,
especially for startup companies who have just switched to
IaaS services. In addition, not all workloads are amenable
to prediction. In fact, it is observed in real production ap-
plications that workload is highly variable and statistically
nonstationary [9], [10], and as a result, history may reveal
very little information about the future. Moreover, due to the
long span of a reservation period (e.g., 1 to 3 years in Amazon
EC2), workload predictions are usually required over a very
long period of time, say, years. It would be very challenging, if
not impossible, to make sufficiently accurate predictions over
such a long term. For all these reasons, instance reservations
are usually made conservatively in practice, based on empirical
experiences [11] or professional recommendations, e.g., [12],
[13], [14].

In this paper, we are motivated by a practical yet fundamen-
tal question: Is it possible to reserve instances in an online
manner, with limited or even no a priori knowledge of the
future workload, while still incurring near-optimal instance
acquisition costs? To our knowledge, this paper represents the
first attempt to answer this question, as we make the following
contributions.

With dynamic programming, we first characterize the op-
timal offline reservation strategy as a benchmark algorithm

1
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(Sec. III), in which the exact future demand is assumed to be
known a priori. We show that the optimal strategy suffers “the
curse of dimensionality” [15] and is hence computationally
intractable. This indicates that optimal instance reservation is
in fact very difficult to obtain, even given the entire future
demands.

Despite the complexity of the reservation problem in the
offline setting, we present two online reservation algorithms,
one deterministic and another randomized, that offer the best
provable cost guarantees without any knowledge of future
demands beforehand. We first show that our deterministic
algorithm incurs no more than 2−↵ times the minimum cost
obtained by the benchmark optimal offline algorithm (Sec. IV),
and is therefore (2 − ↵)-competitive, where ↵ 2 [0, 1] is the
entitled usage discount offered by reserved instances. This
translates to a worst-case cost that is 1.51 times the optimal
one under the prevalent pricing of Amazon EC2. We then
establish the more encouraging result that, our randomized
algorithm improves the competitive ratio to e/(e − 1 + ↵)
in expectation, and is 1.23-competitive under Amazon EC2
pricing (Sec. V). Both algorithms achieve the best possible
competitive ratios in the deterministic and randomized cases,
respectively, and are simple enough for practical implemen-
tations. Our online algorithms can also be extended to cases
when short-term predictions into the near future are reliable
(Sec. VI).

In addition to our theoretical analysis, we have also eval-
uated both proposed online algorithms via large-scale simu-
lations (Sec. VII), driven by Google cluster-usage traces [16]
with 40 GB workload demand information of 933 users in one
month. Our simulation results show that, under the pricing of
Amazon EC2 [3], our algorithms closely track the demand
dynamics, realizing substantial cost savings compared with
several alternatives.

Though we focus on cost management of acquiring compute
instances, our algorithms may find wide applications in the
prevalent IaaS services market. For example, Amazon Elasti-
Cache [17] also offers two pricing options for its web caching
services, i.e., the On-Demand Cache Nodes and Reserved
Cache Nodes, in which our proposed algorithms can be
directly applied to lower the service costs.

II. OPTIMAL COST MANAGEMENT

We start off by briefly reviewing the pricing details of the
on-demand and reservation options in IaaS clouds, based on
which we formulate the online instance reservation problem
for optimal cost management.

A. On-demand and Reservation Pricing

On-Demand Instances: On-demand instances let users pay
for compute capacity based on usage time without long-term
commitments, and are uniformly supported in leading IaaS
clouds. For example, in Amazon EC2, the hourly rate of
a Standard Small Instance (Linux, US East) is $0.08 (see
Table I). In this case, running it on demand for 100 hours
costs a user $8.

On-demand instances resemble the conventional pay-as-
you-go model. Formally, for a certain type of instance, let
the hourly rate be p. Then running it on demand for h hours
incurs a cost of ph. Note that in most IaaS clouds, the hourly
rate p is set as fixed in a very long time period (e.g., years),
and can therefore be viewed as a constant.

Reserved Instances: Another type of pricing option that is
widely supported in IaaS clouds is the reserved instance. It
allows a user to reserve an instance for a long period (months
or years) by prepaying an upfront reservation fee, after which,
the usage is either free, e.g., ElasticHosts [4], GoGrid [5],
or is priced with a heavy discount, e.g., Amazon EC2 [3].
For example, in Amazon EC2, to reserve a Standard Small
Instance (Linux, US East, Light Utilization) for 1 year, a user
pays an upfront $69 and receives a discount rate of $0.039 per
hour within 1 year of the reservation time, as oppose to the
regular rate of $0.08 (see Table I). Suppose this instance has
run 100 hours before the reservation expires. Then the total
cost incurred is $69 + 0.039⇥100 = $72.9.

Reserved instances resemble the wholesale market. For-
mally, for a certain type of reserved instance, let the reservation
period be ⌧ (counted by the number of hours). An instance
that is reserved at hour i would expire before hour i + ⌧ .
Without loss of generality, we assume the reservation fee to
be 1 and normalize the on-demand rate p to the reservation
fee. Let ↵ 2 [0, 1] be the received discount due to reservation.
A reserved instance running for h hours during the reservation
period incurs a discounted running cost ↵ph plus a reservation
fee, leading to a total cost of 1+↵ph. In the previous example,
the normalized on-demand rate p = 0.08/69; the received
discount due to reservation is ↵ = 0.039/0.08 = 0.49; the
running hour h = 100; and the normalized overall cost is

1 + ↵ph = 72.9/69 .

In practice, cloud providers may offer multiple types of
reserved instances with different reservation periods and uti-
lization levels. For example, Amazon EC2 offers 1-year and
3-year reservations with light, medium, and high utilizations
[3]. For simplicity, we limit the discussion to one type of
such reserved instances chosen by a user based on its rough
estimations. We also assume that the on-demand rate is far
smaller than the reservation fee, i.e., p ⌧ 1, which is always
the case in IaaS clouds, e.g., [3], [4], [5].

B. The Online Instance Reservation Problem

In general, launching instances on demand is more cost
efficient for sporadic workload, while reserved instances are
more suitable to serve stable demand lasting for a long period
of time, for which the low hourly rate would compensate
for the high upfront fee. The cost management problem is to
optimally combine the two instance options to serve the time-
varying demand, such that the incurred cost is minimized. In
this section, we consider making instance purchase decisions
online, without any a priori knowledge about the future
demands. Such an online model is especially important for
startup companies who have limited or no history demand data

2
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and those cloud users whose workloads are highly variable
and non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when short-
term demand predictions are reliable in Sec. VI.

Since IaaS instances are billed in an hourly manner, we slot
the time to a sequence of hours indexed by t = 0, 1, 2, . . . At
each time t, demand d

t

arrives, meaning that a user requests d
t

instances, d
t

= 0, 1, 2, . . . To accommodate this demand, the
user decides to use o

t

on-demand instances and d

t

−o

t

reserved
instances. If the previously reserved instances that remain
available at time t are fewer than d

t

− o

t

, then new instances
need to be reserved. Let r

t

be the number of instances that
are newly reserved at time t, r

t

= 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost o

t

p plus the
reservation cost r

t

+ ↵p(d
t

− o

t

), where r

t

is the upfront
payments due to new reservations, and ↵p(d

t

− o

t

) is the cost
of running d

t

− o

t

reserved instances.
The cost management problem is to make instance purchase

decisions online, i.e., r
t

and o

t

at each time t, before seeing
future demands d

t+1, dt+2, . . . The objective is to minimize
the overall instance acquisition costs. Suppose demands last
for an arbitrary time T (counted by the number of hours). We
have the following online instance reservation problem:

min
{rt,ot}

C =

TX

t=1

(o
t

p+ r

t

+ ↵p(d
t

− o

t

)) ,

s.t. o

t

+

tX

i=t−⌧+1

r

i

≥ d

t

,

o

t

, r

t

2 {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all d
t

instances demanded
at time t are accommodated, with o

t

on-demand instances andP
t

i=t−⌧+1 ri reserved instances that remain active at time t.
Note that instances that are reserved before time t − ⌧ + 1
have all expired at time t, where ⌧ is the reservation period.
For convenience, we set r

t

= 0 for all t  0.
The main challenge of problem (1) lies in its online setting.

Without knowledge of future demands, the online strategy may
make purchase decisions that turn out later not to be optimal.
Below we clarify the performance metrics to measure how far
away an online strategy may deviate from the optimal solution.

C. Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [18]. The idea is
to bound the gap between the cost of an interested online
algorithm and that of the optimal offline strategy. The latter is
obtained by solving problem (1) with the exact future demands
d1, . . . , dT given a priori. Formally, we have

Definition 1 (Competitive analysis): A deterministic on-
line reservation algorithm A is c-competitive (c is a constant)
if for all possible demand sequences d = {d1, . . . , dT }, we
have

C

A

(d)  c · COPT(d) , (2)

where C

A

(d) is the instance acquisition cost incurred by algo-
rithm A given input d, and COPT(d) is the optimal instance
acquisition cost given input d. Here, COPT(d) is obtained by
solving the instance reservation problem (1) offline, where the
exact demand sequence d is assumed to know a priori.

A similar definition of the competitive analysis also extends
to the randomized online algorithm A, where the decision
making is drawn from a random distribution. In this case, the
LHS of (2) is simply replaced by E[C

A

(d)], the expected
cost of randomized algorithm A given input d. (See [18] for
a detailed discussion.)

Competitive analysis takes an optimal offline algorithm as
a benchmark to measure the cost performance of an online
strategy. Intuitively, the smaller the competitive ratio c is, the
more closely the online algorithm A approaches the optimal
solution. Our objective is to design optimal online algorithms
with the smallest competitive ratio.

We note that the instance reservation problem (1) captures
the Bahncard problem [19] as a special case when a user
demands no more than one instance at a time, i.e., d

t

 1 for
all t. The Bahncard problem models online ticket purchasing
on the German Federal Railway, where one can opt to buy
a Bahncard (reserve an instance) and to receive a discount
on all trips within one year of the purchase date. It has been
shown in [19], [20] that the lower bound of the competitive
ratio is 2 − ↵ and e/(e − 1 + ↵) for the deterministic and
randomized Bahncard algorithms, respectively. Because the
Bahncard problem is a special case of our problem (1), we
have

Lemma 1: The competitive ratio of problem (1) is at least
2−↵ for deterministic online algorithms, and is at least e/(e−
1 + ↵) for randomized online algorithms.

However, we show in the following that the instance re-
serving problem (1) is by no means a trivial extension to the
Bahncard problem, mainly due to the time-multiplexing nature
of reserved instances.

D. Bahncard Extension and Its Inefficiency

A natural way to extend the Bahncard solutions in [19] is
to decompose problem (1) into separate Bahncard problems.
To do this, we introduce a set of virtual users indexed by 1, 2,
. . . Whenever demand d

t

arises at time t, we view the original
user as d

t

virtual users 1, 2, . . . , d
t

, each requiring one instance
at that time. Each virtual user then reserves instances (i.e., buy
a Bahncard) separately to minimize its cost, which is exactly
a Bahncard problem.

However, such an extension is highly inefficient. An in-
stance reserved by one virtual user, even idle, can never be
multiplexed with another, who still needs to pay for its own
demand. For a real user, this implies that it has to acquire
additional instances, either on-demand or reserved, even if the
user has already reserved sufficient amount of instances to
serve its demand, which inevitably incurs a large amount of
unnecessary cost.

We learn from the above failure that instances must be
reserved jointly and time multiplexed appropriately. These

3
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factors significantly complicate our problem (1). Indeed, as
we see in the next section, even with full knowledge of the
future demand, obtaining an optimal offline solution to (1) is
computationally prohibitive.

III. THE OFFLINE STRATEGY AND ITS INTRACTABILITY

In this section we consider the benchmark offline cost
management strategy for problem (1), in which the exact future
demands are given a priori. The offline setting is an integer
programming problem and is generally difficult to solve. We
derive the optimal solution via dynamic programming. How-
ever, such an optimal offline strategy suffers from “the curse
of dimensionality” [15] and is computationally intractable.

We start by defining states. A state at time t is defined as
a (⌧ − 1)-tuple s

t

= (s
t,1, . . . , st,⌧−1), where s

t,i

denotes
the number of instances that are reserved no later than t and
remain active at time t+ i, i = 1, . . . , ⌧−1. We use a (⌧−1)-
tuple to define a state because an instance that is reserved no
later than t will no longer be active at time t+⌧ and thereafter.
Clearly, s

t,1 ≥ · · · ≥ s

t,⌧−1 as reservations gradually expire.
We make an important observation, that state s

t

only
depends on states s

t−1 at the previous time, and is independent
of earlier states s

t−2, . . . , s1. Specifically, suppose state s
t−1

is reached at time t−1. At the beginning of the next time t, r
t

new instances are reserved. These newly reserved r

t

instances
will add to the active reservations starting from time t, leading
state s

t−1 to transit to s
t

following the transition equations
below:

⇢
s

t,i

= s

t−1,i+1 + r

t

, i = 1, . . . , ⌧ − 2 ;
s

t,⌧−1 = r

t

.

(3)

Let V (s
t

) be the minimum cost of serving demands
d1, . . . , dt up to time t, conditioned upon the fact that state s

t

is reached at time t. We have the following recursive Bellman
equations:

V (s
t

) = min
st1

�
V (s

t−1) + c(s
t−1, st)

 
, t > 0, (4)

where c(s
t−1, st) is the transition cost, and the minimization

is over all states s
t−1 that can transit to s

t

following the
transition equations (3). The Bellman equations (4) indicate
that the minimum cost of reaching s

t

is given by the minimum
cost of reaching a previous state s

t−1 plus the transition cost
c(s

t−1, st), minimized over all possible previous states s
t−1.

Let
X

+ = max{0, X} . (5)

The transition cost is defined as

c(s
t−1, st) = o

t

p+ r

t

+ ↵p(d
t

− o

t

) , (6)

where
r

t

= s

t,⌧−1, (7)

o

t

= (d
t

− r

t

− s

t−1,1)
+
, (8)

and the transition from s
t−1 to s

t

follows (3). The rationale
of (6) is straightforward. By the transition equations (3), state
s
t−1 transits to s

t

by reserving r

t

= s

t,⌧−1 instances at time

t. Adding the s

t−1,1 instances that have been reserved before
t, we have r

t

+ s

t−1,1 reserved instances to use at time t. We
therefore need o

t

= (d
t

− r

t

− s

t−1,1)
+ on-demand instances

at that time.
The boundary conditions of Bellman equations (4) are

V (s0) = s0,1, for all s0 = (s0,1, . . . , s0,⌧−1), (9)

because an initial state s0 indicates that a user has already
reserved s0,1 instances at the beginning and paid s0,1.

With the analyses above, we see that the dynamic pro-
gramming defined by (3), (4), (6), and (9) optimally solves
the offline instance reserving problem (1). Therefore, it gives
COPT(d) in theory.

Unfortunately, the dynamic programming presented above
is computationally intractable. This is because to solve the
Bellman equations (4), one has to compute V (s

t

) for all
states s

t

. However, since a state s
t

is defined in a high-
dimensional space — recall that s

t

is defined as a (⌧ − 1)-
tuple — there exist exponentially many such states. Therefore,
looping over all of them results in exponential time complexity.
This is known as the curse of dimensionality suffered by high-
dimensional dynamic programming [15].

The intractability of the offline instance reservation problem
(1) suggests that optimal cost management in IaaS clouds is
in fact a very complicate problem, even if future demands can
be accurately predicted. However, we show in the following
sections that it is possible to have online strategies that
are highly efficient with near-optimal cost performance, even
without any knowledge of the future demands.

IV. OPTIMAL DETERMINISTIC ONLINE STRATEGY

In this section, we present a deterministic online reservation
strategy that incurs no more than 2 − ↵ times the minimum
cost. As indicated by Lemma 1, this is also the best that one
can expect from a deterministic algorithm.

A. The Deterministic Online Algorithm

We start off by defining a break-even point at which a
user is indifferent between using a reserved instance and an
on-demand instance. Suppose an on-demand instance is used
to accommodate workload in a time interval that spans a
reservation period, incurring a cost c. If we use a reserved
instance instead to serve the same demand, the cost will be
1 + ↵c. When c = 1/(1 − ↵), both instances cost the same,
and are therefore indifferent to the user. We hence define the
break-even point as

β = 1/(1− ↵) . (10)

Clearly, the use of an on-demand instance is well justified if
and only if the incurred cost does not exceed the break-even
point, i.e., c  β.

Our deterministic online algorithm is summarized as fol-
lows. By default, all workloads are assumed to be operated
with on-demand instances. At time t, upon the arrival of
demand d

t

, we check the use of on-demand instances in
a recent reservation period, starting from time t − ⌧ + 1

4
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to t, and reserve a new instance whenever we see an on-
demand instance incurring more costs than the break-even
point. Algorithm 1 presents the detail.

Algorithm 1 Deterministic Online Algorithm A

β

1. Let x

i

be the number of reserved instances at time i,
Initially, x

i

 0 for all i = 0, 1, . . .
2. Let I(X) be an indicator function where I(X) = 1 if X is

true and I(X) = 0 otherwise. Also let X+ = max{X, 0}.
3. Upon the arrival of demand d

t

, loop as follows:
4. while p

P
t

i=t−⌧+1 I(di > x

i

) > β do
5. Reserve a new instance: r

t

 r

t

+ 1.
6. Update the number of reservations that can be used in

the future: x
i

 x

i

+ 1 for i = t, . . . , t+ ⌧ − 1.
7. Add a “phantom” reservation to the recent period,

indicating that the history has already been “processed”:
x

i

 x

i

+ 1 for i = t− ⌧ + 1, . . . , t− 1.
8. end while
9. Launch on-demand instances: o

t

 (d
t

− x

t

)+.
10. t  t+ 1, repeat from 3.

Fig. 1 helps to illustrate Algorithm 1. Whenever demand
d

t

arises, we check the recent reservation period from time
t − ⌧ + 1 to t. We see that an on-demand instance has
been used at time i if demand d

i

exceeds the number of
reservations x

i

(both actual and phantom), i = t−⌧+1, . . . , t.
The shaded area in Fig. 1 represents the use of an on-
demand instance in the recent period, which incurs a cost of
p

P
t

i=t−⌧+1 I(di > x

i

). If this cost exceeds the break-even
point β (line 4 of Algorithm 1), then such use of an on-demand
instance is not well justified: We should have reserved an
instance before at time t−⌧+1 and used it to serve the demand
(shaded area) instead, which would have lowered the cost. As a
compensation for this “mistake,” we reserve an instance at the
current time t (line 5), and will have one more reservation to
use in the future (line 6). Since we have already compensated
for a misuse of an on-demand instance (the shaded area),
we add a “phantom” reservation to the history so that such
a mistake will not be counted multiple times in the following
rounds (line 7). This leads to an update of the reservation
number {x

i

} (see the bottom figure in Fig. 1).
Unlike the simple extension of the Bahncard algorithm

described in Sec. II-D, Algorithm 1 jointly reserves instances
by taking both the currently active reservations (i.e., x

t

) and
the historic records (i.e., x

i

, i < t) into consideration (line 4),
without any knowledge of the future. We will see later in
Sec. VII that such a joint reservation significantly outper-
forms the Bahncard extension where instances are reserved
separately.

B. Performance Analysis: (2− ↵)-Competitiveness
The “trick” of Algorithm 1 is to make reservations “lazily”:

no instance is reserved unless the misuse of an on-demand
instance is seen. Such a “lazy behaviour” turns out to guarantee
that the algorithm incurs no more than 2 − ↵ times the
minimum cost.

tt-  +1⌧ Time

D
em

an
d

tt-  +1⌧ Time

D
em

an
d

t+  -1⌧

xNewly updated
xOriginal

d

Demand curve
xReservation curve

Fig. 1. Illustration of Algorithm 1. The shaded area in the top figure shows
the use of an on-demand instance in the recent period. An instance is reserved
at time t if the use of this on-demand instance is not well justified. The bottom
figure shows the corresponding updates of the reservation curve x.

Let A
β

denote Algorithm 1 and let OPT denote the optimal
offline algorithm. We now make an important observation, that
OPT reserves at least the same amount of instances as A

β

does, for any demand sequence.
Lemma 2: Given an arbitrary demand sequence, let n

β

be
the number of instances reserved by A

β

, and let nOPT be the
number of instances reserved by OPT. Then n

β

 nOPT.
Lemma 2 can be viewed as a result of the “lazy behaviour”

of A
β

, in which instances are reserved just to compensate for
the previous “purchase mistakes.” Intuitively, such a conser-
vative reservation strategy leads to fewer reserved instances.
The proof of Lemma 2, however, is tedious and is deferred to
our technical report [21].

We are now ready to analyze the cost performance of A

β

,
using the optimal offline algorithm OPT as a benchmark.

Proposition 1: Algorithm 1 is (2 − ↵)-competitive. For-
mally, for any demand sequence,

C

A
 (2− ↵)COPT , (11)

where C

A
is the cost of Algorithm 1 (A

β

), and COPT is the
cost of the optimal offline algorithm OPT.

Proof: Suppose A

β

(resp., OPT) launches o
t

(resp., o⇤
t

) on-
demand instances at time t. Let Od(A

β

) be the costs incurred
by these on-demand instances under A

β

, i.e., Od(A
β

) =P
T

t=1 otp. We refer to Od(A
β

) as the on-demand costs of
A

β

. Similarly, we define the on-demand costs incurred by
OPT as Od(OPT) =

P
T

t=1 o
⇤
t

p. Also, let Od(A
β

\OPT) =P
T

t=1(ot−o

⇤
t

)+p be the on-demand costs incurred in A

β

that
are not incurred in OPT. We see

Od(A
β

\OPT)  βnOPT (12)

by noting the following two facts: First, demands
P

T

t=1(ot −
o

⇤
t

)+ are served by at most nOPT reserved instances in OPT.
Second, demands that are served by the same reserved instance
in OPT incur on-demand costs of at most β in A

β

(by the
definition of A

β

). We therefore bound Od(A
β

) as follows:

Od(A
β

)  Od(OPT) + Od(A
β

\OPT)

 Od(OPT) + βnOPT . (13)

5
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Let S =
P

T

t=1 dtp be the cost of serving all demands with
on-demand instances. We bound the cost of OPT as follows:

COPT = Od(OPT) + nOPT + ↵(S −Od(OPT)) (14)
≥ Od(OPT) + nOPT + ↵βnOPT (15)
≥ nOPT/(1− ↵) . (16)

Here, (15) holds because in OPT, demands that are served by
the same reserved instance incur at least a break-even cost β
when priced at an on-demand rate p.

With (13) and (16), we bound the cost of A
β

as follows:

C

A
= Od(A

β

) + n

β

+ ↵(S −Od(A
β

))

 (1− ↵)Od(A
β

) + nOPT + ↵S (17)
 (1− ↵)(Od(OPT) + βnOPT) + ↵S + nOPT (18)
= COPT + nOPT (19)
 (2− ↵)COPT . (20)

Here, (17) holds because n

β

 nOPT (Lemma 2). Inequality
(18) follows from (13), while (20) is derived from (16).

By Lemma 1, we see that 2−↵ is already the best possible
competitive ratio for deterministic online algorithms, which
implies that Algorithm 1 is optimal in a view of competitive
analysis.

Proposition 2: Among all online deterministic algorithms
of problem (1), Algorithm 1 is optimal with the smallest
competitive ratio of 2− ↵.

As a direct application, in Amazon EC2 with reservation
discount ↵ = 0.49 (see Table I), algorithm A

β

will lead to no
more than 1.51 times the optimal instance purchase cost.

Despite the already satisfactory cost performance offered
by the proposed deterministic algorithm, we show in the next
section that the competitive ratio may be further improved if
randomness is introduced.

V. OPTIMAL RANDOMIZED ONLINE STRATEGY

In this section, we construct a randomized online strategy
that is a random distribution over a family of deterministic
online algorithms similar to A

β

. We show that such ran-
domization improves the competitive ratio to e/(e − 1 + ↵)
and hence leads to a better cost performance. As indicated
by Lemma 1, this is the best that one can expect without
knowledge of future demands.

We start by defining a family of algorithms similar to the
deterministic algorithm A

β

. Let A
z

be a similar deterministic
algorithm to A

β

with β in line 4 of Algorithm 1 replaced
by z 2 [0,β]. That is, A

z

reserves an instance whenever it
sees an on-demand instance incurring more costs than z in
the recent reservation period. Intuitively, the value of z reflects
the aggressiveness of a reservation strategy. The smaller the
z, the more aggressive the strategy. As an extreme, a user
will always reserve when z = 0. Another extreme goes to
z = β (Algorithm 1), in which the user is very conservative
in reserving new instances.

Our randomized online algorithm picks a z 2 [0,β] accord-
ing to a density function f(z) and runs the resulting algorithm

A

z

. Specifically, the density function f(z) is defined as

f(z) =

⇢
(1− ↵)e(1−↵)z

/(e− 1 + ↵), z 2 [0,β),
δ(z − β) · ↵/(e− 1 + ↵), o.w.,

(21)

where δ(·) is the Dirac delta function. That is, we pick
z = β with probability ↵/(e − 1 + ↵). It is interesting to
point out that in other online rent-or-buy problems, e.g., [22],
[20], [23], the density function of a randomized algorithm
is usually continuous1. However, we note that a continuous
density function does not lead to the minimum competitive
ratio in our problem. Algorithm 2 formalizes the descriptions
above.

Algorithm 2 Randomized Online Algorithm
1. Randomly pick z 2 [0,β] according to a density function

f(z) defined by (21)
2. Run A

z

The rationale behind Algorithm 2 is to strike a suitable bal-
ance between reserving “aggressively” and “conservatively.”
Intuitively, being aggressive is cost efficient when future
demands are long-lasting and stable, while being conservative
is efficient for sporadic demands. Given the unknown future,
the algorithm randomly chooses a strategy A

z

, with an ex-
pectation that the incurred cost will closely approach the ex
post minimum cost. The following theorem shows that the
choice of f(z) in (21) leads to the optimal competitive ratio
e/(e− 1 + ↵). The proof is given in [21].

Proposition 3: Algorithm 2 is e/(e − 1 + ↵)-competitive.
Formally, for any demand sequence,

E[C
Az

]  e

e− 1 + ↵

COPT , (22)

where the expectation is over z between 0 and β according to
density function f(z) defined in (21).

By Lemma 1, we see that no online randomized algorithm
is better than Algorithm 2 in terms of the competitive ratio.

Proposition 4: Among all online randomized algorithms
of problem (1), Algorithm 2 is optimal with the smallest
competitive ratio e/(e− 1 + ↵).

As a direct application, in Amazon EC2 with reservation
discount ↵ = 0.49 (see Table I), the randomized algorithm
will lead to a competitive ratio of 1.23, compared with the
1.51-competitiveness of the deterministic alternative.

VI. COST MANAGEMENT WITH SHORT-TERM DEMAND
PREDICTIONS

In the previous sections, our discussions focus on the
extreme cases, with either full future demand information (i.e.,
the offline case in Sec. III) or no a priori knowledge of the
future (i.e., the online case in Sec. IV and V). In this section,
we consider the middle ground in which short-term demand
predictions are reliable. For example, websites typically see
diurnal patterns exhibited on their workloads, based on which

1The density function in these works is chosen as f(z) = e

z
/(e−1), z 2

[0, 1], which is a special case of ours when ↵ = 0.
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it is possible to have a demand prediction window that is
weeks into the future. Both our online algorithms can be easily
extended to utilize these knowledge of future demands when
making reservation decisions.

We begin by formulating the instance reservation problem
with limited information of future demands. Let w be the
prediction window. That is, at any time t, a user can predict its
future demands d

t+1, . . . , dt+w

in the next w hours. Since only
short-term predictions are reliable, one can safely assume that
the prediction window is less than a reservation period, i.e.,
w < ⌧ . The instance reservation problem resembles the online
reservation problem (1), except that the instance purchase
decisions made at each time t, i.e., the number of reserved
instances (r

t

) and on-demand instances (o
t

), are based on both
history and future demands predicted, i.e., d1, . . . , dt+w

. The
competitive analysis (Definition 1) remains valid in this case.

The Deterministic Algorithm: We extend our deterministic
online algorithm as follows. As before, all workloads are by
default served by on-demand instances. At time t, we can
predict the demands up to time t+w. Unlike the online deter-
ministic algorithm, we check the use of on-demand instances
in a reservation period across both history and future, starting
from time t+w−⌧+1 to t+w. A new instance is reserved at
time t whenever we see an on-demand instance incurring more
costs than the break-even point β and the currently effective
reservations are less than the current demand d

t

. Algorithm 3,
also denoted by A

w

β

, shows the details.

Algorithm 3 Deterministic Algorithm A

w

β

with Prediction
Window w

1. Let x

i

be the number of reserved instances at time i,
Initially, x

i

 0 for all i = 0, 1, . . .
2. Upon the arrival of demand d

t

, loop as follows:
3. while p

P
t+w

i=t+w−⌧+1 I(di > x

i

) > β and x

t

< d

t

do
4. Reserve a new instance: r

t

 r

t

+ 1.
5. Update the number of reservations that can be used in

the future: x
i

 x

i

+ 1 for i = t, . . . , t+ ⌧ − 1.
6. Add a “phantom” reservation to the history, indicating

that the history has already been “processed”: x

i

 
x

i

+ 1 for i = t+ w − ⌧ + 1, . . . , t− 1.
7. end while
8. Launch on-demand instances: o

t

 (d
t

− x

t

)+.
9. t  t+ 1, repeat from 2.

The Randomized Algorithm: The randomized algorithm
can also be constructed as a random distribution over a family
of deterministic algorithms similar to A

w

β

. In particular, let
A

w

z

be similarly defined as algorithm A

w

β

with β replaced by
z 2 [0,β] in line 3 of Algorithm 3. The value of z reflects
the aggressiveness of instance reservation. The smaller the z,
the more aggressive the reservation strategy. Similar to the
online randomized, we introduce randomness to strike a good
balance between reserving aggressively and conservatively.
Our algorithm randomly picks z 2 [0,β] according to the same
density function f(z) defined by (21), and runs the resulting
algorithm A

w

z

. Algorithm 4 formalizes the description above.

Algorithm 4 Randomized Algorithm with Prediction Window
w

1. Randomly pick z 2 [0,β] according to a density function
f(z) defined by (21)

2. Run A

w

z
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Fig. 2. The demand curve of User 552 in Google cluster-usage traces [16],
over 1 month.

It is easy to see that both the deterministic and the random-
ized algorithms presented above improve the cost performance
of their online counterparts, due to the knowledge of future
demands. Therefore, we have Proposition 5 below. We will
quantify their performance gains via trace-driven simulations
in the next section.

Proposition 5: Algorithm 3 is (2 − ↵)-competitive, and
Algorithm 4 is e/(e− 1 + ↵)-competitive.

VII. TRACE-DRIVEN SIMULATIONS

So far, we have analyzed the cost performance of the
proposed algorithms in a view of competitive analysis. In this
section, we evaluate their performance for practical cloud users
via simulations driven by a large volume of real-world traces.

A. Dataset Description and Preprocessing

Long-term user demand data in public IaaS clouds are often
confidential: no cloud provider has released such information
so far. For this reason, we turn to Google cluster-usage traces
that were recently released in [16]. Although Google is not a
public IaaS cloud, its cluster-usage traces record the computing
demands of its cloud services and Google engineers, which
can represent the computing demands of IaaS users to some
degree. The dataset contains 40 GB of workload resource
requirements (e.g., CPU, memory, disk, etc.) of 933 users over
29 days in May 2011, on a cluster of more than 11K Google
machines.

Demand Curve: Given the workload traces of each user,
we ask the question: How many computing instances would
this user require if it were to run the same workload in a public
IaaS cloud? For simplicity, we set an instance to have the same
computing capacity as a cluster machine, which enables us
to accurately estimate the run time of computational tasks by
learning from the original traces. We then schedule these tasks
onto instances with sufficient resources to accommodate their
requirements. Computational tasks that cannot run on the same
server in the traces (e.g., tasks of MapReduce) are scheduled
to different instances. In the end, we obtain a demand curve
for each user, indicating how many instances this user requires
in each hour. Fig. 2 illustrates such a demand curve for a user.

User Classification: To investigate how our online algo-
rithms perform under different demand patterns, we classify

7
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Fig. 3. User demand statistics and group division.

all 933 users into three groups by the demand fluctuation level
measured as the ratio between the standard deviation σ and
the mean µ.

Specifically, Group 1 consists of users whose demands are
highly fluctuating, with σ/µ ≥ 5. As shown in Fig. 3 (circle
‘o’), these demands usually have small means, which implies
that they are highly sporadic and are best served with on-
demand instances. Group 2 includes users whose demands are
less fluctuating, with 1  σ/µ < 5. As shown in Fig. 3 (cross
‘x’), these demands cannot be simply served by on-demand or
reserved instances alone. Group 3 includes all remaining users
with relatively stable demands (0  σ/µ < 1). As shown in
Fig. 3 (plus ‘+’), these demands have large means and are best
served with reserved instances. Our evaluations are carried out
for each user group.

Pricing: Throughout the simulation, we adopt the pric-
ing of Amazon EC2 standard small instances with the on-
demand rate $0.08, the reservation fee $69, and the discount
rate $0.039 (Linux, US East, 1-year light utilization). Since
the Google traces only span one month, we proportionally
shorten the on-demand billing cycle from one hour to one
minute, and the reservation period from 1 year to 6 days (i.e.,
24⇥ 365 = 8760 minutes = 6 days) as well.

B. Evaluations of Online Algorithms

We start by evaluating the performance of online algorithms
without any a priori knowledge of user demands.

Benchmark Online Algorithms: We compare our online
deterministic and randomized algorithms with three bench-
mark online strategies. The first is All-on-demand, in which
a user never reserves and operates all workloads with on-
demand instances. This algorithm, though simple, is the most
common strategy in practice, especially for those users with
time-varying workloads [11]. The second algorithm is All-
reserved, in which all computational demands are served via
reservations. The third online algorithm is the simple extension
to the Bahncard algorithm proposed in [19] (see Sec. II-D),
and is referred to as Separate because instances are reserved
separately. All three benchmark algorithms, as well as the two
proposed online algorithms, are carried out for each user in
the Google traces. All the incurred costs are normalized to

All-on-demand.
Cost Performance: We present the simulation results in

Fig. 4, where the CDF of the normalized costs are given,
grouped by users with different demand fluctuation levels.
We see in Fig. 4a that when applied to all 933 users, both

TABLE II
AVERAGE COST PERFORMANCE (NORMALIZED TO ALL-ON-DEMAND).

Algorithm All users Group 1 Group 2 Group 3
All-reserved 16.48 48.99 1.25 0.61
Separate 0.88 1.01 1.02 0.71
Deterministic 0.81 1.00 0.89 0.67
Randomized 0.76 1.02 0.79 0.63

the deterministic and randomized online algorithms realize
significant cost savings compared with all three benchmarks.
In particular, when switching from All-on-demand to the
proposed online algorithms, more than 60% users cut their
costs. About 50% users save more than 40%. Only 2%
incur slightly more costs than before. For users who switch
from All-reserved to our randomized online algorithms, the
improvement is even more substantial. As shown in Fig. 4a,
cost savings are almost guaranteed, with 30% users saving
more than 50%. We also note that Separate, though generally
outperforms All-on-demand and All-reserved, incurs more
costs than our online algorithms, mainly due to its ignorance
of reservation correlations.

We next compare the cost performance of all five algorithms
at different demand fluctuation levels. As expected, when it
comes to the extreme cases, All-on-demand is the best fit
for Group 1 users whose demands are known to be highly
busty and sporadic (Fig. 4b), while All-reserved incurs the
least cost for Group 3 users with stable workloads (Fig. 4d).
These two groups of users, should they know their demand
patterns, would have the least incentive to adopt advanced
instance reserving strategies, as naively switching to one
option is already optimal. However, even in these extreme
cases, our online algorithms, especially the randomized one,
remain highly competitive, incurring only slightly higher cost.

However, the acquisition of instances is not always a black-
and-white choice between All-on-demand and All-reserved.
As we observe from Fig. 4c, for Group 2 users, a more
intelligent reservation strategy is essential, since naive al-
gorithms, either All-on-demand or All-reserved, are always
highly risky and can easily result in skyrocketing cost. Our
online algorithms, on the other hand, become the best choices
in this case, outperforming all three benchmark algorithms by
a significant margin.

Table II summarizes the average cost performance for each
user group. We see that, in all cases, our online algorithms
remain highly competitive, incurring near-optimal costs for a
user.

C. The Value of Short-Term Predictions

While our online algorithms perform sufficiently well with-
out knowledge of future demands, we show in this section that
more cost savings are realized by their extensions when short-
term demand predictions are reliable. In particular, we consider
three prediction windows that are 1, 2, and 3 months into the
future, respectively. For each prediction window, we run both
the deterministic and randomized extensions (i.e., Algorithm 3
and 4) for each Google user in the traces, and compare their
costs with those incurred by the online counterparts without
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Fig. 4. Cost performance of online algorithms without a priori knowledge of future demands. All costs are normalized to All-on-demand.
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Fig. 5. Cost performance of the deterministic algorithm with various
prediction windows. All costs are normalized to the online deterministic
algorithm (Algorithm 1) without any future information.

future knowledge (i.e., Algorithm 1 and 2). Figs. 5 and 6
illustrate the simulation results, where all costs are normalized
to Algorithm 1 and 2, respectively.

As expected, the more information we know about the future
demands (i.e., longer prediction window), the better the cost
performance. Yet, the marginal benefits of having long-term
predictions are diminishing. As shown in Figs. 5a and 6a,
long prediction windows will not see proportional performance
gains. This is especially the case for the randomized algorithm,
in which knowing the 2-month future demand a priori is no
different from knowing 3 months beforehand.

Also, we can see in Fig. 5b that for the deterministic
algorithm, having future information only benefits those users
whose demands are stable or with medium fluctuation. This is
because the deterministic online algorithm is almost optimal
for users with highly fluctuating demands (see Fig. 4b), leaving
no space for further improvements. On the other hand, we see
in Fig. 6b that the benefits of knowing future demands are
consistent for all users with the randomized algorithm.

VIII. RELATED WORK

On-demand and reserved instances are the two most promi-
nent pricing options that are widely supported in leading
IaaS clouds [3], [4], [5]. Many case studies [11] show that
effectively combining the use of the two instances leads to a
significant cost reduction.

There exist some works in the literature, including both
algorithm design [6], [7], [24] and prototype implementation
[8], focusing on combining the two instance options in a
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Fig. 6. Cost performance of the randomized algorithm with various prediction
windows. All costs are normalized to the online randomized algorithm
(Algorithm 1) without any future information.

cost efficient manner. All these works assume, either explic-
itly or implicitly, that workloads are statistically stationary
in the long-term future and can be accurately predicted a
priori. However, it has been observed that in real production
applications, ranging from enterprise applications to large e-
commerce sites, workload is highly variable and statistically
non-stationary [9], [10]. Furthermore, most workload pre-
diction schemes, e.g., [25], [26], [27], are only suitable for
predictions over a very short term (from half an hour to several
hours). Such limitation is also shared by general predicting
techniques, such as ARMA [28] and GARCH models [29].
Some long-term workload prediction schemes [30], [31], on
the other hand, are reliable only when demand patterns are
easy to recognize with some clear trends. Even in this case,
the prediction window is at most days or weeks into the future
[30], which is far shorter than the typical span of a reservation
period (at least one year in Amazon EC2 [3]). All these factors
significantly limit the practical use of existing works.

Our online strategies are tied to the online algorithm lit-
erature [18]. Specifically, our instance reservation problem
captures a class of rent-or-buy problems, including the ski
rental problem [22], the Bahncard problem [19], and the
TCP acknowledgment problem [20], as special cases when
a user demands no more than one instance at a time. In these
problems, a customer obtains a single item either by paying a
repeating cost (renting) per usage or by paying a one-time cost
(buying) to eliminate the repeating cost. A customer makes
one-dimensional decisions only on the timing of buying. Our
problem is more complicated as a user demands multiple
instances at a time and makes two-dimensional decisions on

9
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both the timing and quantity of its reservation. A similar
“multi-item rent-or-buy” problem has also been investigated
in [23], where a dynamic server provisioning problem is
considered and an online algorithm is designed to dynamically
turn on/off servers to serve time-varying workloads with a
minimum energy cost. It is shown in [23] that, by dispatching
jobs to servers that are idle or off the most recently, the
problem reduces to a set of independent ski rental problems.
Our problem does not have such a separability structure and
cannot be equivalently decomposed into independent single-
instance reservation (Bahncard) problems, mainly due to the
possibility of time multiplexing multiple jobs on the same
reserved instance. It is for this reason that the problem is
challenging to solve even in the offline setting.

Besides instance reservation, online algorithms have also
been applied to reduce the cost of running a file system in
the cloud. The recent work [32] introduces a constrained ski-
rental problem with extra information of query arrivals (the
first or second moment of the distribution), proposing new
online algorithms to achieve improved competitive ratios. [32]
is orthogonal to our work as it takes advantage of additional
demand information to make rent-or-buy decisions for a single
item.

IX. CONCLUDING REMARKS AND FUTURE WORK

Acquiring instances at the cost-optimal commitment level
for time-varying workloads is critical for cost management to
lower IaaS service costs. In particular, when should a user
reserve instances, and how many instances should it reserve?
Unlike existing reservation strategies that require knowledge
of the long-term future demands, we propose two online
algorithms, one deterministic and another randomized, that
dynamically reserve instances without knowledge of the future
demands. We show that our online algorithms incur near-
optimal costs with the best possible competitive ratios, i.e.,
2−↵ for the deterministic algorithm and e/(e−1+↵) for the
randomized algorithm. Both online algorithms can also be eas-
ily extended to cases when short-term predictions are reliable.
Large-scale simulations driven by 40 GB Google cluster-usage
traces further indicate that significant cost savings are derived
from our online algorithms and their extensions, under the
prevalent Amazon EC2 pricing.

One of the issues that we have not discussed in this paper
is the combination of different types of reserved instances
with different reservation periods and utilization levels. For
example, Amazon EC2 offers 1-year and 3-year reserved
instances with light, medium, and high utilizations. Effectively
combining these reserved instances with on-demand instances
could further reduce instance acquisition costs. We note that
when a user demands no more than one instance at a time
and the reservation period is infinite, the problem reduces to
Multislope Ski Rental [33]. However, it remains unclear if
and how the results obtained for Multislope Ski Rental could
be extended to instance acquisition with multiple reservation
options.
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Abstract

Originating from the field of physics and economics, the
term elasticity is nowadays heavily used in the context
of cloud computing. In this context, elasticity is com-
monly understood as the ability of a system to automati-
cally provision and deprovision computing resources on
demand as workloads change. However, elasticity still
lacks a precise definition as well as representative met-
rics coupled with a benchmarking methodology to enable
comparability of systems. Existing definitions of elastic-
ity are largely inconsistent and unspecific, which leads
to confusion in the use of the term and its differentia-
tion from related terms such as scalability and efficiency;
the proposed measurement methodologies do not provide
means to quantify elasticity without mixing it with ef-
ficiency or scalability aspects. In this short paper, we
propose a precise definition of elasticity and analyze its
core properties and requirements explicitly distinguish-
ing from related terms such as scalability and efficiency.
Furthermore, we present a set of appropriate elasticity
metrics and sketch a new elasticity tailored benchmark-
ing methodology addressing the special requirements on
workload design and calibration.

1 Introduction

Elasticity has originally been defined in physics as a ma-
terial property capturing the capability of returning to its
original state after a deformation. In economical theory,
informally, elasticity denotes the sensitivity of a depen-
dent variable to changes in one or more other variables
[1]. In both cases, elasticity is an intuitive concept and
can be precisely described using mathematical formulas.

The concept of elasticity has been transferred to
the context of cloud computing and is commonly con-
sidered as one of the central attributes of the cloud
paradigm [10]. For marketing purposes, the term elastic-
ity is heavily used in cloud providers’ advertisements and

even in the naming of specific products or services. Even
though tremendous efforts are invested to enable cloud
systems to behave in an elastic manner, no common and
precise understanding of this term in the context of cloud
computing has been established so far, and no ways have
been proposed to quantify and compare elastic behavior.
To underline this observation, we cite five definitions of
elasticity demonstrating the inconsistent use and under-
standing of the term:

1. ODCA, Compute Infrastructure-as-a-Service [9]
”[. . . ] defines elasticity as the configurability and
expandability of the solution [. . . ] Centrally, it is the
ability to scale up and scale down capacity based on
subscriber workload.”

2. NIST Definition of Cloud Computing [8] ”Rapid
elasticity: Capabilities can be elastically provi-
sioned and released, in some cases automatically,
to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities
available for provisioning often appear to be unlim-
ited and can be appropriated in any quantity at any
time.”

3. IBM, Thoughts on Cloud, Edwin Schouten,
2012 [11] ”Elasticity is basically a ’rename’ of
scalability [. . . ]” and ”removes any manual labor
needed to increase or reduce capacity.”

4. Rich Wolski, CTO, Eucalyptus, 2011 [12] ”Elastic-
ity measures the ability of the cloud to map a single
user request to different resources.”

5. Reuven Cohen, 2009 [2] Elasticity is ”the quantifi-
able ability to manage, measure, predict and adapt
responsiveness of an application based on real time
demands placed on an infrastructure using a combi-
nation of local and remote computing resources.”

Definitions (1), (2), and (3) in common describe elas-
ticity as the scaling of system resources to increase or
decrease capacity, whereby definitions (1), (2) and (5)
specifically state that the amount of provisioned re-
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sources is somehow connected to the recent demand or
workload. In these two points there appears to be some
consent. Definitions (4) and (5) try to capture elasticity in
a generic way as a ’quantifiable’ system ability to handle
requests using different resources. Both of these defini-
tions, however, neither give concrete details on the core
aspects of elasticity, nor provide any hints on how elas-
ticity can be measured. Definition (3) assumes that no
manual work at all is needed, whereas in the NIST defi-
nition (2), the processes enabling elasticity do not need to
be fully automatic. In addition, the NIST definition adds
the adjective ’rapid’ to elasticity and draws the idealistic
picture of ’perfect’ elasticity where endless resources are
available with an appropriate provisioning at any point in
time, in a way that the end-user does not experience any
performance variability.

We argue that existing definitions of elasticity fail to
capture the core aspects of this term in a clear and un-
ambiguous manner and are even contradictory in some
parts. To address this issue, in this short paper, we pro-
pose a new refined definition of elasticity considering in
detail its core aspects and the prerequisites of elastic sys-
tem behavior (Section 2). Thereby, we clearly differen-
tiate elasticity from its related terms scalability and ef-
ficiency. In Section 4, we present metrics that are able
to capture elasticity, followed by Section 5, in which
we outline a benchmarking methodology for quantifying
elasticity discussing the issues of representativeness, re-
producibility and fairness of the measurement approach.

2 Elasticity

In this section, we first describe some important
prerequisites in order to be able to speak of elasticity,
present a new refined and comprehensive definition, and
then analyse its core aspects and dimensions. Finally,
we differentiate between elasticity and its related terms
scalability and efficiency.

2.1 Prerequisites
The scalability of a system including all hardware, vir-
tualization, and software layers within its boundaries is
a prerequisite in order to be able to speak of elasticity.
Scalability is the ability of a system to sustain increas-
ing workloads with adequate performance provided that
hardware resources are added. Scalability in the context
of distributed systems has been defined in [6], as well
as more recently in [3, 4], where also a measurement
methodology is proposed.

Given that elasticity is related to the ability of a system
to adapt to changes in workloads and resource demands,
the existence of at least one specific adaptation process
is assumed. The latter is normally automated, however,

in a broader sense, it could also contain manual steps.
Without a defined adaptation process, a scalable system
cannot behave in an elastic manner, as scalability on its
own does not include temporal aspects.

When evaluating elasticity, the following points need
to be checked beforehand:

• Autonomic Scaling:
What adaptation process is used for autonomic scal-
ing?

• Elasticity Dimensions:
What is the set of resource types scaled as part of
the adaptation process?

• Resource Scaling Units:
For each resource type, in what unit is the amount
of allocated resources varied?

• Scalability Bounds:
For each resource type, what is the upper bound on
the amount of resources that can be allocated?

2.2 Definition
Elasticity is the degree to which a system is able to

adapt to workload changes by provisioning and de-
provisioning resources in an autonomic manner,
such that at each point in time the available re-
sources match the current demand as closely as pos-
sible.

2.3 Dimensions and Core Aspects

Any given adaptation process is defined in the context of
at least one or possibly multiple types of resources that
can be scaled up or down as part of the adaptation. Each
resource type can be seen as a separate dimension of the
adaptation process with its own elasticity properties. If a
resource type is a container of other resources types, like
in the case of a virtual machine having assigned CPU
cores and RAM, elasticity can be considered at multi-
ple levels. Normally, resources of a given resource type
can only be provisioned in discrete units like CPU cores,
virtual machines (VMs), or physical nodes. For each di-
mension of the adaptation process with respect to a spe-
cific resource type, elasticity captures the following core
aspects of the adaptation:

Speed The speed of scaling up is defined as the time
it takes to switch from an underprovisioned state
to an optimal or overprovisioned state. The speed
of scaling down is defined as the time it takes to
switch from an overprovisioned state to an optimal
or underprovisioned state. The speed of scaling
up/down does not correspond directly to the tech-
nical resource provisioning/deprovisioning time.

2
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Precision The precision of scaling is defined as the ab-
solute deviation of the current amount of allocated
resources from the actual resource demand.

As discussed above, elasticity is always considered
with respect to one or more resource types. Thus, a direct
comparison between two systems in terms of elasticity
is only possible if the same resource types (measured in
identical units) are scaled.

To evaluate the actual observable elasticity in a given
scenario, as a first step, one must define the criterion
based on which the amount of provisioned resources is
considered to match the actual current demand needed
to satisfy the system’s given performance requirements.
Based on such a matching criterion, specific metrics that
quantify the above mentioned core aspects, as discussed
in more detail in Section 4, can be defined to quantify
the practically achieved elasticity in comparison to the
hypothetical optimal elasticity. The latter corresponds to
the hypothetical case where the system is scalable with
respect to all considered elasticity dimensions without
any upper bounds on the amount of resources that can
be provisioned and where resources are provisioned and
deprovisioned immediately as they are needed exactly
matching the actual demand at any point in time. Op-
timal elasticity, as defined here, would only be limited
by the resource scaling units.

2.4 Differentiation

In this section, we highlight the conceptual differences
between elasticity and the related terms scalability and
efficiency.

Scalability is a prerequisite for elasticity, but it does not
consider temporal aspects of how fast, how often,
and at what granularity scaling actions can be per-
formed. Scalability is the ability of the system to
sustain increasing workloads by making use of ad-
ditional resources, and therefore, in contrast to elas-
ticity, it is not directly related to how well the actual
resource demands are matched by the provisioned
resources at any point in time.

Efficiency expresses the amount of resources consumed
for processing a given amount of work. In contrast
to elasticity, efficiency is not limited to resource
types that are scaled as part of the system’s adap-
tation mechanisms. Normally, better elasticity re-
sults in higher efficiency. The other way round, this
implication is not given, as efficiency can be influ-
enced by other factors independent of the system’s
elasticity mechanisms (e.g., different implementa-
tions of the same operation).

3 Derivation of the Matching Function

To capture the criterion based on which the amount of
provisioned resources is considered to match the actual
current demand, we define a matching function m(w) = r
as a system specific function that returns the minimal
amount of resources r for a given resource type needed
to satisfy the system’s performance requirements at a
specified workload intensity. The workload intensity w
can be specified either as the number of workload units
(e.g., user requests) present at the system at the same
time (concurrency level), or as the number of workload
units that arrive per unit of time (arrival rate). A match-
ing function is needed for both directions of scaling
(up/down), as it cannot be assumed that the optimal re-
source allocation level when transitioning from an under-
provisioned state (upwards) are the same as when transi-
tioning from an overprovisioned state (downwards).
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Figure 1: Illustration of a Measurement-based Derivation
of Matching Functions

The matching functions can be derived based on mea-
surements, as illustrated in Figure 1, by increasing the
workload intensity w stepwise, while measuring the re-
source consumption r, and tracking resource allocation
changes. The process is then repeated for decreasing w.
After each change in the workload intensity, the system
should be given enough time to adapt its resource alloca-
tions reaching a stable state for the respective workload
intensity. As a rule of thumb, at least two times the tech-
nical resource provisioning time is recommended to use
as a minimum. As a result of this step, a system spe-
cific table is derived that maps workload intensity levels
to resource demands, and the other way round, for both
scaling directions within the scaling bounds.

4 Elasticity Metrics

To capture the core elasticity aspects speed and preci-
sion, we propose the following definitions and metrics as
illustrated in Figure 2:

• A is the average time to switch from an underprovi-
sioned state to an optimal or overprovisioned state
and corresponds to the average speed of scaling up.

3
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• ∑A is the accumulated time in underprovisioned
state.

• U is the average amount of underprovisioned re-
sources during an underprovisioned period.

• ∑U is the accumulated amount of underprovisioned
resources.

• B, ∑B, O, and ∑O are defined similarly for over-
provisioned states.
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Figure 2: Capturing Core Elasticity Metrics

We define the average precision of scaling up Pu as
Pu =

∑U
T where T is the total duration of the evaluation

period, and accordingly Pd = ∑O
T is defined as the aver-

age precision of scaling down. Based on the above de-
fined quantities, one could define an elasticity metric for
scaling up Eu as inversely proportional to A and U , e.g.
Eu = 1

A×U
, and accordingly elasticity for scaling down

Ed = 1
B×O

. The elasticity of a system under test (SUT) s
can then be captured in a matrix Ms where each vector vd
represents an elasticity dimension d and contains the val-
ues of the elasticity core metrics Eu, A, Pu for scaling up
and Ed , B, Pd for scaling down.

As an alternative to these metrics, the dynamic time
warping (DTW) distance [7] can be used as a robust dis-
tance metric to capture the similarity between the de-
mand and supply curves as well as to approximate the
technical reaction time of the adaptation mechanism. A
case study demonstrating this approach can be found
in [5].

5 Towards Benchmarking Elasticity

Characterizing the elasticity of a single system is not a
simple task on its own and it becomes even more com-
plicated when comparing different systems. An elastic-
ity benchmark is expected to deliver reproducible results
and generate a consistent order of the different systems
under test (SUTs) reflecting their potential and observed
elasticity, while not mixing this with general system ef-
ficiency and scalability aspects. Traditional benchmark-
ing approaches induce identical workloads on different

SUTs to provide a basis for fair comparisons, whereas
an elasticity benchmark is required to induce identical
demand curves. If two elastic systems exhibit signifi-
cant differences in efficiency (the amount of resources re-
quired for meeting performance requirements at a given
workload intensity level), it might well be that when pro-
cessing an identical workload, their adaptation mecha-
nisms are exercised in a significantly different manner.
As illustrated in Figure 3, in that case, deriving the elas-
ticity metrics for the same workload would result in un-
fair comparison since the more efficient system would
appear to exhibit better elasticity given that its adapta-
tion mechanisms were not stressed to the same extent.
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Figure 3: Elasticity vs. Efficiency

Therefore, the first step towards portability of an elas-
ticity benchmark and comparability of its results would
be the specification of a representative set of demand
curves and common performance goals in terms of re-
sponsiveness, throughput or utilisation for the consid-
ered resource types. The demand curves themselves
should contain bursts of different intensity, upward and
downward scaling trends and seasonal patterns of dif-
ferent shapes, concerning amplitude, duration and base
level capturing the most representative real-life scenar-
ios. Further challenges include the automated derivation
of the mapping functions as well as the generation of a
workload that induces the targeted demand curves as ac-
curately as possible on the evaluated SUTs.

6 Conclusion

In this short paper, we proposed a refined definition of
elasticity to contribute in establishing a common under-
standing of this term in the context of cloud computing.
Furthermore, we examined the core aspects of elasticity
explicitly differentiating it conceptually from the classi-
cal notions of scalability and efficiency. Finally, we pro-
pose metrics to capture the core elasticity aspects as well
as an elasticity benchmarking approach focusing on the
special requirements on workload design and its imple-
mentation.

4



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 27

References
[1] CHIANG, A. C., AND WAINWRIGHT, K. Fundamental meth-

ods of mathematical economics, 4. ed., internat. ed., [repr.] ed.
McGraw-Hill [u.a.], Boston, Mass. [u.a.], 2009.

[2] COHEN, R. Defining Elastic Computing, September
2009. http://www.elasticvapor.com/2009/09/

defining-elastic-computing.html, last consulted Feb.
2013.

[3] DUBOC, L. A Framework for the Characterization and Analy-
sis of Software Systems Scalability. PhD thesis, Department of
Computer Science, University College London, 2009. http:

//discovery.ucl.ac.uk/19413/1/19413.pdf.

[4] DUBOC, L., ROSENBLUM, D., AND WICKS, T. A Framework
for Characterization and Analysis of Software System Scalabil-
ity. In Proceedings of the 6th joint meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Sympo-
sium on The Foundations of Software Engineering (ESEC-FSE
’07) (2007), ACM, pp. 375–384.

[5] HERBST, N. R. Quantifying the Impact of Configuration Space
for Elasticity Benchmarking. Study thesis, Faculty of Com-
puter Science, Karlsruhe Institute of Technology (KIT), Ger-
many, 2011. http://sdqweb.ipd.kit.edu/publications/
pdfs/Herbst2011a.pdf.

[6] JOGALEKAR, P., AND WOODSIDE, M. Evaluating the scalabil-
ity of distributed systems. IEEE Transactions on Parallel and
Distributed Systems 11 (2000), 589–603.

[7] KEOGH, E., AND RATANAMAHATANA, C. A. Exact indexing
of dynamic time warping. Knowl. Inf. Syst. 7, 3 (Mar. 2005),
358–386.

[8] MELL, P., AND GRANCE, T. The NIST Definition of
Cloud Computing. Tech. rep., U.S. National Institute of
Standards and Technology (NIST), 2011. Special Pub-
lication 800-145, http://csrc.nist.gov/publications/

nistpubs/800-145/SP800-145.pdf.

[9] OCDA. Master Usage Model: Compute Infratructure as a
Service. Tech. rep., Open Data Center Alliance (OCDA),
2012. http://www.opendatacenteralliance.org/docs/

ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf.

[10] PLUMMER, D. C., SMITH, D. M., BITTMAN, T. J., CEAR-
LEY, D. W., CAPPUCCIO, D. J., SCOTT, D., KUMAR, R., AND
ROBERTSON, B. Study: Five Refining Attributes of Public and
Private Cloud Computing. Tech. rep., Gartner, 2009. http://

www.gartner.com/DisplayDocument?doc_cd=167182, last
consulted Feb. 2013.

[11] SCHOUTEN, E. Rapid Elasticity and the Cloud, Septem-
ber 2012. http://thoughtsoncloud.com/index.php/

2012/09/rapid-elasticity-and-the-cloud/, last con-
sulted Feb. 2013.

[12] WOLSKI, R. Cloud Computing and Open Source: Watching
Hype meet Reality, May 2011. http://www.ics.uci.edu/

~ccgrid11/files/ccgrid-11_Rich_Wolsky.pdf, last con-
sulted Feb. 2013.

5





USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 29

K-Scope: Online Performance Tracking for Dynamic Cloud Applications

Li Zhang Xiaoqiao Meng Shicong Meng Jian Tan
IBM TJ Watson Research Center

{zhangli, xmeng, smeng, tanji}@us.ibm.com

1 Introduction

Cloud computing is an ongoing technology evolution
that reshapes every aspects of computing. Cloud pro-
vides on-demand, flexible and easy-to-use resource pro-
visioning. It is also an open platform where Cloud users
can share software components, resources and services.
These features give rise to several emerging Cloud ap-
plication development and deployment paradigms, rep-
resented by continuous delivery and shared platform ser-
vices.

Continuous Delivery [3], coined by Amazon, is a new
way of releasing software wherein a Cloud application
(e.g., Amazon web services) is delivered through fre-
quent incremental updates. Cloud enables this paradigm
by allowing developers to easily create a pipeline of au-
tomated application building, testing and deployment.
For instance, application developers can quickly produce
multiple application deployment for different develop-
ment stages through virtual machine replication. Contin-
uous delivery provides tremendous benefits in improving
user experience and reduces the risk of each individual
release substantially.

Shared Platform Services are commonly used in
Cloud applications, and rapidly gaining popularity with
increasing Platform-as-a-Service offers from Cloud ser-
vice providers. Perhaps the most widely used plat-
form service today is database or datastore services (e.g.,
SimpleDB from Amazon and Cloud SQL from Google)
which are large-scale multi-tenant databases or datas-
tores shared by multiple Cloud applications through a set
of data access APIs. Enterprise users sometimes also de-
ploy their own database/datastore servers shared by mul-
tiple applications in their virtual private Cloud (VPC).
These shared data services reduce the management bur-
den for application developers.

Despite the enormous convenience and great potential
of these new paradigms, they also introduce new perfor-
mance management challenges due to the volatility em-

bedded in these techniques as well as the lack of well-
defined performance requirements. For instance, updates
in continuous deployment often change the behavior and
the performance characteristics of an application, which
may lead to performance degradation and service level
agreement (SLA) violations. Similarly, due to the shar-
ing nature of data services, one may experience fluctua-
tion in data access performance when the overall work-
loads of the data service change. We refer to Cloud appli-
cations utilizing these features as dynamic Cloud appli-
cations to distinguish them from applications using tra-
ditional development life cycle and dedicated software
components.

These challenges call for a fundamental piece missing
from today’s Cloud services, that is the ability to con-
tinuously, efficiently and accurately capture the most up-
to-date performance characteristics of a dynamic Cloud
application. Existing performance modeling approaches,
however, do not readily provide this continuous mod-
eling ability, primarily because they are designed with
a traditional static deployment in mind where an appli-
cation runs on dedicated machines and its implementa-
tion does not change during the modeling process. Some
of them [9] must run offline with long model training
time and high cost. Others [8, 12, 10] cannot explic-
itly model multiple request types or multiple functional
layers which are common for Cloud applications. There
are also techniques [1, 2] that can capture performance
changes at different functional layers, but require instru-
mentation of the application.

In this paper, we introduce the first online, multi-
request, multi-layer application performance modeling
approach. It is non-intrusive in the sense that it in-
fers critical performance model metrics such as re-
quest service time at different functional layers (e.g,
web/application/database servers), which are usually un-
observable, only from basic monitoring information such
as end-to-end response time and CPU utilization, with-
out instrumenting applications. Furthermore, it utilizes
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Kalman filters [7] to continuously adjust model metrics
to keep the model consistent with the dynamic Cloud ap-
plication. As a result, an up-to-date performance model
is always ready for users to query and perform tasks
such as capacity planning and auto-scaling. For instance,
it can quantitatively predict how much resources are
needed at different functional layers to maintain a given
performance, even when the application is constantly un-
dergoing software updates.

2 Approach Overview

We consider a Cloud application consisting of multi-
ple functional layers, e.g., web server layer, application
server layer and database server layer. Such an appli-
cation processes a number of different types of requests,
each of which can be quite different in terms of execution
time and resource consumption. Furthermore, the appli-
cation has a targeted performance goal or service level
agreement (SLA), e.g., the average response time should
be smaller than 500ms. We assume the available mon-
itoring data for these Cloud applications are basic sys-
tem utilization metrics (e.g., CPU utilization), through-
put and response time. These information are readily
available on most Cloud platforms [6].

We choose to use non-intrusive modeling techniques
that provide an easy-to-use performance model that can
predict application resource utilization and performance,
rather than using instrumentation based tracing tech-
niques. Specifically, we use the queuing network model
as the basic framework as it is general enough to model
multi-layer multi-request applications. To cope with the
changing performance characteristics in dynamic Cloud
applications, in particular, the request service time which
is the time a server spent to process a request, we need
an agile, online model parameter estimation technique,
rather than traditional constrained optimization based of-
fline estimation techniques. Kalman filter, as a time-
tested technique for estimating potentially changing fu-
ture states, falls nicely into our design.

2.1 Queueing Network Model

Queueing network models are commonly used to capture
the performance of complex computer systems [4]. They
have been shown to provide accurate characterization of
request level and system level performance metrics [5,
11]. Well calibrated queueing network models are the
basis for performance sizing and capacity planning. Here
we also use a general queueing network model for Cloud
applications.

We will use a 3-class, 2-tier system to illustrate our
performance modeling and tracking methodology. It can
easily be extended to a general n class k tier system. We

first define a set of variables for the model:

λi = Arrival rate of class i jobs.
Si j = Average service time of class i jobs at tier j.
di = Additional delay for class i jobs in system.

u0 j = Background utilization for tier j.
u j = Average utilization for tier j.
Ri = Average response time for class i jobs in system.

Under appropriate assumptions, the system perfor-
mance and resource utilization can be approximated by
the queueing analytic relations below.

u j = u0 j +λ1S1 j +λ2S2 j +λ3S3 j, j ∈ {1,2} (1)

Ri = di +
Si1

1−u1
+

Si2

1−u2
, i ∈ {1,2,3} (2)

In vector form: z := (u1,u2,R1,R2,R3)
T = h(x).

The assumptions for the above formulate to hold are
quite general. For example, under Poisson arrivals and
processor sharing policy at each server, the formulate
are exact. Processor sharing policy can reasonably ap-
proximate the scheduling behaviors in modern operating
systems. Numerous studies have demonstrated that the
queueing model above provides a good approximation to
the real system.

It is relatively easy to measure the aggregate system
utilization u1,u2, the request throughput λ1,λ2,λ3, and
the end-to-end response times R1,R2,R3. The delay and
service time parameters, however, are very difficult to
measure directly. These parameters are the key quanti-
tative information of the system model. In our 3-class
2-server example, the system parameters are

x = (u01,u02,d1,d2,d3,S11,S21,S31,S12,S22,S32)
T (3)

an 11-dimension vector. The important problem we need
to solve now is to estimate the system parameters x
based on the measurement data z = (u1,u2,R1,R2,R3)

T .
The off-line parameter estimation problem has been ad-
dressed in [11] by formulating the problem as an opti-
mization problem.

Below we address this on-line parameter estimation
problem with noisy measurement data. The challenge is
how to efficiently and accurately estimate x on line from
a continuous stream of measurements z. Kalman filter
theory is a perfect tool to tackle this problem.

2.2 Kalman Filter
Kalman filter is developed by Rudolf E. Kalman around
1960. It is commonly used to estimate the values of hid-
den state variables of a dynamic system that is excited
by stochastic disturbances and stochastic measurement
noise. In real systems, all the variables are functions of

2
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time. Measurements will change over time. Parameter
values will have estimates that are updated over time.
The dynamics of the system following the Kalman filter
framework is

x(t) = F(t)x(t −1)+w(t) = x(t −1)+w(t), (4)
z(t) = H(t)x(t −1)+v(t). (5)

Here x is the state variable that is not observed. F(t)
is the state transition model that describes the evolu-
tion of the state over time. w(t) is the process noise
which is assumed to be a zero mean, multi-variate Nor-
mal distribution with certain covariance matrix Q(t), i.e.
w(t) ∼ N (0,Q(t)). z(t) is the measurement vector.
H(t) is the observation model which maps the true state
space into the observed space. v(t) is the observation
noise which is assumed to be a zero mean, multi-variate
Normal distribution with certain covariance matrix R(t),
i.e. v(t)∼ N (0,R(t)). The covariance matrices Q and
R are not directly measurable. They will be tuned based
on best practice heuristics.

Since the measurement model is a non-linear function
of the system state parameters (due to the utilization u
in the denominator), we must use the ‘Extended’ ver-
sion of the Kalman filter. H(t) is computed as, H(t) =[

∂h
∂x

]
(x(t)) Since we don’t really know x at time t, we

will estimate it based on all the information we have be-
fore time t. H(t) =

[
∂h
∂x

]
(x̂(t|t − 1)) Here x̂(t|t − 1) is

the estimate of x(t) given all the information up to time
t −1.

The state of the filter is represented by two variables:
• x̂(t|t) is the estimate of state at time t given obser-

vations up to and including time t.
• P(t|t) is the error covariance matrix (a quantita-

tive measure of estimated accuracy of the state esti-
mate).

Here are the two sets of equations for the Kalman filter
algorithm:
Predict:

x̂(t|t −1) = F(t)x̂(t −1|t −1) (6)
P(t|t −1) = F(t)P(t −1|t −1)FT (t)+Q(t) (7)

Update:

H(t) =

[
∂h
∂x

]
(x̂(t|t −1)) (8)

S(t) = H(t)P(t|t −1)HT (t)+R(t) (9)
K(t) = P(t|t −1)HT (t)S−1(t) (10)

x̂(t|t) = x̂(t|t −1)+K(t)(z(t)−h(x̂(t|t −1)))(11)
P(t|t) = (I−K(t)H(t))P(t|t −1) (12)

In our 3-class 2-server queueing network example, the

Jacobian is given by, ∂h
∂x =

[
J11 J12 J13 J14
J21 J22 J23 J24

]
The

algorithm iterates between the predict and update steps
as new measurement data arrives.

2.3 Applications
K-Scope has a wide range of applications, including per-
formance diagnosis, answering what-if queries, capacity
planning and performance-driven dynamic provisioning.

Performance Diagnosis. Performance diagnosis for
multi-layer applications is painful as generic monitoring
provides only end-to-end performance statistics which
offer little insight on the performance of individual func-
tional layers. K-Scope explicitly estimates request ser-
vice time at different layers, and provides a clear break-
down of the response time.

Answering What-If Queries. A simple approach is
that we first apply the model to track the system in a sta-
ble period; with all the model parameters estimated, the
question can be generally solved by varying certain pa-
rameters and re-calculate the other parameters.

Capacity Planning. K-Scope also simplifies capacity
planning as application developers can leverage the per-
formance model produced by K-Scope to virtually ex-
plore a large number of deployment options and predict
the corresponding performance.

Dynamic Provisioning. As K-Scope provides a
breakdown of request execution time at different layers,
it can guide dynamic provisioning to the bottlenecked
layer. In addition, dynamic provisioning can query K-
Scope to find out how many additional virtual instances
are needed to maintain the targeted performance, and
quickly adds the required number of instances in a single
batch to minimize the window of performance violation.

3 Evaluation
We apply K-Scope to a real-world multi-layer applica-
tion. In addition, we describe a simple usage scenario in
which the model is used for capacity planning.

The tested workload is SOABench, an IBM internal
benchmark widely used to measure the performance of
Web servers. Our testbed consists of a client and a
server machine. Each machine is equipped with an In-
tel 1.6GHz 8-core Xeon processor. The client machine
runs the SOABench workload generator, a Java program
that could spawn multiple threads to simulate concur-
rent Web service users. The server machine runs IBM
WAS(WebSphere Application Server). Each Java thread
in the workload generator sends a service request to the
WAS server. Upon receiving the response, the thread
continues to send another request. Three types of service
requests are sent by the generator: for Type 1, both the
request and the response have 3K Byte payload. Type
2 and 3 have 10K and 1M Byte payload respectively.
This SOABench testbed follows the three-class two-tier
model in the previous sections.
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Figure 1: Workload charasterics in SOABench testbed
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Figure 2: Measured and Predicted Results

In our first experiment, we want to use the model to
track the performance of SOABench when the system
resources are close to full utilization. To this end, we
increase the number of threads on the client until either
the client or the server has a saturated CPU usage. At
this saturation point, the workload generator spawns 24
threads: 8 threads for each request type. Figure 1 shows
the throughput for each request type. We run the exper-
iment for about 15 minutes. The first 3 minutes are a
warm-up period. After the warm-up, all the performance
metrics become stable. We then collect data for the ob-
servable performance metrics, feed the data to the pro-
posed model, and measure the model accuracy by com-
paring the predicted CPU utilization and response time to
their actual values. Figure 2(a) compares the measured
and estimated CPU utilization. Figure 2(b) compares the
measured and the estimated response time for each re-
quest type. All these comparisons clearly show that the
model can precisely track the performance.

Now we describe a case in which the model is used
to address a simple capacity planning issue. The WAS
server has eight cores and all these cores are dedicated
to the WAS application. If the server allocates fewer
cores to the WAS, how will this impact the throughput
and response time? Such a typical what-if question can
be easily answered by applying the model. In principle,
if fewer CPU cores are allocated to a task, the task pro-
cessing time should increase. We approximately assume
that if the allocated core number on the server is reduced
to 1

x of the original core number, the service time for each
request, namely, S12, S22 and S32, should be multiplied by
x respectively. Now if the server keeps the same utiliza-
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Figure 3: Application in Capacity Planning

tion ratio, according to Equation (1), λ1, λ2 and λ3 are
reduced to 1

x of their original values respectively. After
computing the adjusted u1 from (1), we can further com-
pute the new response time from (2). To evaluate the ac-
curacy of this simple computation, we vary the allocated
core number on the server from 1 to 8, and for each set-
ting, we restart the WAS server. Figure 3(a) compares the
computed throughput and the actual measurements. Fig-
ure 3(b) compares the response time. On both aspects,
the estimation follows the ground truth.
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Abstract
Distributed in-memory caching systems such as mem-

cached have become crucial for improving the perfor-
mance of web applications. However, memcached by
itself does not control which node is responsible for
each data object, and inefficient partitioning schemes
can easily lead to load imbalances. Further, a statically
sized memcached cluster can be insufficient or inefficient
when demand rises and falls. In this paper we present
an automated cache management system that both intel-
ligently decides how to scale a distributed caching sys-
tem and uses a new, adaptive partitioning algorithm that
ensures that load is evenly distributed despite variations
in object size and popularity. We have implemented an
adaptive hashing system1 as a proxy and node control
framework for memcached, and evaluate it on EC2 using
a set of realistic benchmarks including database dumps
and traces from Wikipedia.

1 Introduction

Many enterprises use cloud infrastructures to deploy web
applications that service customers on a wide range of
devices around the world. Since these are generally
customer-facing applications on the public internet, they
feature unpredictable workloads, including daily fluctua-
tions and the possibility of flash crowds. To meet the per-
formance requirements of these applications, many busi-
nesses use in-memory distributed caches such as mem-
cached to store their content. Memcached shifts the per-
formance bottleneck away from databases by allowing
small, but computationally expensive pieces of data to be
cached in a simple way. This has become a key concept
in many highly scalable websites; for example, Facebook
is reported to use more than ten thousand memcached
servers.

1 Our system can be found in https://github.com/jinho10 as an open
source project.

Large changes in workload volume can cause caches
to become overloaded, impacting the performance goals
of the application. While it remains common, over-
provisoining the caching tier to ensure there is capacity
for peak workloads is a poor solution since cache nodes
are often expensive, high memory servers. Manual provi-
sioning or simple utilization based management systems
such as Amazon’s AutoScale feature are sometimes em-
ployed [7], but these do not intelligently respond to de-
mand fluctuations, particularly since black-box resource
management systems often cannot infer memory utiliza-
tion information.

A further challenge is that while memcached provides
an easy to use distributed cache, it leaves the application
designer responsible for evenly distributing load across
servers. If this is done inefficiently, it can lead to cache
hotspots where a single server is selected to host a large
set of popular data while others are left lightly loaded.
Companies such as Facebook have developed monitor-
ing systems to help administrators observe and manage
the load on their memcached servers [16, 18], but these
approaches still rely on expert knowledge and manual in-
tervention.

We have developed adaptive hashing that is a new
adaptive cache partitioning and replica management sys-
tem that allows an in-memory cache to autonomically ad-
just its behavior based on administrator specified goals.
Compared to existing systems, our work provides the fol-
lowing benefits:

• A hash space allocation scheme that allows for tar-
geted load shifting between unbalanced servers.

• Adaptive partitioning of the cache’s hash space to au-
tomatically meet hit rate and server utilization goals.

• An automated replica management system that adds or
removes cache replicas based on overall cache perfor-
mance.

We have built a prototype system on top of the popular
moxi + memcached platform, and have thoroughly eval-

1
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uated its performance characteristics using real content
and access logs from Wikipedia. Our results show that
when system configurations are properly set, our system
improves the average user reponse time by 38%, and hit
rate by 31% compared to the current approaches.

2 Background and Motivation

Consistent hashing [10] has been widely used in dis-
tributed hash tables (DHT) to allow dynamically chang-
ing the number of storage nodes without having to reor-
ganize all the data, which would be disastrous to appli-
cation performance. Figure 1 illustrates basic operations
of a consistent hashing scheme: node allocation, virtual
nodes, and replication. Firstly, with an initial number
of servers, consistent hashing calculates the hash values
of each server using a hash function (such as md5 in the
moxi proxy for memcached). Then, according to the pre-
defined number of virtual nodes, the address is concate-
nated with “-X”, X is the incremental number from 1 to
number of virtual nodes. Virtual nodes are used to dis-
tribute the hash space over the number of servers. This
way is particularly not efficient because the hash values
of server addresses are not guaranteed to be evenly dis-
tributed over the hash space, which makes imbalances.
This inefficiency is shown in Section 4.2.





















 






















 




























  

Figure 1: Consistent Hashing Operations; Ni is ith cache node.
Integer (32 bits) hash space consists of 232 possible key hashes.
Using virtual nodes somewhat helps to solve non-uniform key
hash distribution, but it is not guaranteed; Also, data replication
can help cache node faults.

Once the hash size for each server is fixed, it never
changes even though they may have serious imbalances.
Moreover, adding a new server may not significantly im-
prove performance since node allocation is determined
by hash values, which is a random allocation. Even
worse, the consistent hashing scheme has no knowledge
about the workload, which is a highly important vari-
ant [3].

As a motivating example, we randomly select 20,000
web pages among 1,106,534 pages in Wikipedia wiki-
books database to profile key and value statistics. Fig-
ure 2(a) shows the number of objects when using 100
cache servers. Even though the hash function tends
to provide uniformity, depending on the workloads the

number of objects in each server can largely vary. The
cache server that has the largest number of objects (659)
has 15× more objects than the cache server with the
smallest number of objects (42). This means that some
cache servers use a lot more memory than others, which
in turn worsens the performance. Figure 2(b) illustrates
the object size has a large variation, potentially resulting
in irregular hit rate to each server. Figure 2(c) describes
the comparison between the number of objects and the
size of objects in total. The two factors do not linearly
increase so that it makes harder to manage the multiple
number of servers. Figure 2(d) shows the average cache
size per each object by dividing the total used cache size
with the number of objects. From these statistics, we can
easily conclude that consistent hashing needs to be im-
proved with the knowledge of workloads.

3 System Design

The main argument against consistent hashing is that it
can become very inefficient if the hash space does not
represent the access patterns and cannot change over
time to adapt to the current workload. The main idea
of system design is that we adaptively schedule the hash
space size for each memory cache server so that the over-
all performance over time improves. This is essential
because currently once the size of hash space for each
memory cache server is set, it never changes the config-
uration unless a new cache server is added or the exist-
ing server is deleted. However, adding/deleting a server
does not have much impact since the assigned location is
chosen randomly ignoring workload characteristics. Our
system has three important phases: initial hash space
assignment using virtual nodes, space partitioning, and
memory cache server addition/removal. We first explain
the memory cache architecture and assumptions used in
the system design.

3.1 System Operation and Assumptions
There exist three extreme ways to construct a memory
caching tier depending on the location of load-balancers:
centralized architecture, distributed architecture, and hi-
erarchically distributed architecture as shown in Fig-
ure 3. The centralized architecture handles all the re-
quests from applications so that it can control hash space
in one place which means object distribution can be
controlled easily, whereas the load-balancers in the dis-
tributed architectures can have different configurations
so that managing object distribution is hard. Since the
centralized architecture is widely used structure in real
memory caching deployments, we use this architecture
in this paper. As load-balancers are implemented in a
very efficient way minimizing the processing time, we

2
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Figure 2: Wikibooks object statistics shows the number of objects in each server and used cache size are not uniform so that cache
server performance is not optimized.

assume that the load-balancer does not become the bot-
tleneck.

  












  










  
  










  

 

  



Figure 3: Memory Cache System Architecture; LB is load-
balancer or proxy.

When a user requests a page from a web server appli-
cation, the application sends one or more cache requests
to a load-balancer – applications do not know there is
a load-balancer since the implementation of the load-
balancer is transparent. The load-balancer hashes the
key to find the location where the corresponding data is
stored, and sends the request to one of the memory cache
servers (get operation). If there is data already cached,
the data is delivered to the application and then to the
user. Otherwise, the memory cache server notifies the
application that there is no data stored yet. Then, the ap-
plication queries the source medium such as database or
file system to read the data, then sends it to the user and
stores in the cache memory (set operation). Next time
another user wants to read the same web site, the data is
read from the memory cache server, resulting in a faster
response time.

3.2 Initial Assignment
Consistent hashing mechanism can use “virtual nodes” in
order to balance out the hash space over multiple mem-
ory cache servers so that different small chunks of the
hash space can be assigned to each cache server. The
number of virtual nodes is an administrative decision
based on engineering experience, but it has no guaran-
tee on the key distribution. Since our goal is to dynam-
ically schedule the size of each cache server, we make a
minimum bound on how many virtual nodes we need for
schedulability.

Let S = {s1, ...,sn0} be a set of memory cache servers
(the terms, memory cache server and node, are exchange-
ably used), where n0 is the initial number of nodes. We
denote v as the number of virtual nodes that each node
has in the hash space H, and vi as a virtual node i. That
is, a node i can have |si|= |H|

n0
objects, and a virtual node

i can have |vi|= |H|
n0×v objects, where |H| is the total num-

ber of possible hash value. One virtual node can affect
the other cache server in a clockwise direction as shown
in Figure 1.

The key insight in our system is that in order to enable
efficient repartitioning of the hash space, it is essential to
ensure that each node has some region of the total hash
space that is adjacent to every other node in the system.
This guarantees that, for example, the most overloaded
node has some portion of its hash space that is adjacent to
the least loaded node, allowing a simple transfer of load
between them by adjusting just one boundary. In order
to allow every pair to influence each other, we need to
make at least

v ≥
n0P2

n0
= n0 −1, (1)

virtual nodes, where P is a permutation operation. Equa-
tion (1) guarantees that every node pair appears twice in
a reverse order. So each physical node becomes (n0 −1)
virtual nodes, and the total number of overall virtual
nodes becomes n0 × (n0 −1). Also, we can increase the
total number of virtual nodes by multiplying a constant
to the total number. Figure 4 depicts an example assign-
ment when there are five nodes. In a clockwise direction,
every node influences all the other nodes.

        





Figure 4: Assignment of Five Memory Cache Servers in Ring;
As the example shows, N1 can influence all the other nodes N2,
N3, N4, and N5. This applies to all the nodes.

3



36 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Our node assignment algorithm is as follows. Let each
node si have an array si, j = {(x,y) | 1 ≤ x ≤ n0 and y ∈
{0,1}}, where 1 ≤ i ≤ n0 and 1 ≤ j ≤ (n0 − 1). Let sx

i, j
and sy

i, j be x and y values of si, j, respectively. sx
i, j is de-

fined as

sx
i, j =

{
j if j < i
j+1 if j ≥ i,

and all sy
i, j are initialized to 0. We pick two arbitrary

numbers w1 and w2, where 1 ≤ w1 ≤ n0 and 1 ≤ w2 ≤
n0 −1, assign w1 in the ring, and label it as virtual node
v∗ in sequence (∗ increases from 1 to n0 × (n0 − 1)).
Set sy

w1,w2 = 1, and w3 = sx
w1,w2

. We denote w4 =
(w2 + k) mod n0, where 1 ≤ k ≤ n0 − 1. We then in-
crement k from 1 to n0 − 1, and check entries satisfying
sy

w3,w4 = 0, and assign w3 to w1, w4 to w2, and sx
w3,w4

to
w3. Repeat this routine until the number of nodes reaches
n0 × (n0 − 1). For performance analysis, the time com-
plexity of the assignment algorithm is O(n3

0) because we
have to find sy

w3,w4 = 0 to obtain one entry each time, and
there are n0 × (n0 −1) virtual nodes. Therefore, the total
time is n0(n0 − 1)2. Note that this cost only needs to be
paid once at system setup.

3.3 Hash Space Scheduling

As seen in Figure 2, key hash and object size are not uni-
formly distributed so that the number of objects and the
size of used memory are significantly different, which in
turn gives different performance for each memory cache
server. The goal to use memory cache servers is to speed
up response time to users by using a faster medium than
the original source storage. Therefore, the performance
of memory cache servers can be represented by the hit
rate with the assumption that response time for all the
cache servers are the same. However, usage ratio of each
server should also be considered because the infrequent
use of a cache server usually means the memory space is
not fully utilized.

We define t0 as the unit time slot for memory cache
scheduling, which means the load-balancer repartitions
the cache every t0 time units. t0 is an administrative pref-
erence that can be determined based on workload traffic
patterns. Typically, only a relatively small portion of the
hash space controllable by a second system parameter is
rearranged during each scheduling event. If workloads
are expected to change on an hourly basis, setting t0 on
the order of minutes will typically suffice. For slower
changing workloads t0 can be set to an hour.

In the load-balancer which distributes cache requests
to memory cache servers, we can infer the cache hit rate
based on the standard operations: set and get. A hit rate
of a node si is

hi = 1− set(i)
get(i)− set(i)

,

where if hi > 1, hi = 1, and if hi < 0, hi = 0. “Hit rate” is
a composite metric to represent both object sizes and key
distribution, and this also applies when servers have dif-
ferent cache size. A simplified weighted moving average
(WMA) with the scheduling time t0 is used to estimate
the hit rate smoothly over the scheduling times. There-
fore, hi(t) = hi(t − 1)/t0 + (1 − set(i)/get(i)), where t
is the current scheduling time and t − 1 is the previous
scheduling time. In each scheduling, set(i) and get(i)
are reset to 0. We can also measure the usage ratio mean-
ing how many requests are served in a certain period of
time. The usage of a node si is ui = set(i)+ get(i), and
the usage ratio is ri = ui/max1≤ j≤n{u j}, where n is the
current number of memory cache servers, The usage ra-
tio also uses a simplified WMA so that ri(t) = ri(t)/t0 +
ui/maxa≤ j≤n{u j}. In order to build up a scheduling
objective with the hit rate and the usage ratio, we de-
fine a composite cost from hit rate and usage rate as
c=α ·h+(1−α) ·r, where α ∈ [0,1] is the impact factor
to control which feature is more important and h = 1−h
is a miss rate, and state the scheduling objective as fol-
lows:

minimize ∑n
i=1 (α ·hi +(1−α) · ri)

subject to hi ∈ [0,1] and ri ∈ [0,1], 1 ≤ i ≤ n
α ∈ [0,1]

where n is the current number of the memory cache
servers, and the objective is the sum of cost, and the
conditions bind the normalized terms. This remains in
a linear programming because we do not expand this to
an infinite time span, which means the current schedul-
ing state information propagates to the next scheduling
only through hit rate WMA and usage ratio WMA. That
is, we do not target to optimize all future schedulings,
but the current workload pattern with small impact from
past workload patterns. To satisfy the objective, we de-
fine the simple heuristic that finds the most cost disparity
node pair with

s∗i, j = max1≤i, j≤n{ci − c j}. (2)

For performance analysis, since c is always non-
negative, this problem becomes the problem finding a
maximum cost and a minimum cost. Therefore, we can
find proper pairs in O(n) because only neighbor nodes
are considered to be compared. Equation (2) outputs a
node pair where ci > c j, so a part of the hash space in ci
needs to move to c j for balancing out. The load-balancer
can either just change the hash space or migrate objects
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from ci to c j. Changing just hash space would provide
more performance degradation than data migration be-
cause the old cache space in ci should be filled in c j
again by reading slow data source medium. The amount
of hash space is determined by the ratio of two nodes as
c j/ci to balance the space. Also, we define β ∈ (0,1] to
control the amount of hash space moved from one node
to the other node. Therefore, we move data from node si
in a counter clockwise direction (i.e., decreasing direc-
tion) of the consistent hash ring for the amount of

β · (1−
c j

ci
)×|si|. (3)

For example, if we start with five inital memory cache
servers, and at the first scheduling point with ci = 1,
c j = 0.5 and β = 0.01 (1%), we have to move ci with
the amount of 0.01 · (1− 0.5

1 )× 232

20 = 1,073,741. This
means 0.5% of the hash space from si moves to s j. With
traditional consistent hashing, there is no guarantee that
si has hash space adjacent to s j, but our initial hash as-
signment does guarantee all pairs of nodes have one ad-
jacent region, allowing this shift to be performed easily
without further dividing the hash space.

3.4 Node Addition/Removal
Most current memory cache deployments are fairly static
except for periodic node failures and replacements. We
believe that these cache deployments can be made more
efficient by automatically scaling them along with work-
loads. Current cloud platforms allow virtual machines to
be easily launched based on a variety of critiera, for ex-
ample by using EC2’s as-create-launch-config command
along with its CloudWatch monitoring infrastructure [5].

The main goal of adding a new server is to balance
out the requests across replicas that overall performance
improves. Existing solutions based on consistent hash-
ing rely on randomness to balance the hash space. How-
ever, this can not guarantee that a new server will take
over the portion of the hash space that is currently over-
loaded. Instead, our system tries to more actively assign
a balanced hash space to the new server. The base idea
is that when servers are overloaded − the loads cross up-
ward the threshold line defined in advance based on ser-
vice level agreement (SLA) and sustain the overloaded
states for a predefined period of time − we find the most
overloaded k servers with s∗i =maxk

1≤i≤n{ci} and support
them with new servers, where an operator maxk denotes
finding top k values. So, n0 number of virtual nodes are
added as neighbors of s∗i ’s virtual nodes in the counter
clockwise direction. The new server takes over exactly
half of the hash space from s∗i , which is |si|

2 . The left
part of Figure 5 illustrates that s j is overloaded and sk is
added. sk takes over a half of the hash space s j has.









  





 

Figure 5: Object Affiliation in Ring After Node Addition and
Removal

When a server is removed, the load-balancer knows
about the removal by losing a connection to the server
or missing keep-alive messages. Existing systems deal
with node removal by shifting all the objects belonging
to the removed node to the next node in a clockwise di-
rection. However, this operation may make the next node
overloaded and also misses a chance to balance the data
over all the cache servers. When a node is removed in
our system due to failure or managed removal − as with
the adding criteria, the loads cross downward the thresh-
old line and sustain the states − the two immediately
adjacent virtual nodes will divide the hash space of the
removed node. As shown in the right part of Figure 5,
when there are three nodes si, sk, and s j in a clockwise
sequence, and sk is suddenly removed due to some rea-
sons, the load-balancer decides how much hash space si
moves based on the current costs ci and c j. si needs to
move c j

ci+c j
×|s j| amount of the hash space in a clockwise

direction.
Of course, after a node is added or removed, the hash

space scheduling algorithm will continue to periodically
repartition hash space to keep the servers balanced.

3.5 Implementation Considerations

To end our discussion of the system design, it is worth
highlighting some of the practical issues involved in im-
plementing the system in a cloud infrastructure. The
scheduling algorithm is simple, and so is reasonable for
implementation; however there exist two crucial aspects
that must be addressed to deploy the system in the real
infrastructure.

Data migration: When the scheduling algorithm
schedules the hash space, it inevitably has to migrate
some data from one server to another. Even though data
are not migrated, the corresponding data are naturally
filled in the moved hash space. However, since a re-
sponse time between an original data source and a mem-
ory cache server are significantly different, users may
feel slow response time [9]. The best way is to migrate
the affected data behind the scene when the scheduling
decision is made. The load-balancer can control the data
migration by getting the data from the previous server
and setting the data to the new server. The implementa-
tion should only involve the load-balancer since memory
cache applications like memcached are already used in
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Figure 6: Experimental Setup

many production applications. Also, Couchbase [6], an
open source project, currently uses a data migration so
that it is already publicly available.

Scheduling cost estimation: In the scheduling algo-
rithm, the cost function uses the hit rate and the usage
ratio because applications or load-balancers do not know
any information (memory size, number of CPUs, and so
on) about the attached memory cache servers. Estimating
the exact performance of each cache server is challeng-
ing, especially under the current memory cache system.
However, using the hit rate and the usage ratio makes
sense because these two factors can represent the current
cache server performance. Therefore, we implement the
system as practical as possible to be deployed without
any modifications to the existing systems.

4 Experimental Evaluation

Our goal is to perform experiments in a laboratory envi-
ronment to find out the scheduler behavior, and in a real
cloud infrastructure to see the application performance.
We use the Amazon EC2 infrastructure to deploy our sys-
tem.

4.1 Experimental Setup

Laboratory System Setup: Five experimental servers,
each of which has 4× Intel Xeon X3450 2.67GHz pro-
cessor, 16GB memory, and a 500GB 7200RPM hard
drive. Dom-0 is deployed with Xen 4.1.2 and Linux
kernel 3.5.0-17-generic, and the VMs use Linux ker-
nel 3.3.1. A Wikipedia workload generator, a web
server, a proxy server, and memory cache servers are
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Figure 7: Initial hash space assignment with 5 - 20 memory
cache servers.

deployed in a virtualized environment. We use Me-
diaWiki 1.14.1 [13], moxi 1.8.1 [15], and memcached
1.4.15 [14]. MediaWiki has global variables to spec-
ify whether it needs to use memory cache: wgMainCa-
cheType, wgParserCacheType, wgMessageCacheType,
wgMemCachedServers, wgSessionsInMemcached, and
wgRevisionCacheExpiry. In order to cache all texts,
we need to set wgRevisionCacheExpiry with expiration
time, otherwise MediaWiki always retrieves text data
from database.

Amazon EC2 System Setup: As shown in Figure 6(a),
web servers, proxy, and memory cache servers are de-
ployed in Amazon EC2 with m1.medium – 2 ECUs, 1
core, and 3.7 GB memory. All virtual machines are in
us-east-*. Wikipedia clients are reused from our labora-
tory servers.

Wikipedia Trace Characteristics: Wikipedia database
dumps and request traces have been released to sup-
port research activities [21]. January 2008 database
dump and request traces are used in this paper. Fig-
ure 6(b) shows the trace characteristics of Wikipedia af-
ter we have scaled down the logs through sampling. Fig-
ure 6(b)(1) illustrates the number of requests per sec-
ond from a client side to a Wikipedia web server. Re-
quests are sent to a web server, which creates the requests
sent to a proxy server and to individual memory cache
servers depending on the hash key. Figure 6(b)(2) de-
picts the key distribution over the hash space 232 range
– most keys are the URL without a root address (e.g.,
http://en.wikipedia.org/wiki/3D Movie).
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Figure 8: Hash Space Scheduling with Different Scheduling Impact Values α and β .

4.2 Initial Assignment

As we explain in Section 2 and 3.2, the initial hash space
scheduling is important. Firstly, we compare the hash
space allocation with the current system, ketama [11] –
an implementation of consistent hashing. Figure 7 il-
lustrates the initial hash space assignment. Figure 7(a)
shows the difference between the consistent hashing al-
location and adaptive hasing allocation when there are
five memory cache servers. The number of virtual nodes
is 100 (system default) for the consistent hashing scheme
so that the total number of virtual nodes is 5 × 100. Our
system uses the same number of virtual nodes by increas-
ing the number of virtual nodes per physical node by a
factor of 100

(n0−1) . With n0 = 5, the total number of vir-

tual nodes in our system is 5× 4× 100
4 = 500. Consis-

tent hashing has an uneven allocation without knowledge
of workloads, which is bad. Adaptive hasing starts with
the same size of hash space to all the servers, which is
fair. Figure 7(b) compares the size of hash space allo-
cated per node with each technique. In consistent hash-
ing, the largest gap between the biggest hash size and
the smallest hash size is 381,114,554. This gap can
make a huge performance difference between memory
servers. Figure 7(c) shows the hash size distribution
across 20 servers—our approach has a less variability in
the hash space assigned per node. Even worse, the con-
sistent hashing allocation fixes the assignment based on
a server’s address, and does not adapt if the servers are
not utilized well. We can easily see that without knowl-
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edge of workloads, it is hard to manage this allocation to
make all the servers perform well in a balanced manner.

4.3 α Behavior

As described in Section 3.3, we have two parameters α
and β to control the behaviors of the hash space sched-
uler. α gauges the importance of hit rate or usage rate.
α = 1 means that we only consider the hit rate as a metric
of scheduling cost. α = 0 means that we only consider
the usage rate as a metric of scheduling cost. β is the ra-
tio of the hash space size moved from one memory server
to another. Since β changes the total scheduling time
and determines fluctuation of the results, we fix β as a
0.01 (1%) based on our experience running many times.
In this experiment, we want to see the impact of α pa-
rameter. Particularly, we check how α changes hit rate,
usage rate, and hash space size. Our default scheduling
frequency is 1 min.

As a reference, Figure 8(a) illustrates how the current
consistent hashing system works under the Wikipedia
workload. The default hash partitioning leaves the three
servers unbalanced, causing significant differences in the
hit rate and utilization of each server.

Figure 8(b) shows the performance changes when α =
1.0, which means we only consider balancing hit rates
among servers. As Host 3 starts with a lower hit rate than
other two hosts, the hash scheduler takes a hash space
from Host 3 in order to increase its hit rate. The usage
rate of host 3 decreases as its hash allocation decreases.

Figure 8(c) depicts the results when α = 0.0, which
means we only seek to balance usage rates among
servers. The system begins with an equal hash space al-
location across each host, but due to variation in object
popularity, each host receives a different workload inten-
sity. Since Host 1 initially has about 2.5 times as many
requests per second arriving to it, the scheduler tries to
rebalance the load towards Hosts 2 and 3. The system
gradually shifts data to these servers, eventually balanc-
ing the load so that the request rate standard deviation
across servers drops from 0.77 to 0.09 over the course of
the experiment. This can be seen from the last (fourth)
figure in Figure 8(c).

To balance these extremes, we next consider how α
value (0.5) affects the performance. Figure 8(d) shows
hit rate and usage rate of each server with α = 0.5. Since
the cost of each server is calculated out of hit rate and us-
age rate, the scheduler tries to balance both of them. As
shown in the third graph in Figure 8(d), the costs balance
among three servers which also means balancing both hit
rate and usage rate.

Since workloads have different characteristics, the pa-
rameters α and β should be adjusted accordingly. We
show further aspects of this adjustment while experi-
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Figure 10: Hash Space Scheduling Analysis

menting the system in the Amazon EC2 infrastructure.

4.4 β Behavior

β value is the ratio of the amount of hash size moved in
each scheduling time. We can show the behavior of β
by illustrating the number of requests from each server
(Figure 10(a)) and the amount of hash size per schedul-
ing time (Figure 10(b)). As β value 0.01 yields approx-
imately 1% of hash space from Equation (3), the moved
hash size is decreasing as the hash space of an overloaded
server decreases. Figure 10(b) shows the amount of hash
space moved each interval. This continues to fall as Host
1’s hash space decreases, but has relatively little effect on
the request rate. However, after 180 minutes, a small, but
very popular region of the hash space is shifted to Host 2.
The system responds by trying to move a larger amount
of data between hosts in order to rebalance them. This il-
lustrates how the system can automatically manage cache
partitioning, despite highly variable workloads.

4.5 Scaling Up and Down

As we explained in Section 3.4, adaptive hasing can au-
tonomously add or delete memory cache servers based
on the current performance. Since cloud infrastructure
hosting companies provide a function to control the re-
sources elastically, this is a very useful feature to prevent
performance issues due to traffic bursts situation. Fig-
ure 9 shows the performance impact when adding a new
server or deleting a server from the memory cache tier.
Figure 9(a) starts with three memory cache servers, and
a new server is added at 100 minutes due to an over-
loaded server. When a new server is added, the over-
loaded server gives 30% of its traffic to the new server so
that overall usage rates of all servers are balanced. Con-
versely, Figure 9(b) assumes that one server out of five
servers crashes at 100 minutes. As our initial hash allo-
cation assigns the servers adjacent to one another, this
gives a good benefit by distributing hash space to all
other servers. This can be seen from the third graph in
Figure 9(b).

8



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 41

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

H
it

 R
a
te

Time (3 hours)

3 Hosts 4 Hosts

Host added

 0

 1

 2

 3

 4

0 50 100 150 200

#
 o

f 
R

eq
s 

p
er

 m
in

(x
1

0
3
)

Time (3 hours)

Host added

H
as

h
 S

p
ac

e 
(0

 -
 2

3
2
)

Time (3 hours)
0 50 100 150 200

33.3 %

33.3 %

33.3 %

10.7 %

26.7 %

17.2 %

45.3 %

Host added

(a) Node Addition

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

H
it

 R
a
te

Time (3 hours)

5 Hosts 4 Hosts

Host removed

 0

 1

 2

0 50 100 150 200

#
 o

f 
R

eq
s 

p
er

 m
in

(x
1

0
3
)

Time (3 hours)

Host removed

H
as

h
 S

p
ac

e 
(0

 -
 2

3
2
)

Time (3 hours)
0 50 100 150 200

20 %

20 %

20 %

20 %

20 %

25.1 %

24.7 %

27.8 %

22.2 %

Host removed

(b) Node Deletion

Figure 9: Memory Cache Node Addition / Deletion (α = 0.5 and β = 0.01).

4.6 User Performance Improvement

The previous experiments have demonstrated how the
parameters affect the adaptive hash scheduling system;
next we evaluate the overall performance and efficiency
improvements it can provide. We use Amazon EC2 to
run up to twenty total virtual machines — three web
servers, one proxy server, one database, and between 3
and 15 memory cache servers. We use five servers in our
own lab to act as clients, and have them connect to the
web servers using the Wikipedia workload.

We compare two caching approaches: a fixed size
cluster of fifteen caches partitioned using Ketama’s con-
sistent hashing algorithm and our adaptive approach. The
workload starts at 30K req/min, rises to 140K req/min,
and then falls back to the original load over the course of
five hours, as shown in Figure 12. We configure Ketama
for a “best case scenario”—it is well provisioned and re-
ceives an average response time of 105 ms, and a hit rate
of 70%. We measure our system with α values between
0 and 1, and initially allocate only 3 servers to the mem-
cached cluster. Our system monitors when the request
rate of a cache server surpasses a threshold for more than
30 seconds to decide whether to add or remove a node
from the memory server pool. For this experiment, we
found that more than 6K requests/sec caused a signifi-
cant increase for the response time, so we use this as the
threshold.

Figure 11 shows (a) average hit rate; (b) average re-

sponse time from clients; (c) average standard deviation
on number of requests to the EC2 cache servers; (d) num-
ber of used servers including dynamically added ones.
Horizontal lines show the average performance of the
current consistent hashing system used by moxi, and bars
represent our system with different α values.

As expected, increasing α causes the hit rate to im-
prove, providing as much as a 31% increase over Ke-
tama. The higher hit rate can lower response time by
up to 38% (figure b), but this is also because a larger α
value tends to result in more servers being used (figure
d). Since a large α ignores balance between servers (fig-
ure c), there is a greater likelihood of a server becoming
overloaded when the workload shifts. As a result, using
a high α does improve performance, but it will come at
increased monetary cost for using more cloud resources.
We find that for this workload, the system administrators
may want to assign α = 0.5, which achieves a reason-
able average response time while requiring only a small
number servers compared to Ketama.

Figure 12 shows how the workload and number of ac-
tive servers changes over time for α = 1. As the work-
load rises, the system adapts by adding up to five ad-
ditional servers. While EC2 charges in full hour in-
crements, our system currently aggressively removes
servers when they are no longer needed; this behavior
could easily be changed to have the system only remove
servers at the end of each instance hour.
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5 Related Work

Peer-to-peer applications gave rise to the need for dis-
tributed lookup systems to allow users to find content
across a broad range of nodes. The Chord system used
consistent hashing algorithms to build a distributed hash
table that allowed fast lookup and efficient node removal
and addition [20]. This idea has since been used in a
wide range of distributed key-value stores such as mem-
cached [14], couchbase [6], FAWN [2], and SILT [12].
Rather than proposing a new key-value store architec-
ture, our work seeks to enhance memcached with adap-
tive partitioning and automated replica management.
Previously, memcached has been optimized for large
scale deployments by Facebook [16, 18], however their
focus is on reducing overheads in the network path,
rather than on load balancing. Zhu et. al. [22] demon-
strate how scaling down the number of cache servers
during low load can provide substantial cost savings,
which motivates our efforts to build a cache management
system that is more adaptable to membership changes.
Christopher et. al. [19] proposes a prediction model to
meet the strict service level objectives by scaling out us-
ing replication.

There are many other approaches for improving the
performance of key-value stores. Systems built upon
a wide range of hardware platforms have studied, in-
cluding low-power servers [2], many-core processors [4],
having front-end cache [8], and as combined memory
and SSD caches [17]. While our prototype is built around

memcached, which stores volatile data in RAM, we be-
lieve that our partitioning and replica management al-
gorithms could be applied to a wide range of key-value
stores on diverse hardware platforms.

Centrifuge [1] proposes a leasing and partioning
model to provide the benefits of fine-grained leases to in-
memory server pools without their associated scalability
costs. However, the main goal of Centrifuge is to provide
a simplicity to general developers who can use the pro-
vided libraries to model leasing and partioning resources.
This work can be applied to managing the memory cache
system, but Centrifuge does not support dynamic adap-
tation to workloads.

6 Conclusion

Many web applications can improve their performance
by using distributed in-memory caches like memcached.
However, existing services do not provide autonomous
adjustment based on the performance of each cache
server, often causing some servers to see unbalanced
workloads. In this paper we present how the hash space
can be dynamically re-partitioned depending on the per-
formance. By carefully distributing the hash space across
each server, we can more effectively balance the system
by directly shifting load from the most to least loaded
servers. Our adaptive hash space scheduler balances both
the hit rate and usage rate of each cache server, and the
controller can decide automatically how many memory
cache servers are required to meet the predefined per-
formance. The partitioning algorithm uses these param-
eters to dynamically adjust the hash space so that we
can balance the loads across multiple cache servers. We
implement our system by extending memcached and an
open source proxy server, and test both in the lab and in
Amazon EC2. Our future works include an automatic α
value adjustment according to the workloads and a mi-
cro management of hot objects without impacting appli-
cation performance.
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Abstract
To add processing power under power constraints, emerging
heterogeneous processors include fast and slow cores on the
same chip. This paper demonstrates that this heterogeneity
is well suited to interactive data center workloads (e.g., web
search, online gaming, and financial trading) by observing
and exploiting two workload properties. (1) These
workloads may trade response quality for responsiveness.
(2) The request service demand is unknown and varies
widely with both short and long requests. Subject to
per-server power constraints, traditional homogeneous
processors either include a few high-power fast cores that
deliver high quality responses or many low-power slow
cores that deliver high throughput, but not both.

This paper shows heterogeneous processors deliver both
high quality and throughput by executing short requests on
slow cores and long requests on fast cores with Fast Old
and First (FOF), a new scheduling algorithm. FOF
schedules new requests with unknown service demands on
the fastest idle core and migrates requests from slower to
faster cores. We simulate and implement FOF. In
simulations modeling Microsoft’s Bing index search, FOF
on heterogeneous processors improves response quality and
increases throughput by up to 50% compared to
homogeneous processors. We confirm simulation
improvements with an implementation of an interactive
finance server using Simultaneous Multithreading (SMT),
configured as a dynamic heterogeneous processor. Both
simulation and experimental results indicate processor
heterogeneity offers a lot of potential for interactive
workloads.

1 Introduction

A heterogeneous processor contains cores with
differentiated power and performance characteristics. All
cores execute the same instruction set (ISA), but they run at
different speeds and/or use different microarchitectures so

∗This work was partially done while Shaolei Ren was visiting Microsoft
Research.

that the faster the core, the more power it consumes. Since
power consumption increases faster than speed, a fast core
executes a request in less time than a slow core, but
consumes more energy. We show that a homogeneous
processor under a fixed power constraint can only deliver
either high performance with a few fast cores or high
throughput with many more slow cores for interactive data
center workloads, whereas heterogeneous processors
deliver both with substantial benefits.

Interactive services require high quality results and
timely responses to satisfy users and generate revenue [23].
For example, Bing search servers are provisioned to execute
requests within 120 ms with an average quality of 0.99. This
quality metric compares returned search results within a
time limit to an off-line search with unlimited time and
resources. Interactive services have two properties. First,
many interactive services — including web search,
financial trading, and online gaming — are adaptive, i.e.,
processing a request for more time improves response
quality. Adaptive execution may return lower-quality
responses (or partial results) for responsiveness. Second,
the service demand of a request is unknown a priori, and it
varies widely with both short and long requests.

The main contribution of this paper is to demonstrate that
exploiting processor heterogeneity delivers substantial
benefits to interactive workloads in data centers as
compared to using homogeneous processors. More
concretely, when building a data center to support
interactive services, power budgets constrain the overall
system as well as individual servers. Such design-time
power constraints limit the core speed and number of cores
on a chip. With a fixed design-time power budget, system
designers can deploy a homogeneous processor with either
fewer fast high-performance power-hungry cores that are
less energy-efficient or a larger number of slow cores that
are more energy-efficient. For example, one fast core may
burn as much power as 8 to 16 low power cores [38]. Fast
cores offer high service quality and fast response at a light
load, but when the load increases, both quality and
throughput degrade quickly since requests significantly
outnumber cores. In contrast, more slow energy-efficient
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cores increase throughput by executing more requests, but
the quality of responses drops when the slow cores do not
execute fast enough to fully process long requests before
their respective deadlines. We show how to achieve both
high quality and throughput with a heterogeneous design
provisioned with both fast and slow cores. The key idea is
to execute short requests on slow cores, so that they
complete within their deadline with low energy
consumption, and to execute long requests on fast cores to
obtain high response quality. Towards this end, there are
two challenges. (1) When a request arrives, we do not know
its service demand, and predicting service demand is
difficult for many workloads [34]. (2) Even if we know the
service demand, there are multiple requests but only a
limited number of cores, and therefore the most appropriate
core on which to execute a request may not be available.

This paper address these challenges by introducing a new
online algorithm for scheduling requests of interactive
services on heterogeneous processors, called Fast Old and
First (FOF). When a new request arrives, FOF assigns it the
fastest available core (Fast First). When a request
completes, FOF promotes the oldest request on a slower
core to the fastest, newly available core (Fast Old). FOF
achieves high throughput because it completes many short
requests on energy-efficient slow cores. FOF achieves high
response quality since requests are processed on fast cores
whenever possible and long requests execute with a higher
probability on fast cores and thus all requests are likely to
complete before their deadlines.

We model Microsoft Bing, a commercial web search
engine. We measure Bing workload distributions and
quality profiles. We find that the request service demand
has high variance, and response quality is monotonically
increasing in processing time (before the deadline). Our
simulation results of web search show that FOF on
heterogeneous processors achieves a significantly higher
response quality and up to 50% improvement in throughput
compared to homogeneous processors with the same
design-time power budget as well as compared to
traditional scheduling algorithms. We also show that FOF
improves throughput and quality for a variety of
heterogeneous hardware configurations and workloads with
various service demand distributions. Moreover, FOF
improves average quality, reduces quality variance,
improves high-percentile quality, and improves throughput.

We further show how to configure a Simultaneous
Multithreading (SMT) core as a dynamic heterogeneous
processor and modify FOF for it. A core executing one
thread acts as a fast core, while a core executing M > 1
SMT hardware threads acts as M slow cores. Even with the
limited heterogeneity of a 2-way 6 core SMT processor,
FOF improves the measured performance of an interactive
finance server by up to 16% compared to default
round-robin OS scheduling and by 27% when SMT is
turned off. We validate our simulator against these
measurements. FOF in implementation performs the same

or better than in simulation. These results indicate that FOF
offers performance benefits for heterogeneity present in
data centers today.

We show how to compute the number of slow and fast
cores in the hardware configurations using the request
service demand distribution. In general, more long requests
require more fast cores, and more slow cores are required
for sustaining a higher throughput. Future data centers can
exploit these results either to substantially reduce the
number of servers, or to increase the capacity without
compromising quality or responsiveness.

2 Scheduling Model

This section measures request characteristics in interactive
services for a commercial web search engine, and formalizes
our job and hardware model.

The literature establishes the following characteristics of
interactive services [48, 35, 38, 26]. (1) Adaptive
execution. Adaptive execution partially evaluates a request
and returns a response before completion; more
computation yields better quality. (2) Concave quality
profile. If a request executes fully, it receives quality 1
(measured off-line). A concave function exhibits
diminishing returns and captures the relationship between
quality and computational resources (see Section 2.1).
(3) Deadline. For online interactive services, users expect
timely responses. Long response times are not acceptable
because they cause user dissatisfaction and loss of
revenue [23]. We express timing constraints as deadlines.

Recommendation systems, ad services, and video
streaming have similar characteristics. For example, in
scalable video coding, basic layers are more important than
refinement layers, and the quality of received video streams
improves monotonically with the number of layers but
exhibits diminishing returns [28]. This paper focuses on
web search and finance, but our results apply more broadly.

2.1 Measurement Study of Bing Search
We confirm these characteristics with measurements of
Bing. Bing’s web index serving system receives user
queries and returns the response. This system is a
distributed interactive search service. The web index
contains billions of documents and thus, the index is
partitioned and managed across thousands of servers. To
meet responsiveness goals, Bing and other modern search
engines [48, 35, 38] design and configure search such that
the index for a server fits in main memory of the server with
virtually no I/O or system calls, creating a CPU bound
process. Other interactive services, such as video
streaming, have similar goals and requirements. When a
request arrives, the system assigns it to an aggregator,
which sends the request to servers. Each server returns its
matched results to the aggregator. The aggregator collects
them and returns the top L webpages to the user.

2
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Figure 1: Measured workload of Bing search.

Search servers support adaptive execution with response
deadlines. Each web search query contains a set of
keywords. A server scans an inverted index looking for
webpages that match the keywords and ranks the matching
webpages. The response is links to the top documents that
match the keywords. The more time the server spends in
matching and ranking the documents, the better quality
(i.e., more relevant) the search results. If the search server
does not finish searching the entire index within the
deadline, it returns the best matches so far. The server
responds to the aggregator within 120 ms. The aggregator
returns its collected results to users without waiting for any
delayed responses. Ranking involves complex calculations
and search servers are computationally intensive [38].

Quality Profile We obtained 200K queries from a
production trace of Bing queries. We execute them multiple
times with different completion deadlines using Bing in a
controlled setting. Response quality compares the
documents returned to the golden results (Quality = 1),
without any deadline, such that Bing fully processes each
request. The x-axis of Figure 1(a) is the request time
completion ratio which is calculated as the actual measured
processing time divided by its full processing time. The
y-axis is the average response quality. Figure 1(a) shows
that Web search has a monotonically increasing and
(roughly) concave response quality profile.The concavity is
because the inverted index searches popular webpages first,
which are more likely to rank higher and contribute more to
the response quality.

Service Demand Figure 1(b) presents the measured
service demand distribution for 200K queries. Request
service demand varies with many short requests, less than
40 ms, and under the 120 ms deadline, over 10% have a
demand greater than or equal to 100 ms. This diversity in
request service demands has been observed in many
workloads [10, 48, 24, 25].

2.2 Job Model
An individual request is processed sequentially, while
multiple requests can be processed on different cores
concurrently. A job (request) is specified by a tuple

(ta,d,w), where ta is arrival time, d is lifespan, and w is
service demand. The job deadline is ta + d. We assume d is
the same for all jobs without loss of generality. We denote
the maximum service demand by ŵ. The service demand is
the total work (i.e., CPU cycles) required to complete a
request and is unknown until the job completes. However,
the service demand distribution is available by using online
or offline profiling [34, 26, 25]. Thus, w ∈ [0, ŵ] is an
unknown random variable, whose probability density
function (PDF) and cumulative distribution function (CDF)
are denoted by f (w) and F(w) =

∫ w
0 f (x)dx, respectively. We

can alternatively use discrete values of service demands
(e.g., measured values shown in Figure 1(b)) and all the
analysis still applies, where PDF f (w) is the probability
mass function and w takes values from a finite set.

The server can fully process a request, returning a
complete result, or terminate with a partial result. We
measure the actual quality q(r) : R+ → R off-line, comparing
processed work to demand. While each request may have a
unique quality profile that is unavailable to an online
scheduler, we use q(r), as shown in Figure 1(a), to represent
expected quality profile of a request.

2.3 Hardware Model
Limited by power constraints, architects are turning to
parallelism and heterogeneity in search of power-efficient
performance [3, 31, 36, 8, 33]. A heterogeneous processor
consists of N > 1 heterogeneous cores, indexed by
1,2, · · · ,N, which offer non-uniform performance and power
consumption due to processing speeds or microarchitecture
or both. Without loss of generality, we assume that the i-th
core performance (i.e., effective speed) si and power pi

satisfy 0 < s1 ≤ s2 ≤ ·· · ≤ sN and 0 < p1 ≤ p2 ≤ ·· · ≤ pN [34].
Moreover, we assume that a core with higher performance
speed burns more power to process a unit of work, i.e.,
forall 1 ≤ i ≤ j ≤ N, pi/si ≤ pj/s j, since otherwise the faster
core is more energy-efficient than the slower core and there
is no need to include the slower core in the processor design
space. To fairly compare heterogeneous to homogeneous
processors, we give them all the same design-time power
budget.

3 Scheduling Algorithm

The scheduling objective of FOF is to improve the average
response quality of all requests and thereby increase
throughput. In practice, data center designers may exploit
throughput improvements either by generating and
servicing more load per server or by supporting the same
load with fewer servers.

3.1 Key Insights
Intuitively, we want to schedule long requests on fast cores
(since only fast cores are sufficient to ensure timely and

3
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high-quality responses for long requests) and schedule short
requests on slow cores (since they are sufficient to ensure
timely and high-quality responses). An ideal scheduler will
thus maximize throughput and quality by executing every
request on the slowest core that can meet the request
deadline and quality requirement. However, there are two
challenges. (1) Assignment: since the request service
demand is unknown, how do we assign short requests to
slow cores and long requests to fast cores? (2) Availability:
given multiple requests and a limited number of cores, the
most appropriate core may not always be available.

(1) Assignment FOF migrates requests from slow to fast
cores during its execution. This policy increases the
probability that short requests complete on slow cores and
when a fast core becomes available, it processes longer
requests. Given a deadline, this policy improves total
response quality of requests, sustaining higher throughput
while satisfying the target quality.

Theorem 1 explains why “slow to fast” improves
throughput. The theorem formally establishes that
migrating a request from slower to faster cores during its
execution is the most energy-efficient schedule. Given the
server’s design-time power budget, dynamic energy per
time unit is bounded. Thus, when each individual request
consumes less energy, the server can serve more requests,
improving throughput. Theorem 1 assumes the desired
core(s) are always available, and later we address multiple
requests competing for cores.

Theorem 1 Given request deadline d, service demand
CDF F, and a quality profile function q that is
monotonically increasing and concave. To meet any
average quality requirement, the core speed for processing
the request is non-decreasing under an optimal schedule
that minimizes the average CPU energy consumption of the
request.

Proof. We first meet the quality requirement. Request
quality is a function of the quality profile q and work
completed before the deadline. Let us define the target
work x̄, which specifies the maximum amount of work
completed prior to the deadline regardless of the actual
service demand. If the request has a total service demand
less than x̄, the request runs until completion, whereas the
request is terminated at work x̄ otherwise. Since the quality
profile function q is monotonically increasing in x̄ ∈ [0, ŵ],
the expected average response quality increases from 0 to 1.
Therefore, given an average quality requirement 0 ≤ r ≤ 1,
we can find a fixed target work x̄ ∈ [0, ŵ] that satisfies the
quality target. After finding the target work x̄, we formulate
the energy-minimization problem for scheduling a request
as follows:

min
X

∫ x̄

0

[
1−F(x)

]
· pX (x)

sX (x)
dx, (1)

s.t.,
∫ x̄

0

1
sX (x)

dx ≤ d, (2)

where X is a schedule that specifies the order and cores
that process the single request, sX (x) ∈ {s1,s2 · · ·sN}, and
pX (x) = pi, if sX (x) = si. Constraint (2) guarantees that the
schedule X satisfies the deadline. We now prove the
theorem by contradiction. Suppose that sX ′(x) minimizes
(1) while, under the schedule X ′, the job is first processed
by a faster core and then by a slower one. Thus, there exist
x1 and x2 such that 0 ≤ x1 < x1 + dx ≤ x2 < x2 + dx ≤ x̄ and
sX ′(x′

1) > sX ′(x′
2), where x′

1 ∈ [x1,x1 + dx], x′
2 ∈ [x2,x2 + dx] and

dx is a sufficiently small positive number.
Since we assume faster cores consume more energy to

process one unit of work than slower ones, the following
inequality holds:

[1−F(x′
1)] ·

[
pX ′(x′

1)

sX ′(x′
1)

− pX ′(x′
2)

pX ′(x′
2)

]

+[1−F(x′
2)] ·

[
pX ′(x′

2)

sX ′(x′
2)

− pX ′(x′
1)

sX ′(x′
1)

]

=

[
pX ′(x′

1)

sX ′(x′
1)

− pX ′(x′
2)

sX ′(x′
2)

]
· [F(x′

2)−F(x′
1)]> 0.

(3)

Thus, we have [1−F(x′
1)] ·

pX ′ (x′1)

sX ′ (x′1)
+ [1−F(x′

2)] ·
pX ′ (x′2)

sX ′ (x′2)
>

[1−F(x′
1)] ·

pX ′ (x′2)

sX ′ (x′2)
+ [1−F(x′

2)] ·
pX ′ (x′1)

sX ′ (x′1)
. By evaluating the

integral in (1), the expected energy consumption is further
reduced by exchanging the order of cores processing the
x′

1−th cycle and the x′
2−th cycle, for x′

1 ∈ [x1,x1 + dx] and
x′

2 ∈ [x2,x2 + dx], while keeping the rest of the schedule X ′

unchanged. This contradicts the assumption that X ′

minimizes (1) and hence, proves Theorem 1. �
The most obvious application of this theorem is

optimizing dynamic run-time energy of service requests.
However, we leave dynamic energy to future work and
focus on design-time, because interactive service providers
must first determine whether or not a heterogeneous
processor can improve throughput and quality given
design-time power constraints, and if it can, what
combinations of fast and slow processors to use. We next
leverage the insight of migrating a request from slower to
faster cores to improve quality and throughput.

(2) Availability Given multiple requests and a limited
number of cores, the most appropriate core to execute a
request may not be available. FOF solves this problem by
assigning the most urgent request to the fastest core, which
is also the request that has already been executed for the
longest time. Intuitively, the longer the system executes the
job, the higher probability that the job requires faster cores
to complete prior to the deadline. More formally, we define
urgency as follows.

Definition 1: Request urgency is defined as the expected
minimum core speed to complete the request prior to its
deadline. Mathematically, we express urgency as follows:

U =
E{w−w0 |w ≥ w0}

r

=

∫ ŵ
w0

w f (w |w ≥ w0)dw−w0

r
,

(4)

4
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Figure 2: Urgency versus completed work. With more processing,
request urgency increases: an older request has higher urgency.

where w0 is completed work, r is the remaining lifespan of
the request and f (w |w ≥ w0) is the PDF of the service
demand conditioned on the completed w0 work.

Urgency indicates the (expected) necessary core speed to
complete a job upon its deadline. By assigning faster cores
to jobs with higher urgency, jobs have a greater chance to
complete prior to their deadlines. Figure 2 shows a lower
bound on the urgency value for the Bing service demand
distribution (Figure 1(b)), where x-axis is the amount of
work that a job has completed and y-axis is urgency. During
actual processing, request urgency is impacted by its
waiting time in the queue and its execution history, making
the urgency in Figure 2 a lower bound.

A key observation is that as the request is processed, its
urgency increases. When a request is processed more, its
available time before the deadline decreases whereas its
expected service demand increases. The general urgency
trend is similar for other widely used service demand
distributions such as exponential and Pareto. This
observation motivates FOF to use faster cores to run the
oldest request because that request has high urgency.

3.2 FOF Algorithm
Algorithm 1 shows the pseudo-code of FOF. When a job
enters the system, FOF assigns it to the fastest available core.
When a job completes or early terminates at its deadline, a
core is idle and FOF promotes the oldest job on a slower
core to this faster core. No job migrates between cores that
have the same speed. Consider the following cases.

All cores are idle FOF assigns the job to the fastest idle
core N.

Only the fastest core is busy FOF assigns the new job to
idle core N −1, the second fastest core in the system.

All cores are busy: When an existing job completes or its
deadline expires, a core becomes available. FOF
promotes the oldest (longest running) job on any
slower core to this faster core. It repeats this process
until the slowest core becomes idle. At this point, FOF
schedules the job at the head of the wait queue on the
slowest core.

Algorithm 1 FOF
Require: Active job queue Q, core processing speeds 0 < s1 ≤

s2 ≤ ·· · ≤ sN
1: Assign urgencies to all jobs: older jobs have higher urgency.
2: i ← N
3: while i ≥ 1 do
4: if core i is idle then
5: job J = job being processed on a slower core than core

i (or waiting in the queue) with the highest urgency
6: if job J is not null then
7: schedule job J to core i
8: end if
9: end if

10: i−−
11: end while
12: return

The FOF algorithm has the following key properties:

• A faster core always runs a request with higher or
equal urgency than all jobs on slower cores, increasing
response quality and the probability of completing all
requests before their deadlines.

• When there are 1 ≤ k < N requests where N is the
number of cores, the fastest k cores process these k
requests, increasing response quality.

• If a request migrates, it always migrates from a slower
to a faster core. This choice increases the probability
that short jobs will complete on a slow core and that
long jobs will execute on fast cores.

Note that FOF is designed to improve quality and
throughput on a heterogeneous processor, rather than attain
the lowest possible dynamic run-time energy. For example,
with only one request in the system, FOF will execute it on
the fastest core, whereas executing it on a slower core first
will consume less dynamic energy (as shown in
Theorem 1). However, by improving throughput while
satisfying response quality, the data center can buy and use
fewer servers and consume less total energy. Thus, server
provisioning and consolidation is the means by which FOF
optimizes server and energy cost.

FOF is computationally efficient. It does not require a
priori information on each request’s actual service demand.
It also bounds job migrations to K−1 times in the worst case,
where K is the number of different core speeds, regardless
of the server load. In practice, migrations per job are much
less than K − 1, as many short requests are processed and
completed on one core.

4 Simulation Study

This section evaluates FOF with a simulation study using
Bing web search measurements and various workload
distributions. We show heterogeneous processors with FOF
improve over homogeneous processors in terms of average
quality, quality variance, 95%-quality, and number of
servers required to support the workload. Furthermore,

5
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Normalized Normalized
Name Processor (C Cores T SMT) technology LLC Speed 1 Core Power Performance Power

A i7-2600 Sandy Bridge (4C 2T) 32 nm 4 M 3.4 GHz 21 W 1.0 1.0
B i5-670 Nehalem (2C 2T) 32 nm 8 M 3.4 GHz 16 W 0.92 0.81
C i7-920 Nehalem (4C 2T) 45 nm 8 M 2.7 GHz 15 W 0.72 0.73
D AtomD Bonnell (2C 2T) 45 nm 1 M 1.7 GHz 4 W 0.45 0.19

Table 1: Core specification, measured and normalized PARSEC performance and power.

FOF achieves a higher quality than various alternative
scheduling algorithms, including a clairvoyant scheduler.
We explore how to select a good heterogeneous processor
configuration based on workload characteristics. We
observe that the quality improvement obtained from using
FOF on heterogeneous processors translates directly into a
throughput increase, thereby reducing the required number
of servers. We also explore sensitivity to hardware choice
and workload, showing FOF improves throughput at high
quality in many scenarios. Section 5 shows how to
configure processors with Simultaneous Multithreading
(SMT) to mimic heterogeneous processors with FOF and
attain benefits in today’s data center servers.

4.1 Methodology

As heterogeneous servers are not yet available, we perform
a simulation study using DESMO-J, a Java-based
discrete-event simulator. The simulator models cores,
scheduling, jobs, migration, completion, and other events.
Although simulation cannot capture every detail of system
implementation, it demonstrates the first-order impact of
using FOF on heterogeneous processors. We however
validate these simulation results using a finance server
executing on an SMT multicore processor.

Workload We use the Bing index search measurements
from Section 2.1. We model a server that accepts users’
search queries and returns the top L webpages as a CPU
intensive process [38]. Our simulator considers a request
delay deadline of 120 ms. We model service demand
distribution using measurements from production servers
and shown in Figure 1(b). We model request arrivals as a
Poisson process. To change system load, we control the
mean query arrival rate as queries per second (QPS). We
use the measured quality profile of Bing web search as
shown in Figure 1(a). All these characteristics match other
search engines in the literature [48, 35, 38].

Hardware performance and power We approximate
heterogeneous core performance and power based on
measurements of existing Intel processors. We use the
performance and power data reported by Esmaeilzadeh et
al. [19] executing PARSEC [7] on four architectures. We
use PARSEC because Reddi et al. show that they exhibit
similar performance characteristics to interactive

services [38]. Table 1 presents core speed, and normalized
single core performance and power for four architectures.

Name A B C D E Power

Hom-4A 4 0 0 0 0 82 W
Hom-5B 0 5 0 0 0 81 W
Hom-6C 0 0 6 0 0 88 W
Hom-22D 0 0 0 22 0 82 W
Het-3B-9D 0 3 0 9 0 82 W

Table 2: Processor configurations with design-time power budget.

We model homogeneous and heterogeneous processors
with a design-time power budget between 80 and 88 W
shown in Table 2. Homogeneous configurations include as
many individual cores as possible. We simulate a
heterogeneous processor composed of three i5 Nehalem
cores (3B) and nine AtomD cores (9D), called Het-3B-9D.
Section 4.5 explores other heterogeneous configurations.

4.2 Heterogeneous versus Homogeneous
This section shows the benefit of FOF by comparing our
default heterogeneous processor (Het-3B-9D) using FOF
with the four homogeneous processors from Table 2 using
FIFO scheduling in terms of average quality, quality
variance, 95%-quality, and number of servers to support a
given workload subject to the quality requirement. The
widely-used FIFO scheduler places all jobs in a single
queue and an idle core pulls the job from the head of the
queue and processes it until completion or expiration of the
deadline. FOF and FIFO are equivalent on a homogeneous
processor.

Improved average quality Figure 3(a) plots average
response quality (y-axis) against load measured in QPS
(x-axis). A heterogeneous processor with FOF outperforms
all homogeneous configurations in terms of average
response quality on a wide range of loads, translating into a
higher throughput subject to a fixed quality requirement.
We focus on throughput at the target quality of 0.99.

FOF increases throughput significantly, by 50%, on
Het-3B-9D compared to Hom-5B, the best 0.99-throughput
homogeneous processor. The core utilization at quality 0.99
is as follows: Hom-4A at 150 queries per second (QPS) is
91%; Hom-5B at 180 QPS is 92%; Hom-6C at 155 QPS is
81%; and Het-3B-9D at 270 QPS is 99%. Hom-22D only
supports an average quality of approximately 0.9808. At
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(b) Variance.
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(e) Different scheduling algorithms.
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Figure 3: Figures (a), (b), (c) and (d) compare heterogeneous to homogeneous processors under different performance metrics. Figure (e)
compares different heterogeneous scheduling algorithms. Figure (f) shows the impact of migration overheads.
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Figure 4: Heterogeneous core configurations for a range of service demand distributions.

higher load (not shown), quality drops off further.
Figure 3(a) shows that both Hom-4A and Hom-5B, which
are fast cores, produce high quality when the throughput is
low (e.g., 90 QPS), whereas neither Hom-6C nor Hom-22D
are fast enough to achieve sufficiently high quality.

With a fixed power budget, a heterogeneous design
satisfies stringent quality requirements (e.g., 0.99) by
combining the high processing capabilities of fast cores and
the high throughput of multiple low-power slower cores.
Key to this result is that one fast core consumes more power
than 3 or more slow cores but a fast core has only about 2
times of the processing speed of a slow core.

Reduced quality variance Figure 3(b) shows response
quality variance. The heterogeneous processor using FOF
has the lowest variance. With Hom-22D, there are enough
cores to serve (almost) every incoming job without delay
and hence, the quality variance remains relatively constant
throughout until the QPS exceeds its capabilities.
Nonetheless, long jobs cannot complete prior to their
respective deadlines, resulting in a quality variance among

short and long jobs. Hom-4A, Hom-5B and Hom-6C have
little quality variance with light load (QPS < 150), since
they complete almost every job. When load increases,
queuing time increases and some long requests get
insufficient service before their deadline, which reduces
quality and increases variance. When using a Het-3B-9D, a
long request that cannot get a fast core immediately can still
be processed on one of many slow and medium cores and
migrate later to the fast core, which improves quality and
reduces variance even at high load.

Improved 95%-quality High-percentile quality is of
considerable interest since many commercial services
specify their service level agreement (SLA) using both
high-percentile quality and average response quality [17].
Remember we compute quality off-line, comparing to a
search with no limit on time or resources. For example, a
web search engine may target a quality of 0.99 for average
quality and 0.90 for at least 95% requests. The
high-percentile quality depends on the response quality
distribution. Figure 3(c) shows that a heterogeneous
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processor improves the 95%-quality over homogeneous
processors on moderate and heavy loads by improving
average quality and reducing variance.

Reducing number of servers To highlight the hardware
and energy reductions due to heterogeneous processors with
FOF scheduling, we consider a total workload of 10,000
QPS and compute how many servers are needed with a
given design-time power budget, subject to various average
quality requirements. Figure 3(d) shows the number of
servers, for four systems, Het-3B-9D, Hom-4A, Hom-5B
and Hom-6C. For average quality of 0.99, a heterogeneous
processor reduces the number of servers by approximately
35% compared with homogeneous processors with the same
power budget, and may significantly reduce costs and
energy usage in large data centers.

4.3 Comparing Scheduling Algorithms

This section compares FOF with four alternative scheduling
algorithms: FIFO, Processor Sharing (PS), Slow Preempt
Fast (SPF), and BestFit. FIFO, PS, SPF, and FOF are
non-clairvoyant because when jobs arrive, their service
demand is unknown in practice. BestFit is a clairvoyant
scheduler; it knows each request’s service demand but lacks
migration. Figure 3(e), shows that even without knowledge
of the request service demand, FOF outperforms BestFit
and all the other schedulers because its migration policy
takes advantage of core heterogeneity.

FIFO and EDF Since requests have the same maximum
delay, FIFO and Earliest Deadline First (EDF), an optimal
real-time scheduler, behave the same. FOF achieves a
significantly higher quality than FIFO which cannot support
a 0.99-throughput higher than 160 QPS. FOF outperforms
FIFO because FOF completes many short requests on
slower cores and migrates long requests to faster cores. In
FIFO, the assignment of cores does not depend on the
request service demand, and processing long requests using
slower cores inevitably degrades the total response quality.

Processor sharing (PS) Processor sharing is the
well-known round-robin scheduler for homogeneous
processors. We extend PS to heterogeneous processors.
When the number of jobs M is greater than the number of
cores N, the jobs equally share all the available cores. When
M is smaller than N, the jobs equally share the M fastest
cores in a round-robin fashion. We assume that the context
switch and migration overhead of PS is 0 and therefore the
PS quality result is an upper bound. Figure 3(e) shows that
FOF achieves a higher quality than PS because the FOF
migration policy gives long requests a higher chance to use
fast cores. PS shares fast cores equally among short and
long requests and hence, long requests that really need fast
cores may not get them.

These classic scheduling algorithms for homogeneous
processors are insufficient because they do not consider
how to match request service demands to heterogeneous
core characteristics. Moreover, since the request service
demand is unknown, it is not possible to determine the most
appropriate core for a request before its execution. During
execution, however, the scheduler progressively has more
information about requests (i.e., urgency) such that the
scheduler may refine its decision. Thus, using FOF, job
migration among cores refines and improves scheduling
decisions when request service demand is unknown.

Migration policies We consider the SPF scheduler which
migrates jobs in reverse order to FOF, from fast cores to
slow ones. Each job is processed until completion or
expiration. If the number of jobs is smaller than the number
of cores, all the jobs are processed by the fastest available
cores. We show in Figure 3(e) that FOF achieves a much
higher quality than SPF. By migrating jobs from slower to
faster cores, FOF is more likely to complete short jobs on
slower cores, saving faster cores to process long jobs. In
contrast, SPF completes short jobs on faster cores whereas
long jobs, which have higher urgency, are processed by
slower cores. Thus, it is likely that long jobs do not get
fully completed before their respective deadlines. This
comparison shows that the job migration order from slower
to faster cores is critical to exploit processor heterogeneity.

Clairvoyant without migration Even with known
service demands, scheduling multiple jobs on a
heterogeneous processor is a challenging task. BestFit tries
to schedule each job with the minimum energy in a greedy
fashion. Specifically, each core maintains a separate queue
and, a new job joins the queue served by the slowest core
that can complete the job before its deadline. If none of the
cores can complete the job because of a large number of
waiting jobs, the job will be scheduled to the queue that
produces the highest quality for the job. Hence, BestFit is a
greedy clairvoyant scheduler with known service demands
but without job migration. Combining job migration with
clairvoyance requires solving an integer programming
problem that we leave for future work. This algorithm is
similar to scheduling algorithms in prior work [14, 40, 44],
which map jobs to the most “appropriate” cores.

Figure 3(e) shows that, rather surprisingly, FOF without
knowing request service demand outperforms BestFit with
known service demand. Because BestFit does not consider
job migration, it cannot fully exploit heterogeneous cores.
For example, if a long job arrives and the best core to run
the job is a fast core but all fast cores are running another
job. BestFit will let the job wait for the fast core to finish
even when there are other cores available. FOF is better
because it uses the slow cores to run the job first and then
migrates it to the fast core when it becomes available. FOF
also outperforms the Shortest Job First (SJF) algorithm (a
widely-used algorithm for improving the response time in
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homogeneous processors) in terms of response quality. We
omit these results due to space limitations. Even when the
request service demand is known, migration is critical to
exploiting heterogeneous core resources as they become
available. In particular, long requests make progress on
slow cores first before migrating when fast cores become
available.

4.4 Migration Overhead

This subsection shows FOF is not sensitive to migration
overheads, since actual migration overheads are less than
1%. Even modeling higher migration overheads does not
diminish FOF’s performance benefits.

Job migration requires a context switch, whose time is
proportional to the size of a job’s working set due to cache
warm-up time, which may take tens of microseconds to a
millisecond [18]. We model three migration overhead
values: 0 ms (prior section), 1 ms, and 2 ms. Figure 3(f)
shows migration overheads hardly have any effect on
quality, which is mainly due to the following two factors.
(1) Migration overhead is typically at the range of tens of
microseconds to a couple of milliseconds and thus is much
smaller compared to the deadline of a few hundred
milliseconds. (2) The number of migrations is small. Given
K different core speeds available, a job may migrate up to
K − 1 times in the worst case, and K is a small number in
general. Moreover, as many short jobs complete on slow
cores, they do not need to migrate at all. Het-3B-9D has
two core types and thus, the upper bound on the number of
job migrations is 1 while the average number of migrations
per job is 0.45 at 150 QPS and increases to 0.56 at 300 QPS.

4.5 Heterogeneous Core Configuration

This subsection explores how to select good heterogeneous
processor configurations based on workload characteristics.
We find that more long jobs need more fast cores for a given
quality target but some small cores are always required.

We consider three representative workloads as illustrated
in Figure 4(a): (1) measured distribution of web search; (2)
small tail reduces the probability of long jobs (> 30 ms) and
increases the probability of short jobs (≤ 30 ms) in the
measured distribution; and (3) big tail reverses the
measured distribution (most jobs are long). Figure 4 shows
their average quality. We explored more configurations, but
for brevity, only show combinations of B and D cores. We
compare against a homogeneous processor with B cores,
since D cores cannot deliver the desired quality target.

Under all three service demand distributions, a
heterogeneous processor outperforms a homogeneous one
(Hom-5B) on 0.99-throughput. In particular, Het-1B-17D is
the best heterogeneous processor with a small tail, whereas
Het-4B-5D is the best under a big tail. Figure 4 confirms
our intuition that the best core configurations depend on the
service demand distribution and that the more long running

jobs the system expects, the more fast cores it should
include, because the slow cores cannot produce sufficiently
high quality. However, there is always a point where one or
more fast cores should be traded for slow cores to
gracefully degrade quality and improve throughput.

4.6 Other Workloads
We performed sensitivity studies on synthetic workloads
(exponential, Pareto, and bipolar service demand
distributions), quality profiles (linear profile, discrete
staircase profile), and different deadlines. These results
consistently show the benefits of using heterogeneous
processors with FOF to meet the desired quality with high
throughput. We omit the details of the results due to space
constraint.

5 Exploiting Heterogeneity in SMT Systems

This section describes: (a) How to configure an
Simultaneous Multithreaded (SMT) multicore processor to
act as a heterogeneous processor. (b) How to modify FOF
for it. (c) An implementation of a finance server for SMT
that delivers improvements in throughput and quality. The
experimental results on a 2-way SMT 4 core machine show
that FOF-SMT improves throughput by up to 16%
compared to the default OS scheduler and 27% compared
to no SMT. (d) A comparison of implementation and
simulation results confirms the accuracy of our simulator.
SMT, as a form of heterogeneity, is already present in data
centers, and thus FOF can have an immediate impact.

5.1 SMT as a Heterogeneous Multicore
SMT adds heterogeneity to existing hardware and we use it
to mimic heterogeneous processors. Intuitively, a core
executing one thread acts as a fast core, and a core
executing N > 1 SMT hardware threads acts as N slow
cores. The N slow cores exhibit higher throughput but each
thread runs slower than the fast core, similar to
heterogeneous processors.

5.2 FOF for SMT
We modify FOF to create FOF-SMT. We enable SMT for
all cores on a processor and then FOF-SMT controls which
cores execute as fast cores by executing only one thread or
as slow cores by executing N threads on an N-way SMT.
FOF-SMT works as follows.

Fast first When a request joins, if there is an idle core, FOF-
SMT schedules the request on it.

Fast old Consider two cases. (1) When a request joins, if
there are available SMT hardware threads but no idle
cores, FOF-SMT schedules the current request on an
SMT thread such that it shares the same core as the
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youngest executing request. (2) At the point a request
completes, its core may become idle. In this case, if
other cores are sharing, FOF-SMT finds the sharing
core with the oldest job. Rather than moving the oldest
of the jobs sharing a core, it moves the other job. This
other job is less urgent, which minimizes the impact
on the oldest job and with 2-way SMT, gives both jobs
a core to themselves, i.e., fast cores. Both cases leave
the old request running on a fast core as they are likely
more urgent.

The implementation uses thread pools, affinity, and request
queues on each core prioritized by age to schedule jobs in
constant time. To study FOF in an implementation and
validate our simulator, we use an interactive finance server.

5.3 Option Pricing Finance Server
Finance servers are another example of interactive online
services. Banks and fund management companies evaluate
thousands of financial derivatives every day, submitting
requests that value derivatives and then making immediate
trading decisions. Many of these calculations use Monte
Carlo methods, which are computationally intensive and
rely on repeated random sampling to compute results. We
implement an option pricing server that uses Monte Carlo
methods for complex path-dependent Asian options [9, 16].

Each request is a Monte Carlo task that estimates an
option price under various economic scenarios with
different interest rates, strike prices, dividend yields, and
volatility. The tasks are time bounded, since traders use
them to perform online trading. With more samples, the
processing time is longer and the estimated price gets closer
to the real price. The system is adaptive and supports
returning partial results. The result quality is measured by a
well-known statistical metric called standard error of mean
(SEM). SEM is the standard deviation of the sample mean
of the population mean. SEM is computed by sampling the
standard deviation s divided by the square root of the
sample size n, i.e., SEM = s/

√
n. The smaller the SEM is,

the closer the estimated price to the real price. The goal is
to minimize the average and high-percentile SEM value for
all requests so the estimated prices are closer to the real
prices.

Figure 5(a) shows an error profile with increasing sample
sizes. When the number of samples increases along with the
processing time, SEM decreases, which indicates increasing
quality and the error profile is convex. When the sample size
is large, the change in sample standard deviation is small and
the square root of the sample size dominates. The convexity
of 1/

√
n leads to the convexity of SEM. Minimizing SEM

with a convex error profile is equivalent to maximize quality
with a concave quality profile.

Figure 5(b) shows the service demand distribution. Each
request incurs different processing time to compute a
sample, therefore service demand varies. Similar to web
search (Figure 1(a)), this workload is non-uniform with a
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Figure 5: Measured quality of finance server workloads.

mix of mostly short and some long requests. However, the
finance server does not have as heavy of a tail.

5.4 Methodology
We use a server with 6-core 2-way SMT 3.33 GHz Intel
Xeon X5680 processor with 24 GB of memory running
Windows Server 2012. The requests follow a Poisson
arrival process. When a request’s SEM reaches the target of
0.05 or lower, we consider it fully evaluated and terminate
the request. Otherwise, the request is partially evaluated
and terminated when it reaches a 500 ms deadline. We
compare three finance server configurations:

NoSMT SMT disabled.

Default-SMT SMT enabled with default round-robin OS
scheduling. After all cores are occupied with a single
request, it shares with SMT, choosing the core in round-
robin fashion [39].

FOF-SMT SMT enabled with FOF-SMT scheduling.

5.5 Implementation Results
We compare FOF with NoSMT and Default-SMT with
respect to average and high-percentile quality. Our results
show that FOF improves response quality of requests and
improves throughput by 27% over NoSMT and 16% over
SMT using default round-robin OS scheduling.

Figure 6(a) presents the average quality of requests with
varying load. The x-axis is load, expressed as request
arrival rate in requests per second (RPS), and the y-axis is
the average quality of all requests, where request quality is
computed by how far the result is from the target accuracy.
The request quality is 1− (SEMm −SEMt)/SEMt where SEMm

is the measured SEM value and SEMt is the target SEM
value. The results show that, at light load, all of NoSMT,
FOF-SMT and Default-SMT achieve high quality because
no core needs to share. With increasing load, FOF-SMT
outperforms both NoSMT and Default-SMT with improved
quality. For example, at quality target 0.99, NoSMT
sustains a throughput of 33 RPS, Default-SMT 37 RPS, and
FOF-SMT improves it to 42 RPS, achieving a 27%
improvement over NoSMT and 16% over Default-SMT.
FOF-SMT reduces quality variance (not shown) and
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Figure 6: Implementation results with 2-way SMT dynamic heterogeneity on 6 cores for a finance server. Implementation matches
simulation results. FOF-SMT delivers higher average and 95-percentile quality at higher load.

Figure 6(c) shows that FOF-SMT improves high-percentile
quality.

These improvements come from two sources: (1)
capacity due to adding hardware parallelism in the form of
SMT, and (2) better scheduling choices by FOF. To put
capacity improvements in context, we measure a request X
alone on a core with processing time TX and two identical
requests on two SMT threads sharing the same core
concurrently, which takes time 1.582TX . In theory, SMT
could improve performance by 2TX , but in practice SMT
delivers less because it shares hardware resources (issue
queues, caches, etc.). In other words, given a core with
speed 1, each 2-way SMT hardware context has speed
0.632. 2-way SMT thus provides a 0.632 × 2 − 1 = 26.4%
increase of computational capacity. Thus the capacity
improvements of FOF-SMT are close to optimal for this
workload. Adding a larger number of slow cores to replace
one or more fast cores on heterogeneous processors
increases throughput. FOF-SMT makes better scheduling
decisions as witnessed by the gap between Default-SMT
and FOF-SMT. Smart scheduling algorithms are necessary
to fully exploit the benefits of SMT. FOF-SMT outperforms
Default-SMT because FOF-SMT shares cores among new
requests, which are both likely short and complete on
shared (slow) cores, leaving long requests to run on
unshared (fast) cores, where they are more likely to
complete before the deadline.

5.6 Validating Simulation with
Implementation

We validate the simulation results with the finance server
implementation. The simulator uses measured service
demand, error profile, raw performance on one core (1), and
the relative performance of SMT (0.632 of one core) using
the 6-core 2-way SMT processor measurements.
Comparing Figure 6(b) with the simulation results to the
implementation results in Figure 6(a) for average quality
shows that the SMT performance reported by the simulator
is very close to the SMT implementation results, both with
respect to the trends and absolute performance. This result
increases our confidence in the accuracy of our simulator

and the results in Section 4.

6 Related Work

Heterogeneous processors There are several proposals
for heterogeneous processors [27, 4, 31, 43, 5, 40, 14].
ARM recently announced their big.LITTLE processor for
production [22], which combines high-performance and
energy-efficient cores. Recent work argues for the benefits
of heterogeneous processors compared to homogeneous
processors in two main scenarios.

(1) A single job has different phases [43, 31, 42], such as
parallel phases and sequential phases. This work is
grounded in applying Amdahl’s law to a parallel program to
accelerate its sequential bottleneck [2, 27, 46]. Using a
heterogeneous processor, the sequential phase is executed
on a high-performance core, and the parallel phase is
executed on a number of energy-efficient cores. Our work
considers a stream of independent jobs that execute in
parallel instead of a single parallel program to which
Amdahl’s law was applied. We show more than one fast
core is often necessary and we furthermore show how to
use workload characteristics to choose the mix and variety
of fast and slow cores.

(2) A heterogeneous processor is more suitable for
multiprogramming environments with diverse application
demands [22, 5, 40, 14, 30, 33, 44]. Suleman et al. use
high-performance but energy-inefficient fast cores to
process critical phases of a job [42]. Others try to match
program phases to the appropriate core such that the part of
the program that benefits most from the high power core
executes on it [5, 40, 44]. They either improve performance
or save dynamic energy while being performance neutral.
Users run delay-sensitive tasks such as gaming and web
surfing using fast cores, while background services such as
indexing and spell-checking use slow cores [22].
Lakshminarayana et al. schedule the thread in a parallel job
with a larger remaining execution time on a fast core [32].
They predict the remaining time based on thread creation or
dynamic profiling. FOF achieves a much more substantial
throughput improvement because it leverages the diversity
(short versus long jobs) and adaptivity in the workload
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demand, since it terminiates a job early if it exceeds it
deadline. A long running job cannot monopolize the fast
core indefinitely. Moreover, instead of using information
about each job, our work exploits the service demand
distribution of all jobs.

Real-time scheduling Prior work on real-time scheduling
that investigates saving energy while meeting deadlines
[47, 1] assumes known service demands, which is not
applicable in our environment. Other related work assumes
unknown service demand [34, 45, 49] and uses Dynamic
voltage/frequency scaling (DVFS) to save energy. None of
the prior work considers scheduling multiple requests that
both support partial execution as well as share and compete
for CPU resources. Trading resource consumption for
service quality has also been explored in other contexts
(e.g., wireless networks) using stochastic control
techniques, but only average queue length or average
response time is addressed [37]. Embedded and real-time
systems did not explore partial execution, and hence their
algorithms are not applicable to interactive services we
study. Our objective is to improve total quality with
deadline constraints, rather than meeting the deadline of
each job.

Next, we discuss scheduling algorithms for SMT and
DVFS systems.

SMT In a multiprogrammed environment, prior work on
SMT scheduling improves fairness and throughput by
coscheduling jobs according to their performance
characteristics and interference [41, 20, 12] . They all
consider workloads without deadlines. SMT scheduling on
real-time and soft real-time systems considers deadlines,
but it focuses on periodic tasks such as multimedia
applications and partitions resources to meet
deadlines [29, 11]. In contrast, we use SMT to emulate a
heterogeneous processor and develop an SMT-aware
scheduler for interactive workloads, where jobs arrive
aperiodically and can be partially evaluated.

DVFS DVFS trades performance for power consumption
by adjusting voltage or frequency [47, 1, 21, 34, 45, 49, 13].
Instead of optimizing for dynamic energy, our scheduling
improves response quality and therefore supports higher
throughput per server under design-time power constraints.
Two proposals [34, 45] progressively accelerate the
processor speed during job execution to minimize the
expected energy based on the service demand distribution,
which is consistent with the findings of Theorem 1.
However, those studies do not address multiple jobs that
compete for resources. Another approach [49] minimizes
the energy consumption for multiple types of
periodically-arriving jobs, which is not applicable for
interactive applications. Similarly, others [15] propose a
dynamic voltage scaling algorithm for multimedia
applications based on the service demand information

provided by content providers, but such information is not
available for our applications. Other related work exploits
partial execution (referred as differential service level) and
proposes an algorithm based on Markov decision process to
maximize total response quality given a mean response
time constraint [13]. Their algorithm is applicable to server
systems with different speeds. They consider mean
response time of jobs as constraint but our jobs need to
meet response deadlines.

DVFS and heterogeneous processors are complementary
technologies. The actual power-performance characteristics
of a core depends factors such as pipeline structure, type of
transistors, degree of speculation, voltage and frequency.
These factors limit the energy efficiency of DVFS at lower
speeds and frequencies [6, 31]. In contrast, heterogeneous
processors address such inefficiencies by using cores with
different microarchitectures to achieve a better tradeoff
between performance and energy [22].

While DVFS and SMT are relatively mature technologies
that do not require major changes to existing software to
exploit their benefits, heterogeneous processors are an
emerging technology that will require additional support
from the OS, compiler, and libraries before it is practical to
use by real-world services and applications.

7 Conclusion

We propose an online scheduling algorithm, FOF, to
improve the quality and throughput of an interactive service
on a heterogeneous processor. FOF effectively schedules
long requests to fast cores and short requests to slow cores
without knowing the actual service demands. Extensive
simulations evaluate FOF based on workloads from Bing
search. The results show that using FOF on heterogeneous
processors improves throughput by up to 50% compared to
using homogeneous processors. We also show how to use
an SMT processor as a dynamic heterogeneous processor.
We implement the scheduling algorithm for a financial
server. Our experimental results show up to 16% higher
throughput by using FOF on an SMT processor compared
to a default round-robin OS scheduler. A comparison of the
implementation results to our simulator configured with
similar features show that they closely match. These results
point to significant opportunities for heterogeneous
processors in data centers.
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Abstract

This paper targets the autonomic management of dy-
namically partially reconfigurable hardware architec-
tures based on FPGAs. Discrete Control modelled with
Labelled Transition Systems is employed to model the
considered behaviours of the computing system and de-
rive a controller for the control objective enforcement.
We consider system application described as task graphs
and FPGA as a set of reconfigurable areas that can be
dynamically partially reconfigured to execute tasks. The
computation of an autonomic manager is encoded as a
Discrete Controller Synthesis problem w.r.t. multiple
constraints and objectives e.g., mutual exclusion of re-
source uses, power cost minimization.

keywords: Hardware Architectures, Dynamically
Partially Reconfigurable FPGA, Discrete Control.

1 Control of autonomic hardware

Controlling FPGAs. We apply the autonomic frame-
work to the context of FPGAs (Field Programmable Gate
Arrays), hardware devices that compute a logic function
by configuring its gates in a programmable way. A recent
progress is dynamically partially reconfigurable (DPR)
FPGAs. They support partial reconfigurations where
only part of gates are reconfigured and reconfigurations
to be performed at runtime. Autonomic computing has
been seldom applied to such hardware systems, though
they represent a significant case of its relevance.

Control for autonomic management. We adopt con-
trol techniques to design the MAPE-K (Monitor, Anal-
yse, Plan, Execute, based on Knowledge). Formal mod-
els are used to describe the possible behaviours of the
system under design, and control objectives giving the
adaptation policy are specified separately. A controller is
then derived based on the system models and objectives.
The use of classical control techniques and models, typ-
ically these based on continuous time dynamics and dif-

ferential equations, has been explored for various com-
puting systems [6] and sometimes applied for hardware
architectures [5]. A similar approach can be adopted
by using discrete control techniques, where systems are
considered from the viewpoint of events and states. The
behaviours can then be modelled in the form of Petri nets
or automata for synchronisation [10].

Discrete control for autonomic FPGAs. We apply
discrete control for the autonomic management of DPR
FPGA based embedded systems. A systematic mod-
elling framework is proposed, where system application
behaviour, task implementations and executions, archi-
tecture reconfigurations and environment are modelled
separately by using Labelled Transition Systems (LTS)
or automata. Discrete Controller Synthesis (DCS) sup-
ported by a programming language and synthesis tool has
been applied to compute an autonomic manager.

2 Background notions

2.1 FPGA-based architectures
Basic reconfigurable cell. A FPGA is composed of an
array of logic cells and programmable routing channels
to implement custom hardware functionalities. A pro-
gram consists of one or more bitstreams, which are bi-
nary files storing information to configure logical cells
and the routing switches. Recent large FPGAs contain
more than 200K logic cells that can be combined and in-
terconnected to implement very complex designs. Multi-
core architectures with tens of large hardware accelera-
tors and processors can be implemented.

Run-time partial reconfiguration. In the new gen-
eration of FPGAs, the hardware configuration can be up-
dated at run-time by using the partial reconfiguration fea-
ture. They have the ability to reconfigure hardware dur-
ing the running of the static part, i.e., the part which does
not contain any reconfigurable area. It assumes that the
hardware reconfiguration does not disturb the execution
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Figure 1: FPGA with a microblaze softcore.

of the application. The bitstreams therefore cover only
some regions of the FPGA array.

Such DPR FPGAs make them suitable for address-
ing constraints on resources (re-using some areas for dif-
ferent functions for applications that can be partitioned
into phases) by adapting resources to available paral-
lelism according to environment variations. DPR FP-
GAs are a trade-off : that they are slower than ded-
icated Application-Specific Integrated Circuits (ASIC),
but much faster than using general purpose CPUs.

Management of reconfiguration. From a technical
viewpoint, each hardware configuration file used for the
different implementations of the partially reconfigurable
regions is stored into a compact flash card. It can be
loaded by a processor (e.g. microblaze, which is a 32-bit
soft-core processor as implementable on Xilinx FPGAs).
It performs the reconfiguration using the ICAP (Internal
Configuration Access Port) as in Figure 1.

The runtime management of reconfiguration involves
a control loop, taking decision according to events mon-
itored on the architecture, choosing the appropriate next
configuration to install, and executing appropriate recon-
figuration actions. The architecture dynamism increases
the design complexity, for which a complete tool-chain
is lacking [8]. Due to the relative novelty of DPR tech-
nologies, the management of reconfiguration has to be
designed manually for important parts.

Amongst different approaches to address this issue, we
investigate the adoption of an autonomic computing ap-
proach for the design of reconfiguration control. The
MAPE-K structure is based on behavioural models (in
the form of automata) for the knowledge about the re-
configurability of these hardware platforms, and discrete
control techniques for designing the adaptation policies.

2.2 Discrete control
We consider the modeling framework [1] based on la-
belled transition systems (LTSs) and their parallel com-
position. LTSs are defined by a finite set of states, be-
tween which there are transitions (from source state to

target state) with a label of form c / a: a firing condi-
tion c and an action a. When a LTS is in some state, if
there is a transition for which the condition is true, then
it is taken and the next state will be its target state. At the
same time the action part will take the value true. Two
or more LTSs can be composed (noted formally by "|"),
representing that they run in parallel: one global step cor-
responds to one local step for every LTS.

The formalism of LTSs can be used to apply discrete
controller synthesis (DCS), a formal operation on au-
tomata [3, 7]. DCS is an automatic and constructive
method to ensure required properties on system behav-
iors. It applies to an LTS (originally uncontrolled), where
inputs I are partitioned into two subsets, Iu and Ic,
the uncontrollable and controllable inputs. It takes into
account some control objectives: properties that must be
enforced by control. A controller is synthesized automat-
ically, if it exists, from given LTS’s and objectives, by
applying appropriate algorithms [7] (not detailed here).
Its purpose is to constrain the values of controllable vari-
ables, in function of states and of uncontrollable inputs,
such that system behaviors satisfy the given objectives.
The controller is maximally permissive, meaning that it
allows the largest possible set of correct behaviors.

2.3 Discrete control as MAPE-K
Figure 2(a) shows the MAPE-K architecture of an au-
tonomic system with a loop defining basic notions of
Managed Element (ME) and Autonomic Manager (AM).
The managed element, system or resource is monitored
through sensors. An analysis of this information is used,
in combination with knowledge about the system, to plan
and decide upon actions. These reconfiguration opera-
tions are executed, using as actuators the administration
functions offered by the system API. Self-management
issues include self-configuration, self-optimisation, self-
healing (fault tolerance and repair), and self-protection.

Autonomic managers work in closed loop: for this,
one design methodology is to apply techniques from
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Figure 3: Autonomic coordination for multiple AMs.

2



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 61

(a)

sensor

execute
knowledge

monitor

analyse plan

actuator

managed element (b)

sensor

state
inputs

actuator

managed element

outputs

transition
function

(c)

sensor

state
inputs

actuator

managed element

outputs

transition
function

control

Figure 2: Autonomic system: (a) the MAPE-K manager; (b) FSM autonomic manager; (c) controllable AM.

Control Theory [6], with the advantage of ensuring in-
teresting properties on the resulting behaviour of the con-
trolled system e.g., stability, convergence, reachability or
avoidance of some evolutions. In most cases, continuous
models are used, typically for quantitative aspects. More
recently, some works relied on Discrete Event Systems
(DES), using supervisory control [3], typically for logi-
cal or synchronisation purposes e.g., deadlock avoidance
in multithreaded programs [10]. They are based on reac-
tive systems models such as Petri nets or Finite State Ma-
chines (FSM), which we also call automata. As shown in
Figure 2(b), this instantiates the general autonomic loop
with knowledge on possible behaviours represented as a
formal state machine, and planning and execution in the
form of the automaton transition function with a control
output, which will trigger the actuator.

Basic features required for a system to be managed
in an autonomic fashion have been identified in previous
work e.g., in the context of component-based autonomic
management [9]: for an ME to be manageable it must
be observable and controllable. The manager transforms
flows of observations into flows of control choices and
actions. Observability translates into outputs, as shown
by dashed arrows in Figure 2(c) for an FSM AM, ex-
hibiting (some) of the knowledge and sensor information
(raw, or analysed); this can feature state information on
the AM itself or of MEs below. Controllability translates
to having the AM accept some influence on the decision,
and it corresponds to additional input for control, as in
Figure 2 for an FSM AM. Its values can be used in the
guards and exhibit choices between different transitions.

This builds up to a hierarchical framework as in the
structure shown in Figure 3. Given that AMs have
been made observable and controllable, an upper-level
AM can perform their coordination using their additional
control input to enforce a policy. Considering the case of
FSM managers makes it possible to encode the coordi-
nation problem as a DCS problem. The controller of this
upper-level AM is synthesised by DCS.

3 DCS for managing DPR architectures

We present the computing systems of interest through an
illustrative example, first informally, then in the model.

3.1 DPR FPGAs
Hardware architecture. We consider a multiproces-
sor architecture implemented on an FPGA chip (see Fig-
ure 1), which includes a general purpose processor: Soft-
core Microblaze, and a reconfigurable area divided into
four tiles: A1–A4. The communications between ar-
chitecture components are achieved by a Network-on-
Chip (NoC). Each processor and reconfigurable tile im-
plements a NoC Interface (NI). Reconfigurable tiles can
be combined and configured to implement and execute
tasks by loading predefined bitstreams.

The architecture is equipped with a battery supplying
the platform with energy. Regarding power management,
an unused reconfigurable tile Ai can be put into sleep
mode with a clock gated mechanism such that it con-
sumes a minimum static power.

a)

B

A

C

D

b)
task A

or

task B

task C

task B

task C

1) 2) 3)

Figure 4: a) DAG application specification, and b) Sys-
tem configurations and reconfiguration.

Application software. We consider system functional-
ity described as a directed, acyclic task graph (DAG). A
DAG consists of a set of nodes representing the set of
tasks to be executed, and a set of directed edges repre-
senting the precedence constraints between tasks. Figure
4(a) shows an example consisting of four tasks.

In our framework, we suppose each task performs its
computation with the following four control points:
• being requested or invoked;
• being delayed: requested but not yet executed;
• being executed: to be executed on the architecture;
• notifying execution finish, once it reaches its end.

Occurrences of control points being requested and noti-
fying finishes depend on runtime situations, and are thus
unpredictable and uncontrollable. The way of delaying
and executing tasks is taken charge by a runtime man-
ager aiming to achieve system objectives.

3
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Task implementation. Given a hardware architecture,
a task can be implemented in various ways characterised
by various parameters of interest, such as used reconfig-
urable tiles (ur), worst case execution time (WCET) (wt),
and power peak pp. For example, two implementations
of task A can be:
• A on A1: wt = 50, pp = 20;
• A on A3+A4: wt = 10, pp = 30;

In this preliminary work, we assume that WCET repre-
sents the time cost induced from the start of bitstream
loading to the end of task execution. Among possible
task implementations, a runtime manager is in charge of
choosing the best according to system objectives.

System reconfiguration. Figure 4(b) shows three sys-
tem configuration examples. In configuration 1, task A
is running on tiles A3 and A4 while tiles A and B are set
to the sleep mode. Configurations 2 and 3 show two sce-
narios with tasks B and C running in parallel. Once task
A finishes its execution according to the graph of Fig-
ure 4(a), the system can go to either configuration 2 or
configuration 3 depending on the system requirements.
For example, if the current state of the battery level is
low, the system would choose configuration 2 as config-
uration 3 requires the complete FPGA working surface
and therefore consumes more power.

System objectives. System objectives define the sys-
tem functional and non-functional requirements. This
section gives the objectives considered in the paper, and
categorises them as logical and optimal control objec-
tives. Generally speaking, logical objectives concern
state exclusions, whereas optimal objectives target the
states associated with optimal costs. Considered logical
and optimal control objectives are as follows:

1. resource usage constraint: exclusive uses of recon-
figurable areas A1-A4;

2. energy reduction constraint: switch areas to sleep
mode when executing no task;

3. power peak constraint: power peak of hardware
platform is constrained w.r.t battery levels;

4. minimise power peak of hardware platform.
More system objectives can be addressed in our frame-
work. We refer the readers to [2] for more details.

3.2 System modelling as a DCS problem
We specify the modelling of the computing system be-
haviour and control in terms of labelled automata. Sys-
tem objectives are defined based on the models. We fo-
cus on the management of computations on the recon-
figurable tiles and dedicate the processor area A0 exclu-
sively to the resulting controller.

Architecture behaviour. The architecture (see Fig-
ure 1) includes a processor, four reconfigurable tiles
{A1,A2,A3,A4} and a battery. Each tile has two execu-
tion modes, and the mode switches are controllable. Fig-
ure 5(a) gives the model of the behaviour of tile Ai. The
mode switch action between Sleep (Sle) and Active (Act)
depends on the value of the Boolean controllable variable
c_ai. The output acti represents its current mode.

The battery behaviour is captured by the automaton
in Figure 5(b). It has three states labelled as follows:
H (high), M (medium) and L (low). The model takes
input from the battery sensor, which emits level up and
down events, and keeps track of the current battery level
through output st.

Application behaviour. Software application is de-
scribed as a DAG, which specifies the tasks to be exe-
cuted and their execution sequences and parallelism. Its
execution behaviour can be captured by using an automa-
ton with states representing the set of tasks that are ac-
tive in current states. The firing conditions of transitions
are task finish notifications, which could enable the ex-
ecutions of (some of) its immediate succeeding tasks by
emitting start requests of these tasks. An algorithm to
systematically construct such an scheduling automaton
for a DAG can be found in [2].

Task execution behaviour. In consideration of the
four control points of task executions (see Section 3.1),
the execution behaviour of task A associated with two
implementations (see Section 3.1) can be modelled as
Figure 5(c). It features an initial idle state IA, a wait state
WA, and two executing states X1

A , X2
A corresponding to

two implementations of task A. Controllable variables
are integrated in the model to encode the controllable
points: being delayed and executed. Upon the receipt
of start request rA, task A goes to either:
• executing state Xi

A, i ∈ {1,2} if the value of control-
lable variable ci leading to Xi

A is true, or
• wait state WA if delayed, i.e., the value of Boolean

expression c =
∨

ci, i ∈ {1,2} is false.
From wait state WA, upon the receipt of event ci, it

goes to execution state Xi
A. When the execution of task

A finishes, i.e., the end notification event eA is received,
the automaton goes back to idle state IA. Output es rep-
resents its execution state.

Local execution costs. The execution costs of different
task implementations are different. Three cost parame-
ters are considered (see Section 3.1). We capture them
by associating cost values denoted by a tuple (rs,wt, pp)
with the states of task models, where: rs ∈ 2RA (RA is the
set of architecture resources), wt ∈ N (a WCET value)
and pp ∈ N (a power peak). The costs associated with

4
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Figure 5: Models RMi for tile Ai, BM for battery, and T MA for the execution behavior of task A.

executing states are the values associated with their cor-
responding implementations. For idle and wait states,
apparently rs = /0, pp = 0. However, the wt values for
idle and wait states depend on the execution times of
their precedent tasks. We therefore represent it by using
a special symbol ⊥, and thus we have wt ∈ N∪ ⊥.

Global system behaviour model. The parallel com-
position of control models for reconfigurable tiles
RM1-RM4, battery BM and tasks T MA-T MD, plus
scheduler Sdl comprises the system model: S =
RM1|...|RM4|BM|T MA|...|T MD|Sdl with initial state
q0 = (Sle1, ...,Sle4,H, IA, ..., ID, I). Sdl represents the au-
tomaton that captures the application behavior as dis-
cussed in Section 3.2. It represents all the possible sys-
tem execution behaviours in the absence of control (i.e.,
a runtime manager is not yet integrated).

Global costs. A system state q is a composition of lo-
cal states (denoted by q1, ...,qn), and we define its global
cost from the local ones as follows:
• used resources: union of used resources associated

with the local states, i.e., rs(q) =
⋃

rs(qi),1≤ i≤ n;
• power peak: the sum of values associated with the

local states, i.e., pp(q) = ∑(pp(qi),1 ≤ i ≤ n);

System objectives. The two types of system objec-
tives: logical and optimal ones, can then be defined in
terms of the states and the costs defined on the states or
paths of the model. For example, Objective 1) exclusive
uses of reconfigurable areas A1-A4 by tasks is defined
by ∀qi,q j ∈ q, i �= j, that rs(qi)

⋂
rs(q j) = /0. We refer

the readers to [2] for the detailed definition.
We have validated our models and manager computa-

tions experimentally by implementing a video process-
ing system on an ML605 board from Xilinx containing
an FPGA. The BZR language has been used to encode
system models and objectives, and generate a correct au-
tonomic manager in C code for the system. They are
detailed elsewhere [2] due to lack of space.

4 Conclusion and Perspectives

Reconfigurable architectures, especially DPR FPGAs,
constitute a platform for adaptive computing that is gain-

ing widespread use. They are a typical target for auto-
nomic computing approaches, although they are not of-
ten explicitly tackled that way. In this paper, we pro-
posed a systematic modeling framework for DPR FPGA
based embedded systems, and applied formalisms and
tools from discrete control to encode and perform the au-
tonomic manager computation as a DCS problem.

Perspectives include the ongoing work to enrich our
models with reconfiguration costs, and the use of modu-
lar synthesis and compilation [4] for manager computing.
We are working on more experimental systems, which
will validate more completely our approach.
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Abstract

MapReduce is designed as a simple and scalable frame-
work for big data processing. Due to the lack of resource
usage models, its implementation Hadoop hands over re-
source planning and optimizing works to users. But user-
s also find difficulty in specifying right resource-related,
especially memory-related, configurations without good
knowledge of job’s memory usage. Modeling memory
usage is challenging because there are many influencing
factors such as framework’s dataflow, user-defined pro-
grams, large space of configurations and memory man-
agement mechanism of JVM. In order to help both user-
s and the framework to analyze, predict and optimize
memory usage, we propose a Fine-grained Memory
Estimator for MapReduce jobs called FMEM. FMEM
contains a dataflow estimator which can predict the da-
ta volume flowing among map/reduce tasks. Based on
dataflow and rules of memory utilization learnt from a lot
of jobs, FMEM uses a rules-statistics method to estimate
fine-grained memory usage in each generation of task’s
JVM. Representative benchmarks show that FMEM can
predict diverse jobs’ memory usage within 20% relative
error. Furthermore, FMEM will be promoted to find op-
timum dataflow and memory related configurations.

1 Introduction

Google MapReduce [7] framework and its open-source
implementation Hadoop have been widely adopted to
process big data. This framework divides the costly data
processing job into small independent map/reduce tasks
and runs them in parallel. Users only need to specify
map and reduce functions to develop data-intensive ap-
plications, regardless of distributed issues. Users can al-
so write SQL-like scripts which can be transformed in-
to MapReduce jobs automatically by high-level frame-
works such as Pig [15], Hive [18] and Sawzall [16].

Although MapReduce helps users focus on job’s func-
tion implementation, we find its three-isolated-layer ar-
chitecture causes users’ difficulty in configuration, re-
source planning and performance optimization. In us-
er layer, users are required to write programs, prepare

dataset and also specify appropriate memory-related con-
figurations. In framework layer, besides defining job’s
data processing steps (dataflow [5]) in map and reduce
stage, framework is also responsible to schedule, launch
and maintain map/reduce tasks. In execution layer, each
task runs as a separate JVM instance, performs data pro-
cessing steps and executes concrete map/reduce func-
tions. Since JVM divides memory into small spaces and
manages them separately, only execution layer knows the
actual fine-grained memory usage. Framework just treat-
s memory as a large contiguous space without modeling
its consumption. So inappropriate configurations may
lead to job’s OutOfMemory error, performance degrada-
tion or resource waste. At the highest layer and facing
large space of configurations, users usually feel hard to
analyze, predict and optimize memory usage. Howev-
er, new scheduling frameworks such as YARN [6] and
Mesos [12] not only require users to specify the memory
usage but also schedule tasks according to it.

It is challenging to model and predict job’s memory
usage with variable dataset, limited logs and large space
of configurations. Fortunately, MapReduce dataflow pat-
tern is relatively fixed with only black-box map/reduce
functions. Our proposed memory estimator (FMEM) us-
es simulation method to model dataflow pattern and s-
tatistical methods to model intermediate data volume.
Memory usage is more complex to model because of
multiple factors such as dataflow, configurations and
garbage collection (GC). In order to build this model, we
integrate the different views of memory consumption in
all layers, study the memory management mechanism of
JVM, analyze a lot of jobs’ logs, and then summarize
rules of fine-grained memory usage. Statistical methods
are used to estimate the size of in-memory objects. Fi-
nally, FMEM profiles a job using sample data and then
predict its dataflow and memory usage on real big data.

Our contributions are as follows: 1) We provide a
detailed analysis of job’s memory usage, considering
dataflow and memory management from user-level to in-
ner JVM. 2) We also introduce a fine-grained memory es-
timator which can predict job’s memory usage in a large
space of configurations.



66 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

2 Memory Usage Analysis
Each mapper/reducer runs as an independent process in
MapReduce framework. In Hadoop, one process is one
JVM instance which isolates the framework from man-
aging the physical memory directly. Memory allocation
and GC are controlled by specific algorithms. JVM di-
vides the whole heap space into two parts: new genera-
tion for storing newly-generated objects and old genera-
tion for storing long-term objects. We find task’s memo-
ry consumption mainly comes from the following items:

Memory Buffers. In mapper, spill buffer always occu-
pies a large fixed space in old generation. It is set by
io.sort.mb and used to cache map() outputs. Enlarging
this buffer may reduce spill times and disk I/O. In reduc-
er, data shuffled from map outputs are kept as in-memory
segments in a logical shuffle buffer. This buffer cannot
exceed a threshold (default 70%) of JVM’s total heap, or
else segments are merged onto disk. In JVM, segments
are first allocated in new generation and some of them
are transferred into old generation if GC occurs. In addi-
tion, Java’s input/output/flush/compress streaming class-
es contain small-sized buffers.

Records. Since each task has to read <K, V> record-
s, process them, merge intermediate records and output
new records, records definitely occupy a large space in
JVM. In mapper, map() outputs records into spill buffer.
In reducer, shuffled records are first kept as segments in
shuffle buffer, though they may be merged onto disk lat-
er. Streaming records in map() and reduce() occupy lim-
ited space unless many of them are kept purposely into
in-memory data structure.

Temporary Objects (TmpObjs). While processing and
producing records, user-defined programs or framework
itself may generate temporarily referenced objects such
as char[], byte[], String, ArrayList and so on. Most of
them are auxiliary objects of input/output records, allo-
cated in new generation first and then reclaimed by GC.
For example, A WordCount mapper produces massive
java.nio.HeapCharBuffer objects. Objects’ number e-
quals the number of map() output records, but their size
is more than 7 times the size of map() input records.

Others. The native libraries used in task’s JVM may
consume small memory space. JVM also keeps a small
area to store programs’ Class, Object and Method infor-
mation. Other program-related items such as code seg-
ment and thread pool also have small space in memory.

3 System Overview
To predict jobs’ <Memory Usage mu> under specific
<Dataset d, Configuration c>, we build an integrated
system illustrated in Figure 1. We first profile the sample
job running on sample dataset (SData) and then estimate

big job’s mu on big dataset (BData). Conf stands for
Configuration.
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Figure 1: System Architecture of FMEM

Built-in Monitor: To monitor dataflow, we add many
fine-grained dataflow counters into Hadoop’s task logs.
For example, we add each spill piece’s Records/Bytes S-
tatistics (RBS) before and after spilling, each partition’s
RBS before and after merging and so on. We also use
Jstat [4] to record each generation’s memory usage ev-
ery N seconds. Users can turn on or off built-in monitor
through configuration. This monitor has low overhead
and only used for sample jobs.

Profiler: After a sample job finishes, log collector will
fetch each task’s execution time, configuration, dataflow
volume and memory usage. Dataflow profiler calcu-
lates task’s RBS in map, spill&merge, shuffle, sort and
reduce phase. Similarly, memory profiler calculates
max/min/average memory usage in each phase.

Dataflow Estimator: Though we can get RBS from the
sample job, it is non-trivial to predict big job’s dataflow
in a large configuration space. Many configurations such
as input split size, spill buffer and reducer number can af-
fect dataflow volume. To tackle them, we actually build
a simulator of MapReduce framework to model dataflow
in each processing step. Statistical methods are used to
model and estimate the I/O ratio. When big job’s BDa-
ta and Conf2 are specified, mapper dataflow model in
our simulator uses sample mappers’ profiles to estimate
new mappers’ dataflow. Then, reducer dataflow model
can compute new reducers’ profiles based on the sample
ones.

Memory Estimator: To estimate new tasks’ memory
profiles, we first compute the size of their memory-
consuming items. We get memory buffer size from Con-
f2, get records’ size from dataflow estimator, and com-
pute TmpObjs according to dataflow and memory pro-
files of sample tasks. Next, we use rules summarized
from tremendous jobs’ profiles to estimate memory us-
age in each generation for each task. The rules are for-
malized as NGU/OGU ≈ f (Conf,Records, TmpObjs).
Finally, memory estimator selects the maximum (x)
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memory usage of all the new mappers to represent map-
per’s mu. In detail, mapper’s xNGU represents maxi-
mum memory usage in new generation of all mappers.
So does reducer’s. xOU stands for that in old generation.
xHeapU denotes heap usage (i.e., NGU + OU).

4 Evaluation
Because each task runs as an independent JVM instance
and processes its own data, task’s memory usage is not
so sensitive to cluster scale as job’s execution time. We
evaluate FMEM’s accuracy on a local cluster of 10 n-
odes. Each node has four Intel i7-2600 cores, 16GB
RAM and 2TB disk space. OS is Ubuntu-11.04 x86_64
and JDK is HotSpot 64-Bit Server VM (build 1.6.0_27).
Hadoop version is 0.20.2 which is similar to the latest
1.1.2. YARN does not change dataflow pattern either.
One node act as JobTracker. The others are slave nodes,
each of which has 4 map slots and 2 reduce slots.

We use diverse applications (Table 1) to evaluate
FMEM. Combine denotes whether combine() is used.
Compress denotes whether spill pieces and segments are
compressed. SeqBlock means Block compression in Se-
quenceFile. For each application, we run 180 sample
jobs (processing 1GB sample dataset) and 180 big job-
s (processing big dataset) with different combinations
of <split, ismb, RN, Xmx, Xms> (SIRXX). These five
configurations are often adjusted to better performance,
though our models involve many other configurations. S-
plit is input split size (set to 64, 128 or 256MB). ismb is
io.sort.mb (set to 200, 400, 600 or 800MB). Sample job-
s’ RN (reducer number) is 2 or 4, while big jobs’ RN is
9 or 18. JVM’s maximum heap size Xmx is set to 1000,
2000, 3000 or 4000MB. Minimum heap size Xms is not
set or set equal to Xmx. So the number of sample/big
jobs is 192. Twelve of them are abortive jobs because
of memory overflow. Next, we use a sample job with
specific <split, ismb, RN, Xmx, Xms> to estimate a big
job’s mu with another SIRXX. So there are 180 * 180
= 32,400 estimated memory usage <emu>. Finally, we
compare each big job’s estimated <emu> and real <rmu>
using relative error as follows:

relative error =
∣∣∣ emu − rmu

rmu

∣∣∣ ∗ 100%

If rmu = 0, we set relative error to 100%. The sample
job randomly selects several splits (totally 1GB) from all
the input splits of big dataset as sample dataset.

Table 1: Representative MapReduce Applications

Applications Dataset Combine Compress
WikiWordCount 9.4 GB Y N
BuildInvertedIndex 9.4 GB N SeqBlock
UserVisits_Aggre-pig 75 GB Y N
TwitterBiEdgeCount 24.4 GB N N
TeraSort 36 GB N Y

WikiWordCount (WWC): This application uses stan-
dard WordCount program from Hadoop Examples. We
preprocess enwiki-20110405-pages-articles.xml and get
9.4GB plain text as input big dataset.

BuildInvertedIndex (BII): This application simulates
building inverted index of Web pages, which is widely
used in search engines. The source code is from [1]. In-
put dataset is as same as that in WWC.

UserVisits_Aggre-pig (UVA): This application is actu-
ally a Pig script which is used to analyze user-visited logs
in websites. We get this script from Hive Performance
Benchmark in [3]. It has Group By operator and uses
program-generated dataset.

TwitterBiEdgeCount (TBEC): It counts the number of
bilateral edges of Twitter graph from [13]. This large
sparse graph has more than 40 million nodes and 1.5 bil-
lion edges.

TeraSort (TS): This application also uses standard
TeraSort program and sorts program-generated 36 GB
dataset. Note that this job uses identity map() and re-
duce(). Thus, the I/O ratio of them is 1:1.

4.1 Evaluating Memory Estimator
Each job’s memory usage is represented by mapper’s
mu and reducer’s mu. We evaluate them separately.
Each histogram in Figure 2 shows the average relative
error from 32,400 comparisons of big jobs’ <emu, r-
mu>. Four metrics (xOU, xNGU, xHeapU and RSS)
are used as concrete mu for both mappers and reduc-
ers. Suppose a big job has n mappers, this job’s map-
per xOU = max1≤i≤n(OUi). Others are computed in
the same way. HeapU represents total memory usage
of JVM, while RSS (Resident Set Size) stands for non-
swapped physical memory usage in Linux. Sometimes
there is a small difference between them. The top part
shows mapper’s relative error. Compared with xOU, xN-
GU has higher error rate. One reason is that NGU is more
variable and affected by multiple factors. Another is that
our estimating condition is very harsh. We only use a
single sample job with one configuration to estimate a
big job with another configuration. xHeapU and RSS are
better but their standard deviations are a little high. The
bottom part shows reducer’s relative error. Since reduc-
er’s mu is related to the size of shuffled records, large d-
ifference of dataflow may cause high error rate of mu. So
WWC’s xOU and xNGU have high error rate. But for the
other applications, xNGU and xOU have low error rates
which indicate our memory usage rules are effective.

5 Related Work
Many researchers have studied job’s performance mod-
el and optimizing methods. Some are concerned about
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Figure 2: Relative error with standard deviation of <emu,rmu>

jobs’ execution time estimation. Morton et al. [14]
present an online heuristic method to predict the progress
of MapReduce job pipelines. This method borrows
some ideas from progress indicators for SQL queries in
DBMSs. Verma et al. [19] propose a theoretical bound
time model which analyzes each phase of MapReduce
dataflow carefully. They also discuss how to allocate
right resource (slots) to guarantee job’s runtime [20].
Ganapathi et al. [8] use Kernel Canonical Correlation
Analysis to model the relationship between Hive queries’
features and queries’ performance metrics (only runtime
is validated). This method does not focus on the actual
MapReduce job and treats the dataflow as a black box.

Other researchers optimize job’s configurations. S-
tarfish project [11, 10] proposes a cost-based optimiz-
er to find job’s optimum configuration. The What-if en-
gine in this project can predict job’s performance (mainly
for runtime) with different configurations. Hadoop per-
formance models are discussed in [9] but fine-grained
memory usage is not studied.

Few works focus on job’s memory usage. Singer et
al. [17] design a fork-join MapReduce Java Framework
(MRJ) for multi-core machines. They use machine learn-
ing approach to finding most suitable GC policy for MRJ,
but memory usage is not studied. This method does not
concentrate on distributed MapReduce framework like
Hadoop either.

6 Conclusion

Memory is more precious compared with disk for big da-
ta processing. YARN and Mesos schedule tasks accord-
ing to CPU and memory requirement. To help users an-
alyze, predict and optimize resource usage, we develop
FMEM which can estimate MapReduce job’s dataflow

and memory usage in a large configuration space. It us-
es sample job’s profiles to estimate big job’s resource
usage. FMEM models the complex relationship among
dataflow, memory usage, GC and configurations. It can
also be promoted to tackle other resource-related prob-
lems. To the best of our knowledge, this is the first
approach that tries to model the memory usage of dis-
tributed MapReduce tasks. Our project is now available
at github [2].
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Abstract

Dynamically adjusting the number of virtual machines

(VMs) assigned to a cloud application to keep up with

load changes and interference from other uses typically

requires detailed application knowledge and an ability to

know the future, neither of which are readily available

to infrastructure service providers or application owners.

The result is that systems need to be over-provisioned

(costly), or risk missing their performance Service Level

Objectives (SLOs) and have to pay penalties (also

costly). AGILE deals with both issues: it uses wavelets

to provide a medium-term resource demand prediction

with enough lead time to start up new application server

instances before performance falls short, and it uses

dynamic VM cloning to reduce application startup times.

Tests using RUBiS and Google cluster traces show that

AGILE can predict varying resource demands over the

medium-term with up to 3.42× better true positive rate

and 0.34× the false positive rate than existing schemes.

Given a target SLO violation rate, AGILE can efficiently

handle dynamic application workloads, reducing both

penalties and user dissatisfaction.

1 Introduction

Elastic resource provisioning is one of the most attractive

features provided by Infrastructure as a Service (IaaS)

clouds [2]. Unfortunately, deciding when to get more

resources, and how many to get, is hard in the face of

dynamically-changing application workloads and service

level objectives (SLOs) that need to be met. Existing

commercial IaaS clouds such as Amazon EC2 [2] de-

pend on the user to specify the conditions for adding

or removing servers. However, workload changes and

interference from other co-located applications make this

difficult.

Previous work [19, 39] has proposed prediction-driven

resource scaling schemes for adjusting how many re-

Host

VM + 
application

VM controller

Linux + KVM

Resource 
pressure 
modeling

AGILE slave
Resource 
demand 

prediction
Resource 
monitoring

Server addition/
removal

AGILE master

Server pool 
prediction

Server pool scaling 
manager

Figure 1: The overall structure of the AGILE system. The

AGILE slave continuously monitors the resource usage of

different servers running inside local VMs. The AGILE master

collects the monitor data to predict future resource demands.

The AGILE master maintains a dynamic resource pressure

model for each application using online profiling. We use the

term server pool to refer to the set of application VMs that

provide the same replicated service. Based on the resource

demand prediction result and the resource pressure model,

the AGILE master invokes the server pool manager to add or

remove servers.

sources to give to an application within a single host.

But distributed resource scaling (e.g., adding or remov-

ing servers) is more difficult because of the latencies

involved. For example, the mean instantiation latency

in Amazon EC2 is around 2 minutes [8], and it may then

take a while for the new server instance to warm up: in

our experiments, it takes another 2 minutes for a Cassan-

dra server [4] to reach its maximum throughput. Thus,

it is insufficient to apply previous short-term (i.e., less

than a minute) prediction techniques to the distributed

resource scaling system.

In this paper, we present our solution: AGILE, a

practical elastic distributed resource scaling system for

IaaS cloud infrastructures. Figure 1 shows its overall

structure. AGILE provides medium-term resource de-

mand predictions for achieving enough time to scale up

the server pool before the application SLO is affected by

the increasing workload. AGILE leverages pre-copy live

1
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cloning to replicate running VMs to achieve immediate

performance scale up. In contrast to previous resource

demand prediction schemes [19, 18], AGILE can achieve

sufficient lead time without sacrificing prediction accu-

racy or requiring a periodic application workload.

AGILE uses online profiling and polynomial curve

fitting to provide a black-box performance model of the

application’s SLO violation rate for a given resource

pressure (i.e., ratio of the total resource demand to the

total resource allocation for the server pool). This model

is updated dynamically to adapt to environment changes

such as workload mix variations, physical hardware

changes, or interference from other users. This allows

AGILE to derive the proper resource pressure to maintain

to meet the application’s SLO target.

By combining the medium-term resource demand pre-

diction with the black-box performance model, AGILE

can predict whether an application will enter the overload

state and how many new servers should be added to avoid

this.

Contributions

We make the following contributions in this paper.

• We present a wavelet-based resource demand pre-

diction algorithm that achieves higher prediction ac-

curacy than previous schemes when looking ahead

for up to 2 minutes: the time it takes for AGILE to

clone a VM.

• We describe a resource pressure model that can

determine the amount of resources required to keep

an application’s SLO violation rate below a target

(e.g., 5%).

• We show how these predictions can be used to clone

VMs proactively before overloads occur, and how

dynamic memory-copy rates can minimize the cost

of cloning while still completing the copy in time.

We have implemented AGILE on top of the KVM

virtualization platform [27]. We conducted extensive

experiments using the RUBiS multi-tier online auction

benchmark, the Cassandra key-value store system, and

resource usage traces collected on a Google cluster [20].

Our results show that AGILE’s wavelet-based resource

demand predictor can achieve up to 3.42× better true

positive rate and 0.34× the false positive rate than

previous schemes on predicting overload states for real

workload patterns. AGILE can efficiently handle chang-

ing application workloads while meeting target SLO vi-

olation rates. The dynamic copy-rate scheme completes

the cloning before the application enters the overload

state with minimum disturbance to the running system.

AGILE is light-weight: its slave modules impose less

than 1% CPU overhead.

Figure 2: Wavelet decomposition of an Apache web server

CPU demand under a real web server workload from the

ClarkNet web server [24]. The original signal is decomposed

into four detailed signals from scale 1 to 4 and one approxi-

mation signal using Haar wavelets. At each scale, the dotted

line shows the predicted signal for the next future 16 seconds

at time t = 32 second.

2 AGILE system design

In this section, we first describe our medium-term re-

source demand prediction scheme. By “medium-term”,

we mean up to 2 minutes (i.e., 60 sampling intervals

given a 2-second sampling interval). We then introduce

our online resource pressure modeling system for map-

ping SLO requirements to proper resource allocation.

Next, we describe the dynamic server pool scaling mech-

anism using live VM cloning.

2.1 Medium-Term Resource demand pre-

diction using Wavelets

AGILE provides online resource demand prediction

using a sliding window D (e.g., D = 6000 seconds)

of recent resource usage data. AGILE does not re-

quire advance application profiling or white-box/grey-

box application modeling. Instead, it employs wavelet

transforms [1] to make its medium-term predictions: at

each sampling instant t, predicting the resource demand

over the prediction window of length W (e.g., W = 120

2
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seconds). The basic idea is to first decompose the

original resource demand time series into a set of wavelet

based signals. We then perform predictions for each

decomposed signal separately. Finally, we synthesize the

future resource demand by adding up all the individual

signal predictions. Figure 2 illustrates our wavelet-

based prediction results for an Apache web server’s CPU

demand trace.

Wavelet transforms decompose a signal into a set of

wavelets at increasing scales. Wavelets at higher scales

have larger duration, representing the original signal at

coarser granularities. Each scale i corresponds to a

wavelet duration of Li seconds, typically Li = 2i. For

example, in Figure 2, each wavelet at scale 1 covers 21

seconds while each wavelet at scale 4 covers 24 = 16

seconds. After removing all the lower scale signals

called detailed signals from the original signal, we obtain

a smoothed version of the original signal called the

approximation signal. For example, in Figure 2, the

original CPU demand signal is decomposed into four

detailed signals from scale 1 to 4, and one approximation

signal. Then the prediction of the original signal is

synthesized by adding up the predictions of these decom-

posed signals.

Wavelet transforms can use different basis functions

such as the Haar and Daubechies wavelets [1]. In

contrast, Fourier transforms [6] can only use the sinusoid

as the basis function, which only works well for cyclic

resource demand traces. Thus, wavelet transforms have

advantages over Fourier transforms in analyzing acyclic

patterns.

The scale signal i is a series of independent non-

overlapping chunks of time, each with duration of 2i

(e.g., the time intervals [0-8), [8-16)). We need to predict

W/2i values to construct the scale i signal in the look-

ahead window W as adding one value will increase the

length of the scale i signal by 2i.

Since each wavelet in the higher scale signal has a

larger duration, we have fewer values to predict for

higher scale signals given the same look-ahead window.

Thus, it is easier to achieve accurate predictions for

higher scale signals as fewer prediction iterations are

needed. For example, in Figure 2, suppose the look-

ahead window is 16 seconds, we only need to predict 1

value for the approximation signal but we need to predict

8 values for the scale 1 detail signal.

Wavelet transforms have two key configuration pa-

rameters: 1) the wavelet function to use, and 2) the

number of scales. AGILE dynamically configures these

two parameters in order to minimize the prediction

error. Since the approximation signal has fewer values to

predict, we want to maximize the similarity between the

approximation signal and the original signal. For each

sliding window D, AGILE selects the wavelet function

Figure 3: Dynamically derived CPU resource pressure models

mapping from the resource pressure level to the SLO violation

rate using online profiling for RUBiS web server and database

server. The profiling time for constructing one resource pres-

sure model is about 10 to 20 minutes.

that results in the smallest Euclidean distance between

the approximation signal and the original signal. Then,

AGILE sets the number of values to be predicted for the

approximation signal to 1. It does this by choosing the

number of scales for the wavelet transforms. Given a

look-ahead window W , let U denote the number of scales

(e.g., scale of the approximation signal). Then, we have

W/2U = 1, or U = ⌈log2(W )⌉. For example, in Figure 2,

the look-ahead window is 16 seconds, so AGILE sets the

maximum scale to U = ⌈log2(16)⌉= 4.

We can use different prediction algorithms for predict-

ing wavelet values at different scales. In our current pro-

totype, we use a simple Markov model based prediction

scheme presented in [19].

2.2 Online resource pressure modeling

AGILE needs to pick an appropriate resource allocation

to meet the application’s SLO. One way to do this would

be to predict the input workload [21] and infer the future

resource usage by constructing a model that can map

input workload (e.g., request rate, request type mix) into

the resource requirements to meet an SLO. However,

this approach often requires significant knowledge of the

application, which is often unavailable in IaaS clouds

and might be privacy sensitive, and building an accurate

workload-to-resource demand model is nontrivial [22].

Instead, AGILE predicts an application’s resource

usage, and then uses an application-agnostic resource

pressure model to map the application’s SLO violation

rate target (e.g., < 5%) into a maximum resource pres-

sure to maintain. Resource pressure is the ratio of

resource usage to allocation. Note that it is necessary to

allocate a little more resources than predicted in order to

accommodate transient workload spikes and leave some

headroom for the application to demonstrate a need for

3
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more resources [39, 33, 31]. We use online profiling

to derive a resource pressure model for each application

tier. For example, Figure 3 shows the relationship be-

tween CPU resource pressure and the SLO violation rate

for the two tiers in RUBiS, and the model that AGILE

fits to the data. If the user requires the SLO violation rate

to be no more than 5%, the resource pressure of the web

server tier should be kept below 78% and the resource

pressure of the database tier below 77%.

The resource pressure model is application specific,

and may change at runtime due to variations in the

workload mix. For example, in RUBiS, a workload

with more write requests may require more CPU than

the workload with more browse requests. To deal with

both issues, AGILE generates the model dynamically at

runtime with an application-agnostic scheme that uses

online profiling and curve fitting.

The first step in building a new mapping function

is to collect a few pairs of resource pressure and SLO

violation rates by adjusting the application’s resource

allocation (and hence resource pressure) using the Linux

cgroups interface. If the application consists of multi-

ple tiers, the profiling is performed tier by tier; when one

tier is being profiled, the other tiers are allocated suffi-

cient resources to make sure that they are not bottlenecks.

If the application’s SLO is affected by multiple types of

resources (e.g., CPU, memory), we profile each type of

resource separately while allocating sufficient amounts

of all the other resource types. We average the resource

pressures of all the servers in the profiled tier and pair

the mean resource pressure with the SLO violation rate

collected during a profiling interval (e.g., 1 minute).

AGILE fits the profiling data against a set of polyno-

mials with different orders (from 2 to 16 in our experi-

ment) and selects the best fitting curve using the least-

square error. We set the maximum order to 16 to avoid

overfitting. At runtime, AGILE continuously monitors

the current resource pressure and SLO violation rate, and

updates the resource pressure model with the new data. If

the mapping function changes significantly (e.g., due to

variations in the workload mix), and the approximation

error exceeds a pre-defined threshold (e.g., 5%), AGILE

replaces the current model with a new one. Since we

need to adjust the resource allocation gradually and wait

for the application to become stable to get a good model,

it takes about 10 to 20 minutes for AGILE to derive a new

resource pressure model from scratch using the online

profiling scheme. To avoid frequent model retraining,

AGILE maintains a set of models and dynamically se-

lects the best model for the current workload. This

is useful for applications that have distinct phases of

operation. A new model is built and added only if the

approximation errors of all current models exceed the

threshold.

Figure 4: Performance of a new Cassandra server using

different server instantiation mechanisms in KVM. All mea-

surements start at the time of receiving a new server cloning

request. We expect post-copy live cloning would behave

similar to cold cloning.

2.3 Dynamic server pool scaling

Our technique for scaling up the server pool when

overload is predicted distinguishes itself from previous

work [28, 8] in terms of agility: servers can be dy-

namically added with little interference, provide near

immediate performance scale-up, and low bandwidth

cost using adaptive copy rate configuration.

There are multiple approaches to instantiate a new

application server:

1. Boot from scratch: create a new VM and start the

OS and application from the beginning.

2. Cold cloning: create a snapshot of the application

VM beforehand and then instantiate a new server

using the snapshot.

3. Post-copy live cloning [28]: instantiate a new server

by cloning one of the currently running VMs, start

it immediately after instantiation and use demand

paging for memory copy.

4. Pre-copy live cloning: instantiate a new server from

an already running VM. The new server is started

after almost all the memory has been copied.

AGILE uses the last of these, augmented with rate

control over the data transfer to achieve rapid perfor-

mance scale-up, minimize interference with the source

VMs, and avoid storing and maintaining VM snapshots.

Figure 4 shows the throughput of a new Cassandra

server [4] using different server instantiation schemes.

AGILE allows the new instance to reach its maximum

performance immediately, while the others take about

2 minutes to warm up. Note that AGILE triggers the

live cloning before the application enters the overload

state, so its performance is still good during the pre-copy

phase, as we will show later.

Our live VM cloning scheme is similar to previous

VM/process migration systems [13, 51]. In the pre-copy

phase, the dirty memory pages of the source VM are

copied iteratively in multiple rounds without stopping the

4
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source VM. A stop-and-copy phase, where the source

VM is paused temporarily, is used for transferring the

remaining dirty pages. A typical pause is within 1

second.

AGILE also performs disk cloning to make the new

VM independent of the source VM. In IaaS clouds, the

VM’s disk is typically located on a networked storage

device. Because a full disk image is typically large

and would take a long time to copy, AGILE performs

incremental disk cloning using QEMU Copy On Write

(QCOW). When we pause the source VM to perform the

final round of memory copy, we make the disk image of

the source VM a read-only base image, and build two

incremental (copy-on-write) images for the source VM

and the new VM. We can associate the new incremental

image with the source VM on-the-fly without restarting

the VM by redirecting the disk image driver at the

hypervisor level. This is transparent to the guest OS of

the source VM.

Because live VM cloning makes the new VM instance

inherit all the state from the source VM, which includes

the IP address, the new VM may immediately send out

network packets using the same IP address as the source

VM, causing duplicate network packets and application

errors. To avoid this, AGILE first disconnects the

network interface of the new VM, clears the network

buffer, and then reconnects the network interface of the

new VM with a new IP address.

AGILE introduces two features to live VM cloning.

Adaptive copy rate configuration. AGILE uses the

minimum copy rate that can finish the cloning before

the overload is predicted to start (To), and adjusts this

dynamically based on how much data needs to be trans-

ferred. This uses the minimal network bandwidth, and

minimizes impact on the source machine and application.

If the new application server configuration takes

Tcon f ig seconds, the cloning must finish within Tclone =
To − Tcon f ig. Intuitively, the total size of transferred

memory should equal the original memory size plus the

amount of memory that is modified while the cloning

is taking place. Suppose the VM is using M memory

pages, and the desired copy rate is rpage copy pages per

second. We have: rpage copy×Tclone = M+ rdirty ×Tclone.

From this, we have: rpage copy = M/Tclone + rdirty. To

estimate the page-dirty rate, we continuously sample the

actual page-dirtying rate and use an exponential moving

average of these values as the estimated value. AGILE

will also adjust the copy rate if the predicted overload

time To changes.

Event-driven application auto-configuration. AG-

ILE allows VMs to subscribe to critical events that

occur during the live cloning process to achieve auto-

configuration. For example, the new VM can subscribe

to the NetworkConfigured event so that it can configure

itself to use its new IP address. The source VM can

subscribe to the Stopping event that is triggered when

the cloning enters the stop-and-copy phase, so that it

can notify a front-end load balancer to buffer some

user requests (e.g., write requests). Each VM image

is associated with an XML configuration file specifying

what to invoke on each cloning event.

Minimizing unhelpful cloning. Since live cloning

takes resources, we want to avoid triggering unnecessary

cloning on transient workload spikes: AGILE will only

trigger cloning if the overload is predicted more than k

(e.g. k=3) consecutive times. Similarly, AGILE cancels

cloning if the overload is predicted to be gone more than

k consecutive times. Furthermore, if the overload state

will end before the new VM becomes ready, we should

not trigger cloning.

To do this, AGILE checks whether an overload con-

dition will appear in the look ahead window [t, t +W ].
We want to ignore those transient overload states that

will be gone before the cloning can be completed. Let

TRML < W denote the required minimum lead time that

AGILE’s predictor needs to raise an alert in advance

for the cloning to complete before the system enters the

overload state. AGILE will ignore those overload alarms

that only appear in the window [t, t+TRML] but disappear

in the window [t +TRML, t +W ]. Furthermore, cloning is

triggered only if the overload state is predicted to last

for at least Q seconds in the window [t + TRML, t +W ]
(0 < Q ≤W −TRML) .

The least-loaded server in the pool is used as the

source VM to be cloned. AGILE also supports concur-

rent cloning where it creates multiple new servers at the

same time. Different source servers are used to avoid

overloading any one of them.

Online prediction algorithms can raise false alarms.

To address this issue, AGILE continuously checks

whether previously predicted overload states still exist.

Intuitively, as the system approaches the start of the over-

load state, the prediction should become more accurate.

If the overload state is no longer predicted to occur, the

cloning operation will be canceled; if this can be done

during the pre-copy phase, it won’t affect the application

or the source VM.

3 Experimental evaluation

We implemented AGILE on top of the KVM virtual-

ization platform, in which each VM runs as a KVM

process. This lets AGILE monitor the VM’s resource

usage through the Linux /proc interface. AGILE

periodically samples system-level metrics such as CPU

consumption, memory allocation, network traffic, and

disk I/O statistics. To implement pre-copy live cloning,

we modified KVM to add a new KVM hypervisor mod-

5
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ule and an interface in the KVM monitor that supports

starting, stopping a clone, and adjusting the memory

copy rate. AGILE controls the resources allocated to

application VMs through the Linux cgroups interface.

We evaluated our KVM implementation of AGILE

using the RUBiS online auction benchmark (PHP ver-

sion) [38] and the Apache Cassandra key-value store

0.6.13 [4]. We also tested our prediction algorithm using

Google cluster data [20]. This section describes our

experiments and results.

3.1 Experiment methodology

Our experiments were conducted on a cloud testbed in

our lab with 10 nodes. Each cloud node has a quad-

core Xeon 2.53GHz processor, 8GiB memory and 1Gbps

network bandwidth, and runs 64 bit CentOS 6.2 with

KVM 0.12.1.2. Each guest VM runs 64 bit CentOS 5.2

with one virtual CPU core and 2GiB memory. This setup

is enough to host our test benchmarks at their maximum

workload.

Our experiments on RUBiS focus on the CPU re-

source, as that appears to be the bottleneck in our

setup since all the RUBiS components have low memory

consumption. To evaluate AGILE under workloads

with realistic time variations, we used one day of per-

minute workload intensity observed in 4 different real

world web traces [24] to modulate the request rate of

the RUBiS benchmark: (1) World Cup 98 web server

trace starting at 1998-05-05:00.00; (2) NASA web server

trace beginning at 1995-07-01:00.00; (3) EPA web server

trace starting at 1995-08-29:23.53; and (4) ClarkNet web

server trace beginning at 1995-08-28:00.00. These traces

represent realistic load variations over time observed

from well-known web sites. The resource usage is

collected every 2 seconds. We perform fine-grained

sampling for precise resource usage prediction and ef-

fective scaling [43]. Although the request rate is changed

every minute, the resource usage may still change faster

because different types of requests are generated.

At each sampling instant t, the resource demand

prediction module uses a sliding window of size D of

recent resource usage (i.e., from t −D to t) and predicts

future resource demands in the look-ahead window W

(i.e., from t to t +W ). We repeat each experiment 6

times.

We also tested our prediction algorithm using real

system resource usage data collected on a Google

cluster [20] to evaluate its accuracy on predicting

machine overloads. To do this, we extracted CPU

and memory usage traces from 100 machines randomly

selected from the Google cluster data. We then aggregate

the resource usages of all the tasks running on a given

machine to get the usage for that machine. These

Parameter RUBiS Google data

Input data window (D) 6000 seconds 250 hours

Look-ahead window (W ) 120 seconds 5 hours

Sampling interval (Ts) 2 seconds 5 minutes

Total trace length one day 29 days

Overload duration threshold (Q) 20 seconds 25 minutes

Response time SLO 100 ms NA

Table 1: Summary of parameter values used in our experiments.

traces represent various realistic workload patterns. The

sampling interval in the Google cluster is 5 minutes and

the trace lasts 29 days.

Table 1 shows the parameter values used in our

experiments. We also performed comparisons under

different threshold values by varying D, W , and Q, which

show similar trends. Note that we used consistently

larger D, W , and Q values for the Google trace data

because the sampling interval of the Google data (5

minutes) is significantly larger than what we used in the

RUBiS experiments (2 seconds).

To evaluate the accuracy of our wavelet-based

prediction scheme, we compare it against the best

alternatives we could find: PRESS [19] and auto-

regression [9]. These have been shown to achieve

higher accuracy and lower overheads than other

alternatives. We calculate the overload-prediction

accuracy as follows. The predictor is deemed to

raise a valid overload alarm if the overload state

(e.g., when the resource pressure is bigger than the

overload threshold) is predicted earlier than the required

minimum lead time (TRML). Otherwise, we call the

prediction a false negative. Note that we only consider

those overload states that last at least Q seconds

(Section 2.3). Moreover, we require that the prediction

model accurately estimates when the overload will start,

so we compare the predicted alarm time with the true

overload start time to calculate a prediction time error. If

the absolute prediction time error is small (i.e., ≤ 3 ·Ts),

we say the predictor raises a correct alarm. Otherwise,

we say the predictor raises a false alarm.

We use the standard metrics, true positive rate (AT )

and false positive rate (AF ), given in equation 1.

Ptrue, Pfalse, Ntrue, and Nfalse denote the number of

true positives, false positives, true negatives, and false

negatives, respectively.

AT =
Ptrue

Ptrue +Nf alse

, AF =
Pf alse

Pf alse +Ntrue

(1)

A service provider can either rely on the application

itself or an external tool [5] to tell whether the application

SLO is being violated. In our experiments, we adopted

the latter approach. With the RUBiS benchmark, the

workload generator tracks the response time of the HTTP

requests it makes. The SLO violation rate is the fraction

6
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(a)

(b)

Figure 5: CPU demand prediction accuracy comparison for

RUBiS web server driven by one-day request traces of different

real web servers with TRML = 60 and 100 seconds.

of requests that have response time larger than a pre-

defined SLO threshold. In our experiments, this was

100ms, the 99th percentile of observed response times

for a run with no resource constraints. We conduct our

RUBiS experiments on both the Apache web server tier

and the MySQL database tier.

For comparison, we also implemented a set of

alternative resource provisioning schemes:

• No scaling: A non-elastic resource provisioning

scheme that cannot change the size of the server

pool, which is fixed at 1 server as this is sufficient

for the average resource demand.

• Reactive: This scheme triggers live VM cloning

when it observes that the application has become

overloaded. It uses a fixed memory-copy rate, and

for a fair comparison, we set this to the average copy

rate used by AGILE so that both schemes incur a

similar network cost for cloning.

• PRESS: Instead of using the wavelet-based

prediction algorithm, PRESS uses a Markov+FFT

resource demand prediction algorithm [19] to

predict future overload state and triggers live

cloning when an overload state is predicted to

occur. PRESS uses the same false alarm filtering

mechanism described in Section 2.3.

• FixThreshold-65% and -80%: This scheme triggers

Figure 6: Cumulative distribution function of the prediction

time error for the RUBiS web server driven by the ClarkNet

workload.

live VM cloning if the resource pressure exceeds

65% and 80%. This allows us to evaluate the effects

of the resource pressure model.

Note that the reactive and PRESS schemes use the

AGILE same resource pressure model to decide the

resource pressure threshold for the target 5% SLO

violation rate.

3.2 Experimental results

Prediction accuracy results. In this set of experiments,

no cloning is performed. Figure 5 shows the overload

prediction accuracy comparisons for RUBiS driven by

different real workload traces. We test the prediction

system with different lead time requirements (TRML).

The results show that our wavelet prediction scheme is

statistically significantly better than the PRESS scheme

and the auto-regression scheme (the independent two-

sample t-test indicates p-value ≤ 0.01). Particularly,

the wavelet scheme can improve the true positive rate

by up to 3.42× and reduce the false positive rate by

up to 0.41×. The accuracy of the PRESS and auto-

regression schemes suffers as the number of iterations

increases, errors accumulate, and the correlation between

the prediction model and the actual resource demand

becomes weaker. This is especially so for ClarkNet, the

most dynamic of the four traces.

In the above prediction accuracy figure, we consider

the predictor raises a correct alarm if the absolute

prediction time error is less than ≤ 3 · Ts. We further

compare the distributions of the absolute prediction time

error among different schemes. Figure 6 compares

the cumulative distribution functions of the absolute

prediction time error among different schemes. We

observe that AGILE achieves much lower prediction

time error (78% alarms have 0 absolute prediction time

7
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(a)

(b)

Figure 7: Prediction accuracy for 100 Google cluster CPU

traces with TRML = 100 and 150 minutes. The bottom and top

of the box represent 25th and 75th percentile values, the ends

of the whiskers represent 10th and 90th percentile values.

error) than auto-regression (34% alarms have 0 absolute

prediction time error) and PRESS (46% alarms have

0 absolute prediction time error). Other traces show

similar trend, which are omitted due to space limitation.

Figure 7 and Figure 8 show the prediction accuracy

for the CPU and memory usage traces on 100 machines

in a Google cluster. The overload threshold is set to the

70th percentile of all values in each trace. We observe

that the wavelet scheme again consistently outperforms

the PRESS scheme and the auto-regression scheme with

up to 2.1× better true positive rate and 0.34× the false

positive rate.

Overload handling results. Next, we evaluate how

well AGILE handles overload using dynamic server pool

scaling. The experiment covers 7000 seconds of a

RUBiS run driven by the ClarkNet web server trace. The

first 6000 seconds are used for training and no cloning is

performed. The overload state starts at about t = 6500s.

When examining the effects of scaling on different tiers

in RUBiS, we limit the scaling to one tier and allocate

sufficient resources to the other tier. We repeat each

experiment 3 times.

Figure 9 shows the overall results of different schemes.

Overall SLO violation rate denotes the percentage of

requests that have response times larger than the SLO

(a)

(b)

Figure 8: Prediction accuracy comparison for 100 Google

cluster memory traces.

violation threshold (e.g., 100ms) during the experiment

run. SLO violation time is the total time in which SLO

violation rate (collected every 5 seconds) exceeds the

target (e.g., 5%). We observe that AGILE consistently

achieves the lowest SLO violation rate and shortest

SLO violation time. Under the no scaling scheme, the

application suffers from high SLO violation rate and

long SLO violation time in both the web server tier

and the database tier scaling experiments. The reactive

scheme mitigates this by triggering live cloning to create

a new server after the overload condition is detected,

but since the application is already overloaded when

the scaling is triggered, the application still experiences

a high SLO violation rate for a significant time. The

FixThreshold-80% scheme triggers the scaling too late,

especially in the database experiment and thus does

not show any noticeable improvement compared to

without scaling. Using a lower threshold, FixThreshold-

65% improves the SLO violation rate but at a higher

resource cost: resource pressure is maintained at 65%

while AGILE maintains the resource pressure at 75%.

In contrast, AGILE predicts the overload state in

advance, and successfully completes live cloning before

the application enters the overload state. With more

accurate predictions, AGILE also outperforms PRESS by

predicting the overload sooner.

Figure 10 shows detailed performance measurements

8
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Figure 9: SLO violation rates and times for the two RUBiS tiers

under a workload following the ClarkNet trace.

Application In use Copied Ratio

RUBiS Webserver 530MiB 690MiB 1.3×
RUBiS Database 1092MiB 1331MiB 1.2×
Cassandra 671MiB 1001MiB 1.5×

Table 2: Amount of memory moved during cloning for

different applications.

for the web server tier during the above experiment. We

sample the average response time every second and plot

the cumulative distribution functions for the whole run

and during cloning. From Figure 10(a), we can see

that the response time for most requests meets the SLO

when using the AGILE system. In contrast, if no scaling

is performed, the application suffers from a significant

increase in response time. Figure 10(b) shows that all

the scaling schemes, except AGILE, cause much worse

performance during the cloning process: the application

is overloaded and many requests suffer from a large

response time until a new server is started. In contrast,

using AGILE, the application experiences little response

time increase since the application has not yet entered the

overload state. Figure 11 shows the equivalent results for

the database server and has similar trends.

Figure 12 and Figure 13 show the SLO violation

rate timeline of RUBiS application under the ClarkNet

workload. Compared to other schemes, AGILE triggers

scaling before the system enters the overload state.

Under the reactive scheme, the live cloning is executed

when the system is already overloaded, which causes a

significant impact to the application performance during

the cloning time. Although PRESS can predict the

overload state in advance, the lead time is not long

enough for cloning to finish before the application is

overloaded.

Dynamic copy-rate configuration results. Table 2

shows the amount of memory moved during cloning for

different applications. AGILE moved at most 1.5 times

the amount of the memory in use at the source VM.

We also tested AGILE under different overload pending

(a) Overall CDF

(b) During cloning

Figure 10: Scaling up the RUBiS web server tier from 1 server

to 2 servers under a dynamic workload following the ClarkNet

trace. (a) Overall CDF denotes the whole experiment. (b)

During cloning denotes the period in which the scaling is being

executed. AGILE always triggers scaling earlier than other

schemes.

time deadlines (i.e., target time to finish cloning) and

check whether the cloning can finish within the pending

time. Figure 14 shows that our dynamic copy-rate setting

can accurately control the cloning time under different

deadlines.

We measured the time spent in the different stages of

the live VM cloning for different applications (Table 3).

As expected, pre-copy dominates the cloning time (tens

of seconds), while the stop-and-copy time is only 0.1 s,

so the downtime of the source VM is negligible.

Overhead results. We first present the overhead

imposed by our online profiling mechanism. Figure 15

shows the timeline of the average response time during

profiling. Figure 16 shows the performance impact of the

online profiling on the average response time over the

period of 6 hours, in which AGILE performs profiling

three times. Overall, the overhead measurements show

that AGILE is practical for online system management.

We also evaluated the overhead of the AGILE system.

The AGILE slave process on each cloud node imposes

9
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(a) Overall CDF

(b) During cloning

Figure 11: Scaling up the RUBiS database server tier from 1

server to 2 servers under a dynamic workload following the

ClarkNet trace. We used 9 web servers to make the database

tier become the bottleneck.

Application Pre-copy Stop-and-copy Configuration

RUBiS Webserver 31.2 ± 1.1 s 0.10 ± 0.01 s 16.8 ± 0.6 s

RUBiS Database 33.1 ± 0.9 s 0.10 ± 0.01 s 17.8 ± 0.8 s

Cassandra 31.5 ± 1.1 s 0.10 ± 0.01 s 17.5 ± 0.9 s

Table 3: Time spent in the different stages of live VM cloning.

less than 1% CPU overhead. The most computationally

intensive component is the prediction module that runs

on the master node. Table 4 shows the online training

time and prediction time for AGILE, PRESS, and auto-

regression schemes. AGILE has similar overheads at the

master node as does PRESS. The auto-regression scheme

is faster, however its accuracy is much worse than

AGILE. Clearly, these costs still need to be reduced (e.g.,

by incremental retraining mechanisms and decentralized

masters), and we hope to work on this in the future.

4 Related Work

AGILE is built on top of previous work on resource

demand prediction, performance modeling, and VM

Figure 12: SLO violation timeline for web server tier

experiment under the ClarkNet workload. The number in the

bracket indicates the SLO violation time in seconds.

Figure 13: SLO violation timeline for database tier experiment

under the ClarkNet workload.

cloning. Most previous work on server pool scaling

(e.g., [29, 17]) adopts a reactive approach while AGILE

provides a prediction-driven solution that allows the

system to start new instances before SLO violation

occurs.

Previous work has proposed white-box or grey-box

approaches to addressing the problem of cluster sizing.

Elastisizer [22] combines job profiling, black-box and

white-box models, and simulation to compute an optimal

cluster size for a specific MapReduce job. Verma

et al. [47] proposed a MapReduce resource sizing

framework that profiles the application on a smaller data

set and applies linear regression scaling rules to generate

a set of resource provisioning plans. The SCADS

director framework [44] used a model-predictive control

(MPC) framework to make cluster sizing decisions based

on the current workload state, current data layout, and

predicted SLO violation. Huber et al. [23] presented

a self-adaptive resource management algorithm which

leverages workload prediction and a performance

model [7] that predicts application’s performance

10
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Figure 14: Cloning time achieved against predicted time to

overload.

Scheme Training time

(3000 samples)

Prediction time

(60 steps)

AGILE 575 ± 7 ms 2.2 ± 0.1 ms

PRESS 595 ± 6 ms 1.5 ± 0.1 ms

Auto-regression 168 ± 5 ms 2.2 ± 0.1 ms

Table 4: Prediction model training time and the prediction

time comparison between AGILE, PRESS, and auto-regression

schemes. The prediction module runs on the master host.

under different configurations and workloads. In

contrast, AGILE does not require any prior application

knowledge.

Previous work [53, 26, 35, 36, 34, 29] has applied

control theory to achieve adaptive resource allocation.

Such approaches often have parameters that need to be

specified or tuned offline for different applications or

workloads. The feedback control system also requires

a feedback signal that is stable and well correlated with

SLO measurement. Choosing suitable feedback signals

for different applications is a non-trivial task [29]. Other

projects used statistical learning methods [41, 42, 15, 40]

or queueing theory [46, 45, 14] to estimate the impact

of different resource allocation policies. Overdriver [48]

used offline profiling to learn the memory overload

probability of each VM to select different mitigation

strategies: using migration for sustained overloads or

network memory for transient overloads. Those models

need to be built and calibrated in advance. Moreover,

the resource allocation system needs to make certain

assumptions about the application and the running

platform (e.g., input data size, cache size, processor

speed), which often is impractical in a virtualized, multi-

tenant IaaS cloud system.

Trace-driven resource demand prediction has been

applied to several dynamic resource allocation problems.

Rolia et al. [37] described a resource demand prediction

scheme that multiplies recent resource usage by a

burst factor to provide some headroom. Chandra et

al. [11] developed a prediction framework based on

auto-regression to drive dynamic resource allocation

decisions. Gmach et al. [18] used a Fourier transform-

based scheme to perform offline extraction of long-term

cyclic workload patterns. Andrzejak et al. [3] employed a

Figure 15: The effect of profiling on average response time for

the RUBiS system under the ClarkNet workload.

Figure 16: Profiling overhead for the RUBiS system under the

ClarkNet workload. Profiling occurs every two hours.

genetic algorithm and fuzzy logic to address the problem

of having little training data. Gandhi et al. [16] combined

long-term predictive provisioning using periodic patterns

with short-term reactive provisioning to minimize SLO

violations and energy consumption. Matsunaga et

al. [30] investigated several machine learning techniques

for predicting spatio-temporal resource utilization.

PRESS [19] developed a hybrid online resource demand

prediction model that combines a Markov model and

a fast Fourier transform-based technique. Previous

prediction schemes either focus on short-term prediction

or need to assume cyclic workload patterns. In contrast,

AGILE focuses on medium-term prediction and works

for arbitrary workload patterns.

VM cloning has been used to support elastic cloud

computing. SnowFlock [28] provides a fast VM

instantiation scheme using on-demand paging. However,

the new instance suffers from an extended performance

warmup period while the working set is copied over from

the origin. Kaleidoscope [8] uses fractional VM cloning

with VM state coloring to prefetch semantically-related

regions. Although our current prototype uses full pre-

copy, AGILE could readily work with fractional pre-

11
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copy too: prediction-driven live cloning and dynamic

copy rate adjustment can be applied to both cases.

Fractional pre-copy could be especially useful if the

overload duration is predicted to be short. Dolly [10]

proposed a proactive database provisioning scheme that

creates a new database instance in advance from a disk

image snapshot and replays the transaction log to bring

the new instance to the latest state. However, Dolly did

not provide any performance predictions, and the new

instance created from an image snapshot may need some

warmup time. In contrast, the new instance created by

AGILE can reach its peak performance immediately after

start.

Local resource scaling (e.g., [39]) or live VM

migration [13, 50, 49, 25] can also relieve local, per-

server application overloads, but distributed resource

scaling will be needed if the workload exceeds the

maximum capacity of any single server. Although

previous work [39, 50] has used overload prediction

to proactively trigger local resource scaling or live

VM migration, AGILE addresses the specific challenges

of using predictions in distributed resource scaling.

Compared to local resource scaling and migration,

cloning requires longer lead time and is more sensitive

to prediction accuracy, since we need to pay the cost

of maintaining extra servers. AGILE provides medium-

term predictions to tackle this challenge.

5 Future Work

Although AGILE showed its practicality and efficiency

in experiments, there are several limitations which we

plan to address in our future work.

AGILE currently derives resource pressure models

for just CPU. Our future work will extend the resource

pressure model to consider other resources such as

memory, network bandwidth, and disk I/O. There are

two ways to build a multi-resource model. We can build

one resource pressure model for each resource separately

or build a single resource pressure model incorporating

all of them. We plan to explore both approaches and

compare them.

AGILE currently uses resource capping (a Linux

cgroups feature) to achieve performance isolation

among different VMs [39]. Although we observed that

the resource capping scheme works well for common

bottleneck resources such as CPU and memory, there

may still exist interference among co-located VMs [52].

We need to take such interference into account to build

more precise resource pressure models and achieve more

accurate overload predictions.

Our resource pressure model profiling can be triggered

either periodically or by workload mix changes. To

make AGILE more intelligent, we plan to incorporate

workload change detection mechanism [32, 12] in

AGILE. Upon detecting a workload change, AGILE

starts a new profiling phase to build a new resource

pressure model for the current workload type.

6 Conclusion

AGILE is an application-agnostic, prediction-driven,

distributed resource scaling system for IaaS clouds.

It uses wavelets to provide medium-term performance

predictions; it provides an automatically-determined

model of how an application’s performance relates to

the resources it has available; and it implements a way

of cloning VMs that minimizes application startup time.

Together, these allow AGILE to predict performance

problems far enough in advance that they can be avoided.

To minimize the impact of cloning a VM, AGILE

copies memory at a rate that completes the clone just

before the new VM is needed. AGILE performs

continuous prediction validation to detect false alarms

and cancels unnecessary cloning.

We implemented AGILE on top of the KVM

virtualization platform, and conducted experiments

under a number of time-varying application loads

derived from real-life web workload traces and real

resource usage traces. Our results show that AGILE can

significantly reduce SLO violations when compared to

existing resource scaling schemes. Finally, AGILE is

lightweight, which makes it practical for IaaS clouds.
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Abstract

Consolidation of multiple workloads, encapsulated in
virtual machines (VMs), can significantly improve ef-
ficiency in cloud infrastructures. But consolidation
also introduces contention in shared resources such as
the memory hierarchy, leading to degraded VM perfor-
mance. To avoid such degradation, the current practice
is to not pack VMs tightly and leave a large fraction of
server resource unused. This is wasteful. We present
a system that consolidates VMs such that performance
degradation is within a tunable bound while minimiz-
ing unused resources. The problem of selecting the most
suitable VM combinations is NP-Complete and our sys-
tem employs a practical method that performs provably
close to the optimal. In some scenarios resource effi-
ciency may trump performance and for this case our sys-
tem implements a technique that maximizes performance
while not leaving any resource unused. Experimental re-
sults show that the proposed system realizes over 30%
savings in energy costs and up to 52% reduction in per-
formance degradation compared to consolidation algo-
rithms that do not consider degradation.

1 Introduction

Average server utilization in many data centers is low,
estimated between 5% and 15% [10]. This is wasteful
because an idle server often consumes more than 50%
of its peak power [11], implying that servers at low uti-
lization consume significantly more energy than fewer
servers at high utilization. Additionally, low utilization
implies a greater number of servers being used, resulting
in wasted capital. One solution to prevent such wastage
is to consolidate applications on fewer servers.

Consolidation inevitably introduces resource con-
tention resulting in performance degradation. To mit-
igate this contention, data centers virtualize resources
and split them across applications consolidated on shared

hardware. However, virtualization does not prevent all
forms of contention and hence does not completely elim-
inate performance degradation. In particular, contention
in shared caches and memory bandwidth degrades per-
formance significantly, as measured for a variety of
workloads [3–5, 16, 17, 19, 21, 32, 35]. Execution times
increase by several tens of percent.

To reduce degradation, prior works have measured
the degradations for possible VM combinations and then
co-locate those VMs that lead to the least degrada-
tion [17,18,29]. But this approach does not respect a tar-
get performance bound. Performance is often paramount
for Internet services. Measurements on Amazon, Mi-
crosoft and Google services show that a fraction of a
second increase in latency can result in revenue losses
as high as 1% to 20% [13, 20, 26]. A knee-jerk reaction
then is to forgo all or part of the savings from consoli-
dation. In Google data centers for instance, consolidated
workloads use only 50% of the processor cores [21]. Ev-
ery other processor core is left unused simply to ensure
that performance does not degrade.

We wish to preserve the performance of consolidated
VMs, but not waste excessive resources in doing so. The
challenges are to (1) determine how much each VM will
degrade when placed with different sets of VMs to be
consolidated, and (2) identify which and how many VMs
can be placed on a server such that required performance
is maintained. The problem of identifying suitable VMs
turns out to be NP-Complete, and we design a com-
putationally efficient algorithm that we prove performs
close to the theoretical optimal. As a result, the excess
resources left unused in our approach are significantly
lower than in current practice.

An additional mechanism to preserve performance af-
ter consolidation is to improve the isolation of resources
in hardware [3, 5, 16, 28, 35], or software [1, 4, 6, 27,
32]. Further, excess resources may be allocated at run
time [23] to overcome degradation. These approaches
are complementary because they do not determine the
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best VMs to be placed together in the first place. Our
method can make that determination, and then these
techniques can be applied with a lower overhead.

Specifically, we make the following contributions:
First, we present a performance aware consolidation

manager, PACMan, that minimizes resource cost, such
as energy consumption or number of servers used. PAC-
Man consolidates VMs such that performance degrada-
tion stays within a specified bound. Since this problem
is NP-complete, PACMan uses an approximate but com-
putationally efficient algorithm that we prove performs
logarithmically close to the optimal.

Second, while customer-facing applications prioritize
performance, batch processes, such as Map-Reduce [8],
may prioritize resource efficiency. For such situations
PACMan provides an “Eco” mode, that fills up all server
cores, and minimizes worst case degradation. We specif-
ically consider worst case, as opposed to average consid-
ered in [17], since in Map-Reduce, reduce cannot start
until all map tasks have completed and hence, only the
degradation of the worst hit map task matters. We show
that it is difficult to design provably near-optimal meth-
ods for this scenario and present a suitable heuristic.

Finally, we evaluate PACMan using degradations mea-
sured on SPEC CPU 2006 applications. For minimizing
wasted resource while preserving performance, PACMan
operates within about 10% of the optimal, saves over
30% energy compared to consolidation schemes that do
not account for interference, and improves total cost of
operations by 22% compared to current practice. For the
Eco mode, PACMan yields up to 52% reduction in degra-
dation compared to naı̈ve methods.

2 PACMan Design

This section describes the performance repercussion of
consolidation and how our design addresses it.

2.1 Problem Description
Consolidation typically relies on virtual machines (VMs)
for resource and fault isolation. Each VM is allocated
a fixed share of the server’s resources, such as a cer-
tain number of cores on a multi-core server, a certain
fraction of the available memory, storage space, and so
on. In theory, each VM should behave as if it is a sep-
arate server: software crashes or resource bottlenecks
in one VM should not affect other VMs on the same
server. In practice however, VM resource isolation is
not perfect. Indeed, CPU cores or time slices, memory
space, and disk space can be isolated well using exist-
ing virtualization products, and methods have emerged
for other resources such as network and storage band-
width [22, 34]. However, there remain resources, such

as shared caches and memory bandwidth, that are hard
to isolate. Hence, consolidated applications, even when
encapsulated in VMs, may suffer resource contention or
interference, and this leads to performance degradation.

Example: Consider a toy data center with 4 VMs,
A,B,C, and D (Figure 1). On the left, the 4 VMs are
placed on a single server each. Suppose the task inside
each VM takes 1 hour to finish. The shaded portion of
the vertical bars represents the energy used over an hour;
the darker rectangle represents the energy used due to the
server being powered on (idle power consumption) and
the rectangles labeled with the VM name represent the
additional energy consumed in VM execution (increase
in server energy due to processor resource use). On the
right, these VMs are consolidated on two servers (the
other two are in sleep mode).
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Figure 1: Energy cost change due to consolidation.

The setup on the right is more efficient. However, due
to resource contention, the execution time goes up for
most of the jobs. Both the server idle energy and the
additional energy used by each job increase due to the
longer run time. The increase in energy consumption
due to contention may wipe out some or all of the en-
ergy savings obtained by turning off two servers. Also,
longer running time may violate quality of service (QoS)
requirements.

One may minimize performance degradation by plac-
ing each VM in a separate server, but that obviously re-
duces efficiency. On the other hand, one may maximize
efficiency by packing the VMs into the minimum num-
ber of servers required to satisfy the number of processor
cores, memory and disk space requirements of each VM,
but such packing hurts performance.

2.2 System Overview
Our goal is to select the right set of VMs to co-locate on
each server such that performance constraints are satis-
fied and wasted resource is minimized.

2.2.1 Assumptions

We make three assumptions about the system:

Degradation: We assume that the performance degra-
dation suffered by each VM, when consolidated with
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any set of other VMs, is known from existing meth-
ods [12, 19, 21]. These methods do not require explicit
performance measurement for each possible set of VMs.
Rather, a VM is profiled individually to generate an in-
terference profile. Profiling takes a few hundred millisec-
onds depending on the cache architecture. These profiles
can be used to compute the expected degradation for any
set of VMs placed together. Small errors in prediction
can be addressed by including an error margin in the per-
formance bound, and consolidating to within that con-
servative bound. Explicit measurement may also be used
for a small number of VMs, as in [17]. We focus on the
consolidation method given the degradations. Since our
algorithms work given any interference data, the tech-
niques we use can be applied to cross-socket interference
or any other type of interference as well, so long as it can
be quantified and measured.
Temporal Demand Variations. We assume that as de-
mand for an application varies, the number of VM in-
stances hosting that app are increased or decreased to
match the demand. Overloading a small number of VMs
would degrade performance while leaving VMs under-
utilized would incur excess cost to host them. Hence,
commercial tools are available to dynamically change the
number of VMs [24, 33]. This implies that the degrada-
tion data or interference profile needs to be collected only
for the desired demand level, rather than at multiple de-
mand levels that a VM may serve. If demand is lower
than that served by a single VM instance for the appli-
cation, we conservatively use the profile at its optimal
demand level.
VM to Processor Core Mapping: We assume that each
VM is assigned one core, following the model in [3, 12,
16,17,19,32]. Considering VMs that span multiple cores
does not change the problem fundamentally. However, if
multiple VMs share a single core, the nature of resource
contention may change, and existing degradation estima-
tion methods [12, 19, 21] will not suffice. If alternate
degradation modeling methods are available or explicit
measurements of degradations are provided, our consol-
idation algorithm would extend to that case.

2.2.2 Architecture

The PACMan system architecture is shown in Figure 2.
The system consists of the following three components:

Conservatively Packed Servers: Customers submit
VMs through appropriate cloud APIs. Ideally, a VM
placement solution should determine the optimal place-
ment for each VM as soon as it arrives, such that the
entire set of VMs currently running in the cloud is opti-
mally placed. However, since such an optimal online so-
lution is not available, we focus on a batched operating
scenario. The cloud initially hosts the incoming VMs on
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Figure 2: PACMan block diagram.

conservatively packed servers, for a batching period (say
30 to 60 minutes). These servers may comprise a small
fraction (say 1%-5%) of the data center. Conservative
placement implies that a significant amount of resources
are left unused to avoid interference, such as by leaving
alternate processor cores empty [21]. Since the VM is
active, it does not matter to the customer that it is placed
on a conservatively packed server.

VM Profiling Engine: While a VM is running on
the conservatively packed servers, profiling methods
from [12, 21] are applied to the VMs1. These methods
characterize a VM while it is running normally, and gen-
erate a set of parameters that allow estimating the perfor-
mance degradation that will be suffered and caused by
the VM when consolidated with other VMs. Their pre-
diction accuracy is high (5-10% of actual performance),
as measured on real data center and benchmark applica-
tions. Given n VMs and k core servers, only O(n) mea-
surements are needed, even though the number of possi-
ble consolidated sets is O(nk).

Consolidation Algorithm: At the end of each batch-
ing period, PACMan uses the VM consolidation algo-
rithm proposed in this paper to place the VMs on host-
ing racks that comprise the bulk of the cloud’s infras-
tructure. Most of the data center thus operates efficiently
using the near-optimal placement. The inputs to the algo-
rithm are the VM interference characteristics obtained by
the profiling engine. The output is a placement of VMs
that respects performance constraints and minimizes un-
used resources. Typically, other algorithms (including
bin packing methods such as best fit or first fit) do not
take interference into account, and hence cannot consoli-
date VMs efficiently. The design of PACMan algorithms
is presented in the next two sections.

1We use [12] in our prototype. In this method, each VM is mapped
to a clone application, which closely mimics the application’s inter-
ference signature. A discrete set of clones covers the entire spec-
trum of memory-subsystem interference behaviors. Thus, a potentially
unbounded number of applications are mapped to a finite number of
clones. A one-time profiling step maps a new VM to a known clone.
The clones are then used as a proxy for predicting performance for dif-
ferent consolidation sets.

3
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3 Performance Mode

The first mode of PACMan operation, denoted the perfor-
mance mode (P-mode), determines the best sets and their
sizes such that performance constraints are not violated.
It may leave some processor cores unused, unlike prior
methods that use up every core [17, 18] but may violate
performance constraints.

Servers and VMs: Suppose m chip-multiprocessors
(CMPs) are available, each with k cores. We are pri-
marily interested in the inter-core interference within a
CMP. The VMs placed on the same CMP suffer from this
degradation. If a server happens to have multiple proces-
sor sockets, we assume there is no interference among
those. As a result, multiple CMPs within a server may
be treated independently of each other. We loosely refer
to each CMP as a separate server as shown in Figure 3.
We are given n VMs to be placed on the above servers,
such that each VM is assigned one core.

CMP-1 (Server-1)

Shared Cache and memory 
subsystem

Core
1

…

…

Server-m

Core
2

Core
k

Figure 3: CMPs (referred to as servers) with k cores.
Contention in the shared cache and memory hierarchy
degrades the performance of VMs in the same server.

Degradation: Suppose that the set of VMs placed to-
gether on a server are denoted by S. For singleton sets,
i.e., a VM j running alone, there is no degradation and
we denote this using a degradation d j = 1. For larger
sets, the degradation for VM j ∈ S is denoted by dS

j ≥ 1.
For example, for two co-located VMs, S = {A,B}, sup-
pose A’s running time increases by 50% when it runs
with B, relative to when it runs alone, while B is unaf-
fected by A. Then, dS

A = 1.5 and dS
B = 1.

We assume that adding more VMs to a set may only
increase (or leave unchanged) the degradation of previ-
ously added VMs.

3.1 Consolidation Goal

The consolidation objective may be stated as follows.
P-Mode: (Minimize resource cost subject to a perfor-
mance constraint)
Given

n VMs,
Servers with k cores,
Degradations for all sets of VMs up to size k,
Cost w(S) for a set of VMs S placed on a server, and

Maximum tolerable degradation D ≥ 1 for any VM2.
Find a placement of the n VMs using some number, b, of
servers, to minimize

b

∑
i=1

w(Si)

where Si represents the set of VMs placed on the ith

server.
Cost Metric: The resource cost, w(S), to be minimized

may represent the most relevant cost to the system. For
instance, if we wish to minimize the number of servers
used, then we could use w(S) = 1 for any set S regard-
less of how many VMs S contains. To minimize energy,
w(S) could be defined as the sum of a fixed cost c f and
a dynamic cost cd . The fixed cost c f models the idle
energy used for keeping a server active, and may also
include capital expense. The dynamic cost, cd , models
the increase in energy due to VMs assigned to the server.
For concreteness, we consider the cost function w(S) to
be the energy cost. The specific values used for c f and
cd are described in Section 5 along with the evaluations.
Our solution is applicable to any cost function that mono-
tonically increases with the number of VMs.

Batched Operation: The problem above assumed all
VMs are given upfront. In practice, following the setup
from Figure 2, only the VMs that arrived in the most re-
cent batching period will be consolidated. Each batch
will hence be placed optimally using P-mode consolida-
tion, but the overall placement across multiple batches
may be sub-optimal. Hence, once a day, such as dur-
ing times of low demand, the placement solution can
be jointly applied to all previously placed VMs, and
the placement migrated to the jointly optimal placement.
The joint placement satisfies the same performance con-
straints but may reduce resource cost even further.

3.1.1 Problem Complexity

The complexity is different depending on whether the
servers have only k = 2 cores or more than 2 cores.

Dual-Core servers: For k = 2 cores, there is a polyno-
mial time algorithm that can compute the optimal solu-
tion. The main idea is to construct a weighted, undirected
graph on 2n nodes. The first n nodes represent the VMs,
and the others are “dummy” nodes (one for each VM).
For VM pairs whose degradation is below the bound D,
we place an edge connecting them and assign an edge
weight equal to the cost of placing those two VMs to-
gether. We place an edge between each VM node and its
dummy node with a weight that corresponds to the cost

2We assume that the performance constraint is the same for all VMs
though multiple quality of service classes, each with their own degrada-
tion limit, could be considered as well and do not fundamentally change
the problem.
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of running that VM alone. Finally, we place edges of
weight 0 between all pairs of dummy nodes. Finding the
best pairs of VMs for a consolidated placement is equiv-
alent to computing a minimum cost perfect matching on
this graph. Graph algorithms are available to compute a
minimum cost perfect matching in polynomial time. We
omit details for this case since most data center servers
have more than 2 cores.

NP-Completeness: For servers with more than two
cores (k ≥ 3), the problem is NP-Complete. This is be-
cause it can be thought of as a variant of the k-Set Cover
problem. In the k-Set Cover problem, we have a universe
U of elements to cover (each element could represent a
VM), along with a collection C of subsets each of size
at most k (the subsets could represent sets of VMs with
degradation below D). Placing VMs on servers corre-
sponds to finding the minimum number of disjoint VM
subsets that cover all VMs. Assuming w(S) = 1 for all
sets S, the k-Set Cover problem becomes a special case
of the P-mode problem, i.e., solving the P-mode prob-
lem enables solving the k-Set Cover problem. The k-Set
Cover problem is NP-Complete [9]. Hence, the P-mode
problem is NP-Complete.

3.2 Consolidation Algorithm
Since the problem is NP-Complete for k ≥ 3 cores, we
propose a computationally efficient algorithm that finds
a near-optimal placement.

Using the profiling method described in Section 2.2, it
is easy to filter out VM sets that violate the degradation
constraint. Suppose the collection of remaining sets (VM
combinations that can be used) is denoted by F .

First, for each set S ∈F , the algorithm assigns a value
V (S) = w(S)/|S|. Intuitively, this metric characterizes
the cost of a set S of VMs. Sets with more VMs (larger
set size, |S|) and low resource use (w(S)) yield low V (S).

Second, the algorithm sorts these sets in ascending or-
der by V (S). Sets that appear earlier in the ascending
order have lower cost.

The final step is to make a single pass through this
sorted list, and include a set S as a placement in the con-
solidation output if and only if it is disjoint from all sets
that have been chosen earlier. The algorithm stops after
it has made a single pass through the list. The algorithm
can stop earlier if all the VMs are included in the chosen
sets. The first set in the sorted list will always be taken to
be in the solution since nothing has been chosen before it
and it is hence disjoint. If the second set is disjoint from
the first set, then the algorithm takes it in the solution. If
the second set has at least one VM in common with the
first, the algorithm moves onto the third set, and so on.
The precise specification is given in Algorithm 1.
Example: Consider a toy example with three VMs, A, B,

Algorithm 1 CONSOLIDATE(F , n, k, D)

1: Compute V (S)← w(S)
|S| , for all S ∈ F

2: L ← Sorted sets in F such that V (Si) ≤ V (S j) if
i ≤ j

3: L← φ
4: for i = 1 to |L | do
5: if Si is disjoint from every set in L then
6: L← L∪{S}
7: Return L

and C and k = 2 cores. Suppose the characterization from
the VM profiling engine results in the degradation num-
bers shown in Table 1. Suppose the performance con-
straint given is that no VM should degrade more than
10% (D = 1.1) and the cost metric w(S) is just the num-
ber of servers for simplicity (w(S) = 1 for any set). A
set with two VMs (|S| = 2) will have V (S) = 1/2 while
a set with one VM will have V (S) = 1. Then filtering
out the sets that cause any of the VMs to have a degrada-
tion greater than D, and computing the V (S) metric for
each set, we get the sorted list as: BC, AB, A, B, C. The
algorithm first selects set BC and allocates it to a server
(VMs B and C thus share a single server). The next set
AB is not disjoint from BC and the algorithm moves to
the subsequent set A. This is disjoint and is allocated to
another server. All VMs are now allocated and the algo-
rithm stops.

VM Set AB AC BC A B C
dSet

V M dA = 1.1 dA = 1.0 dB = 1.0 1 1 1
dB = 1.1 dC = 1.5 dC = 1.1

Table 1: Degradations for VMs in the example.

Complexity: The algorithm operates in polyno-
mial time since sorting is a polynomial time operation,
O(|F | · log(|F |)). The subsequent step requiring a sin-
gle pass through the list has linear time complexity. At
every step in the linear pass the algorithm needs to check
if each VM in the set being selected has been assigned
already and this can be achieved in constant time as fol-
lows. Maintain a boolean bit-vector for every VM in-
dicating if it has been assigned yet. For the set being
checked, just look up this array, which takes at most O(k)
time per set since the set cannot have more than k VMs.
Also, after selecting a set we update the boolean array,
which again takes constant time.

While the computation time is polynomial in the size
of the input, the size of the input can be large. The list
of degradation values for all possible VM sets has size
|F |= O(nk) elements, which can be large for a cloud in-
frastructure hosting thousands of VMs. However, when
the degradation estimation technique from [12] is used,
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all VMs are mapped to a finite set of clones and the num-
ber of clones does not grow with the number of VMs.
We can treat all VMs that map to a common clone as one
type of VM. The number of clones used to map all VMs
then represents the distinct types of VMs in the input.
For instance, for the characterization technique in [12],
for quad-core servers, at most 128 types of clones are re-
quired, and not all of them may be used for a particular
set of input VMs.

Suppose the n VMs can be classified into τ ≤ 128
types. Then, the algorithm only needs to consider all sets
S from τ VM types with possibly repeated set elements.
The number of these sets is O(τk), which is manageable
in practice since τ does not grow very large, even when
n is large.

The algorithm changes slightly to accommodate multi-
ple VMs of each type. The assignment of value V (S) and
the sorting step proceed as before. However, when doing
the single pass over the sorted list, when a disjoint set S
is chosen, it is repeatedly allocated to servers as long as
there is at least one unallocated instance of each VM type
required for S. The resultant modification to Algorithm 1
is that Fτ is provided as input instead of F where Fτ
denotes the collection of all feasible sets of VM types
with repeated elements, and at step 5, instead of check-
ing if the VMs are not previously allocated, one repeats
this step while additional unallocated VMs of each type
in the set remain.

Correctness: The algorithm always assigns every VM
to a server since all singleton sets are allowed and do
appear in the sorted list (typically after the sets with
large cardinality). Also, it never assigns a VM to more
than one server since it only picks disjoint sets, or sets
with unallocated VM instances when VM-types are used,
while making the pass through the sorted list. Hence, the
algorithm always obtains a correct solution.

3.3 Solution Optimality
A salient feature of this algorithm is that the consol-
idation solution it generates is guaranteed to be near-
optimal, in terms of the resources used.

Let ALG denote the allocated sets output by the pro-
posed algorithm, and let OPT be the sets output by the
optimal solution. Define the resource cost of the pro-
posed algorithm’s solution to be E(ALG), and that of the
optimal algorithm as E(OPT ). We will show that for ev-
ery possible collection of VMs to be consolidated,

E(ALG)≤ Hk ·E(OPT )

where Hk is the kth-Harmonic number. Hk = ∑k
i=1

1
i ≈

ln(k).
In other words, the resource cost of the solution gen-

erated by the proposed algorithm is within ln(k) of the

resource cost of the optimal solution. Given that k is
constant for a data center and does not increase with the
number of VMs, this is a very desirable accuracy guar-
antee. The proof is inspired by the approximation qual-
ity proof for the weighted k-Set Cover problem [7, 15].
However, we cannot pick overlapping sets (since choos-
ing sets in our setting corresponds to choosing a place-
ment of VMs onto servers), and the input sets are closed
under subsets.

Theorem 1. For all inputs, the proposed algorithm out-
puts a solution that is within a factor Hk ≈ ln(k) of the
optimal solution.

Proof. By definition, we have

E(ALG) = ∑
S∈ALG

w(S).

Assign a cost to each VM c( j) as follows: whenever the
proposed algorithm chooses a set S to be part of its solu-
tion, set the cost of each VM j ∈ S to be c( j) = w(S)/|S|
(these costs are only for analysis purposes, the actual al-
gorithm never uses c( j)). Hence,

E(ALG) = ∑
S∈ALG

|S|w(S)
|S|

= ∑
S∈ALG

∑
j∈S

c( j) =
n

∑
j=1

c( j),

where the last equality holds because the set of VMs in
the solution is the same as all VMs given in the input.
Then, since the optimal solution also assigns all VMs to
servers:

E(ALG) =
n

∑
j=1

c( j) = ∑
S∗∈OPT

∑
j∈S∗

c( j),

where S∗ ∈ OPT is a set chosen by the optimal solution.
Suppose, for the moment, we could prove that the last
summation term above satisfies ∑ j∈S∗ c( j) ≤ Hkw(S∗).
Then we would have

E(ALG)≤ ∑
S∗∈OPT

Hkw(S∗) = Hk ·E(OPT ).

All we have left to prove is that, for any S∗ ∈OPT , we in-
deed have ∑ j∈S∗ c( j)≤ Hkw(S∗). Consider any set S∗ in
the optimal solution and order the VMs in the set accord-
ing to the order in which the proposed algorithm covers
the VMs, so that S∗ = { js, js−1, . . . , j1}. Here, js is the
first VM from S∗ to be covered by the proposed algo-
rithm, while j1 is the last VM to be covered by the pro-
posed algorithm in potentially different sets. In case the
proposed algorithm chooses a set which covers several
VMs from S∗, we just order these VMs arbitrarily.

Now, consider VM ji ∈ S∗ immediately before the pro-
posed algorithm covers it with a set T . At this time,
there are at least i VMs which are not covered, namely

6
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ji, ji−1, . . . , j1. There could be more uncovered VMs in
S∗, for instance, if the proposed algorithm chose set T
such that T covers VMs js, . . . , ji, then all VMs in S∗

would be considered uncovered immediately before set
T is chosen. Moreover, since the optimal solution chose
S∗, and since sets are closed under subsets, it must be
the case that the proposed algorithm could have chosen
the set S = { ji, . . . , j1} (since it is a feasible set and it
is disjoint). At each step, since the proposed algorithm
chooses the disjoint set T that minimizes w(T )/|T |, it
must be the case that w(T )/|T | ≤ w(S)/|S|. By our as-
sumption that energy costs can only increase if VMs are
added, we have w(S) ≤ w(S∗), and hence VM ji is as-
signed a cost of w(T )/|T | ≤ w(S)/|S| ≤ w(S∗)/|S| =
w(S∗)/i. Summing over all costs of VMs in S∗, we have

∑
j∈S∗

c( j)≤ ∑
ji∈S∗

w(S∗)/i = Hs ·w(S∗)≤ Hk ·w(S∗)

(since |S∗| = s ≤ k). Hence, ∑ j∈S∗ c( j) ≤ Hk ·w(S∗) in-
deed holds and this completes the proof.

To summarize, we provide a polynomial time algo-
rithm that is guaranteed to provide a solution within a
logarithmic factor of the optimal. Note that this is a
worst-case guarantee, and in practice we can expect the
solution quality to be better (e.g., our experimental re-
sults in Section 5). In fact, our approximation guaran-
tee is asymptotically the best approximation factor one
could hope for, due to the hardness of approximation
lower bound known for the k-Set Cover problem [30]
(hence, there are worst-case instances in which any al-
gorithm must perform poorly, but these instances typi-
cally do not occur in practice and the algorithms perform
much better).

4 Eco-Mode

In some cases, such as batch based data processing, re-
source efficiency may take precedence over performance.
For such scenarios, PACMan provides a resource effi-
cient mode of operation, referred to as the Eco-mode.
Here, the number of servers used is fixed and the VMs
are tightly packed. The goal is to minimize the degra-
dation. Prior works have minimized average degrada-
tion [17, 18, 29] and their heuristics can be used in Eco-
mode. We additionally consider worst case degrada-
tion. The worst case degradation is especially important
for parallel computing scenarios where the end result is
obtained only after all parallelized tasks complete and
hence performance is bottle-necked by the worst hit VM.
Eco-Mode: (Minimize maximum degradation)
Given

n VMs,
m servers with k cores (n ≤ mk), and

Degradations for all sets of VMs up to size k,
Find an allocation of the n VMs to m servers which min-
imizes the objective

max
1≤i≤m

max
j∈Si

dSi
j

where Si represents the set of VMs placed on the ith

server (|Si| ≤ k for each i).
As in the previous case, while the 2-core case can be

solved in polynomial time, the Eco-mode problem be-
comes NP-Complete for k ≥ 3.
Efficient Near-Optimal Algorithms: Given that the
problem is NP-Complete, a polynomial time algorithm
to compute the optimal solution is unlikely to be found,
unless P = NP. The next best thing would be an efficient
algorithm that computes a provably near-optimal solu-
tion.

Surprisingly, for k ≥ 3 a computationally efficient al-
gorithm that guarantees the solution to be within any
polynomial factor of the optimal cannot be found. For
instance, a computationally efficient algorithm that can
guarantee its solution to be within a factor n100 of the
optimal cannot be found.

Theorem 2. For the Eco-mode consolidation problem, it
is NP-Hard to approximate the optimal solution to within
any factor that is polynomial in the number of VMs and
servers.

The proof is relegated to a tech report [25] for brevity.
Algorithm: The implication of the above theorem is that
any computationally efficient Eco-mode algorithm will
have to rely on heuristics.

The heuristic we propose greedily improves a given
placement using VM swaps. A swap refers to exchang-
ing the placement of one VM with another. Start out
with any initial placement of VMs. Consider all possible
placements that are reachable from the existing place-
ment in a single swap. In each such placement, for each
server, compute the degradation of the worst hit VM on
that server, using the degradation characterization from
the VM profiling engine. Take the sum of these worst
case degradations on all servers as the cost of that VM
placement.

Among all possible placements reachable within a
swap, greedily select the one with the lowest cost and ac-
tually perform the swap required to reach that placement.
Repeat the above process as long as additional swaps are
allowed or until a swap no longer yields an improvement.

The work of [31] studies the cost of swapping, giving
insight into the trade-off between improving resource ef-
ficiency and swapping VMs. To this end, we limit the
number of swaps allowed to terminate the search at G =
(k−1)(m−1). Starting with an arbitrary placement, it is
possible to reach any other placement (e.g., the optimal

7



90 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

placement) by performing at most G = (k − 1)(m− 1)
swaps. This holds because for each server, we can imag-
ine one of the VMs to be in the correct position on that
server, and hence there can be at most k−1 VMs on that
server that are out of place. By swapping two VMs, we
can assign each VM which is on the wrong server to the
right server. Hence, each server can be fixed in at most
k − 1 swaps. Once m− 1 servers have been fixed, the
last server must already be correct. However, determin-
ing the appropriate number of swaps is not easy and our
heuristic is not guaranteed to find the optimal placement
in G = (k− 1)(m− 1) swaps, or any number of swaps.
Hence, the number of allowed swaps may be set based on
other constraints such as limits on tolerable swap over-
heads or a threshold on minimum improvement expected
from a swap.

While not provably near-optimal, our heuristic is ben-
eficial to the extent that it improves performance com-
pared to naı̈ve methods.

5 Experimental Results

In this section, we quantify the resource savings and per-
formance advantages of using PACMan consolidation for
realistic scenarios. Ideally, we wish to compare the prac-
tical algorithm used in PACMan with the theoretical op-
timal, but the optimal is not feasible to compute (these
problems are NP-Complete) except for very small input
sizes. Hence, we illustrate the performance of the pro-
posed methods with respect to the optimal for a few small
input instances (n = 16 VMs, m ≥ �n/k�). For more re-
alistic inputs, relevant to real data centers (103 VMs),
we compare the performance to naı̈ve methods that are
unaware of the performance degradation and with one
current practice that leaves alternate processor cores un-
used [21]. For these cases, we also compute the degra-
dation overhead compared to a hypothetical case where
resource contention does not cause any degradation. This
comparison shows an upper bound on how much further
improvement one could hope to make over the PACMan
methods.

5.1 Experimental Setup
Degradation Data: We use measured degradation data
for SPEC CPU 2006 benchmark applications. These
degradations are in the same range as measured for
Google’s data center workloads in [21], which includes
batch and interactive workloads. Since the degradation
data is representative of both interactive workloads and
batch workloads, it is relevant for both P-mode and Eco-
mode.

In particular, we select 4 of the SPEC CPU benchmark
applications for which we have detailed interference data

for all possible combinations, namely: lbm, soplex,
povray, and sjeng (some combinations shown in Ta-
ble 2). These span a range of interference values from
low to high. When experimenting with n VMs, we gen-
erate an equal number, n/4, of each. We do not vary VM
degradations over time during VM execution.

Application VMs (Si) Degradations (%)
lbm, soplex 2, 19.7

soplex, soplex 10, 10
lbm, soplex, sjeng 2, 10, 4.1
lbm, povray, lbm 19.6, 5.32, 19.6

lbm, soplex 14.56, 36.9,
soplex, sjeng 36.9, 5.83

lbm, lbm, lbm, lbm 104.6 (each)

Table 2: Sample degradation data for the application
VMs used in experiments. Degradations are measured
on a quad-core processor. For combinations with only 2
or 3 VMs, the remaining cores are unused. Degradations
over 100% imply that the execution time of the workload
increases by more than twice.

Cloud Configuration: We assume that each server
has k = 4 cores since quad-core servers are commonly in
use. While a server may have many cores across multiple
processor sockets, the relevant value of k is the number
of cores sharing the same cache hierarchy, since that is
where most of the interference occurs. Using real world
degradation data, we simulate our proposed algorithm for
the cloud configuration described above.

5.2 Performance Mode

The P-mode problem optimizes resource cost given a
degradation constraint. The evaluation metric of inter-
est is thus the resource cost. We choose energy as our
resource metric. Each server has a fixed and dynamic en-
ergy component (Section 3), resulting in an energy cost
w(S) = c f +∑ j∈S dS

j . Here, the additional cost of each
VM is being modeled as dS

j . Considering that running 4
VMs each with an incremental cost of 1 or more would
add an additional 4 units of dynamic resource cost, we
set the fixed cost c f = 4 to reflect about 50% of the to-
tal server energy as the fixed idle cost, which is repre-
sentative of current server technology. Newer generation
servers are trending towards better energy proportional-
ity and idle power costs as low as 30% are expected in
the near future. A lower idle power cost will only ex-
aggerate the fraction of overhead due to interference and
lead to even greater savings in PACMan.

Comparison with Optimal: To facilitate computa-
tion of the optimal, we use a small number, 16, of VMs,
with equal proportion of VMs from each of the four

8
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benchmarks. We vary the degradation constraint from
10% (D = 1.1), to as high as 50%3. Aside from the op-
timal, we also compare against a naı̈ve method that does
not quantitatively manage degradation but conservatively
leaves every other core unused [21].

Figure 4 shows the energy overhead of the consolida-
tion determined by PACMan, and by the naı̈ve method,
over and above the energy used by the optimal method.
The proposed approach is within 10% of the optimal, and
is significantly better than the naı̈ve approach currently in
use.
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Figure 4: (P-Mode) Excess energy used compared to
that used by the optimal solution (computable for a small
number of VMs).

Figure 5 shows the server utilizations achieved by
the three methods at equivalent performance. The pro-
posed method achieves over 80% utilization in most
cases yielding good resource use. Of course, when
the degradation allowed is small, servers must be left
under-utilized to avoid interference, and even the opti-
mal method cannot use all cores.
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Figure 5: (P-Mode) Server utilizations achieved by the
theoretical optimal, proposed, and naı̈ve algorithms.

3We start at 10% instead of 0%, since if no degradation is allowed,
most VMs would require a dedicated machine, with no benefits from
consolidation.

Large number of VMs: The second set of experi-
ments uses more realistic input sizes, up to n = 1000
VMs, again taking an equal proportion of VMs from
each of the four SPEC CPU applications listed in Sec-
tion 5.1. Since it is not feasible to compute the opti-
mal solution for a large number of VMs, we compare
against a lower bound: resources used when interference
has no effect. In reality, interference will lead to a non-
zero overhead and the optimal should be expected to be
somewhere between 0% and the overhead seen for the
proposed method. Figure 6 shows the results, with a per-
formance constraint of 50% (D = 1.5), for varying n. We
see that the proposed method performs significantly bet-
ter than the naı̈ve one.
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Figure 6: (P-Mode, Large number of VMs) Resource
overhead comparison, normalized with respect to hypo-
thetical resource use when there is no interference, which
is a lower bound on the optimal.

5.3 Eco-Mode
For the Eco-mode problem, we again compute the op-
timal solution for a small set n = 16 VMs with m = 4
servers, with the VMs taken from the SPEC CPU bench-
marks. The initial allocation of VMs to servers is ar-
bitrary and we repeat the experiment 10 times, starting
with a random initial allocation each time. Since any al-
location can be reached in at most (k − 1)(m− 1) = 9
swaps, we vary the number of allowed swaps G from 2
to 9. As an additional point of comparison we use a naı̈ve
approach that does not consider interference and places
the VMs randomly. The performance of the randomized
approach is averaged across 10 trials.

Figure 7 shows the excess degradation suffered by
the VMs compared to that in the optimal allocation.
The practical heuristic used in PACMan performs very
closely to the optimal and has up to 30% lower degrada-
tion than the naı̈ve method.

Next we vary the number of VMs up to n = 1000,
packed tightly on m = n/4 quad core servers. The ap-
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Figure 7: (Eco-mode) Comparison of proposed heuristic
and a naı̈ve random algorithm with the theoretical opti-
mal (computable for small input instances). Excess worst
case degradation compared to that in the optimal solution
is shown. The error bars show the standard deviation
across 10 random runs for the naı̈ve approach.
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Figure 8: (Eco-mode, Large number of VMs) Reduction
in degradation compared to a naı̈ve approach. The er-
ror bars show the standard deviation across 10 random
placements for the naı̈ve approach.

plications are taken from the SPEC CPU benchmarks as
before, in equal proportion. The naı̈ve approach used for
comparison is a random placement that does not account
for interference (10 random trials are performed for each
point).

Since it is not feasible to compute the optimal solu-
tion, we use the naı̈ve approach as the base case and show
the reduction in degradation achieved by PACMan (Fig-
ure 8). The worst case degradation is reduced by 27% to
52% over the range of the number of VMs. While the
number of servers is a fixed constraint, reduction in per-
formance degradation results in a corresponding increase
in throughput or reduction in runtime, yielding a propor-
tional saving in energy per unit work performed.

In summary, we see that PACMan performs well on
realistic degradation data.

5.4 TCO Analysis

The total cost of ownership (TCO) of a data center in-
cludes both the operating expenses such as energy bills
paid based on usage, and capital expenses, paid upfront.
Consolidation affects multiple components of TCO. The
resultant savings in TCO are described below.

To compare capital costs and operating expenses us-
ing a common metric, James Hamilton provided an
amortized cost calculation of an entire data center on a
monthly basis [14]. In this calculation, the fixed costs are
amortized over the life of the component purchased. For
instance, building costs are amortized over fifteen years
while server costs are amortized over three years. This
converts the capital costs into a monthly expense, similar
to the operating expense.

Figure 9 shows the savings resulting in various data
center cost components. The baseline we use is the cur-
rent practice of leaving alternate cores unused [21], and
we compare this with our proposed performance preserv-
ing consolidation method. In all, a 22% reduction in
TCO is achieved, which for a 10MW data center implies
that the monthly operating expense is reduced from USD
2.8 million to USD 2.2 million.
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Figure 9: (P-Mode) TCO reduction using the proposed
performance preserving consolidation method. Pwr.
Cool. Infra. refers to the power and cooling infrastruc-
ture cost, as defined in [14].

6 Related Work

Performance isolation from memory subsystem inter-
ference has been studied at different levels of the sys-
tem stack: the hardware level [3, 5, 16, 28, 35], the
OS/software level [1, 6, 23, 27], and the VM scheduler
level [2, 4, 32]. Our method is complementary in that we
facilitate determining the placements with lower inter-
ference to which above isolation techniques can then be
applied, and are likely to be more effective.

10
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Performance estimates due to interference [12, 19, 21]
have also been developed to aid VM placement. We build
upon the above works and use the interference charac-
terization provided by them to determine the placements
with lower interference.

Consolidation methods taking interference into ac-
count have been studied in [17], along with variants for
unequal job lengths [29]. Another method to model VM
interference through cache co-locality, and a heuristic for
run-time scheduling to minimize degradation, was pre-
sented in [18]. We allow optimizing for a different ob-
jective. While heuristics were proposed in prior works,
we provide an algorithm with provable guarantees on the
solution quality. We also provide a new inapproximabil-
ity result.

7 Conclusions

VM consolidation is one of the key mechanisms to im-
prove data center efficiency, but can lead to performance
degradation. We presented consolidation mechanisms
that can preserve performance.

The extent of performance degradation depends on
both how many VMs are consolidated together on a
server and which VMs are placed together. Hence, it
is important to intelligently choose the best combina-
tions. For many cases, performance is paramount and
consolidation will be performed only to the extent that it
does not degrade performance beyond the QoS guaran-
tees required for the hosted applications. We presented a
system that consolidated VMs within performance con-
straints. While the problem of determining the best
suited VM combinations is NP-Complete, we proposed a
polynomial time algorithm which yields a solution prov-
ably close to the optimal. In fact, the solution was shown
to be within ln(k) of the optimal where k is the number of
cores in each server, and is independent of the number of
VMs, n. This is a very tight bound for practical purposes.
We also considered the dual scenario where resource ef-
ficiency is prioritized over performance. For this case,
we showed that even near-optimal algorithms with poly-
nomial time complexity are unlikely to be found. Experi-
mental evaluations showed that the proposed system per-
formed well on realistic VM performance degradations,
yielding over 30% savings in energy and up to 52% re-
duction in degradation.

We believe that the understanding of performance
aware consolidation developed above will enable better
workload consolidation. Additional open problems re-
main to be addressed in this space and further work is
required to develop consolidation methods that operate
in an online manner and place VMs near-optimally as
and when they arrive for deployment.
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Abstract

Minimizing the total amount of physical memory con-
sumption of a set of virtual machines (VM) running on a
physical machine is the key to improving a hypervisor’s
consolidation ratio, which is defined as the maximum
number of VMs that can run on a server without any
performance degradation. To give each VM just enough
physical memory equal to its true working set (TWS),
we propose a TWS-based memory ballooning mechanism
that takes away all unneeded physical memory from a
VM without affecting its performance. Compared with a
state-of-the-art commercial hypervisor, this working set-
based memory virtualization technique is able to produce
noticeably more effective reduction in physical mem-
ory consumption under the same input workloads, and
thus represent promising additions to the repertoire of
hypervisor-level optimization technologies.

1 Introduction

Memory virtualization enables the hypervisor to allocate
to each running VM just enough physical memory with-
out performance degradation (memory ballooning) and
consolidate physical memory pages with identical con-
tents across VMs (memory deduplication [6, 10, 18, 16]).
These optimization techniques make the best of the avail-
able physical memory on a virtualized server and maxi-
mize the number of VMs that could run on it, or the con-
solidation ratio. Because memory deduplication is an
important technique used in both commercial and open-
source hypervisors [21, 8] and has been extensively dealt
with in a separate paper [13], this paper focuses only on
memory ballooning.

When a VM is started, the amount of physical memory
that the hypervisor gives to the VM is equivalent to that
specified in its configuration file. However, in most cases
VMs do not use up all the given memory because VMs
tend to be provisioned conservatively. By definition, the

amount of physical memory that a VM needs at any point
in time is its working set size at that instant. Therefore, if
there exists a way to accurately estimate a VM’s working
set size, the hypervisor could leverage this estimate to
take away unneeded memory pages from the VM using
the memory ballooning mechanism [21, 8, 20].

This paper describes the design, implementation and
evaluation of an intelligent memory ballooning algo-
rithm based on the working set size information of run-
ning VMs. To derive the working set size of a given VM,
we exploit the page reclamation mechanism built into
the guest OS by iteratively decreasing the VM’s physi-
cal memory allocation until it starts swapping in pages.
When we say a VM’s current working set size is X, we
meant the size of the memory pages the VM is going to
access in the next observation window is X. In our de-
sign, the observation window is set to 1 second.

2 Working Set Estimation

The physical memory given to a VM on a virtualized
server at the start-up time forms the VM’s guest physi-
cal address space, which is mapped to the server’s ma-
chine physical address space through a mapping table,
the Extended Page Table (EPT) in the case of the X86
architecture. The working set of a VM is defined as
the set of memory pages in the guest physical address
space that are being actively used by the VM in the re-
cent past [21]. If a VM’s working set is a proper subset
of the VM’s guest physical address space, some physi-
cal memory pages allocated to the VM could be safely
reclaimed. Even when a VM’s exact working set is not
available, being able to estimate the working set’s size is
still useful.

A naive way to determine a VM’s working set is to in-
tercept memory accesses made by the VM, for example,
marking a VM’s memory pages as not-present in the EPT
so as to trap and record the number of accesses to each of
its pages. The working set of a VM is the set of memory
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pages that have been accessed at least once in the obser-
vation window. However, this scheme is infeasible be-
cause the overhead of trapping every memory read/write
is simply too prohibitive to be acceptable in practice. To
get around this problem, VMware’s ESX used a sam-
pling approach to estimating the working set size of a
VM. Periodically it marks a randomly sampled subset
of the VM’s guest physical pages as invalid, counts the
number of pages in the subset that are accessed when-
ever a protection fault against any of these pages occurs,
and uses the resulting count to infer the VM’s working
set size.

Another way to estimate a VM’s working set size,
used by the self-ballooning mechanism [15] in the Xen
hypervisor, is to directly use the Committed AS statis-
tic maintained by the Linux kernel, which corresponds
to the total number of anonymous memory pages con-
sumed by all processes on a VM. For page reclamation,
Linux maintains two LRU (Least Recently Used) lists,
Active and Inactive, for each of the following two types
of memory pages: (1) Anonymous Memory, which cor-
responds to the heaps and stacks of user processes, and
(2) Page Cache, which corresponds to the kernel’s mem-
ory to buffer and cache the payloads of disk reads and
writes.

Utilizing the hardware reference bit, Linux puts pages
that are accessed more frequently into Active list and
leave pages that are accessed less frequently in Inactive
list. The page reclamation mechanism traverses the In-
active list to free its pages and possibly re-allocate them.
If a reclaimed page belongs to anonymous memory, the
kernel marks the page’s page table entry as non-present,
and swaps out the page’s content to the swap disk. When
the page is later accessed, a swapin event occurs and it is
swapped in. If a reclaimed page belongs to page cache,
the kernel flushes its content to disk if it has been dirtied.
If the page is later accessed, a refault event occurs and it
is brought back in.

When a VM’s physical memory allocation is larger
than or equal to its working set size, the number of
swapin and refault events should be close to zero. This
observation inspires the third way to estimate a VM’s
working set size: Gradually decreasing the balloon tar-
get of the balloon driver in the VM until the VM’s swapin
and refault counts start to become non-zero. The amount
of physical memory allocated to the VM at that instant is
the VM’s working set size. More concretely, a 3-state
finite state machine, as shown in Figure 1, is used to
adaptively track a VM’s working set size (WSS). Any-
time the WSS changes, we adjust the VM’s balloon tar-
get accordingly. The finite-state machine starts in the
FAST state and initializes the VM’s WSS to the VM’s
Committed AS. While in the FAST state, the finite-state
machine iteratively lowers the VM’s WSS by 5% of the

FAST

SLOW

COOL_DOWN

Committed_AS
changes

Committed_AS
changes swapin/refault

detected
Cool_down
counter reaches
0

swapin/refault
detected

swapin/refault
detected

Committed_AS
changes

Figure 1: The finite-state machine used to track a VM’s
working set size.

current Committed AS value at the end of every epoch
(epoch size set to 1 second currently), until swapin or
refault events occur within the current epoch, which
suggests the finite-state machine may have overshot the
WSS adjustment. As soon as swapin/refault events arise
in an epoch, the finite-state machine raises the VM’s cur-
rent WSS estimate by the sum of the observed swapin
and refault event counts, and enters the COOL DOWN
state, regardless of whether the finite-state machine was
originally in the FAST, COOL DOWN or SLOW state.

While in the COOL DOWN state, the finite-state ma-
chine initializes a cool-down counter to a default time-
out value (currently set at 8 seconds) and waits for
it to expire, and resets the cool-down counter to the
same default value if additional swapin/refault events
arise. In the SLOW state, the finite-state-machine ap-
plies the same logic as in FAST state except that the
VM’s WSS is iteratively lowered by 1% of the cur-
rent Committed AS value in each epoch. Whenever
the tracked VM’s Committed AS changes, the finite-
state machine considers the VM’s working set size has
changed significantly, and resets itself by entering the
FAST state and re-initializing the VM’s WSS to the new
Committed AS.

3 TWS-based Memory Ballooning

Memory ballooning [21, 8] is a technique that reclaims
physical memory from a VM by installing inside the VM
a balloon driver that allocates memory pages from the
VM’s kernel via the standard APIs, pins them down, and
returns them to the hypervisor. The balloon target of a
balloon driver is the difference between the VM’s con-
figured memory requirement and the amount of memory
it allocates from the VM.

How to correctly set a VM’s balloon target is an impor-
tant issue. When a balloon driver allocates more than the
host VM’s free memory pool, the VM OS’s page recla-
mation mechanism is triggered to evict cold pages. The
upper bound on a VM’s balloon target is the VM’s con-
figured memory requirement, and the lower bound is the
VM’s minimum memory requirement that prevents Out-

2
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of-Memory exceptions. The optimal way to set a VM’s
balloon target is to set it to the VM’s working set size, be-
cause this allows the hypervisor to reclaim the maximum
amount of physical memory from a VM while reducing
the performance impact on the VM to the minimum.

The self-ballooning mechanism in the Xen hyper-
visor sets a Linux VM’s balloon target to its current
Committed AS value. This approach guarantees that
applications consuming anonymous memory not suffer
from any swap-in delay because all their stacks and
heaps are likely to be memory-resident. However, com-
pared with the working set-based approach to setting
the balloon target, this approach has two deficiencies.
First, Committed AS does not factor the page cache
into a VM’s physical memory demand, and thus may
cause substantial performance degradation for applica-
tions with intensive disk I/O activities, which could sig-
nificantly benefit from the page cache. In contrast, the
working set approach keeps a counter for refault events,
and incorporates this counter into the calculation of a
VM’s working set size and thus balloon target. Second,
Committed AS captures only the pages that are allocated
but not those that are actually used recently. More specif-
ically, Committed AS is incremented upon the first ac-
cess to each newly allocated anonymous memory page
and is decremented only when the owner process explic-
itly frees the page. For example, if a program allocates
and accesses a memory page only once when the pro-
gram starts but leaves it untouched until the program ex-
its, the Linux kernel cannot exclude this cold page from
a VM’s Committed AS even though it is clearly outside
the VM’s working set. In contrast, the working set ap-
proach actively forces the VM OS to invoke its page
reclamation mechanism to pinpoint and evict cold pages.

4 Performance Evaluation

In this paper, we report the results of a performance eval-
uation study of TWS-based memory ballooning. The
test machine used in this study contains an Intel Core
i7 quad-core processor with VT and EPT enabled and
16 GB physical memory, and runs Xen-4.1 with 64-bit
vanilla Linux 3.2.6 as the Dom0 kernel. All the VMs in
this study are configured with 1 virtual CPU and 2GB
memory, and run Linux 3.2.6 64-bit kernel with the our
developed zballoond kernel module for memory balloon-
ing. Zballoond is a kernel thread that wakes up every
second to collect relevant information, such as Commit-
ted AS, swapin count and refault count, and make adjust-
ments to the balloon target.

To verify the effectiveness of these TWS-based bal-
looning algorithm, we first compared it with self-
ballooning mechanism in the Xen hypervisor. Then we
compared it with the latest VMware ESXi 5.0 server.1

Benchmark TWS Ballooning Self Ballooning
Used Degra- Target Degra- Target

dation dation
SPECweb 0% 263.3MB 0% 263.3MB
SPECcpu 3.08% 783.6MB 4.11% 922.6MB

OLTP 3.31% 350.8MB 17.99% 328.8MB

Table 1: Comparison between TWS-based ballooning
and self ballooning in terms of performance degradation
and balloon target for the three benchmarks, SPECweb
Banking, SPEC CPU 401 and OTLP. The performance
degradation is calculated based on a comparison with
the performance of the same VM that is configured with
2GB memory.

In this comparison, we used two identical test machines
where one runs the Xen hypervisor with the TWS-based
memory virtualization optimizations and the other runs
the ESXi server. The memory given to each VM does
not include anything owned by the hypervisor.

4.1 Effectiveness of TWS-based Ballooning
We evaluate the effectiveness of TWS-based ballooning
by comparing the performance degradation and balloon
target of a VM running a set of benchmark programs
when TWS-based ballooning is used with those when
Xen’s self-ballooning is used. The balloon target of a
VM is the amount of physical memory that a memory
ballooning scheme allocates to the VM. The performance
degradation of a memory ballooning scheme is the per-
formance difference between a benchmark program run-
ning in a VM whose physical memory allocation is con-
trolled by the ballooning scheme in question and the
same benchmark program running in a VM that is con-
figured with and indeed given 2GB memory, or the Base-
line configuration. The following three benchmark pro-
grams are used: SPECweb Banking [3] running against
Apache [1], SPEC CPU, and OLTP from the Sysbench
suite [4] running against MySQL [2].

Table 1 shows the performance degradation and bal-
loon target comparison between TWS-based ballooning
and self-ballooning for the three benchmark programs.
The memory requirement of SPECweb Banking bench-
mark is smaller than the minimum physical memory al-
location to the test VM, 263.3MB. As a result, both
TWS-based ballooning and self-ballooning produce the
same balloon target, which is the same as the minimum
physical memory allocation, and the benchmark program
does not experience any performance degradation under
TWS-based ballooning and under self-ballooning, when
compared with the Baseline configuration. For the SPEC
CPU 401 benchmark, the average balloon target of TWS-
based ballooning is 15.07% (783.6MB vs. 922.6MB)

3
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Figure 2: The balloon targets produced by TWS-based
ballooning and self-ballooning over time, and the result-
ing combined swapin and refault count over time under
TWS-based ballooning, when the SPEC CPU 401 bench-
mark is used as the test workload.
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Figure 3: The balloon targets produced by TWS-based
ballooning and self-ballooning over time, and the result-
ing combined swapin and refault count over time un-
der TWS-based ballooning, when the Sysbench OLTP
benchmark is used as the test workload.

smaller than that of self-ballooning, and yet the perfor-
mance degradation of TWS-based ballooning is smaller
than that of self-ballooning (3.08% vs. 4.11%).

The superiority of TWS-based ballooning comes from
the fact that the working set size it produces effectively
removes pages that are allocated but unused, as shown
by the gap between the two balloon target curves in Fig-
ure 2. However, despite allocating a smaller amount
of physical memory to the test VM, the performance
degradation of TWS-based ballooning is smaller than
self-ballooning, because it reacts faster to the sudden
change in the VM’s demand, e.g. at time points 320 sec-
onds, 460 seconds, and 630 seconds of Figure 2. Dur-
ing these transitions, TWS-based ballooning is able to
allocate more physical memory than Committed AS, and
thus cuts down unnecessary swapin and refault events.

Because the OLTP benchmark performs intensive disk
I/O accesses and thus requires a larger page cache, Com-
mitted AS is not an accurate estimate of the benchmark’s

working set as it does not take into account page cache.
As a result, the average balloon target produced by TWS-
based ballooning is 6.70% higher than self-ballooning,
and justifiably so, because the performance degradation
of TWS-based ballooning is only 3.31%, which is signif-
icantly smaller than that of self-ballooning, or 17.99%.
As shown in Figure 3, TWS-based ballooning detects re-
fault events and increases the test VM’s balloon target
accordingly, and as a result produces a balloon target that
is more in line with the VM’s working set size and more
capable of reducing the performance overhead of mem-
ory ballooning to the minimum.

We also run two VMs, one with a constant working set
size of 300MB and the other with a constant working set
size of 1200MB, on the Xen hypervisor with TWS-based
ballooning and on VMware’s ESXi 5.0. Each VM is
configured with 2 GB memory but given only 263.3MB
at the start-up time. After these two VMs start to run,
it takes TWS-based ballooning 10 seconds to reach the
ideal physical memory allocation, i.e., giving 300MB to
the 300MB VM and giving 1200MB to the 1200MB VM.
However, for the same set-up, it takes VMware ESXi 136
seconds to reach the same ideal physical memory alloca-
tion. The reason that VMware ESXi takes longer to ac-
complish the same is because it uses a sampling approach
to probe a VM’s working set size.

5 Related Work

Standard operating systems estimate the active portion
of buffer cache or page cache by maintaining LRU-
like statistics [19, 12, 5] to implement page replacement
logic. Lu et al. [14] proposed to allocate a small por-
tion of memory to each VM while leaving the remaining
memory as an exclusive cache is managed by the hyper-
visor. Thus, the memory accesses of VMs can be in-
tercepted within the exclusive cache, and the LRU miss
ratio curve [5] is derived to measure the working set size.
Zhao et al. [24, 23] track the memory access of VMs by
changing the user/supervisor privilege bit of guest page
table entries to supervisor mode so that all memory ac-
cess of VM will be trapped because the VM runs in user
mode. Similarly, the LRU miss ratio curve is also derived
for working set size prediction.

To reduce the overhead from trapping memory access,
the VMware ESX server [21] uses sampling based mech-
anism to predict the working set size of VMs. To per-
form the sampling, the ESX server randomly chooses a
few hundreds memory pages periodically, e.g., the de-
fault setting is to choose 100 pages per 60-second for
each VM. However, this mechanism only gives a rough
estimation of the VM working set size, and it can not re-
flect the working set size exceeding the current allocated
memory.

4
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When it comes to reclamation mechanism, the Clock
algorithm [9] is commonly used in guest OSs and sev-
eral research efforts [17, 22, 7, 11] aimed to estimate
the working set size by monitoring the changes of access
bit on the hardware page table. This approach requires
modifications to the guest OS. In contrast, our approach
leverages the guest OS’s page reclamation mechanism
and does not require any guest OS modifications.

6 Conclusion

Making efficient utilization of the physical memory
available on a virtualized server is a key technical chal-
lenge for modern hypervisors. Possible solutions include
memory de-duplication, which allows different VMs to
share common pages, and memory ballooning, which re-
claims unused pages from a VM when its physical mem-
ory allocation is larger than its working set size. This
paper describes and evaluates techniques that exploit the
knowledge of each VM’s working set to deliver more ef-
ficient memory ballooning. More concretely, the specific
research contributions of this work are

• A low-overhead active probing mechanism that
could accurately sense the working set of each VM
and track it dynamically,

• An intelligent memory ballooning algorithm that
could detect allocated but unused pages and reclaim
them, and

Compared with VMware’s ESXi, which is a state-of-
the-art hypervisor, the proposed working set estimation
scheme is more accurate and more responsive to working
set changes, but incurs a slight probing overhead, the pro-
posed memory ballooning algorithm is able to quickly
reclaim more memory pages without incurring additional
performance penalty.
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Abstract

The growing popularity of virtualized data centers and

clouds has led to virtual machine sprawl, significantly in-

creasing system management costs. We present Coriolis,

a scalable system that analyzes virtual machine images

and automatically clusters them based on content and/or

semantic similarity. Image similarity analysis can im-

prove in planning many management activities (e.g., mi-

gration, system administration, VM placement) and re-

duce their execution cost. However, clustering images

based on similarity – content or semantic – requires large

scale data processing and does not scale well. Coriolis

uses (i) asymmetric similarity semantics and (ii) a hierar-

chical clustering approach with a data access requirement

that is linear in the number of images. This represents a

significant improvement over conventional clustering ap-

proaches that incur quadratic complexity and therefore

becoming prohibitively expensive in a cloud setting.

1 Introduction

Cloud computing lends a fundamental shift to how busi-

nesses view IT, from being capital-intensive to being a

commodity that can be acquired on-demand and paid for

as per usage. However, the growing popularity of cloud

data centers has led to the problem of virtual machine

sprawl. Standardization is a key principle that allows

cloud providers to provide services on-demand and at a

lower cost than what individual IT departments can do.

System management costs reduce with standardization of

software at all levels: operating systems, middleware, ap-

plications, and management tools [1, 13].

We conjecture that classifying (possibly) diverse vir-

tualized servers in a cloud into clusters of similar virtual

machines (VMs) can improve the planning of many sys-

tem management activities. We classify VM similarity

into two types – content similarity and semantic similar-

ity. Content similarity refers to data similarity in the raw

files that constitute virtual machines. Semantic similarity

refers to the similarity in the operating system, middle-

ware, and application software present in two virtual ma-

chines. Several management activities can be planned

better to reduce their execution cost using analysis of

content and/or semantic similarity.

We develop and evaluate Coriolis, a framework for

clustering images based on any given notion of similar-

ity. Conventional clustering techniques require at least

quadratic data access or worse, prohibitive for cloud en-

vironments with a large number of VMs. Further, cluster-

ing images based on the conventional symmetric notion

of similarity leads to a uniform data access pattern; con-

sequently, caching techniques that leverage popularity or

locality for optimizing index lookup in deduplication sys-

tems [15, 6] are not applicable. Coriolis employs a novel

tree-based VM clustering algorithm that consumes time

that is only linear in the number of images. The algo-

rithm uses an asymmetric notion of similarity to avoid

computing all-pairs similarity values and a hierarchical

order to introduce popularity in data access.

2 VM Similarity: Types and Applications

The similarity across VMs in enterprise data centers and

clouds has been studied extensively in the context of data

deduplication [5, 6, 8, 9, 15]. In this section, we dis-

cuss both content and semantic similarity and then dis-

cuss how such similarity can be utilized for streamlining

system management tasks.

2.1 Content Similarity

The classical notion of similarity is that of content,

whereby a subset of the bytes contained within the im-

ages are identical. Identical content can occur either in

the form of whole or partial files [11] and techniques to

detect similar content have ranged from whole file and

fixed size chunking to more sophisticated variable size

chunking [8, 15]. Content similarity is useful in minimiz-

ing the amount of data that needs to be managed for a task

involving a collection of VMs (e.g., VM backup [14] or

Virtual Image Library [3]). A recent large-scale study of

VM images in a production IaaS cloud investigates such

content similarity [7]. This study found that the distri-

bution of content similarity across images is skewed and

that individual VM images tend to be similar to a small

subset of images than to the entire image population lead-

ing to clusters of similar images. They also noted that

computing pair-wise similarity is very expensive and re-

ported results for only 30% of their image collection due

to scalability issues.

2.2 Semantic Similarity

Semantic similarity characterizes the similarity of soft-

ware functionality within images. Examples of seman-

tically similar software include instances of the same

application, different versions of the same application,

or even different applications that accomplish the same

goal (e.g., MySQL and DB2 which both implement

database systems and require database expertise to man-

age). Causes for semantic similarity include standard-

ization of the software stack in modern enterprises and

1
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Use Case Content Semantic

Administrator Allocation × �
Troubleshooting × �
VM Placement � �

Migration � �

Table 1: Similarity types relevant for each use case

the popularity of specific types of programming mod-

els. As identified in previous work, when enterprises are

migrated to the cloud, they are adjusted and standard-

ized so that the same set of agents and processes can be

used for management services such as backup recovery,

security compliance, and patching [13]. Semantic sim-

ilarity is useful for streamlined system administration,

troubleshooting, and management tasks such as grouped

scheduling of maintenance and upgrade engineers lead-

ing to lower personnel costs. With the growing problem

of virtual image sprawl, administrators find it increas-

ingly difficult to keep track of what software is installed

on each VM. Automating the detection of VMs with se-

mantically similar software is thus valuable. Unfortu-

nately, the nature of semantic similarity in enterprise and

cloud data centers is not well understood.

2.3 Harnessing Image Similarity

We identify four common system management scenarios

that can leverage image similarity to reduce data center

costs. The most natural use case is allocation of servers

to system administrators for routine maintenance. It has

been shown that system administrators can be more effi-

cient and manage up to 80% more servers if the servers

have a similar software stack [1]. A second use case

is troubleshooting system errors during regular updates

in data centers. Troubleshooting in data centers is of-

ten akin to manual outlier detection where the engineer

attempts to identify servers that responded similarly to

the update. Once similar servers are identified, the engi-

neer identifies the difference between the failed server

and the successful server to fix the issue. Automated

clustering of servers based on semantic similarity can aid

such identification. Third, placement of VMs to hosts or

to management systems often leverage content for effi-

ciency. Images with high semantic similarity are likely to

exhibit higher number of duplicate pages in main mem-

ory, which can be deduplicated. Similarly, images with

higher content similarity can benefit more from dedupli-

cation performed at a shared management server (e.g.,

vSphere [14]).

The final use case is migration of enterprise applica-

tions from one data center to another. Migration is per-

formed in batches or waves, where a certain number of

images (e.g., 25) are migrated in one weekend [13]. Mi-

grating images with similar content together can reduce

migration time using deduplication. Further, images with

similar applications can be reconfigured with fewer ap-

plication experts, reducing migration cost. Identifying

image clusters with both high content and semantic sim-

ilarity and using them to create waves can help reduce

both migration time and cost. Table 1 summarizes the

type of similarity relevant for all the use cases.

3 Similarity-based VM Clustering

Clustering is a well-studied problem in computer science.

While the problem is NP-hard, various heuristics exist

with acceptable clustering performance.

3.1 A Representative Clustering Algorithm

k-means is one of the most popular clustering techniques

employed in the real world. The algorithm starts with an

initial set of k-clusters and refines them iteratively. Even

though multiple variants of the algorithm exist, they all

apply two canonical operations in each iteration:

• Assignment Step: Assign each element to the clus-

ter with the closest mean. Distance computation is

the core internal operation, performed k times for

each element. If there are N elements to cluster, this

requires kN Distance operations.

• Update step: Calculate the new mean for each clus-

ter. The core step is a Merge operation which com-

putes the average for 2 elements along each of the D

dimensions. In each iteration, across the k clusters,

N −1 merge operations are performed.

The worst case time for k-means is exponential in N. For

arbitrary set of points in [0,1]D, if each point is indepen-

dently perturbed by a normal distribution with variance

σ2, then the expected running time of k-means algorithm

is bounded by O(N34k34D8 log4(N)/σ6) [4]. Even for

simple cases, the best known bounds on average running

time are at least O(N4).

3.2 A Similarity Function for Images

In spite of its high computational complexity in number

of elements, k-means is popular in practice because the

time taken for each Distance and Merge operation is usu-

ally very small. Even for problems with 100 dimensions,

Distance and Merge operations require only about 100

addition and division operations. However, these opera-

tions are not very well-defined for VM images. We first

define a natural definition of these operations and then

present the time taken for each operation.

For VM images, it is more natural to define a similarity

measure than a distance measure. Two images are sim-

ilar if they contain a large number of identical elements

(files or software). Given a pair of images Ii, I j, similarity

between the images can be defined as

SIM(Ii, I j) =
wt(Ii ∩ I j)

wt(Ii ∪ I j)
(1)

2
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Image Size Similarity Merge

8.8 GB 45.5 sec 14.7 sec

12.3 GB 75.2 sec 24.1 sec

13.6 GB 98.5 sec 31.2 sec

16.3 GB 142.3 sec 44.2 sec

19.7 GB 172.2 sec 53.5 sec

22.1 GB 232.7 sec 64.9 sec

Table 2: Time for Similarity and Merge operations.

Images and file are stored in a database making use

of appropriate indices for these operations.

where Ii∪ I j is a meta-image that consists of the union of

Ii and I j, Ii ∩ I j is a meta-image that consists of the inter-

section of Ii and I j. The weight (wt) function is defined

based on the type of similarity that needs to be computed.

To estimate content similarity, the wt function is the sum

of all files in the image, weighted by the sizes of the files.

To estimate semantic similarity, the wt function is the

sum of all software deployed in the image weighted by

the complexity of the software. Adopting other notions

of similarity is straightforward (e.g., a weighted compo-

sition of content and semantic similarity). Distance can

now be calculated simply as 1− SIM(Ii, I j). The Merge

operation would create a new image that constitutes the

set of all unique elements across the images.

3.3 Scaling Challenge

We measured the running time for a single Similarity

and a single Merge operation on a dual-core 2 GHz In-

tel Xeon with 4GB memory and images stored on a 5-

disk RAID5 SATA array. Table 2 lists run times for

real images of different sizes. While the actual times

seem small, in aggregate, the costs of these operations

present a significant challenge. For example, a data cen-

ter with 1000 images would have to perform 10003 sim-

ilarity computations (even for the best special cases on

average complexity), and would need about 2000 years.

In-memory data structures can reduce the cost of these

operations. We conducted experiments by enabling the

in-memory feature in MySQL. We observed that the

maximum time taken for one similarity computation is

5 seconds (a reduction of 50X), which though significant

only brings down the similarity computation in our previ-

ous example to 40 years. Further, this requires the entire

index to be memory resident which is not practical. One

could envision computing similarity based on only files

that are larger than a certain threshold size in each image,

but that again would bring down the running time only by

a constant factor, while compromising accuracy.

An alternate approach to speed up clustering is to per-

form approximate clustering based on pair-wise similar-

ity information. The k-medoids clustering algorithm [12]

does exactly that by restricting the cluster center in an it-

eration to one of the existing points (images). Hence,

both assignment and update steps in each iteration can

leverage pair-wise similarity values that are computed in

advance. This simplifying approximation, however, still

requires pair-wise similarity computation for all images.

Since individual similarity operations are expensive for

VM images, this approach becomes un-affordable in

practice for moderate to large numbers of VMs as is typi-

cal in a cloud, as we shall demonstrate later (§4.3). Anec-

dotally, in a recent study on VM image similarity, the au-

thors reported pair-wise similarity only for a fraction of

their image corpus citing scalability challenges [7]. With

1000 images, this would take 2 years with the file sys-

tems on disk and 15 days with an in-memory system.

Clearly, there is a need to reduce the number of opera-

tions even further. Unfortunately, k-medoids suffers from

an additional challenge, that of determining k a priori.

The value of k should ideally be the minimum number of

clusters required subject to cluster size constraints dic-

tated by the application. However, this information is not

always known a priori. In the next section, we discuss

an approach that successfully overcomes the core limita-

tions of existing clustering approaches.

4 Coriolis

Coriolis uses a novel approach to VM clustering. We dis-

cuss this approach and evaluate its scalability relative to

the state-of-the-art k-medoids clustering in this section.

4.1 Solution Idea: Asymmetric Clustering

To solve the computational and memory challenge in VM

clustering, we draw on a key insight in Coriolis. First, we

observe that to significantly speed-up the Distance and

Merge operations, caching only a small subset of the im-

age manifest and hash index of image content must be

able to satisfy a large fraction of operations. Enabling

cache effectiveness requires introducing asymmetry into

the clustering algorithm, that is, the algorithm cannot af-

ford to consider all content from all images as equally im-

portant. The Coriolis clustering approach involves con-

structing a tree, where each node in the tree is either a

cluster of images or a single image, such that each level

in the tree from the root node represents a minimum ex-

tent of similarity within images in a cluster. The salient

aspects of this approach are:

• Hierarchical multi-level similarity: Use multiple

levels of similarity to quickly find most relevant

clusters. By design, restrict comparisons only with

clusters that are similar, reducing the total number

of Similarity operations.

• Ordered Index Lookup: Clusters at low similar-

ity levels are more popular than leaf nodes. Images

with popular content will require more accesses and

can be cached.

• Online Clustering: Add a new node to existing

clusters. Allows addition/deletion of images with

only incremental computation.

3
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Figure 1: Tree-based clustering. Computed Similar-

ity Values {(A,B):0.75, (C,E):0.95, (CE, D):0.8}

4.2 Coriolis’ Tree-based Clustering

Coriolis’s tree-based clustering approach is outlined be-

low and it is based on two key ideas. The most com-

mon operation in clustering is to identify the cluster most

similar to a given element and the first idea focuses on

speeding up this operation. Since clusters can grow to

become very large whereas individual images are typi-

cally small, we define and use an asymmetric similarity

function S within Coriolis that runs in time proportional

to the smaller of the two. In particular, we define similar-

ity as the coverage offered by a larger node B (typically

a cluster) to a new node A that is being added to the clus-

ter by replacing the union operator in the denominator by

the min operator.

S =
wt(A∩B)

min(wt(A),wt(B))
(2)

Our second key idea is to ensure skew in the usage

of images and image clusters allowing effective caching.

Further, we reuse the similarity computations done for

an image when computing similarity for other images.

Coriolis uses a tree-based partitioning of the images to

achieve both these goals. Each level of the tree represents

a predefined minimum level (extent) of similarity. The

root of the tree captures a similarity level S ≥ 0. Thus, all

images can be clustered in this meta-node. The last level

of the tree captures a similarity level S = 1; it consists

of either single images or a collection of duplicate im-

ages. Intermediate levels represent predefined similarity

levels, 0 < S < 1, which increases with the depth of the

tree. We elaborate our representation using the example

in Figure 1. Consider 5 images A,B,C,D,E . The tree

has 4 levels representing similarity of 0,0.5,0.9 and 1 re-

spectively. A and B have a similarity measure of 0.75.

Hence, they are clustered at level S > 0.5 but are inde-

pendent nodes at level S > 0.9. Similarly, C and E have

a similarity of 0.95 and are grouped together up to all

levels S > 0.9 but are independent nodes at level S = 1.

Given a new image vi, our goal is to find similar nodes

(or meta-nodes) with as few Similarity operations as pos-

sible. Coriolis’s grouping of VM image clusters within

a hierarchical tree structure allows early pruning of im-

A,B,C

D,E,F

A,B,F C,D,E

C,EA B,F D

C E

S > 0.5

S = 1.0 B F

S > 0.9

S >= 0

Figure 2: Clustering a new image F. Computed

Similarity Values are {(AB,F):0.95, (CDE,F):0.3,

(A,F):0.75, (B:F):0.95}

ages that are not similar to the new image vi. Adding a

new image to the Coriolis VM image tree, the new im-

age is first added to the root meta-node. Once an image

is added to a node, we compute the similarity of the new

node with each of its children to determine if it can be

added to any child. If the similarity S level is found ad-

equate with more than one child, the new image is only

added to the child node with which the similarity is the

greatest. If no such child node exists, we create a new

child node and add vi to the node. This process termi-

nates when we reach a leaf node.

Figure 2 illustrates a new image F as it traverses the

tree. It is important to note here that the number of

Similarity and Merge operations executed for an image is

proportional to the depth of the tree. The depth of the tree

is a pre-defined constant, bound by the log of the num-

ber of images inserted. Hence, the approach allows us to

create a tree in time no more than O(N logN), where N is

the number of images. And given the similarity levels at

various tree depths, the tree can then be queried in linear

time for clusters with specific properties.

4.3 Scalability Evaluation

To evaluate Coriolis, we used VM images from 2 pro-

duction data centers. The first set of 9 images is from a

large-scale enterprise data center at IBM. The latter set of

12 images is from the CS department’s small-scale data

center at Florida International University. The former set

of images are diverse compared to the latter set reflecting

the needs typical of a large-scale enterprise data center.

Next, we created increasingly larger sets of images from

these initial set of 21 production images. We did this by

separating out 3 of the 21 images and randomly sampling

files contained within these to generate synthetic images.

The net effect is that the synthetic images contain a ran-

dom combination of files from these 3 source images. We

performed clustering experiments in a Linux VM config-

ured with 16 GB RAM on an 6-core AMD Opteron pro-

cessor virtualized using the VMware ESX hypervisor.

We choose k-medoids for this comparison as it is sig-

4
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Figure 3: Scalability of k-medoids and tree-based

clustering algorithms.

nificantly faster than k-means. Fig 3 presents the time

taken by the k-medoids algorithm and the tree-based

clustering algorithm as the problem size is increased. The

time includes the time taken to read file metadata and

store it in a database, where similarity and merge op-

erations are performed. The k-medoids algorithm takes

significantly longer and displays a quadratic increase in

clustering time as the number of images is increased. We

observed that more than 95% of the time is spent in com-

puting similarity as the cluster size is increased. For clus-

tering 99 images, it takes nearly 3 days, which is clearly

unacceptable. In contrast, our tree-based clustering al-

gorithm reduces the number of similarity computations

by a factor of 8 and is able to cluster the images within

10 hours; an acceptable window of time even for heavy-

weight management VM tasks carried out over week-

ends.

5 Related Work
Redundancy elimination based on identifying duplicate

data is a popular topic of research [10, 15]. Finding sim-

ilar clusters is a related problem but is more data inten-

sive because it requires processing over the entire index

of the data as well as a manifest linking images to their

contents. Further, the data access for this problem does

not have inherent data popularity and locality, which is

used extensively by deduplication techniques for scaling.

The research work closest to ours is VMFlocks which

applies standard de-duplication techniques for images

that are migrated together across data centers [2]. Given a

batch of images, It eliminates raw data duplicates across

the given set of VM images. However, it does not tackle

identifying images with high redundancy or leveraging

semantic similarity.

6 Conclusions

We described the Coriolis framework and system that

was specifically designed for scalable clustering of VM

images so as to counter the negative effects of VM sprawl

in cloud data centers. We argued that the state-of-the-

art k-medoids clustering algorithm incurs quadratic com-

plexity which we demonstrated as infeasible for cloud

scale data centers. Coriolis’s distinguishing strength lies

in its scalable tree-based image clustering technique that

supports an arbitrary similarity metric. This novel tech-

nique allows clustering to be performed in O(N logN)
time for a data center with N images, allowing it to scale

to large data centers. Our future work will explore the

utility of Coriolis for data center administrator allocation,

troubleshooting, and large-scale VM migration.
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Abstract

Hadoop is a popular implementation of the MapReduce
framework for running data-intensive jobs on clusters
of commodity servers. Although Hadoop automatically
parallelizes job execution with concurrent map and re-
duce tasks, we find that, shuffle, the all-to-all input data
fetching phase in a reduce task can significantly affect
job performance. We attribute the delay in job comple-
tion to the coupling of the shuffle phase and reduce tasks,
which leaves the potential parallelism between multiple
waves of map and reduce unexploited, fails to address
data distribution skew among reduce tasks, and makes
task scheduling inefficient. In this work, we propose to
decouple shuffle from reduce tasks and convert it into a
platform service provided by Hadoop. We present iShuf-
fle, a user-transparent shuffle service that pro-actively
pushes map output data to nodes via a novel shuffle-on-
write operation and flexibly schedules reduce tasks con-
sidering workload balance. Experimental results with
representative workloads show that iShuffle reduces job
completion time by as much as 30.2%.

1 Introduction

Hadoop is a popular open-source implementation of the
MapReduce programming model for processing large
volumes of data in parallel [7]. Each job in Hadoop con-
sists of two dependent phases, each of which contains
multiple user-defined map or reduce tasks. These tasks
are distributed independently onto multiple nodes for
parallel execution. The decentralized execution model
is essential to Hadoop’s scalability to a large number of
nodes as map computations can be placed near their input
data stored on individual nodes and there is no commu-
nication between map tasks.

There are many existing studies focusing on improv-
ing the performance of map tasks. Because data lo-
cality is critical to map performance, work has been

done to preserve locality via map scheduling [21] or in-
put replication[4]. Others also designed interference [5]
and topology [14] aware scheduling algorithms for map
tasks. While there is extensive work exploiting the paral-
lelism and improving the efficiency in map tasks, only a
few studies have been devoted to expedite reduce tasks.

The all-to-all input data fetching phase in a reduce
task, known as shuffle, involves intensive communica-
tions between nodes and can significantly delay job com-
pletion. Because the shuffle phase usually needs to copy
intermediate output generated by almost all map tasks,
techniques developed for improving map data locality
are not applicable to reduce tasks [16, 21]. Hadoop
strives to hide the latency incurred by the shuffle phase
by starting reduce tasks as soon as map output files are
available. There is existing work that tries to overlap
shuffle with map by proactively sending map output [6]
or fetching map output in a globally sorted order [19].

Unfortunately, the coupling of shuffle and reduce
phases in a reduce task presents challenges to attaining
high performance in Hadoop clusters and makes exist-
ing approaches [6, 19] less effective in production sys-
tems. First, in production systems with limited num-
ber of reduce slots, a job often executes multiple waves
of reduce tasks. Because the shuffle phase starts when
the corresponding reduce task is scheduled to run, only
the first wave of reduce can be overlapped with map,
leaving the potential parallelism unexploited. Second,
tasks scheduling in Hadoop is oblivious of the data dis-
tribution skew among reduce tasks [8, 11, 12], machines
running shuffle-heavy reduce tasks become bottlenecks.
Finally, in a multi-user environment, one user’s long-
running shuffle may occupy the reduce slots that would
otherwise be used more efficiently by other users, lower-
ing the utilization and throughput of the cluster.

In this paper, we propose to decouple the shuffle phase
from reduce tasks and convert it into a platform ser-
vice provided by Hadoop. We present iShuffle, a user-
transparent shuffle service that overlaps the data shuf-
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Figure 1: An overview of data processing in Hadoop
MapReduce framework.

fling of any reduce task with the map phase, addresses
the input data skew in reduce tasks, and enables efficient
reduce scheduling. iShuffle features a number of key de-
signs: (1) proactive and deterministic pushing shuffled
data from map to Hadoop nodes when map output files
are materialized to local file systems, a.k.a, shuffle-on-
write. (2) automatic predicting reduce execution time
based on the input partition size and placing the shuffled
data to mitigate the partition skew and to avoid hotspots.
(3) binding reduce tasks with data partitions only when
reduce is scheduled to realize the load balancing enabled
by the partition placement.

We implemented iShuffle on a 32-node Hadoop cluster
and evaluated its benefits using the Purdue MapReduce
Benchmark Suite (PUMA) [2] with datasets collected
from real applications. We compared the performance
of iShuffle running both shuffle-heavy and shuffle-light
workloads with that of the stock Hadoop and a recently
proposed approach (i.e., Hadoop-A in [19]). Experi-
mental results show that iShuffle reduces job completion
time by 30% and 22% compared with stock Hadoop and
Hadoop-A, respectively. iShuffle also achieves signifi-
cant performance gain in a multi-user environment with
heterogeneous workloads.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background of Hadoop, discusses
existing issues, and presents a motivating example. Sec-
tion 3 elaborates iShuffle’s key designs. Section 4 gives
the testbed setup, experimental results and analysis. Re-
lated work is presented in Section 5. We conclude this
paper in Section 6.

2 Background and Motivation

2.1 Hadoop MapReduce Framework
The data processing in MapReduce [7] model is ex-
pressed as two functions: map and reduce. The map
function takes an input pair and produces a list of inter-
mediate key/value pairs. The intermediate values asso-

ciated with the same key are grouped together and then
passed to the same reduce function via shuffle, an all-
map-to-all-reduce communication. The reduce function
processes the intermediate key with the list of its values
and generate the final results.

Hadoop’s implementation of the MapReduce pro-
gramming model pipelines the data processing and pro-
vides fault tolerance. Figure 1 shows an overview of
job execution in Hadoop. The Hadoop runtime partitions
the input data and distributes map tasks onto individual
cluster nodes for parallel execution. Each map task pro-
cesses a logical split of the input data that resides on the
Hadoop Distributed File System (HDFS) and applies the
user-defined map function on each input record. The map
outputs are partitioned according to the number of reduce
tasks and combined into keys with associated lists of val-
ues. A map task temporarily stores its output in a circular
buffer and writes the output files to local disk every time
the buffer becomes full (i.e., buffer spill).

A reduce task consists of two phases: shuffle and re-
duce. The shuffle phase fetches the map outputs as-
sociated with a reduce task from multiple nodes and
merges them into one reduce input. An external merge
sort algorithm is used when the intermediate data is too
large to fit in memory. Finally, a reduce task applies
the user-defined reduce function on the reduce input and
writes the final result to HDFS. The reduce phase can
not start until all the map phases have finished as the
reduce function depends on the output generated by all
the map tasks. To overlap the execution of map and re-
duce, Hadoop allows an early start of the shuffle phase
(by scheduling the corresponding reduce task) as soon as
5% of the map tasks have finished.

In the next, we discuss several issues related to shuffle
and reduce in the existing Hadoop framework, and give a
motivating example showing how these issues affect the
performance and efficiency of a Hadoop cluster.

2.2 Input Data Skew among Reduce Tasks

The output of a map task is a collection of intermediate
keys and their associated value lists. Hadoop organizes
each output file into partitions, one per reduce task and
each containing a different subset of the intermediate key
space. By default, Hadoop determines which partition
a key/value pair will go to by computing a hash value.
Since the intermediate output of the same key are always
assigned to the same partition, skew in the input data set
will result in disparity in the partition sizes. Such a parti-
tioning skew is observed in many applications running in
Hadoop [8, 11, 12]. Some user-defined partitioner may
mitigate the skew but does not guarantee an even data
distribution among reduce tasks. As a result, some re-
duce tasks take significant longer time to complete, slow-
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Figure 2: tera-sort job execution.

ing down the entire job.

2.3 Inflexible Scheduling of Reduce Tasks
Reduce tasks are created and assigned a task ID by
Hadoop during the initialization of a job. The task ID is
then used to identify the associated partition in each map
output file. For example, shuffle fetches the partition that
matches the reduce ID from all map tasks. When there
are reduce slots available, reduce tasks are scheduled in
the ascending order of their task IDs. Although such a
design simplifies task management, it may lead to long
job completion time and low cluster throughput. Due to
the strict scheduling order, it is difficult to prioritize re-
duce tasks that are predicted to run longer than others.
Further, partitions required by a reduce task may not be
generated at the time it is scheduled, occupying the re-
duce slot and wasting cluster cycles which would other-
wise be used by another reduce with all partitions ready.

2.4 Tight Coupling of Shuffle and Reduce
As part of a reduce task, shuffle can not start until the cor-
responding reduce is scheduled. Besides the inefficiency
of job execution, the coupling of shuffle and reduce also
leaves the potential parallelism between within and be-
tween jobs unexploited. In a production environment, a
MapReduce cluster is shared by many users and multiple
jobs [21]. Each job only gets a portion of the execution
slots and often requires multiple execution waves, each
of which consists of one round of map or reduce tasks.
Because of the coupling, data shuffling in later reduce
waves can not be overlapped with map waves.

Figure 2 shows the execution of one tera-sort job
with 4GB dataset in a 10-node Hadoop cluster. Each
node was configured with 1 map slot and 1 reduce slot.
The job was divided into 32 map tasks and 32 reduce
tasks [7, 17], resulting in 4 map and reduce waves. We
use the duration of the shuffle phase between last execu-
tion wave and next reduce phase, termed as shuffle delay,
to quantify how data shuffling affects the completion of

reduce tasks. Due to the overlapped execution, the first
reduce wave experienced a shuffle delay of 11 seconds.
Unfortunately, remaining reduce waves had on average a
delay of 23 seconds before the reduce phase could start.
Given that the average length of the reduce phase was 25
seconds, the reduce waves would have been completed
in less than half the time if the shuffle delay can be com-
pletely overlapped with map.

Figure 2 also suggests that although the overlapping
of reduce and map reduced the shuffle delay from 23 to
11 seconds, the first reduce wave occupied the slots three
times longer than the following waves. Most time was
spent in the shuffle phase waiting for the completion of
map tasks. In production systems, allowing other jobs to
use these slots may outweigh the benefits brought by the
overlapped execution.

These observations revealed the negative impacts of
coupling shuffle and reduce on job execution and moti-
vated us to explore a new shuffling design for Hadoop.
We found that decoupling shuffle from reduce provides
a number of benefits. It enables skew-aware placement
of shuffled data, flexible scheduling of reduce tasks, and
complete overlapping the shuffle phase with map tasks.
In Section 3, we present iShuffle, a decoupled shuffle ser-
vice for Hadoop.

3 iShuffle Design

We propose iShuffle, a job-independent shuffle service
that pushes the map output to its designated reduce node.
It decouples shuffle and reduce, and allows shuffle to be
performed independently from reduce. It predicts the
map output partition sizes and automatically balances the
placement of map output partitions across nodes. iShuf-
fle binds reduce IDs with partition IDs lazily at the time
reduce tasks are scheduled, allowing flexible scheduling
of reduce tasks.

3.1 Overview

Figure 3 shows the architecture of iShuffle. iShuffle con-
sists of three components: shuffler, shuffle manager, and
task scheduler. The shuffler is a background thread that
collects intermediate data generated by map tasks and
predicts the size of individual partitions to guide the par-
tition placement. The shuffle manager analyses the par-
tition sizes reported by all shufflers and decides the des-
tination of each partition. The shuffle manager and shuf-
flers are organized in a layered structure which is similar
to Hadoop’s JobTracker and TaskTrackers. The task
scheduler extends existing Hadoop schedulers to support
flexible scheduling of reduce tasks. We briefly describe
some major features of iShuffle.
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Figure 3: The architecture of iShuffle.

User-Transparent Shuffle Service - A major require-
ment of iShuffle design is the compatibility to existing
Hadoop jobs. To this end, we design shufflers and the
shuffle manager as job-independent components, which
are responsible for collecting and distributing map out-
put data. This design allows the cluster administrator to
enable or disable iShuffle through the options in the con-
figuration files. Any user job can use iShuffle service
without modifications.

Shuffle-on-Write - The shuffler implements a shuffle-
on-write operation that proactively pushes the map out-
put data to different nodes for future reduce tasks every
time such data is written to local disks. The shuffling of
all map output data can be performed before the execu-
tion of reduce tasks.

Automated Map Output Placement - The shuffle
manager maintains a global view of partition sizes across
all slave nodes. An automated partition placement algo-
rithm is used to determine the destination for each map
output partition. The objective is to balance the global
data distribution and mitigate the non-uniformity reduce
execution time.

Flexible Scheduling of Reduce Tasks - The task
scheduler in iShuffle assigns a partition of a reduce task
only when the task is dispatched to a node with avail-
able slots. To minimize reduce execution time, iShuffle
always associates partitions that are already resident on
the reduce node to the scheduled reduce.

3.2 Shuffle-on-Write
iShuffle decouples shuffle from a reduce task and imple-
ments data shuffling as a platform service. This allows
the shuffle phase to be performed independently from
map and reduce tasks. The introduction of iShuffle to
the Hadoop environment presents two challenges: user
transparency and fault tolerance.

Besides user-defined map and reduce functions,
Hadoop allows customized partitioner and combiner. To
ensure that iShuffle is user-transparent and does not re-
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Figure 4: Workflow of Shuffle-on-Write.

quire any change to the existing MapReduce jobs, we
design the Shuffler as an independent component in the
TaskTracker. It takes input from the combiner, the
last user-defined component in map tasks, performs data
shuffling and provides input data for reduce tasks. The
shuffler performs data shuffling every time the output
data is written to local disks by map tasks, thus we name
the operation shuffle-on-write.

Figure 4 shows the workflow of the Shuffler. It has
three stages: (1) map output collection (step 1© 2©); (2)
data shuffling (step 3© 4© 5© 6©); (3) map output merging
(step 7© 8©).

Map output collection - The shuffler contains mul-
tiple DataSpillHandler, one per map task, to col-
lect map output that has been written to local disks.
Map tasks write the stored partitions to the local file
system when a spill of the in-memory buffer occurs.
We intercept the writer class IFile.Writer in the
combiner and add a DataSpillHandler class to it.
While the default writer writing a spill to local disk,
the DataSpillHandler copies the spill to a circu-
lar buffer, DataSpillQueue, from where data is shuf-
fled/dispatched to different nodes in Hadoop. During
output collection, the DataSizePredictor monitors in-
put data sizes and resulted partition sizes, and reports
these statistics to the shuffle manager.

Data shuffling - The shuffler proactively pushes data
partitions to nodes where reduce tasks will be launched.
Specifically, a DataDispatcher reads a partition from
the DataSpillQueue and queries the shuffle manager
for its destination. Based on the placement decision, a
partition could be dispatched to the shuffler on a different
node or to the local merger in the same shuffler.

Map output merging - The map output data shuffled
at different times needs to be merged to a single reduce
input file and sorted by key before a reduce task can
use it. The local merger receives remotely and lo-
cally shuffled data and merges the partitions belonging
to the same reduce task into one reduce input. To ensure
correctness, the merger only merges partitions from suc-
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cessfully finished map tasks.

3.2.1 Fault Tolerance

iShuffle is robust to the failure of map and reduce tasks.
Similar to [6], iShuffle maintains a bookkeeping of spill
files from all map tasks. If a map task fails, its data
spills in the DataSpillQueue and merger will be dis-
carded. The merger merges partitions only when the
corresponding map tasks commit their execution to the
JobTracker. This prevents reduce tasks from using in-
complete data. We also keep the merged reduce inputs in
the merger until reduce tasks finish. In case of a failed
reduce task, a new reduce can be started locally without
fetching all the needed map output.

3.3 Automated Map Output Placement

The shuffle-on-write workflow relies on key information
about the partition placement for each running job. The
objective of partition placement is to balance the distri-
bution of map output data across different nodes, so that
the reduce workloads on different nodes are even. The
optimal partition placement can be determined when the
sizes of all partitions are known. However, this requires
that all map tasks are finished when making the place-
ment decisions, which effectively enforce a serialization
between map tasks and the shuffle phase. iShuffle es-
timates the final partition sizes based on the amount of
processed input data and current partition size, and uses
the estimation to guide partition placement.

3.3.1 Prediction of Partition Sizes

The size of a map output partition depends on the size
of its input dataset, the map function, and the partitioner.
Verma et al. [18], found that the ratio of map output size
and input size, also known as map selectivity, is invariant
given the same job configuration. As such, the partition
size can be determined using the metric of map selectiv-
ity and input data size. The shuffle manager monitors the
execution of individual map tasks and estimates the map
selectivity of a job by building a mathematical model be-
tween input and output sizes.

For a given job, the input dataset is divided into a num-
ber of logical splits, one per map task. Since individ-
ual map tasks run the same map function, each map task
shares the same map selectivity with the overall job exe-
cution. By observing the execution of map tasks, where
a number of input/output size pairs are collected, shuf-
fle manager builds a model estimating the map selectiv-
ity metric. Shuffle manager makes k observations of the
size of each map output partition. As suggested in [18],
it derives a linear model between partition size and input

data size:
pi, j = a j +b j ·Di, (1)

where pi, j is the jth partition size in the ith observation
and Di is the corresponding input size. We use linear
regression to obtain the parameters for m partitions, one
per reduce task. Since MapReduce jobs contain many
more map tasks than reduce tasks (as shown in Table 1),
we are able to collect sufficient samples for building the
model. Once a model is obtained, the final size of a map
output partition can be calculated by replacing Di with
the actual input size of the map task.

3.3.2 Partition Placement

With predicted partition sizes, the shuffle manager de-
termines the optimal partition placement that balances
reduce workload on different nodes. Because the exe-
cution time of a reduce task is linear to its input size,
evenly placing the partitions leads to balanced work-
load. Formally, the partition placement problem can
be formulated as: given m map output partitions with
sizes of p1, p2, . . . , pm, find the placement on n nodes,
S1,S2, . . . ,Sn, that minimizes the placement difference:

σ =

√√√√1
n

n

∑
i=1

(
µ − ∑

j∈Si

p j

)
, (2)

where µ is the average data size on one node.

Data: p: list of partition
Data: S: list of nodes, has the size of all allocated

partitions
Result: Balanced partition placement
sort list p in descending order of partition sizes;
for i ← 1 to m do

min node ← S[1];
for j ← 1 to n do

if S[ j].size < min node.size then
min node ← S[ j];

end
end
min node.place(p[i]);

end
Algorithm 1: Partition placement.

Partition placement problem can be viewed as the load
balancing problem in multiprocessor systems [9] and is
thus NP-hard. While the optimal solution can be pro-
hibitively expensive to attain, we propose a heuristic-
based approach to approximate an optimal placement.
The detail of this approach is presented in Algorithm 1.
This algorithm is based on two heuristics, the largest

partition first for picking partitions and the less
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Table 1: Benchmark details.
Benchmark Input

Size (GB)
Input Data # of

Maps
# of
Reduce

Shuffle Vol-
ume (GB)

self-join 250 synthetic 4000 180 246
tera-sort 300 synthetic, random 4800 180 300
ranked-inverted-index 220 multi-word-count

output
3520 180 235

k-means 30 Netflix data, k = 6 480 6 32
inverted-index 250 Wikipedia 4000 180 57
term-vector 250 Wikipedia 4000 180 59
wordcount 250 Wikipedia 4000 180 49
histogram-movies 200 Netflix data 3200 180 0.002
histogram-ratings 200 Netflix data 3200 180 0.0012
grep 250 Wikipedia 4000 180 0.0013

workload first for picking destination nodes. It sorts
the partitions in the descending order of size and assigns
the largest partition to the nodes with the least aggregate
data size. It repeats until all the partitions are assigned.

3.4 Flexible Reduce Scheduling
In Hadoop, reduce tasks are assigned map output parti-
tions statically during job initialization. When there are
reduce slots available on idle nodes, reduce tasks are dis-
patched according to the ascending order of their task
IDs. This restriction on reduce scheduling leads to inef-
ficient execution where reduces that are waiting for map
tasks to finish occupy the slots for a long time. Because
iShuffle proactively pushes output partitions to nodes, it
requires that reduce tasks are launched on nodes that hold
the corresponding shuffled partitions. To this end, iShuf-
fle breaks the binding of reduce tasks and map output
partitions and provides flexible reduce scheduling.

An intuitive approach for flexible reduce scheduling
is to traverse the task queue and find a reduce that has
shuffled data on the requesting node. However, this ap-
proach does not guarantee that there is always a “local”
reduce available for dispatching. iShuffle employs a dif-
ferent approach that assigns partitions to reduce tasks
at the time of dispatching. For single-user clusters, we
modified Hadoop’s FIFO scheduler to support the run-
time task-partition binding. When a node with avail-
able reduce slots requests for new reduce tasks, the task
scheduler first check with the shuffle manager to obtain
the list of partitions that reside on this node. The sched-
uler picks the first partition in the list and associates its
ID with the first reduce task in the waiting queue. The
selected reduce task is then launched on the node. As
such, all reduce tasks are guaranteed to have local access
to their input data.

For multi-user clusters with heterogeneous workloads,
we add the support for runtime task-partition association

to the Hadoop Fair Scheduler (HFS). The minimum fair
share allocated to individual users can negatively affect
the efficiency of iShuffle as reduce tasks may be launched
on remote nodes to enforce fairness. We disable such
fairness enforcement for reduce tasks to support more
flexible scheduling. This allows some users to temporar-
ily run more reduce tasks than others. We rely on the
following designs to preserve fairness among users and
avoid starvation. First, the fair share of map tasks is still
in effect, guaranteeing fair chances for users to generate
map output partitions. Second, while records are sorted
by key within each partition after shuffling, partitions be-
longing to different users are randomly placed in the list,
giving each user an equal opportunity to launch reduce
tasks. Finally and most importantly, reduce tasks are
started only when all their input data is available. This
may temporarily violates fairness, but prevents wasted
cluster cycles spent in waiting for unfinished maps and
results in more efficient job execution.

4 Evaluation

4.1 Testbed Setup

Our testbed was a 32-node Hadoop cluster. Each node
had one 2.4 GHz 4-core Intel Xeon E5530 processor and
4 GB memory. All nodes were interconnected by a Gi-
gabit Ethernet. The operating system uses Linux ker-
nel 2.6.24. We deployed Hadoop stable release version
1.1.1 and each machine ran Ubuntu Linux with kernel
2.6.24. Two nodes were configured as the JobTracker

and NameNode, respectively. The rest 30 nodes were con-
figured as slave nodes for HDFS storage and MapReduce
task execution. We set the HDFS block size to its default
value 64 MB. Each slave node was configured with 4
map slots and 2 reduce slots, resulting in a total capacity
of running 120 map and 60 reduce tasks simultaneously
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in the cluster.
For comparison, we also implemented Hadoop-A pro-

posed in [19]. It enables reduce tasks to access map out-
put files on remote disks through the network. By using
a priority queue-based merge sort algorithm, Hadoop-A
eliminates repetitive merge and disk accesses, and re-
moves the serialization between the shuffle and reduce
phases. However, Hadoop-A requires the remote di-
rect memory access (RDMA) feature on Infiniband in-
terconnections for fast remote disk access. We imple-
mented Hadoop-A using remote procedure calls on our
testbed with Gigabit Ethernet and compared its perfor-
mance with iShuffle on commodity hardware.

4.2 Workloads

We used the Purdue MapReduce Benchmark Suite
(PUMA) [2] to compose workloads for evaluation.
PUMA contains various MapReduce benchmarks and
real-world test inputs. Table 1 shows the benchmarks
and their configurations used in our experiments. For
most of the benchmarks, the number of reduce tasks was
set to 180 to allow multiple reduce waves. The only ex-
ception was k-means, which ran on a 30 GB dataset with
6 reduce tasks.

These benchmarks can be divided into two categories:
shuffle-heavy and shuffle-light. Shuffle-heavy bench-
marks have high map selectivity and generate a large vol-
ume of data to be exchanged between map and reduce.
Thus, such benchmarks are sensitive to optimizations on
the shuffle phase. For shuffle-light benchmarks, there is
little data that needs to be shuffled. We used both bench-
mark types to evaluate the effectiveness of iShuffle and
its overhead on workloads with little communications.

4.3 Reducing Shuffle Delay

Recall that we defined shuffle delay as the duration be-
tween the last wave of execution and the next reduce
wave. Shuffle delay measures the shuffle period that can
not be overlapped with the previous wave. The smaller
the shuffle delay, the more efficient the shuffling scheme.
We ran tera-sort on stock Hadoop, Hadoop-A and iShuf-
fle, and recorded the start and completion times of each
map, shuffle and reduce phase.

Figure 5 shows the trace of the tera-sort job execution
under different approaches. The X-axis is the time span
of job execution and Y-axis represents the map and re-
duce slots. The results show that iShuffle had the best
performance with 30.2% and 21.9% shorter job execu-
tion time than stock Hadoop and Hadoop-A, respectively.
As shown in Figure 5(a), there is a significant delay of the
reduce phase for every reduce task in stock Hadoop. Due
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Figure 5: Execution trace of tera-sort using stock
Hadoop, Hadoop-A, and iShuffle approaches.

to proactive placement of map output partitions, iShuf-
fle had almost no shuffle delays. Note that Hadoop-A
also significantly reduced shuffle delay because it oper-
ates on globally sorted partitions and can greatly overlap
the shuffle and reduce phase.

iShuffle outperformed Hadoop-A on our testbed for
two reasons. First, the building of the priority queue
poses extra delay, e.g., the shuffle delay before the sec-
ond and third reduce waves in Hadoop-A, to each reduce
task. Second, the remote disk access in an Ethernet en-
vironment is significant slower than that in an Infiniband
network, which leads to much longer reduce phases in
Hadoop-A.

4.4 Reducing Job Completion Time

We study the effectiveness of iShuffle in reducing over-
all job completion time with more comprehensive bench-
marks. We use the job completion time in stock Hadoop
implementation as the baseline and compare the nor-
malized performance of iShuffle and Hadoop-A. Fig-
ure 6 shows the normalized job completion time of all
benchmarks listed in Table 1. The results show that
for shuffle-heavy benchmarks such as self-join, tera-
sort, and ranked-inverted-index, iShuffle outperformed
the stock Hadoop by 29.1%, 30.1%, and 27.5%, respec-
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Figure 6: Job completion time using
three different approaches.
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different approaches.
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Figure 8: Performance with auto-
mated map output placement.

tively. iShuffle also outperformed Hadoop-A by 22.7%,
21.9%, and 21.1% in these benchmarks. The result
with k-means benchmark does not show significant job
execution time reduction between iShuffle and original
Hadoop. This is because k-means only has 6 reduce
tasks. With only one wave of reduce tasks, stock Hadoop
was able to overlap the shuffle phase with map tasks and
had similar performance as iShuffle. However, due to the
additional delay of remote disk access, Hadoop-A had
longer reduces, thus longer overall completion time.

Benchmarks like inverted-index, term-vector, and
wordcount also fit in the shuffle-heavy category, but
the shuffle volumes are smaller than other shuffle-heavy
benchmarks. These benchmarks had less shuffle de-
lay than other shuffle-heavy benchmarks simply because
there was less data to be copied during the shuffle phase.
Therefore, the performance improvement due to iShuf-
fle was less. Figure 6 shows that iShuffle achieved
20.3%, 19.7%, and 15.6% better performance than stock
Hadoop with these benchmarks, respectively. For these
benchmarks, Hadoop-A still gained some performance
improvement over stock Hadoop as the reduction on
shuffle delay outweighed the prolonged reduce phase.
However, the performance gain was marginal with 7.5%,
8.6%, and 5.5% improvement, respectively.

For the shuffle-light benchmarks, because the shuf-
fle delay is negligible. Both iShuffle and Hadoop-
A achieves almost no performance improvement. The
performance degradation due to remote disk access in
Hadoop-A is more obvious in this scenario.

We also compare the shuffle delay between the stock
Hadoop, iShuffle, and Hadoop-A. Figure 7 shows the
comparison of normalized shuffle delay. We used the
shuffle delay of iShuffle as the based line. The results
agree with the observation we made in previous experi-
ments. iShuffle was able to reduce the shuffle delay sig-
nificantly if the job had large volumes of shuffled data
and multiple reduce waves. For benchmarks that have
the largest shuffle-volume, the reductions in shuffle delay
were more than 10x compared with stock Hadoop. For
benchmarks with medium shuffle volume, the improve-
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Figure 9: Performance with different placement balanc-
ing algorithms.

ment on shuffle delay was from 4.5x to 5.5x. Figure 7
also suggests that iShuffle was on average 2x more ef-
fective in reducing shuffle delay than Hadoop-A.

4.5 Balanced Partition Placement
We have shown that iShuffle effectively hides shuffle la-
tency by overlapping map tasks and data shuffling. In
this subsection, we study how the balanced partition
placement affects job performance. To isolate the effect
of partition placement, we first ran benchmarks under
stock Hadoop and recorded dispatching history of reduce
tasks. Then, we configured iShuffle to place partitions
on nodes in a way that leads to the same reduce execu-
tion sequence. As such, job execution enjoys overlapped
shuffle provided by iShuffle, but bears the same partition-
ing skew in stock Hadoop. We compare the performance
with balanced partition placement and stock Hadoop.

Figure 8 shows the performance improvement due
to balanced partition placement. The results show that
iShuffle achieved 8-12% performance improvement over
stock Hadoop. We attribute the performance gain to the
prediction-based partition placement that mitigates the
partitioning skew. It prevents straggler tasks from pro-
longing job execution time. The partition placement in
iShuffle relies on accurate predictions of the individual
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partition sizes. Figure 10 shows the differences between
measured partition sizes and the predicted ones. The re-
sults suggest that for all the shuffle-heavy benchmarks,
iShuffle was able to estimate the final partition size with
no more than 2% prediction errors.

4.6 Different Balancing Algorithms

In this subsection, we study how different partition bal-
ancing algorithms affect job performance. We compare
our heuristic based partition balancing algorithm with
two representative randomized balancing approaches.
GREEDY(2) implements the two-choice randomized

load balancing algorithm proposed in [15]. It randomly
picks up a map task for output placement and makes
decision on which slave node to place the output using
the two-choice greedy algorithm (i.e., GREEDY(2)). The
node with less aggregated partition size (breaking ties ar-
bitrarily) in the two randomly picked nodes is selected as
the destination for the output placement. Different from
GREEDY(2) which selects tasks randomly for placement,
LPF-GREEDY(2) sorts tasks according to the descending
order of their predicted partition sizes and always places
tasks with larger partitions first (i.e., largest partition first
(LPF)). Node selection is based on the two-choice ran-
domized strategy.

Figure 9 compares the performance of different bal-
ancing algorithms. The results show that the simple
heuristics used in iShuffle achieved 8− 12% shorter job
completion time than GREEDY(2) in shuffle-heavy work-
loads (e.g., inverted-index). Since balanced partition
placement is critical to job performance, GREEDY(2)’s
randomization in task selection made it difficult to evenly
distribute computation across nodes and contributed to
the prolonged execution times. To confirm this, we
ran LPF-GREEDY(2) with the same set of workloads.
With the largest partition first heuristic in task selection,
LPF-GREEDY(2) achieved close performance (on aver-
age only 2.5% longer runtimes) to iShuffle. In summary,
although randomized balancing algorithms are easy to
implement, the heuristics use in iShuffle is key to achiev-

ing balanced output placement.

4.7 Running Multiple Jobs

We further evaluate iShuffle in a multi-user Hadoop envi-
ronment. We created multiple workload mixes, each con-
tained two different MapReduce jobs. We ran one work-
load at a time with two jobs sharing the Hadoop clus-
ter. We modified the Hadoop Fair Scheduler (HFS) (i.e.,
iShuffle w/ HFS mod) to support runtime task-partition
binding. For comparison, we also study the performance
of iShuffle with the original HFS that enforces a mini-
mum fair share on reduce tasks (i.e., iShuffle w/ HFS)
and iShuffle running a single job on a dedicated cluster
(i.e., Separate iShuffle).

The first experiment used the combination of a shuffle-
heavy job and a shuffle-light job. Figure 11 shows the re-
sult of workload mix of tera-sort and histogram-movies.
The results suggest that the modified HFS outperformed
the original HFS by 16% and 25% for tera-sort and
histogram-movies, respectively. Unlike the original HFS,
which guarantees max-min fairness to jobs, iShuffle al-
lows the reduce of one job to use more reduce slots.
iShuffle prioritizes shuffle-light jobs because the execu-
tion time of their reduce tasks is short. Allowing shuffle-
light jobs to run with more slots boosted their perfor-
mance significantly. Although shuffle-heavy jobs suf-
fered unfairness to a certain degree, their overall perfor-
mance under the modified HFS was still better than that
under the original HFS.

Next, we perform the experiment with two shuffle-
heavy jobs. Figure 12 shows the performance of tera-sort
and inverted-index. It shows that iShuffle improved job
execution times by 8% and 23% over the original HFS
in these two benchmarks. Although the size of input
datasets of these two benchmarks are similar, inverted-
index has a smaller shuffle volume. Therefore, its reduce
tasks can be started earlier as their partitions required less
time to shuffle. tera-sort had less improvement in this
scenario because some of its reduce tasks are delayed
by inverted-index. Table 2 shows more results of iShuf-
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Table 2: Job completion time of co-running jobs.
Workload Mix Stock Hadoop iShuffle
A + B A B A B

tera-sort+ grep 2210 1247 2144 1038

tera-sort+
histogram
-ratings

2308 653 1976 530

tera-sort+term-vector 2576 2183 2349 1845
tera-sort+ wordcount 2341 1433 2126 1197
tera-sort+ k-means 1723 3764 3685 3748

fle with heterogeneous workloads compared with stock
Hadoop. For most workload mixes with two jobs, iShuf-
fle w/ modified HFS was able to reduce the job comple-
tion time for both jobs. The performance gain depends
on the amount of shuffled data in these co-running jobs.

However, iShuffle had poor performance with work-
load mix tera-sort + k-means. We ran tera-sort with a
300GB dataset and k-means with a 15GB dataset. The
result of k-means does not agree with previous observa-
tions for shuffle-light workloads. The co-running of tera-
sort and k-means significantly degraded the performance
of tera-sort. An examination of the execution trace re-
vealed that although k-means has little data to exchange
between map and reduce, it is compute intensive. iShuf-
fle started k-means earlier than tera-sort and k-means oc-
cupied the reduce slots for a long time delaying the ex-
ecution of tera-sort. The culprit was that for k-means,
the partition size is not a good indicator of the execution
time of its reduce tasks. Thus, iShuffle failed to balance
the reduce workload on multiple nodes. A possible so-
lution is to detect such outliers earlier and restart them
on different nodes. Since such outliers often have small
shuffle volume, the migration is not expensive.

5 Related Work

MapReduce is a programming model for large-scale data
processing [7]. Hadoop, the open-source implementa-
tion of MapReduce, provides a software framework to
support the distributed processing of large datasets [1].

There is great research interest in improving Hadoop
from different perspectives. A rich set of research fo-
cused on the performance and efficiency of Hadoop clus-
ter. Jiang et al. [10], conducted a comprehensive perfor-
mance study of Hadoop, summarized the factors that can
significantly improve the Hadoop performance. Verma
et al. [17, 18], proposed cluster resource allocation ap-
proach for Hadoop. They focused on improving the clus-
ter efficiency by minimizing resource allocations to jobs
while maintaining their service level objectives. They es-
timated the execution time of a job based on its resource
allocation and input dataset, and determined the mini-

mum resource allocation for the job. Lama and Zhou [13]
proposed and developed AROMA, a system that auto-
mates the allocation of Cloud resources and configura-
tion of Hadoop parameters for achieving quality of ser-
vice goals while minimizing the incurred cost. It uses a
SVM-based approach to obtain the optimal job configu-
ration. It adapts to ad-hoc jobs by robustly matching their
resource utilization signature with previously executed
jobs and making provisioning decisions accordingly.

A number of studies proposed different task schedul-
ing algorithms to improve Hadoop performance. The
Longest Approximate Time to End (LATE) scheduling
algorithm [22] improved the job performance in hetero-
geneous environments. FLEX [20] is a scheduling al-
gorithm that enforces fairness between multiple jobs in
a Hadoop cluster. It optimized the performance of each
job under different metrics. Zaharia et al., proposed de-
lay scheduling [21] as an enhancement to Hadoop Fair
Scheduler. It exploited data locality of map task and sig-
nificantly improved performance.

There are a few studies on skew mitigations. SkewRe-
duce [11] alleviated the computational skew problem
by applying a user-defined cost function on the in-
put records. Partitioning across nodes relies on this
cost function to optimize the data distribution. Skew-
Tune [12] proposed a framework for skew mitigation. It
repartitioned the long tasks to take the advantage of idle
slots freed by short tasks. However, moving repartitioned
data to idle nodes requires extra I/O operations.

Some recent work focused on the improvement of
shuffle and reduce. MapReduce Online [6] proposed a
push-based shuffle mechanism to support the online ag-
gregation and continuous queries. MaRCO [3] overlaps
the reduce and shuffle. But the early start of reduce gen-
erates partial reduces which could be the source of over-
head for some applications. Hadoop Acceleration [19]
proposed a different approach to mitigate shuffle de-
lay and repetitive merges in Hadoop. It implemented a
merge algorithm based on remote disk access and elim-
inated the explicit copying process in shuffle. However,
this approach relies on the RDMA feature of Infiniband
network, which is not available on commodity network
hardware. Without RDMA, the remote disk access added
significant overhead to reduce tasks. Moreover, Hadoop-
A does not decouple shuffle and reduce, making it less
effective for jobs with multiple reduce waves.

6 Conclusions

Hadoop provides a simplified implementation of the
MapReduce framework, but its design poses challenges
to attain the best performance in job execution due to
tightly coupled shuffle and reduce, partitioning skew, and
inflexible scheduling. In this paper, we propose iShuffle,
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a novel user-transparent shuffle service that provides op-
timized data shuffling to improve job performance. It de-
couples shuffle from reduce tasks and proactively pushes
data to be shuffled to Hadoop node via a novel shuffle-on-
write operation in map tasks. iShuffle further optimizes
the scheduling of reduce tasks by automatic balancing
workload on multiple nodes and runtime flexible reduce
scheduling. We implemented iShuffle as a configurable
plug-in in Hadoop and evaluated its effectiveness on a
32-node cluster with various workloads. Experimental
results shows that iShuffle is able to reduce job comple-
tion time by as much as 30.2%. iShuffle also signifi-
cantly improves job performance in a multi-user Hadoop
cluster running heterogeneous workloads.
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Abstract
This paper addresses the problem of autonomic data

placement in replicated key-value stores. The goal is to
automatically optimize replica placement in a way that
leverages locality patterns in data accesses, such that
inter-node communication is minimized. To do this ef-
ficiently is extremely challenging, as one needs not only
to find lightweight and scalable ways to identify the right
data placement, but also to preserve fast data lookup.
The paper introduces new techniques that address each
of the challenges above. The first challenge is addressed
by optimizing, in a decentralized way, the placement of
the objects generating most remote operations for each
node. The second challenge is addressed by combining
the usage of consistent hashing with a novel data struc-
ture, which provides efficient probabilistic data place-
ment. These techniques have been integrated in Infinis-
pan, a popular open-source key-value store. The perfor-
mance results show that the throughput of the optimized
system can be 6 times better than a baseline system em-
ploying the widely used static placement based on con-
sistent hashing.

1 Introduction

Distributed NoSQL key-value stores [10, 18] have
emerged as the reference architecture for data manage-
ment in the cloud. A fundamental design choice in these
distributed data platforms is to select the algorithm used
for determining the placement of objects (i.e., key/value
pairs) among the nodes of the system. A data place-
ment algorithm must simultaneously address two main,
typically opposing, concerns: i) maximizing locality, by
storing replicas of the data in the nodes that access them
more frequently, while enforcing constraints on the ob-
ject replication degree and on the capacity of nodes; ii)
maximizing lookup speed, by ensuring that a copy of an
object can be located as quickly as possible.

The data placement problem has been investigated in
several alternative variants, e.g. [12, 16]. Classic ap-
proaches formulate the data placement problem as a con-
straint optimization problem, and use Integer Linear Pro-
gramming techniques to identify the optimal placement
strategy with the granularity of single data items. Unfor-
tunately, these approaches suffer from several practical
limitations. In first place, finding the optimal placement
is a NP-hard problem, hence any approach that attempts
to optimize the placement of each and every item is in-
herently non-scalable. Further, even if the optimal place-
ment could be computed, it is challenging to maintain
efficiently a (potentially very large) directory to store the
mapping between items and storage nodes.

Directories are indeed used by several systems such as
PNUTS [6] or BigTable [4]. To minimize the costs asso-
ciated with the maintenance of the directory, these sys-
tems trade-off placement flexibility and support place-
ment at a very coarse level, i.e. large data partitions rather
than on a per instance basis. However, even if coarse
granularity is used, the use of a directory service intro-
duces additional round-trip delays along the critical exe-
cution path of data access operations, which can hinder
performance considerably.

To avoid the above issues, many popular key-value
stores, such as Cassandra [18], Dynamo [10], Infinis-
pan [22], use random placement based on consistent
hashing. By relying on random hash functions to de-
termine the location of data across nodes, these solutions
allow lookups to be performed locally, in an very effi-
cient manner [10]. However, due to the random nature
of data placement (oblivious to the access frequencies
of nodes to data), solutions based on consistent hashing
may result in highly sub-optimal data placements.

This paper presents AUTOPLACER, a system aimed at
self-tuning the data placement in a distributed key value
store, which introduces a set of novel techniques to ad-
dress the trade-offs described in the previous paragraphs.
Unlike conventional solutions [12, 16], that formulate the
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data placement optimization problem as an intractable
ILP problem, AUTOPLACER employs a lightweight self-
stabilizing distributed optimization algorithm. The al-
gorithm operates in rounds, and, in each round, it opti-
mizes, in a decentralized fashion, the placement of the
top-k “hotspots”, i.e. the objects generating most remote
operations, for each node of the system. This design
choice has the advantage of reducing the number of de-
cision variables for the data placement problem (solved
at each round), ensuring its practical viability.

In order to be able to identify the “hotspots” of each
node with low processing cost, AUTOPLACER adopts a
state of the art stream analysis algorithm [23] that per-
mits to track the top-k most frequent items of a stream
in an approximate, but very efficient manner. The infor-
mation provided by the Space-Saving Top-k algorithm
is then used to instantiate the data placement optimiza-
tion problem. We first study the accuracy of the solution
from a theoretical perspective, deriving an upper bound
on the approximation ratio with respect to a solution us-
ing exact frequencies. Next we discuss how to maxi-
mize the efficiency of the solution, showing how it can
be made amenable for being partitioned in independent
sub-problems, solvable in parallel.

Unlike solutions that rely on directory services, AU-
TOPLACER guarantees 1-hop routing latency. To this
end, AUTOPLACER combines the usage of consistent
hashing, which is used as the default placement strategy
for less popular items, with a highly efficient, probabilis-
tic mapping strategy that operates at the granularity of the
single data item, achieving high flexibility in the reloca-
tion of (a possibly very large number of) hotspot items.

The key innovative solution introduced to pursue this
goal is a novel data structure, which we named Proba-
bilistic Associative Array (PAA). The goal of the PAA is
to minimize the cost of maintaining a mapping associ-
ating keys with nodes in the system. PAAs expose the
same interface of conventional associative arrays, but, in
order to achieve space efficiency, they trade-off accuracy
and rely on probabilistic techniques which can lead to
inaccurate results with a user-tunable probability (these
inaccuracies do not affect the correctness of the system,
in worst case they may only degrade its performance).
Internally, PAAs rely on Bloom Filters (BFs) and on De-
cision Tree (DT) classifiers. BFs are used to keep track
of the elements inserted so far in the PAA in a space-
efficient way; DTs are used to infer a compact set of
rules establishing the associations between keys and val-
ues stored in the PAA. In order to maximize the effec-
tiveness of the DT classifier, we expose a programmatic
API that allows programmers to provide semantic infor-
mation on the nature of the keys stored in the PAA (e.g.,
the data type of the value associated with the key). This
information is then exploited, during the learning phase

of the PAA’s DT, to map keys into a multi-dimensional
space that can be more effectively clustered by a DT clas-
sifier.

In summary, AUTOPLACER provides two key fea-
tures:

• It introduces a novel iterative, decentralized, self-
tuning data placement optimization scheme.

• It preserves efficient lookups, while achieving high
flexibility in determining an optimized data place-
ment, through the use of a new probabilistic data
structure designed specifically for this purpose.

AUTOPLACER has been integrated in a popular, open-
source key-value store, namely Infinispan: Infinispan is
the reference NoSQL platform and clustering technol-
ogy for JBoss AS, a mainstream open source J2EE ap-
plication server. The results show that AUTOPLACER
can achieve a throughput 6 times better than a baseline
system using consistent hashing.

The remaining of the paper is structured as follows.
Our target system is characterized in Section 2. Section 3
provides a global overview of AUTOPLACER. Then, its
components are described in more detail in the next two
sections: the PAA internals are described in 4; a theoret-
ical analysis of the optimizer’s accuracy is provided in 5.
Section 6 reports the results of the experimental evalua-
tion of the system. Section 7 compares our system with
related work. Finally, Section 8 concludes the paper.

2 System Characterization

The development of AUTOPLACER has been motivated
by our experience [26, 25, 27] with the use of an existing,
state-of-the art, key-value store, namely Infinispan [22]
by Red Hat c©. In Infinispan (and other similar products
such as [18, 10]), data is stored in multiple nodes using
consistent hashing. For each key, consistent hashing de-
termines a supervisor node for that item. Items can be
replicated. A node that stores a copy of data item i is
denoted an owner of that item. Assume that d copies are
maintained of each data item, the owners of data item
i are deterministically assigned to be j’s supervisor plus
its d−1 immediate successors (in the one hop distributed
hash table that is used to implement consistent hashing).

Each node serves a dual purpose: it stores a subset
of the data items maintained by the distributed store and
also executes application code. The application code
may be structured as a sequence of transactions (Infinis-
pan supports transactional properties), with different iso-
lation levels.

When the application code reads a data item, its value
must be retrieved from one of its owners (which can be
another node in the cluster). Thus, optimal performance
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is achieved if the node that executes a given application
is the owner for the items it accesses more often. When
the application writes a data item, all owners must be
updated. Interestingly, the placement policy can also af-
fect the performance of write operations. When multiple
writes are performed in the context of a transaction, they
can be applied in batch when the transaction commits.
Hence, the larger the number of owners of keys updated
by a transaction, the higher the number of nodes that have
to be contacted during its commit phase.

Infinispan uses consistent hashing to ensure that all
lookups can be executed locally. Unfortunately, in typi-
cal deployments of large-scale key-value stores, random
data placement can be largely suboptimal as applications
are likely to generate skewed access distributions [21],
often dependent on the actual “type” of operations pro-
cessed by each node [30, 9]. Also, workloads are fre-
quently distributed according to load balancing strate-
gies that strive to maximize locality [14]/minimize con-
tention [2] in the data accesses generated by each node.
As we will show in the evaluation section, all these facts
make consistent hashing sub-optimal. Therefore, signif-
icant performance improvements can be achieved by us-
ing appropriate autonomic data placement strategies.

3 AUTOPLACER Overview

AUTOPLACER is designed to optimize data location in a
decentralized manner, i.e., each node in the system con-
tributes to the global optimization process. Since AUTO-
PLACER is aimed at systems that use consistent hashing
as the default data placement policy, we also rely on con-
sistent hashing to decentralize the optimization effort:
each node is responsible for deciding the placement for
the items it supervises. AUTOPLACER executes, cycli-
cally, a sequence of optimization rounds. As a result of
each round, a number of data items may be relocated.
This happens only if the expected gains are above a min-
imum threshold. Each optimization round consists of the
following sequence of six tasks.

Task 1: The first task of the AUTOPLACER approach
consists of collecting statistics about the hotspots data,
i.e., the top-k most accessed data items, at each node.
In fact, instead of trying to optimize the placement of
every data item in a single round, at each optimization
round, AUTOPLACER only optimizes the placement of
items that are identified as hotspots. Since this task is
run cyclically, once some hotspots have been identified
(and relocated) in a given round, new (different) hotspots
are sought in the next round. Therefore, although in each
round only a limited number of hotspots is identified, in
the long run, a large number of data items may be se-
lected over multiple optimization rounds, as long as gains
can still be obtained from their relocation.

Task 2: The second task consists in having the nodes
exchange statistics regarding the data items that were
identified as hotspots during the current round. More
precisely, each node gathers (from the remaining nodes
of the platform) access statistics on any hotspot items it
supervises.

Task 3: The above information is used in the third
task (denoted the optimization task) to find an appropri-
ate placement for those items. The result of this task is a
partial relocation map, i.e., a mapping of where replicas
of each hotspot items that the node supervises (for the
current round) must be placed.

Task 4: Even if the number of hotspots tracked at each
round is a small fraction of the entire set of items main-
tained in the key-value store, over multiple rounds the
relocation map can grow in an undesired way, and may
even be too large to be efficiently distributed to all nodes.
This task is devoted to encoding the relocation map in a
probabilistic data structure that can be efficiently repli-
cated on all nodes in order to ensure fast lookups, i.e. a
Probabilistic Associative Array (PAA). Specifically, each
node computes the PAA for the (relocated) objects it su-
pervises.

Task 5: Once each PAA has been computed, each
node disseminates it among all nodes. By assembling
the PAAs received from all the nodes in the system, each
node can locally build an object lookup table that in-
cludes updated information on the placement of data op-
timized during this round.

Task 6: Finally, at the end of each round, the data items
for which new locations have been derived are trans-
ferred (using conventional state-transfer facilities [15,
28]) in order to match the new data placement.

As can be inferred from the previous description, the
work is divided among all nodes and communication
takes place only during tasks 2, 5, and 6, in order to, re-
spectively, exchange statistical information on hotspots,
distribute the PAA, and finally relocate the objects. Also
the tasks that require communication are performed in
parallel, without the help of any centralized component.

In the next subsections we provide more informa-
tion about the two main components of AUTOPLACER,
namely, the optimizer (executed by Task 3) and the PAA
(built in Task 4 and used subsequently to perform data
lookups locally).

3.1 Optimizer
Most works, e.g., [30, 20, 16, 12], in the area of data
placement (and of its many variants [16, 12]) assume that
the objective and constraint functions of the optimization
problem can be expressed (or approximated) via linear
functions, and accordingly formulate an Integer Linear
Programming (ILP) problem. The ILP model can indeed
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N the set of nodes j in the system
O the set of objects i in the system
X a binary matrix in which Xi j = 1 if the object i is

assigned to node j, and Xi j = 0 otherwise
ri j , wi j the number of read, resp. write, accesses performed

on a object i by node j
crr , crw the cost of a remote read, resp. write, access
clr , clw the cost of a local read, resp. write, access

d the replication degree, that is number
of replicas of each object in the system

S j the capacity of node j.

Table 1: Parameters used in the ILP formulation.

be adopted also for the specific data placement problem
tackled in this paper. To this end, one can model the as-
signment of data to nodes by means of a binary matrix X ,
in which Xi j = 1 if the object i is assigned to node j, and
Xi j = 0 otherwise. Further, one can associate (average,
or per object) costs with local/remote read/write opera-
tions. The ILP problem is then formulated as the mini-
mization of the objective function that expresses the total
cost of accessing all data items across all nodes, subject
to two constraints: i) the number of replicas of each ob-
ject must meet a predetermined replication degree, and
ii) each node has a finite capacity (it must not be assigned
more objects than it can store). In Table 1 we list the pa-
rameters used in the problem formulation, which aims at
minimizing the following cost function:

∑
j∈N

∑
i∈O

Xi j(crrri j + crwwi j)+Xi j(clrri j + clwwi j) (1)

subject to:

∀i ∈ O : ∑
j∈N

Xi j = d ∧∀ j ∈ N : ∑
i∈O

Xi j ≤ S j

Despite its convenient mathematical formulation, ILP
problems are NP-hard. Further, solving the above ILP
problem would require to collect and exchange among
nodes access statistics for all objects in the system. We
tackle these drawbacks by introducing a lightweight,
multi-round distributed optimization algorithm, which
we describe in the following.

3.1.1 Space-Saving Top-k algorithm

An important building block of AUTOPLACER is the
Space-Saving Top-k algorithm by Metwally et al. [23].
This algorithm is designed to estimate the access fre-
quencies of the top-k most popular objects in an approxi-
mate, but very efficient way, i.e. by avoiding maintaining
information on the access frequencies (namely counters)
for each object in the stream. Conversely, the Space-
Saving Top-k algorithm algorithm maintains a tunable,
constant, number m, where m � |O|, of counters, which

makes it extremely lightweight. On the downside, the in-
formation returned in the top-k list may be inaccurate in
terms of both the elements that compose it and their es-
timated frequency. However, this algorithm has a num-
ber of interesting properties concerning the inaccuracies
it introduces. First, it ensures that the access frequen-
cies of the objects it tracks are always consistently over-
estimated. Also, its maximum overestimation error is
known, and is equal to the frequency of the least fre-
quently accessed item present in top-k, denoted as Fk.
Finally, its space-requirements can be tuned to bound the
maximum error introduced in the frequency tracking, as
we will further discuss in Section 5.

3.1.2 Using Approximate Information

In AUTOPLACER each node j runs 2 distinct instances,
noted as top-krd

j , resp. top-kwr
j , of the Space-Saving Top-

k algorithm, used to track the k most frequently read,
resp. updated, data items during the current optimization
round. We denote with top-k j(O) the subset of cardi-
nality k (of the entire data set O) contained in both the
read and write top-k instances at node j, and with top-
K(O) = ∪ j∈N (top-k j(O)) the union of the top-k data
items across all nodes.

By restricting the optimization problem to the top-k
accessed data items we reduce the number of decision
variables of the ILP problem significantly, namely from
|O||N | to O(k|N |) (where k � |O|). This choice is
crucial to guarantee the scalability of the proposed ap-
proach. However, it requires to deal with the incom-
plete and approximate nature of the data (read/write) ac-
cess statistics provided by the top-k algorithm, which we
denote with r̂ik,ŵik to distinguish them from their exact
counterparts (rik,wik). Also, we use the notation X̂ to
refer to the solution of the optimization problem using
as input the access statistics provided by the top-k algo-
rithm, and distinguish it from the one obtained using the
exact access statistics in input, which we denote Xopt .

A first problem to address is related to the possibility
of lacking information concerning the access frequency
by some node j for some data item i ∈ top-K(O): this
can happen in case i has not been tracked in top-k j(O),
but is present in the top-k j′(O) of some other node j′ �= j.
To address this issue, we simply set to 0 the frequencies
r̂i j,ŵi j

Finally, the approximate nature of the information pro-
vided by the Space-Saving Top-k algorithm may impact
the quality of the identified solution. A theoretical anal-
ysis aimed at evaluating this aspect will be provided in
Section 5.
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3.1.3 Accelerating the solution of the optimization
problem

To accelerate the solution of the optimization problem
we take two complementary approaches: relaxing the
ILP problem, and parallelizing its solution.

The ILP problem requires decision variables to be in-
tegers and is computationally onerous [30]. Therefore,
we transform it into an efficiently solvable linear pro-
gramming (LP) problem. To this end, we let the matrix
X̂ assume real values between 0 and 1 (adding an ex-
tra constraint ∀i ∈ O,∀ j ∈ N 0 ≤ X̂i j ≤ 1). Note that
the solutions of the LP problem can have real values,
hence each object is assigned to the d nodes which have
highest X̂i j values. As in [30], we use a greedy strategy
according to which, if the assignment to a node causes
a violation of its capacity constraint, the assignment is
iteratively attempted to the node that has the d + k-th
(k ∈ [1, |N |−d]) highest scores.

Second, we introduce a controlled relaxation of the ca-
pacity constraint, which allows us to partition the ILP
problem into |N | independent optimizations problems
that we solve in parallel across the nodes of the plat-
form. Let top-k j(O|n) be the set of keys in top-k j(O)
of node j that node n supervises. Each node j sends
its top-k j(O|n) to each other node n in the system. As
a result each node j also gathers the access statistics
top-K(O| j)=∪n∈N top-kn(O| j) concerning the current
hotspots that j supervises. At this point each node j com-
putes the new placement for the data in top-K(O| j).

Note that since we are instantiating the (I)LP optimiza-
tion problems in parallel, and in an independent fashion,
we need to take an additional measure to guarantee that
the capacity constraints are not violated. To this end we
instantiate the (I)LP problems at each node j with a ca-
pacity S′j = S j −|N |k. In practice, this relaxation is ex-
pected to have minimum impact on the solution quality
as k � S j.

Overall, at the end of an optimization round each node
j produces two outputs: the partial relocation map X̂ ,
and the cost reduction achievable by relocating the data
in top-K(O| j) according to X̂ , which we denote as ∆Cj .
∆Cj , which is computed on the basis of Equation 1, al-
lows estimating the gain achievable by performing this
optimization round, and, as we will discuss shortly, is
used in AUTOPLACER to determine the completion of
the round-based optimization algorithm.

3.2 Probabilistic Associative Array: Ab-
stract Data Type Specification

Even though in each round AUTOPLACER optimizes the
placement of a relatively small number of data items,
over multiple optimization rounds the number of relo-

Method Input Parameters Output
CREATE Set〈Key,Value[d]〉, α , β PAA

GET Key Value[d]
ADD Set〈Key,Value[d]〉 PAA

GETDELTA PAA ∆PAA
APPLYDELTA ∆PAA PAA

Table 2: PAA Interface.

cated objects can grow very large. Hence, a relevant is-
sue is related to the overhead for maintaining, and repli-
cating, a possibly very large relocation map. Indeed the
relocation map can be seen as an associative array in
which each entry is a pair mapping a data item to the
set of nodes that own it.

The Probabilistic Associative Array (PAA) is a novel
data structure that allows maintaining an associative ar-
ray in a space efficient, but approximate way. We present
the PAA as an abstract data type, with an interface anal-
ogous to conventional associative arrays. Later in Sec-
tion 4, we will discuss how it has been implemented in
AUTOPLACER.

The PAA is characterized by the API reported in Ta-
ble 2, which is similar to that of a conventional associa-
tive array, including methods to create and query a map
between keys and (constant d-sized) arrays of values. To
this end, the PAA API includes three main methods: the
CREATE method, which returns a new PAA instance and
takes as input a set of pairs in the domain (key × array[d]
of values) to be stored in the PAA (called, succinctly,
seed map) and two tunable error parameters α and β
(discussed below); the GET method, which allows query-
ing the PAA obtaining the array of values associated with
the key provided as input parameter, or ⊥ if the key is not
contained in the PAA; the ADD method, which takes an
input a seed map and adds it to an existing PAA.

The PAA trades accuracy for space efficiency, and may
return inaccurate results when queried. In the following
we specify the properties ensured by the GET method of
a PAA:
• it may provide false positives, i.e., to provide a return

value different from ⊥ for a key that was not inserted in
the PAA. The probability of false positives occurring is
controlled by parameter α .
• it has no false negatives, i.e., it will never return ⊥

for a key contained in the seed map.
• it may return an inaccurate array of values for a key

contained in the seed map. The probability of returning
inaccurate arrays is controlled by parameter β . In other
words, with some small and controlled probability, the
data items may be located in different nodes than those
specified by the seed map (thus, the efficiency of lookup
may cause some degree of sub-optimal placement).
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• its response is deterministic, i.e., for a given instance
of a PAA, the return value for any given key is always the
same.

Finally, the PAA API contains two additional methods
that allow to update the content of a PAA in an incremen-
tal fashion: GETDELTA, and APPLYDELTA. GETDELTA
takes as input a PAA and returns an encoding, denoted
as ∆PAA, of the differences between the base PAA over
which the method is invoked (say PAA1) with respect to
the input PAA, say PAA2. The ∆PAA returned by GET-
DELTA can then be used to obtain PAA2 by invoking the
method APPLYDELTA over PAA1 and passing as input
parameter ∆PAA.

3.3 The AUTOPLACER iterative algorithm

We now provide, in Algorithm 1, the pseudo-code for-
malizing the behavior of the AUTOPLACER algorithm
executed by a node j. Each node maintains a local
lookup table, denoted as LookupT, that consists of an ar-
ray of PAAs, one per each node j in the system. Specif-
ically, j’s entry of LookupT is used to keep track of the
objects supervised by node j that have already been relo-
cated by AUTOPLACER. For any given round, LookupT
is the same on all nodes.

At the beginning of each round, j collects statis-
tics concerning its top-k most frequently read/writ-
ten data items. This activity is encapsulated by the
collectStats procedure, which is designed to track
only accesses to objects whose placement had not been
previously optimized in previous rounds. This measure
is necessary, as, otherwise, in presence of stable distribu-
tions of the data access among nodes (i.e., stable work-
loads), the top-k lists at each node may quickly stagnate.
Especially in case of skewed distributions the top-k lists
would tend to track the very same objects (i.e., the most
popular ones) along every round.

By tracking only the keys whose placement has not
been optimized in previous rounds, it is guaranteed that,
in two different rounds, two disjoint set of objects are
considered by the optimization algorithm, leading to the
analysis of progressively less “hot” data items. Further,
it prevents the possibility of ping-pong phenomena [13],
i.e. the continuous re-location of a key between nodes, as
it guarantees that the position of each object is optimized
at most once.

To determine whether an access to a data item should
be traced or not, the collectStats procedure is pro-
vided with LookupT as input (we recall that LookupT
keeps track of all items whose placement has been pre-
viously optimized). Upon a read/write access on a data
item, the collectStats procedure, whose code is not
reported for space constraints, checks if the item is con-
tained in LookupT and, in the positive case, it avoids

1 Array[1. . . |N |] of PAA : LookupT={⊥, . . . ,⊥};
2 PAA: tmpPAA=⊥;
3 do
4 Array[1. . . |N |] of Set〈i,r,w〉 : req=⊥;
5 〈toprd

k , topwr
k 〉 ← collectStats(LookupT);

6 foreach n ∈ Π do
7 send({〈i,r,w〉 ∈ {toprd

k ∪ topwr
k } such that

supervisor(i) = n}) to n;
8 foreach n ∈ Π do
9 req[j]← receive() from n;

10 〈X̂ ,∆C j 〉 ← Optimize(req);

11 tmpPAA ← LookupT[ j];
12 tmpPAA.ADD(X̂);
13 ∆PAA: delta ← tmpPAA.GETDELTA(LookupT[ j]);
14 broadcast(delta,∆C j);

15 ∆C∗ ← 0;
16 foreach n ∈ Π do
17 [delta,∆Cn ] ← receive() from n;
18 LookupT[n]←LookupT[n].APPLYDELTA(delta);
19 ∆C∗ ← ∆C∗ +∆Cn ;

20 moveData();

21 while ∆C∗ > γ;

Algorithm 1: AUTOPLACER’s behavior at node j

tracing this access. Notice that we are assuming that the
data access frequencies do not change significantly dur-
ing the entire optimization process. Extending AUTO-
PLACER to cope with scenarios in which applications’
data access patterns change at a frequency higher than
AUTOPLACER’s complete optimization cycle is outside
of the scope of this paper and will be subject of future
work (see Section 8).

Next the nodes exchange the information collected by
collectStats. Since we also parallelize the optimiza-
tion procedure, we send to each node only the statistical
information that will be relevant to the computation that
will be performed at that node, i.e., the statistical infor-
mation regarding the data items it supervises.

At this point, each node optimizes the placement for
the objects it supervises (primitive Optimize), determin-
ing their new owners (encoded in the partial relocation
map, denoted X̂). The node also computes the reduction
of the local cost function (denoted as ∆C j ) that the new
assignment brings.

Then, node j computes a temporary PAA, based on
the previous value of its PAA (stored in LookupT[ j]) and
on the new additional relocation information X̂ (lines 12-
13). The API of the PAA is then used to extract the rele-
vant deltas from the existing PAA that need to be dissem-
inated, in order to avoid sending the entire PAA again
(line 14). These deltas are exchanged among nodes, and
applied locally, such that every node can update all en-
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tries of LookupT (lines 17-20).

Each optimization round ends by triggering the re-
location of the data via the moveData() primitive. This
primitive will use the updated PAAs to determine the set
of items that have been re-located, and gives the neces-
sary commands to perform the corresponding state trans-
fers. Several state transfer techniques could be used for
this purpose [15, 28], whose complexity is dependant
on the consistency guarantees that the key-value store
implements (e.g. transactional vs eventual consistency).
These mechanisms are indeed orthogonal to the AUTO-
PLACER system.

Finally, AUTOPLACER relies on a simple self-
stabilizing mechanism that halts the distributed optimiza-
tion algorithm if the “gain” achieved during the last opti-
mization round does not exceed a user-tunable minimum
threshold, denoted γ (line 22). This allows avoiding to
analyze the “tail” of the data access distribution, whose
optimization would lead to negligible gains. We chose
as metric to evaluate the optimization gain the reduction
of the cost function achieved during the last optimization
round, ∆C∗. To compute this value, each node j dissemi-
nates the value for the reduction of its local cost function
∆Cj along with delta, in line 15. At the end of this dis-
semination phase each node of the system can determin-
istically compute ∆C∗ and evaluate the predicate on the
termination of the optimization algorithm.

3.4 The lookup function

Algorithm 2 shows the pseudocode for the lookup func-
tion for a key k. First, consistent hashing is used to iden-
tify the supervisor of k, say s. We then check whether the
PAA associated with s contains k. In the positive case, we
use the mapping information provided by LookupT[s] to
identify the set of nodes that are currently maintaining
key k. Otherwise, we simply return the set of owners for
k as determined by consistent hashing (d is the replica-
tion degree).

1 Array[1 . . .d] of Nodes LOOKUP(Key k)
2 if LookupT[supervisor(k)].GET(k) �=⊥ then
3 return LookupT[supervisor(k)].GET(k);
4 else
5 s ← supervisor(k);
6 return {s, s+1, . . ., s+d-1};

Algorithm 2: PAA-based lookup function

4 Probabilistic Associative Array Internals

4.1 Building Blocks

Scalable Bloom filters (SBF) [1] are a variant of Bloom
filters (BF) [3], a well know data structure that supports
probabilistic test for membership of elements in sets. A
BF never yields false negatives (if the query returns that
an element was not inserted in a BF, this is guaranteed
to be true). However, a BF may yield false positives (a
query may return true for an element that was never in-
serted) with some tunable probability α , which is a func-
tion of the number of bits used to encode the BF and of
the number of elements that one stores in it (that must be
known a-priori). SBFs extend BFs in that they can adapt
their size dynamically to the number of elements effec-
tively stored, while still ensuring a bounded false positive
probability. This is achieved by creating, on demand, a
sequence of BFs with increasing capacity.

VFDT [11] is a classifier algorithm that induces deci-
sion trees over a stream of data, i.e. without assuming
the a-priori availability of the entire training data set un-
like most existing decision trees [24]. VFDT is an incre-
mental online algorithm, given that it has a model avail-
able at any time during its run and refines the model over
time (by performing new splits, or pruning unpromising
leaves) as it is presented with additional training data. As
classical off-line decision trees, the output of VFDT is a
set of rules that allows to map a point in the feature space
to a target discrete class.

The PAA uses SBFs and VFDT in the following man-
ner. SBFs are used to assert if a key was stored in the
PAA. VFDT is used to obtain the set of values associ-
ated with a key stored in tha PAA. The next paragraphs
explain how this technique works in detail.

4.2 FeatureExtractor Key Interface

In order to maximize the effectiveness of the machine-
learning statistical inference, programmers can option-
ally provide semantic information on the type of key
inserted in a PAA, by having their keys implementing
the FEATUREEXTRACTOR interface. This interface ex-
poses a single method, GETFEATURES(), which returns
a set of pairs 〈featureName, featureValue〉, where fea-
tureName is a unique string identifying each feature and
featureValue is a (continuous or discrete) value defining
the value of that feature for the key.

The purpose of this interface is to allow a key to
be mapped, in a semantically meaningful (and hence
inherently application dependant) way, into a multi-
dimensional feature-space that can be more efficiently
analyzed and partitioned by a statistical inference tool.
Features can be “naturally” derived from the data model
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used in the application. For instance, if an object-
oriented (or relational model) is used, a typical encod-
ing for the key corresponding to an object of class “Per-
son” with ID=3 may be “Person-3”. The FEATURE-
EXTRACTOR interface can then simply parse the key
and return the pair 〈“Person”, id〉. This can be further
illustrated considering the real example of the TPC-C
benchmark, which we used in our evaluation. In this
case, a “Customer” object with id c1 would be associated
with a feature, 〈“Customer”, c1〉. Further, since in TPC-
C a customer is statically registered in a “Warehouse”
object, c1 would have a second feature 〈“Warehouse”,
w1〉, being w1 the identifier of the warehouse where
c1 is registered. Hence, a different customer c2 reg-
istered with a warehouse w2 would be associated with
the features 〈“Customer”, c2〉 and 〈“Warehouse”, w2〉,
while the object representing warehouse w2 itself would
be associated with the features 〈“Customer”, N/A〉 and
〈“Warehouse”, w2〉.

Note that this sort of feature extraction can be easily
automated, provided the availability of information on
the mapping between the application’s domain model, in
terms, e.g., of entities and relationships, and the underly-
ing key/value representation.

4.3 PAA Operations

• CREATE: a SBF is created, sizing it to ensure the tar-
get error rate α and populating it with the keys passed
as input parameter. Further we train d new instances
of VFDT. The i-th instance of VFDT (i ∈ [1, . . . ,d]) is
trained by using a dataset containing, for each key k in
the seed map, an entry composed by the mapping of k
in the feature space (obtained using k’s FeatureExtrac-
tor interface), and as target class value, the i-th value
associated with k in the seed map. As we are creating
a decision-tree from scratch over a fully-known training
set, we use in this phase VFDT as an offline-learner. This
allows us to tightly control the cardinality of the rule set
it generates to achieve arbitrary accuracy in encoding the
mapping, and hence fine tune the pruning of the rule set
to achieve the user specified parameter β .
• GET: queries for a key k are performed by first

querying the SBF. If the response is negative, ⊥ is re-
turned. Otherwise (and this may be a false positive with
probability α), the VFDT is queried by transforming k
in its representation in the feature space by means of
the FeatureExtractor interface. If k had actually been in-
serted in the PAA, the query to the SBF is guaranteed to
return a correct result. However, it may still be wrongly
classified by the VFDT, which may return any of the tar-
get classes that it observed during the training phase.
• ADD: to implement this method, we leverage on the

incremental features of the SBF and VFDT. To this end,

we first insert each of the entries k passed as input param-
eter into the SBF. This may lead to the generation of an
additional, internal bloom filter, to ensure that the bound
on α is ensured. Next we incrementally train the VFDT
instances currently maintained in the PAA, by providing
them, in a single batch, the entire set of key/value pairs
that is being added to the PAA. In this phase we con-
trol the learning of the new mapping in a single batch,
by allowing the VFDT algorithm to scan the new train-
ing set multiple times until we reach the target bound on
misclassification β is satisfied.
• GETDELTA: the output consists of the binary diff of

the SBFs, plus the rule set of the VFDT maintained by
the PAA over which this method is invoked.
• APPLYDELTA: symmetrically to what is done in

GETDELTA, this method generates a new PAA, whose
SBF is obtained by applying the binary SBF diff con-
tained in the input ∆PAA to the SBF of the PAA over
which this method is invoked. The rule set of the output
PAA is set equal to the one contained in the input ∆PAA.

5 Optimizer Analysis

As already noted, the approximate nature of the infor-
mation provided by top-k may affect the quality of the
identified solution. An interesting question is therefore
how degraded is the quality of the data placement so-
lution when using top-k. In the following theorem we
provide an answer to this question by deriving an upper
bound on the approximation ratio of the proposed algo-
rithm in an optimization round. Our proof shows that the
approximation ratio is a function of the maximum ap-
proximation error provided by any top-k j(O), which we
denote e∗, and of the average frequency of access to re-
mote data items when using the optimal solution.

Theorem 1 The approximation ratio of the solution X̂
found using the approximate frequencies r̂ik,ŵik is:

1+
d

|N |−d
φ , with φ =

e∗(crr + crw)

crrrR+ crwrW

where e∗ is the maximum overestimation error of top-k,
and rR, resp. rW , is the average, across all nodes, of the
number of read, resp. write, remote data items using the
optimal data placement XOpt .

Proof Let us now denote with C(X ,ri j,wi j) the cost
function used in Eq. 1 of the ILP formulation restricted
to the data items contained in top-K(O):

∑
j∈N

∑
i∈top-K(O)

Xi j(crrri j + crwwi j)+Xi j(clrri j + clwwi j)
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and with Opt =C(Xopt ,ri j,wi j) the value returned by the
cost function using the binary matrix Xopt obtained solv-
ing the ILP problem with exact access statistics ri j,wi j.

Let lR, resp. rR, be the average, across all nodes, of
the number of read accesses to local, resp. remote, data
items using the optimal data placement X . lW and rW
are analogously defined for write accesses. These can be
directly computed, once known XOpt and ri j,wi j as:

rR =
∑ j∈N ∑i∈top-K(O) XOpt

i j ri j

|top-K(O)|(|N |−d)

rW =
∑ j∈N ∑i∈top-K(O) XOpt

i j wi j

|top-K(O)|(|N |−d)

lR =
∑ j∈N ∑i∈top-K(O) XOpt

i j ri j

|top-K(O)|d

lW =
∑ j∈N ∑i∈top-K(O) XOpt

i j wi j

|top-K(O)|d

We can then rewrite Opt and derive its lower bound:

Opt =|top-K(O)|((|N |−d)(crrrR+ crwrW )+ (2)
+d(clrlR+ crwlW ))≥

≥ |top-K(O)|(|N |−d)(crrrR+ crwrW )

Next, let us derive an upper bound on the “error” us-
ing the solution X̂ obtained instantiating the ILP prob-
lem using the top-k-based frequencies r̂i j, ŵi j. The worst
scenario is that an object o ∈ O is not assigned to the
d nodes that access it most frequently because they do
not include o in their top-k. In this case we can estimate
the maximum frequency with which o can have been ac-
cessed by any of these nodes as e∗. Hence if we evaluate
the cost function C(X̂ ,ri j,wi j) using the exact data ac-
cess frequencies, and the solution X̂ of the ILP problem
computed using approximate access frequencies, we can
derive the following upper bound:

C(X̂ ,ri j,wi j)≤ Opt + |top-K(O)|de∗(crr + crw) (3)

The approximation ratio is therefore:

C(X̂ ,ri j,wi j)

C(XOpt ,ri j,wi j)
≤ 1+

d
(|N |−d)

e∗(crr + crw)

crrrR+ crwrW
(4)

In the following corollary we exploit the bounds on the
space complexity of the Space-Saving Top-k algorithm
[23] to estimate the number of distinct counters to use to
achieve a target approximation factor 1+ d

|N |−d φ .

Corollary 2 The number m of individual counters main-
tained by the Space-Saving Top-k algorithm, to achieve
an approximation factor equal to 1+ d

|N |−d φ is:

m =
SL
φ

crrrR+ crwrW
crr + crw

where SL is the total number of accesses in the stream.

Proof Derives from Theorem 6 of the work that intro-
duced the Space-Saving Top-k algorithm [23], which
proves that to guarantee that the maximum overestima-
tion error e∗ ≤ εFk, where Fk is the frequency of the k-th
element in top-k, it is sufficient to use m = SL

εFk
counters.

Finally, since in each round AUTOPLACER optimizes
the placement of a disjoint set of items, it follows that, if
we assume stable data access distributions, the approxi-
mation ratio achieved by the optimization algorithm dur-
ing round i will necessarily be lower (hence better) than
for round i−1. In fact, at each round, the frequencies of
the items tracked by the top-k will be lower than in the
previous rounds, and, consequently, e∗ will not increase
over time.

6 Evaluation

In order to evaluate experimentally AUTOPLACER, we
integrated it in the Infinispan key-value store. As bench-
marking platform, we have used a cluster of 40 virtual
machines (deployed on 10 physical machines) running
Xen, equipped with two 2.13 GHz Quad-Core Intel(R)
Xeon(R) E5506 processors and 40 GB of RAM, running
Linux 2.6.32-33-server and interconnected via a private
Gigabit Ethernet. Since Infinispan provides support for
transactions, we developed for our experimental study
a porting of a well-known benchmark for transactional
systems, namely the TPC-C benchmark [21], which we
adapted to execute on a key-value store1. This choice is
motivated by the fact that TPC-C is a complex bench-
mark, which generates workloads representative of re-
alistic OLTP environments, with complex and heteroge-
neous transactions having very skewed access patterns
and high conflict probability. This is in contrast with
common key-value store benchmarks [7], which are typ-
ically composed of simple synthetic workloads.

Since our evaluation focuses on assessing the effec-
tiveness of AUTOPLACER in different scenarios of local-
ity, we have modified the benchmark such that we can
induce controlled locality patterns in the data accesses
of each node. This modification consists in configuring
the benchmark such that the transactions originated on a
given node access with probability p data associated with
a given warehouse, and with probability 1− p data asso-
ciated a warehouse chosen randomly. So, for example,
by setting p = 90%, nodes will have disjoint data access
patterns (each accessing a different warehouse) for 90%
of the transactions, while the remaining 10% access data
uniformly.

1The code of AUTOPLACER and of the porting of TPC-C employed
in this evaluation study are freely available in the Cloud-TM project
public repository: http://github.com/cloudtm
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Figure 1: Traffic generated by a node using different as-
sociative arrays.

Mechanism Re-located Local
objects space (KB)

PAA-scalable 26600 150.8
PAA-Bloom 26600 31.84

Bloomier 26600 575.3

Table 3: Re-located objects and size of different PAA
implementations

6.1 Probabilistic Associative Array

In this section we study tradeoffs in the space efficiency
and accuracy involved in the configuration and imple-
mentation of the PAA. For these results, we have config-
ured the benchmark with 100% locality. In order to use
the PAA with TPC-C, we modified the TPC-C keys in or-
der to implement the Feature Extractor Interface accord-
ing to the static attributes of the objects they represent.

Bloom Filter Figure 1 presents the network band-
width of different implementations of the PAA, com-
pared with another form of probabilistic associative ar-
rays, the Bloomier Filters (BLOOMIER) [5] as the rounds
advance in the system. One implementation of the PAA
uses regular Bloom filters (PAA-BLOOM) [3], while the
other uses a scalable Bloom filter (PAA-SCALABLE) [1].
Both PAAs were configured with α = β = 0.01, and the
Bloomier filter’s false positive probability was also set to
0.01. We note that the best solution is the one that allows
to propagate in the network only differential updates with
regard to the previous state, i.e, the PAA-scalable.

Table 3 shows the correspondent local storage require-
ments at the end of the experiment. As it can be seen,
PAA-SCALABLE has higher storage requirements than
PAA-BLOOM. This is unsurprising, as scalable bloom
filters are known to achieve lower compression than tra-
ditional bloom filters when fed with the same data set
and configured to yield the same false positive rates [1].
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Figure 2: Error probability and rule set size for VFDT

However, the storage requirements of both solutions are
still considerably smaller than those of Bloomier filters.

Machine Learner Figure 2 presents the error probabil-
ity and space required by the DT to encode the objects
moved in every round of the experiment. As more objects
are moved in the system, the number of rules increases,
leading to an increase in the size taken by this portion
of the PAA. However, the machine learner can represent
the mapping of 26600 keys in 1000 Bytes, which corre-
spond to 213 rules. Furthermore, it can also be observed
that while a significant number of keys is added to the
machine learner (around 1000 per round), the error re-
mains relatively stable.

6.2 Leveraging from Locality
This section shows how AUTOPLACER is able to lever-
age form locality patterns in the workload. The results
were obtained with TPC-C, adapted as explained before
and with a replication of degree d = 2.

Figure 3(a) shows the throughput of AUTOPLACER,
compared with the non-optimized system using consis-
tent hashing for different degrees of locality in the work-
load. In the baseline system, no matter how much lo-
cality exists in the workload, since consistent hashing is
used to place the items, on average the number of re-
mote accesses does not change. Thus, for all workloads
the baseline system exhibits a similar (sub-optimal) be-
haviour. In the system running AUTOPLACER, locality
is leveraged by relocating data items. As times passes,
and more rounds of optimization take place, the system
throughput increases up to a point where no further op-
timization is performed. It is interesting to note that, in
case there is no locality, the throughput is not affected by
the background optimization process. On the other hand,
when locality exists, the throughput of the system opti-
mized with AUTOPLACER is much higher than that of
the baseline: it can be up to 6 times better for a workload
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(a) Throughput with varying degrees of locality.
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Figure 3: AUTOPLACER performance

with 90% locality, and up to 30 times better in the ideal
case of 100% locality.

Figure 3(b) helps to understand the improvement in
performance by looking at the number of remote invoca-
tions that are performed in the system as time evolves.
Since the initial setup relies on consistent hashing, both
in the baseline and in the optimized system, the average
probability of an operation being local is 1

40 = 2.5% for
all workloads. Thus, when the system starts most oper-
ations are remote. However, the plots clearly show that
the number of remote operations decreases in time when
using AUTOPLACER. The plots also show another inter-
esting aspect: although the number of remote operations
decreases sharply after a few rounds of optimization, the
overall throughput takes longer to improve. This is due
to the fact that read transactions access a large number
of objects, thus multiple rounds of optimization are re-
quired to alleviate the network, which is the bottleneck
in these settings. This clearly highlights the relevance
of the continuous optimization process implemented by
AUTOPLACER. At the end of the experiment, the per-
centage of operations performed locally is already close
to the percentage of locality in the workload; this shows
that when the system stabilizes, AUTOPLACER was able
to move practically all keys subject to locality.

Finally, Figure 4 compares the performance of AUTO-
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Figure 4: Throughput of AUTOPLACER, a directory-
based and a consistent hashing-based solution, after a
complete optimization process.

PLACER and of a directory service-based system. These
results were obtained by storing the data relocation map
obtained at the end of the entire optimization process into
a dedicated directory service. In this case, whenever a
node requests a data item that is not stored locally, it con-
tacts the directory service to determine its location, in-
stead of querying the local PAA. The results clearly show
that the additional latency for contacting the directory
service can hinder perform significantly, independently
of the locality of the workload. The plots highlight that,
unlike for AUTOPLACER, the performance of directory-
based systems can be worse than that achievable by using
random placement. This is explainable considering that,
with low locality, a large fraction of data accesses is re-
mote, and that directory-based services impose a 2-hop
latency, unlike consistent hashing and AUTOPLACER.

The speed-ups of AUTOPLACER vs the directory-
based solution are significant, i.e. around 2x, even for
the high locality scenarios. In these scenarios, the re-
duction of the number of remote operations leads to less
lookups on the directory. However, the cost of access-
ing a remote data item is, in our testbed, about 2 orders
of magnitude larger than that of accessing a local item.
As a consequence, also in these scenarios, the cost of re-
mote data accesses dominate the execution time of the re-
quests. Hence, such requests, which suffer from one ad-
ditional communication hop latency in a directory-based
solution, effectively limit the throughput of such a solu-
tion leading to considerably worse results than AUTO-
PLACER.

7 Related Work

A common approach to implementing data placement
mechanisms in large scale systems is to manage the
data through coarse grain by partitioning it into buck-
ets (also named directories [8] or tablets [6]). Through
such partitioning, systems can deploy a centralized com-
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ponent which manages the location of all buckets in the
system, moving them as required to balance the load
on hotspot nodes. While coarse partitioning allows for
somewhat manageable directories (maintaining the map-
ping between objects and nodes), on the other hand, it
can reduce the effectiveness of the load balancing mech-
anisms. Furthermore, to improve data locality, these sys-
tems make use of sorted keys: the programmer is respon-
sible for assigning similar keys to related data in order for
it to be placed in the same server (or in the same group
of servers) [8, 6, 18]. AUTOPLACER does not require the
programmer to manually bucketize items. While we ben-
efit from information enabled in the key structure, this in-
formation is not used for object placement, it is only used
for optimizing the PAA. Also our system can establish a
fine grain placement for the most accessed items.

As hinted several times in the paper, there is exten-
sive work on defining optimal data placement strategies
in multiple contexts. Many of these systems, such as
Ursa [30] or Schism [9], attempt to perform optimization
at a finer grain than buckets, but require the use of cen-
tralized components to compute the placement and to
keep the resulting directories with the relocation map.
As a result, they suffer from scalability limitations as the
number of data items grows.

Several works have also attempted to derive dis-
tributed versions of the placement algorithm, to avoid the
bottleneck of a single centralized component. The work
by Leff et al proposes several distributed algorithms to
approach the replica placement problem [20], and im-
provements to this work have been recently proposed
in [19] and [31]. These results are not applicable to our
system, as they only consider the placement of read-only
replicas and not of the object ownership. Furthermore,
this solution attempts to relocate all the data in the sys-
tem, which may lead to scalability limitations similar to
those of Ursa or Schism.

The work by Vilaça et al. [29] presents a Space-Filling
Curves-based approach to placing co-related data in the
same nodes by relying on user-defined per-object tags.
The resulting system can provide good locality if the ap-
plication is designed to perform actions using the tags,
since nodes can locally determine who are the owners
of the objects with specific tags. However, unlike our
system, this placement is static and encoded by the pro-
grammer, and has no relation with the actual data access
patterns that may emerge at runtime.

8 Conclusions and Future Work

This paper presented AUTOPLACER, a system aimed
at self-tuning data placement in a distributed key value
store. AUTOPLACER operates in rounds, and, in each
round, it optimizes the placement of the top-k “hotspots”,

i.e. the objects generating most remote operations, for
each node of the system. Despite supporting fine-grain
placement of data items, AUTOPLACER guarantees one
hop routing latency using a novel probabilistic data struc-
ture, the PAA, which minimizes the cost of maintain-
ing and disseminating the data relocation map. AUTO-
PLACER has been integrated in a popular open source
(transactional) key-value store, Infinispan, and experi-
mentally evaluated using a porting of the TPC-C bench-
mark. The results shown that AUTOPLACER can achieve
a throughput up to 6 times better than the original Infin-
ispan implementation based on consistent hashing.

In this paper we have described how AUTOPLACER
can be employed to optimize data placement in presence
of static workloads. A detailed discussion and evaluation
on how to extend AUTOPLACER to cope with variable
workloads will be the subject of a future paper, but, be-
low, we briefly describe a possible approach to achieve
this result. AUTOPLACER can be made to operate in
epochs. In each epoch, the system operates exactly as
described in this paper. A new epoch is started when
the need for recomputing data placement is identified,
for instance, whenever an abrupt change of the remote
access probability is detected [17] in the current epoch.
As described in this paper, a new epoch e starts with an
empty local lookup table LookupTe and, therefore, in the
first iteration, all objects are considered when identify-
ing hotspots. If objects need to be relocated (with regard
to the previous epoch), their new position is stored in
LookupTe. In fact, the system described before can be
seen as a particular case of the general algorithm, where
only two epochs are considered: epoch o (defined by
consistent hashing) and epoch 1 (the first workload).

Also the lookup function would have to be changed.
Instead of consulting just the last lookup table, the
lookup function would need to consult all the lookup ta-
bles in reverse chronological order. Naturally, this would
slow down the lookup function after a long series of
epochs. However, this could be easily mitigated by a
background procedure that would merge the last lookup
tables in a new consolidated table (in a process analogous
to the one used in several log based file systems).
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ABSTRACT
MapReduce data processing workflows often consist of mul-
tiple cycles where each cycle hosts the execution of some
data processing operators e.g., join, defined in a program.
A common situation is that many data items that are prop-
agated along in a workflow, end up being “fruitless” i.e.
they do not contribute to the final output. Given that the
dominant costs associated with MapReduce processing (I/O,
sorting and network transfer) are very sensitive to the size
of intermediate states, such fruitless data items contribute
unnecessarily to workflow costs. Consequently, it may be
possible to improve the performance of MapReduce data
processing workflows by eliminating fruitless data items as
early as possible. Achieving this will require maintaining ex-
tra information about the state (output) of each operator,
and then passing this information to descendant operators in
the workflow. The descendant operators can use this state
information to prune fruitless data items from their other
inputs. However, this process is not without any overhead
and in some cases, its costs may outweigh its benefits. Con-
sequently, a technique for adaptively selecting Information
Passing as part of an execution plan is needed. This adap-
tivity will need to be determined by a cost model that ac-
counts for MapReduce’s partitioned execution model as well
as its restricted model of communication between operators.
These nuances of MapReduce impose limitations on the ap-
plicability of information passing techniques developed for
traditional database systems.

In this paper, we propose an approach for implement-
ing Adaptive Information Passing for MapReduce platforms.
Our proposal includes a benefit estimation model, and an
approach for collecting data statistics needed for benefit es-
timation, which piggybacks on operator execution. Our ap-
proach has been integrated into Apache Hive and a compre-
hensive empirical evaluation is presented.

1. INTRODUCTION
A dominant trend for large scale data intensive process-

ing is to use parallel processing over a cluster of commodity
grade machines. The MapReduce [13] parallel processing
model that was made popular a few years ago by Google
has emerged as the de facto standard for processing data-
intensive workloads. Data intensive tasks are captured in
the MapReduce model as workflows made up of sequences
of MapReduce cycles/jobs. Each MapReduce cycle consists
of 2 phases - a Map and a Reduce phase. The Map phase
executes the map function which takes a set of key-value pairs
as input, and maps each pair to an intermediate key-value

map reduce

Pm Pm

operators

Tm

Pr

Tr

operators

Hadoop

Figure 1: An Abstract MapReduce Job

pair. Each phase can have multiple instances (mappers and
reducers respectively) running concurrently on assigned data
partitions i.e., partition parallelism. A popular open-source
implementation of Google’s MapReduce proposal is Apache
Hadoop [1]. In order to implement a data processing task in
this model, programmers have to figure out the best trans-
lation of their tasks into the MapReduce model. This pro-
cess has been simplified with the introduction of extended
MapReduce platforms such as Hive [22] and Pig [21], that
provide high-level declarative languages with querying con-
structs ala SQL, and compilers for automatically compil-
ing high-level programs into MapReduce execution work-
flows. The compilation process assigns query operators or
constructs to specific MapReduce cycles. Fig.1 shows an
abstract data processing MapReduce model which captures
the structure of what each cycle with data processing op-
erators looks like using Hive as an example. Primary op-
erators (Pm, Pr) are operators that take input data from
the Hadoop framework, process them, and feed them into
other operators. Once the operators in each phase complete
their processing, a terminal operator (Tm, Tr) collects the
resulting output. Further, for non-trivial data processing
tasks that require multiple MapReduce cycles, control and
data dependencies are implied by the high-level program and
represented as a workflow.

An important thing to note about MapReduce data pro-
cessing workflows is that they can be very costly. Table 1
shows the dominant costs (CPU costs of map and reduce
function are ignored) in a MapReduce cycle. The scheduler
schedules a set of slave nodes (mappers) to execute the Map
phase, and assigns a split or partition of the input file to
each mapper. The input data loading cost is represented
as CLoad in Table 1. (Note that multiple splits can be as-
signed to a mapper, in which case multiple map function in-
stances are executed on the node). Once all mappers are
complete, the intermediate key-value pairs are materialized
on the mappers’ local disk (cost CMapStore) in preparation
for the Reduce phase. The scheduler then assigns nodes
(reducers) to reduce a partition of map output values in a
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Figure 2: Unnecessary data movement of “fruitless” data
items across a workflow

process that consists of three phases: copy — copying the
sorted map output from mappers’ disks to reducer nodes,
resulting in a data transfer cost CShuffle; merge — merging
the sorted output lists from different mappers based on the
intermediate key with cost CMerge, and reduce — reduce()
is invoked once for each intermediate key, and applied to the
associated group of values. The output key-value pairs gen-
erated by all reducer instances are merged and materialized
into the underlying distributed file system e.g., Hadoop Dis-
tributed File System (HDFS) contributing to cost CRedStore.
The cost of a workflow is the aggregate cost of all cycles in
the workflow. As can be observed, these costs are all sen-
sitive to the size of data. Therefore, developing ways to
keep the footprints of intermediate states small is crucial to
performance of MapReduce workflows.

Table 1: Cost Factors in a MapReduce Job

Cost Factor Description
CLoad Input data loading cost
CSort Map-side sorting cost
CShuffle Data transfer cost
CMerge Reduce-side partition merging cost
CMapStore Map output data materialization cost
CRedStore Reduce output data materialization cost

1.1 The Problem
Due to the significant overhead associated with each MapRe-

duce cycle, a key objective when optimizing MapReduce
data processing workflows is minimizing the length of the
workflow i.e., the number of MapReduce cycles in the work-
flow. Another very important objective (similar to relational
databases) is minimizing the overall size of intermediate re-
sults or states produced during a data processing workflow
(query). This is particularly crucial because of the multiple
I/O, sorting, and network data transfer phases of intermedi-
ate results during a MapReduce data processing workflow.
State-producing operators such as the JOIN operator, whose
outputs may be larger than their inputs are an important
consideration when thinking about minimizing the size of
intermediate states produced. Indeed, in relational query
optimization, the JOIN operator is a very fundamental op-
erator for combining datasets, and its optimization is the
focus of a lot of research. Typically, this is achieved by or-
dering operators in a way that minimizes inputs to each join.
Cost models based on heuristics are used to estimate out-
puts of each operation so as to determine the best ordering

of operations. In order to achieve this during compile-time,
the parameters to such cost models will have to be precom-
puted, requiring preprocessing of data. This is natural for
relational databases where data structures like indexes and
statistical profiles of data are maintained as data is ingested
into the system. However, MapReduce data processing plat-
forms are typically not used to manage or host data in the
long term but rather just for processing data-intensive work-
loads. Thus, features like statistics and indexing are im-
mature or absent in MapReduce-based platforms like Hive
and Pig. Further, any cost models used for relational opti-
mization are not adequate for MapReduce data processing,
because they do not capture key MapReduce-specific costs.
Consequently, it is very important to consider runtime op-
timization techniques that can be applied as data is being
ingested. Further, since these platforms are often used in
batch processing mode, information gathered during earlier
tasks in the batch workload can be used to inform the exe-
cution of latter tasks within the same batch workload.

A useful group of runtime optimization techniques in rela-
tional query optimization is called Information Passing(IP).
Such techniques support passing information from earlier
phases of data processing to later execution steps, particu-
larly join operations, to help them prune their states more
aggressively. If this is done early enough, we could avoid
fruitless data from traveling along in the workflow only to
be eventually pruned. As an example, Fig.2 shows an exam-
ple job plan consisting of three MapReduce jobs executing
equi-join (joining relations on equality condition on particu-
lar fields). The execution sequence is Job1, Job2, and Job3
(all joins are repartitioning joins). Job3 joins the two inter-
mediate tables on ps suppkey and l suppkey after Job1 and
Job2 complete. In this case, it is obvious that only records
with suppkey 61025 will be joined and emitted to the fi-
nal output (output of Job3) while remaining records will be
discarded. The other records are essentially fruitless or irrel-
evant to final result. Unfortunately, these fruitless records
affect CLoad, CSort, CMapSort, CShuffle, and CMerge costs
for Job3. Further, they contribute to the costs of Job1 and
Job2. If on the other hand, it is possible to pass informa-
tion about the output context of Job1 to Job3, then it is
possible to have Job3 prune its inputs (output of Job2 and
Job1) while loading them, so that some savings in its CSort,
CMapStore, CShuffle, and CMerge can be achieved. Better
still, we may be able to pass this information to Job2 so that
while it writes its output, it can prune records that are irrel-
evant to final results e.g., records 30114, 132210. In addition
to savings in Job3’s costs, we can get additional savings with
respect to Job2’s CRedStore and Job3’s CLoad. Such savings
can be significant if pruning irrelevant tuples can be done
much earlier in the workflow. For example, assume an ex-
ecution plan such that these records are eventually pruned
in Jobk and not in Job3. Then, pruning these records from
Job2’s output will avoid carrying them along and process-
ing them in some of jobs in Job3 to Jobk − 1, before being
eventually pruned out in Jobk.

In shared-memory or distributed environments where re-
lational information passing techniques have been investi-
gated, IP is usually achieved through some centralized shared
memory structure which can be accessed by all operators.
Shared nothing cluster environments and rigid communica-
tion models allowed by MapReduce make such an implemen-
tation strategy difficult. These issues will be elaborated in



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 135

Section 2.1. More significant is that the overhead of informa-
tion passing may surpass its benefits. Therefore, techniques
for runtime, adaptive selection of an information passing
strategy as part of workflow execution need to be developed.
Further, the decision for information passing selection has to
be based on a cost model that is MapReduce-aware and in-
formed by characteristics of data as determined during pro-
cessing. The latter also suggests the need for a light-weight
technique for collecting information about data at runtime
by piggybacking on data processing.

1.2 Contributions
Specifically, we make the following contributions:

• We propose an architecture that supports adaptively
enabling information passing (IP) in Hadoop-based data
processing platforms based on its cost-benefits trade-
offs. The architecture provides support for IP-aware
operators, IP-plan compilation and execution. We present
a strategy for integrating these components into Apache
Hive.

• We propose a MapReduce-based benefit estimation cost
model for estimating the benefits of an IP-enabled ex-
ecution plan. In addition, we present a light-weight
data statistics collection technique that piggybacks on
workflow execution, and collects necessary parameter
values for the IP benefit estimation cost model.

• Finally, we present a comprehensive evaluation of the
proposed framework using two datasets including a
benchmark.

2. RELATED WORK

2.1 Sideways Information Passing
Relational database research has proposed a few variants

of Sideways Information Passing (SIP) techniques [19, 17,
8, 9, 20] where information is passed between operators in an
execution plan. Magic-set rewriting [19] ships summary in-
formation on examined values from a parent query to its sub-
queries or views so that they can discard unmatched records.
Semi-join [9] processes join over remote sites. It projects and
sends join columns from one site to another, and joins the
projection with a remote relation. The resulting records are
transferred to the original site and joined. In a sense, the
task of passing information is integrated into the semantics
of the operator itself rather than being an augmentation. In
[8], an operator named Eddy routes records among relational
operators based on dynamic runtime properties so as to max-
imize performance. [17, 20] produce filters from operators
to other co-related operators to prune unnecessary records.
Compile-time plans are augmented by run-time benefit esti-
mation to reduce the information passing overhead. [17, 8,
20] introduced adaptive SIP approaches. Adaptivity can se-
lectively add IP to an execution plan based on a cost model
that relies on statistics of the underlying database system.

Discussion. While these SIP techniques have similar
goals with our proposal, their implementations make as-
sumptions that do not carry over to MapReduce execution
platforms, making their adoption infeasible. Specifically,
[19, 20] is designed for a centralized shared-memory envi-
ronment where summaries can be exchanged using buffers
or other message passing techniques [17, 8] that assume the

existence of a centralized repository for exchanging tuples
or summaries at will. On the other hand, MapReduce exe-
cutes in a shared-nothing environment with a very restricted
communication model between nodes. Further, operator ex-
ecution in existing techniques is holistic i.e, one instance of
operator processes all the input for that operator. This is in
contrast to partitioned execution in MapReduce where mul-
tiple instances of an operation are executed, each processing
one partition of the operator’s input. The consequence is
that information about the state of a MapReduce operator
is fragmented across the different instances whereas in the
traditional case, all summary information can be found in
a single location. Finally, the adaptivity model proposed in
[17] assumes the availability of data statistics. However, as
was mentioned before, such features are lacking in existing
MapReduce data processing platforms or require significant
overhead [15] to compute. These assumptions by existing
approaches make for a much simpler information passing
problem than would be required in the MapReduce setting.
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Figure 3: Summary Distribution

2.2 Information Passing Other Join Optimiza-
tions for MapReduce Platforms

Some recent efforts [10, 16] have focused on enabling in-
formation passing in MapReduce. A series of semi-join tech-
niques in [10] resemble the traditional 2-way semi-join. How-
ever, each join operation is implemented using three MapRe-
duce cycles which can be very expensive. In some earlier
work [16], we proposed a basic information passing technique
Hadoop Information Passing (HIP) that enables summary
exchanges between multiple MapReduce jobs in a workflow.
In this approach, fragmented summaries about the state of
an operator are generated at the end of the cycle in which its
executes. The summaries are stored into the Hadoop Dis-
tributed File System as compressed files of summary lists.
If the total size of those summary fragments do not exceed
a user-defined threshold, they are broadcast to nodes at the
initiation of a subsequent job that takes as input, the earlier
job’s output. Other relevant work include efforts to reduce
the length of a MapReduce workflow by clustering opera-
tions into few cycles as possible using multi-way join algo-
rithms [18, 7, 23]. If the length of a workflow is reduced to
just one cycle, then information passing becomes unneces-
sary. However, this is not always feasible for non-trivial data
processing tasks because invariably, different operators will
have conflicting key partitioning requirements forcing their
execution to be assigned to different cycles. Also, some of
the algorithms result in a large amount of replication which
impedes performance. In the case of [23], a cost-based query
optimization approach is proposed, where the multiplicity of
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replicated-join is decided by cost estimation. However, this
approach requires additional MapReduce cycles per input
table to calculate the necessary statistics.

3. ADAPTIVE INFORMATION PASSING IN
HADOOP WORKFLOWS

In this section, we discuss our proposal for enabling infor-
mation passing on Hadoop-based processing systems. Fig.4
shows our extended Hive framework with dotted lines denot-
ing the new or extended components. Our system consists of
three major components, (i) an information passing frame-
work that enables IP-aware plans to generate and utilize
summaries across jobs, (ii) a benefit estimator that estimates
the costs for summary generation and propagation for each
job, and (iii) a statistics collector that piggybacks on the
MapReduce execution process to collect statistics required
by the benefit estimator.

3.1 Information Passing Framework
At compile-time, this framework decides whether infor-

mation passing or statistics generation should be enabled by
contacting several components. The default Hive job execu-
tor was modified to enable and execute IP-related decisions.

Compile-time preparation. A Plan analyzer analyzes
a MapReduce job plan to produce plan information. Plan
information contains job-specific information and relation-
ships among the multiple jobs in a job plan. Information
for each job is stored in a data structure called JobDe-
scriptor, which maintains the job ID, a pointer to the Hive
job descriptor, the type of reduce-side primitive operator
PR (e.g., join or group-by), paths for summary input and
output, and so on. The relationships among jobs are rep-
resented in a dataflow graph and a dependency graph. A
dataflow graph describes the input/output dataflow of jobs,
and a dependency graph (reverse of the dataflow graph) de-
scribes their execution order. A job executor that submits
each job in a MapReduce job plan to the Hadoop frame-
work, references the plan information to make a decision
on information passing. A cost estimator retrieves statis-
tics about the job’s input tables from the statistics repos-
itory, and calculates job costs. Job descriptors are aug-
mented with such job cost information. Before submitting
the current job JC , the job executor invokes the IP planner
to check whether the job should generate summary infor-
mation (SUMMARY CREATION ) for any subsequent jobs,
and/or load any summaries created by previous jobs (SUM-
MARY USAGE).
Algorithm 1 corresponds to the decision-making process

for summary generation, which consists of two steps. First,
the IP planner probes the plan information and checks whether
any subsequent job processing a join operation can leverage
the summary information that JC may produce (lines 3-4).
For example, job JN−1 in Fig.5a is eligible for summary gen-
eration since job JN can use the summary to prune unnec-
essary data while loading TableA. Next, the IP planner calls
the benefit estimator to estimate the benefit that the sum-
mary can bring about (line 5). If there is considerable bene-
fit (configurable via parameter β > 0), the planner makes a
decision to enable SUMMARY CREATION (line 6) so that
JC generates summary information during its execution.

Algorithm 1: Decision-making for State Creation

1 SUMMARY CREATION ← false;
2 if IP is enabled in configuration file then
3 if JC linked to any job JN in dataflow graph then
4 if descriptor(JN ).ReducerType == JOIN then
5 if BenefitEstimator.estimate() > β then
6 SUMMARY CREATION ← true;

end if

end if

end if

end if

JN-1 TableA

JN

Summary

(a)

JN-1

JN+1

Summary
JN

(b)

JN-2

JN

JN-1
Summary

(c)

Figure 5: Possible IP Plans (a) Map-side pruning using
child-to-parent IP, (b) Reduce-side pruning using sibling-to-
sibling IP, (c) another example of child-to-parent IP using
intermediate tables

The IP planner also examines JC to determine usability
of available summaries from a previously executed job JP .
Algorithm 2 shows the corresponding decision-making algo-
rithm for summary utilization which considers two possible
cases of information passing: child-to-parent and sibling-to-
sibling. Fig.5 shows three job plans illustrating the two sce-
narios (the execution sequence is JN−2, JN−1, JN , JN+1,
and current job JC = JN ). First is the case of child-to-
parent IP between a parent job JC and a child job JP (lines
3-7). If job JC has a join operator in its reduce-phase (line
3), the planner looks up the dependency graph to find any
jobs whose output is fed into JC i.e., child jobs which have
generated summaries that have not yet been used (lines 4-5).
There are two possible cases of child-to-parent IP: a job may
either join an intermediate table and a base table (Fig.5a),
or it may join two intermediate tables (Fig.5c) such that the
summary generated by the child was not used by its sibling.
In both cases, the planner determines whether the size of the
summary files Pi (1 ≤ i ≤ r, for r reducers) generated by
the child job is less than a user-defined threshold α. This is
done to avoid heap memory leakage issues caused by loading
large summary information. If the summary size is less than
the threshold, the planner invokes the benefit estimator to
determine the benefit in summary usage. Based on the es-
timated benefit, the summary from the child job is used by
JC to prevent irrelevant data from being shuffled between
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map and reduce phases. This map-side pruning helps to re-
duce CSort, CShuffle, and CMerge costs in JC . The second
case is that of sibling-to-sibling IP where the summary in-
formation generated by a previously-executed sibling job JS

in the dataflow graph, can be used to prune the output of
JC (line 8). For example, JN in Fig.5b has a sibling job
(JN−1) which generated a summary. JN uses the summary
to curtail CStore costs in JN , and CLoad, CSort, CShuffle,
and CMerge in JN+1. Before the job executor submits each
job to Hadoop, all decisions are encoded in the job so that
corresponding operators generate and / or load summaries.

Algorithm 2: Decision-making for State Utilization

1 SUMMARY USAGE ← false ;
2 if IP is enabled in configuration file then

//Child-to-Parent IP
3 if descriptor(JC).ReducerType == JOIN then
4 if JC has a neighbor JP in dependency graph then
5 if JP generated summaries Pi (1 ≤ i ≤ r)

such that
∑

|Pi| ≤ α then
6 if BenefitEstimator.estimate()> β then
7 SUMMARY USAGE ← true;

//Sibling-to-Sibling IP
8 if JC has a sibling job JS in dataflow graph then
9 if JSgenerated summaries Pi (1 ≤ i ≤ r) such

that
∑

|Pi| ≤ α then
10 SUMMARY USAGE ← true;

Run-time operation. In order to generate summary in-
formation and utilize it, operators in a job should be aware
of decisions and operate accordingly. Hence, we designed
IP-aware reduce-side Tr and map-side Pm operators. As de-
scribed earlier, Tr is the final logical operator in the reduce
phase that stores the reduce output to HDFS. If a job should
generate summary information (SUMMARY CREATION
is true), decision-aware Tr operator generates bloom filters
on the target column that is a join key in a subsequent job.
Algorithm 3 describes the pseudo code for the IP-Awaremap
and reduce function skeletons. Note that the init (close)
function calls each operator’s init() (close()) method in the
beginning (end) of each phase. At runtime, the IP-aware
Tr operator calculates the hash value on the target column
for each record, and puts the hash value in an in-memory
buffer (lines 3-5). In the close() of the operator, the hash
values are compacted using a bloom filter to minimize the
size of the summary information (lines 8-10), and stored
into the HDFS. Multiple instances of the Tr operator pro-
duce multiple partial summaries (one per reducer), and the
job executor merges them into a single summary (merged
bloom filter) as shown in Fig.3b.

The merged summary is broadcasted to computing nodes
via JobConf before the subsequent job executes. JobConf is
a data transport facility provided by the Hadoop framework
to propagate system-wide and job-specific configurations to
nodes. The JobConf is copied once to each node’s local disk
rather than to every mapper or reducer, and hence reduces
the summary propagation costs. At the initialization phase
of the subsequent job, the IP-aware map-side operator Pm

loads the merged summaries into an in-memory buffer (lines
12-13). Whenever a record is read, the operator calculates
the hash value for the target column (join key), probes the
in-memory buffer, and prunes out irrelevant records (lines
15-17). Note that in the case of sibling-to-sibling IP, the

Algorithm 3: IP-Aware map()/reduce() Skeletons

//Reduce() of current job Jn

Reduce (key:grpKey, val:Corresponding list of tuples T )
Init ();
reduce ()

1 foreach tu ∈ T do
2 out tup ← Normal reduce processing;
3 next join key ← extract join key for next job;
4 hashV al ← next join key.hash();
5 Add distinct hashV al to in-memory sorted set;
6 emit <null, out tup>;

Close ()
7 status ← close status of all reduce operators;
8 if status is Success then
9 summary ← bloom filter on hashV als;

10 Store summary to HDFS;

//Merge summary from r reducers
11 mergedSummary ← merge(summary1,...,summaryr);

//Map() of a subsequent job Jn+1

Map (key:null, val:Tuple tup from Input)
Init ()

12 Load mergedSummary;
13 summarySet ← build in-memory sorted set from

mergedSummary;
map ()

14 join key ← extract the join column from tup;
15 if tup ∈ baseRelation then
16 if join key.hash() does not exist in summarySet

then
17 Prune out tup;

18 out tup ← Normal map processing;
19 emit <join key, out tup> ;

Close ();

summary loading and pruning happens in the reduce phase
using the IP-aware Tr operator. If the Tr operator also needs
to generate summary, the pruning precedes the summary
generation phase. The next section describes the benefit
estimation model that guides decisions in the information
passing framework.

3.2 Benefit Estimation Model
Our benefit estimation model does not consider the case

of sending summaries to sibling jobs (e.g., Fig.5b). In-
stead, it estimates the benefit from consuming summaries
in parent jobs (e.g., Fig.5a and 5c). If a given summary
is beneficial for a parent job, it is expected that a sib-
ling job can achieve more benefit by using the summary in
terms of CSTORE and CLOAD. Hence, the proposed bene-
fit estimation model aggregates partial benefits in CSORT ,
CSHUFFLE , and CMERGE (Bsort, Bshuffle, and Bmerge re-
spectively), and differences the aggregated benefit and the
cost for summary creation and propagation (Csummary):

B = Bsort +Bshuffle +Bmerge − Csummary (1)

Benefit in each step is estimated by subtracting the cost in
the IP-enabled approach from the cost in the default ap-
proach. Hence, benefits in the three steps are:

Bsort = Csort−orig − Csort−ip (2)

Bshuffle = Cshuffle−orig − Cshuffle−ip (3)

Bmerge = Cmerge−orig − Cmerge−ip (4)

.
In sort-phase, MapReduce performs external merge sort
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and the cost can be estimated as follows:

Csort−orig = M(CR + CW )(�logB−1

M

B
�+ 1) (5)

when each mapper emits intermediate data of M pages on
average, and the size of sorting buffer is B. CR (CW ) is the
unit cost to read (write) a page from (to) disk. Let ∆ be
the average size of unnecessary data that is expected to be
pruned by a given summary information, then the cost in
the IP approach is:

Csort−ip = (M −∆)(CR +CW )(�logB−1

M −∆

B
�+ 1) (6)

.
When the intermediate data is shuffled into r reducers,

each reducer receives, on average, (M × m)/r pages from
m mappers. Hence, the estimated data shuffle cost of the
original approach is:

Cshuffle−orig =
M ×m

r
CT (7)

where CT is the unit cost to transfer a page. The estimated
data shuffle cost in the IP approach is:

Cshuffle−ip =
(M −∆)m

r
CT (8)

In reduce-phase, each reducer receives partitions from all
m mappers and merges them into one block. Hence, we
estimate the merge cost in the default approach as equation
9, and that of the IP approach as equation 10.

Cmerge−orig = R(CR + CW )(�logB−1 m�) (9)

Cmerge−ip = (R−∆ · m
r
)(CR + CW )(�logB−1 m�) (10)

where R is the average input size per reducer. Since M ·m =
R · r, we substitute (M ·m)/r for R producing the following
equations:

Cmerge−orig = M · m
r
(CR + CW )(�logB−1 m�) (11)

Cmerge−ip =
m

r
(M −∆)(CR + CW )(�logB−1 m�) (12)

Cost Csummary is caused by summary generation and prop-
agation and consists of four costs:

Csummary = Cip−store + Cip−merge + Cip−copy + Cip−load

(13)
Each Tr operator stores a partial summary information in a
bloom filter of size |F | into HDFS. Hence, the cost to store
a partial summary is:

Cip−store = (UT + UW )|F | (14)

where UR, UW , and UT are unit costs to read, write, and
transfer a single byte, respectively. Since partial summaries
generated by r’ reducers are combined into one bloom filter,
the cost to merge partial summaries is:

Cip−merge = (UT + UR)|F |r′ + (UT + UW )|F | (15)

The cost to copy a merged summary to nodes is:

Cip−copy = N(UR + UW + UT )|F | (16)

The summary loading cost of each operator from local disk
is:

Cip−load = UR|F | (17)

Parameters such as CR, CW , CT , UR, UW , and UT are
machine-specific and can be earned by performance mea-
surement. B and N can be calculated with Hadoop config-
uration parameters, and |F | is set in the Hive configuration
file. At the time that benefit estimation is performed, the
number of reducers (r′) in a current job has already been
set by the Hive compiler. However, the number of mappers
(m) and reducers (r) in its parent job are unknown since
they depend on the input table sizes of the parent job and it
is complicated to estimate those parameters without input
statistics. For the same reason, the estimation of M and ∆
is complicated. In the next section, we describe our statis-
tics collection approach that piggybacks on MapReduce job
execution.

3.3 Piggybacking Statistics Collection on Op-
erator Execution

Our approach for statistics collection piggybacks on the
execution of MapReduce jobs. Generated statistics are used
by the cost estimator to estimate statistics on intermediate
data in a MapReduce job plan. These statistics are used by
the benefit estimator to calculate necessary parameters such
as m, r, M , and ∆, which are supplied to the benefit esti-
mation model to make decisions about information passing.
Required statistics include the size of tables, the number of
records, the average sizes of columns, and the value distri-
butions within a column. The general idea is that rather
than requiring a separate pre-processing step for computing
statistics, we choose to exploit the fact there is a good likeli-
hood that users will want to execute multiple queries on their
datasets. Therefore, for each query, we compute and store
statistics on selected columns of the tables being processed.
Then, for future queries that refer those columns, we use the
already computed statistics. Note that the statistics plan-
ner does not estimate statistics on all columns in input ta-
bles. For example, while evaluating TPC-H queries, columns
for comments (e.g., ps comment, l comment, c comment,
and p comment) and auxiliary information (e.g., c address,
s address, and s phone) are rarely positioned in filter or
join conditions, and hence are not important for cost estima-
tion. Such columns can be excluded to reduce the overhead
of statistics generation and transmission costs. Users can
manually specify additional columns into the column set by
updating the Hive configuration file.

At compile-time, the statistics planner creates a list of in-
put tables from a MapReduce job plan, and extracts a set of
meaningful columns whose statistics are required for cost es-
timation. The statistics planner probes the statistics repos-
itory using Java Remote Method Invocation (Java RMI) to
check the availability of statistics related to the listed tables
and columns. If the statistics are unavailable, the statistics
planner enables statistics collection and embeds the decision
into the job plan. Additionally, the statistics planner regis-
ters the input table sizes in the statistics repository if such
information is missing.

At run-time, the map-side primary operators (Pm) in each
job generate the statistics on the required columns. Once the
operators finish execution, the generated statistics are reg-
istered with the statistics repository. The generated statis-
tics are partial since the Pm operators process records from
different input portions. In this environment, it is straight-
forward to calculate the number of records and the average
sizes of columns from fragmented statistics. However, re-



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 139

constructing the value distributions from fragmented statis-
tics is quite tricky. Sampling [11, 12] or histogram [23]
can be considered but such approaches may incur high in-
accuracy or huge data transmission overhead. In order to
combat this issue, we used a recent logarithmic counting
method called as HyperLogLog [14]. This algorithm sup-
ports set union operation which enables combination of mul-
tiple statistics fragments in a natural way. Therefore, par-
tial value-distribution from multiple input partitions can be
merged efficiently. Next, the memory footprint that the
algorithm requires to store bit-vectors is relatively small
(O(loglogD)) with high accuracy. For example, the algo-
rithm consumes 1.5KB memory with a 2% error rate for 109

cardinality values [14]. When a job completes its execution,
the statistics repository unions partial bit-vectors that have
been registered.

(a)

J1

TableA TableB

J2

TableB TableC

(key, columnA) (key, columnA)

J3

(key, columnA, columnA)

(b)

Figure 6: (a) Query1, (b) Query2

4. EXPERIMENTAL EVALUATION
The information passing approach has been implemented

in Apache Hive 0.5 [2] on top of Apache Hadoop 0.20.0 [3].
This section presents an extensive study of the proposed
approach by comparisons with original Hive, HIP [16], and
semi-join [10]. For HIP, the threshold of total summary size
was set to 512KB and 4MB. For the proposed IP approach,
two sizes of bloom-filter were used for storing summary infor-
mation (512KB and 4MB). First two steps of semi-join were
implemented using vanilla MapReduce applications. How-
ever, the last step was implemented as a repartitioning join,
instead of Hive’s fragment-replication join named map-side
join. This is because the map-side join failed for experi-
ments in which the size of intermediate data from the first
two steps was not small enough to fit into memory.

4.1 Experiment Setup
Experiments were conducted on a cluster on NCSU VCL [6]

which consists of 21 blade servers (one master node and 20
slave nodes). Each node has a 3.0GHz dual-core Xeon pro-
cessor, 4GB memory, and a 28GB SCSI disk, and runs Red
Hat Enterprise Linux 5. Hadoop framework was configured
with 512MB of block size, replication factor 1, no specula-
tive execution, and 1024MB of heap size for mappers and
reducers.

4.2 Workloads and Analysis
Two kinds of synthetic datasets, including one benchmark

were used. The first synthetic dataset is generated based on
user-supplied parameters such as number of records, col-
umn sizes, and range of join column values. This bench-
mark was chosen since it is complicated to manually set

reference ratios among generated tables with existing bench-
marks. Three tables were generated using this benchmark:
TableA, TableB, and TableC. Each table is 20GB and in-
cludes three columns (key : 25B, columnA: 75B, columnB :
100B). The key column in each table was used as a join key.
The join key density of TableB and TableC is fixed to one
while the join key density in TableA varies across experi-
ments. Hence, records in TableA match different numbers
of records in other tables. Records in TableB and TableC
are exactly same. In order to evaluate the effects of pass-
ing summary information to different MapReduce jobs, two
benchmark queries were used as shown in Fig.6. The query
in Fig.6(a) compiles into two MapReduce jobs. The first job
joins TableA and TableB, producing intermediate records of
(TableB.key, TableA.columnA). The second job joins the in-
termediate output from the first job with TableC, and gen-
erates (TableB.key, TableA.columnA, TableC.columnA). For
HIP and IP, the execution time of Job2 is summed up with
any delay in execution time of Job1. Semi-join was com-
puted on the intermediate records from Job1 and TableC,
and the execution times of three steps were summed up.
Next, the query in Fig.6(b) is translated into three MapRe-
duce jobs. The first one is similar to the first job in the previ-
ous query. The second job joins TableB and TableC, and pro-
duces same number of records. The intermediate records are
of (TableB.key and TableC.columnA). The last job joins the
two intermediate tables and generates records of the form
(TableB.key, TableA.columnA, TableC.columnA). Execution
times for Job2 and Job3 for different approaches were also
compared. However, semi-join was not performed for this
query since the first two steps of semi-join cannot remove
any records deriving no benefit. Second set of experiments
used the TPC-H benchmark [5] dataset (40GB). The Hive
version of TPC-H queries [4], which are written in HiveQL
were used. Among the TPC-H benchmark queries, a set of
relevant queries with multiple join operations were chosen.
Different query plans were evaluated.
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4.3 Experimental Results
Performance improvement with varying reference

ratios. The IP approach enhances query processing perfor-
mance by pruning unnecessary records before being joins.
Hence, the effectiveness of the approach depends on the
reference ratio between joined tables. To check the rela-
tionship between performance and reference ratio, TableA’s
reference ratio was varied such that its records match dif-
ferent numbers of records in the other tables. Fig.7 shows
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Figure 8: Query2 execution times with varying reference ratios, (a) Job2(HIP: 512KB threshold, IP: 512KB bloom-filter), (b)
Job2(HIP: 4MB threshold, IP: 4MB bloom-filter), (c) Job3(HIP: 512KB threshold, IP: 512KB bloom-filter, (d) Job3(HIP:
4MB threshold, IP: 4MB bloom-filter))

the execution times of the query in Fig.6(a). First, semi-
join failed for reference ratio 0.1 and 0.5 (denoted by broken
lines on the y-axis to indicate that execution failed after
a lengthy execution period) since the size of join key list
exceeded available heap memory in its first step. For ref-
erence ratio 0.001 and 0.01, the semi-join approach did not
show better performance than the original Hive approach.
On the other hand, HIP and IP showed performance im-
provements as the reference ratio decreases. However, the
IP approach was beneficial with relatively higher reference
ratio than HIP (reference ratio = 0.01 in Fig.7(a) and refer-
ence ratio = 0.1 in Fig.7(b)). A problem with HIP approach
is that it cannot calculate the size of summary information
before partial summary fragments are merged and loaded
into memory. Hence, the total size of summary fragments
is compared with the user-defined threshold. As a conse-
quence, even if the size of merged summary information is
less than the threshold, it may disallow generated summary
information to be loaded by jobs. On the other hand, IP
approach decides about summary generation and utilization
based on benefit estimation, and can maximize the benefit
of information passing. In Fig.7(b), for example, HIP dis-
abled the use of summary for reference ratio 0.1, while IP
allowed summary to be used by Job2 deriving benefit.

When HIP processes Query2 in Fig.6(b), Job1 and Job2
generate summaries, and Job3 utilizes those summaries.
Hence, as shown in Fig.8(a-b), Job2 execution times in HIP
are longer than the original Hive approach due to summary
generation overhead. On the other hand, the IP approach
transports summary information from Job1 to Job2, and
prunes unnecessary records at the end of Job2. Hence, it
could derive benefits in materialization steps when its benefit
estimation enables summary information (e.g., when refer-
ence ratio = 0.001 and 0.01 in Fig.8(a) and reference ratio =
0.001, 0.01, and 0.1 in Fig.8(b)). The benefits were less than
8% performance improvement. In case of Job3, IP achieved
more performance improvement than HIP since reduced in-
termediate data from Job2 derived benefits in data loading
phase in addition to shuffle-phase as shown in Fig.8(c-d).

Performance improvement with varying block
sizes. This experiment evaluates the impact of varying
HDFS block size on the different approaches. The refer-
ence ratio was fixed to 0.01, and HIP threshold and size of
bloom-filter in IP were set to 4MB. Fig.9(a) shows the per-
formance improvement rates of Job2 in Query1 relative to
the original Hive approach. Semi-join was worse than Hive
in all settings while the performance degradation rate de-

creased as block size increased since the execution time of
semi-join increased slower than that of Hive. Both HIP and
IP showed linear speedups with increasing block sizes. Each
mapper that loads a block from TableC is assigned more
data as the block size increases. Hence, given the summary
information produced in the previous job, both approaches
are able to prune out larger amount of “fruitless” data items
before being shuffled, thus deriving higher cost saving in
shuffle-phase.

Fig.9(b) shows the performance improvement rates of HIP
and IP for processing Job2 in Query2. In HIP, summary
information is always generated by children jobs (e.g., Job1
and Job2 in Fig.6(b)), and transported to parent jobs (e.g.,
Job3 in Fig.6(b)) in a dataflow graph. Hence, in the case
of HIP, Job2 is accompanied with an overhead to generate
summary information causing less than 1% slowdown. On
the other hand, the IP approach can prune unnecessary data
by using summary information transported from a sibling
job (e.g., Job1 in Fig.6(b)) in a dataflow graph. Hence, IP
derives benefit in the output materialization step of Job2 as
shown in Fig.9(b). However, the benefit is relatively small
(less than 1% speedups) for all block sizes.

Fig.9(c) compares the performance improvement rates of
HIP and IP for Job3 in Query2. First of all, the IP ap-
proach outperforms HIP for all block sizes. HIP showed
more than 20% performance improvement by preventing
unnecessary data before data shuffle-phase. On the other
hand, IP achieved relatively better performance enhance-
ments than HIP since already reduced intermediate data
could reduce the cost in data loading phase in addition to
the data shuffle cost. In the second place, with 512MB to
1024MB block sizes, both approaches showed almost con-
stant performance improvements. Hive and HIP scheduled
same numbers of mappers (86 mappers) and reducers (26
reducers) with those block sizes where the amounts of input
data to each mapper and each reducer were not changed even
if the block size increased. Hence, the effect of summary in-
formation in shuffle-phase was almost same with those block
sizes. In case of IP, the same numbers of mappers (86 map-
pers) and reducers (14 reducers) were scheduled from 512MB
to 1024MB block sizes. Therefore, the effect of reduced in-
put data was almost same in data-loading and shuffling steps
with different block sizes.

Performance measurements with TPC-H bench-
mark. Experiments with TPC-H benchmark were per-
formed to measure the effectiveness of the IP approach.
In these experiments, the bloom-filter size of IP and the
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Figure 9: Performance improvement with varying block sizes (a) Query1:Job2 (b) Query2:Job2 (c) Query2:Job3
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Figure 10: TPC-H queries with (a)linear and (b) non-linear plans, (c) Benefit estimation (TPC-H Q9 linear plan)

summary size limitation of HIP were configured to 512KB.
Fig.10(a) shows the execution times of the different ap-
proaches for TPC-H queries which are translated into linear
plans. HIP and IP approaches improve the query process-
ing performance for most of the queries up to 27.0% and
28.6%, respectively. However, HIP does not improve the
performance of Q3, and degraded the performance of Q10 a
little due to overhead of generating and transporting sum-
maries. With non-linear plans as shown in Fig.10(b), the
IP approach showed 5-6% performance improvements when
processing Q2, Q5, and Q10, and improved the execution
time of Q7 by about 31%. In HIP, the execution times of
Q2 and Q7 were improved 2% and 26%, respectively while
that of Q10 was degraded about 3% due to the overhead of
summary generation. It is notable that HIP did not work
for Q5 because one of the jobs in the plan did not have
enough heap memory space for storing its output summary
information. HIP stores a list of hash values on a join col-
umn in memory. Hence, if the size of the in-memory list
exceeds available memory space, it drives reducers to fail
their execution. On the other hand, IP stores such data in
a more compact bloom filter whose size is configurable, thus
avoiding such problems.

Benefit Estimation. HIP and IP approaches without
benefit estimation, may worsen query processing perfor-
mance for cases where the overhead of generating and trans-
porting summary information exceeds the benefit achieved
by using the summary information. For example, with TPC-
H Q9, both approaches showed worse performance when
they were enabled. Fig.10(c) shows the execution times of
a Q9 linear plan in different approaches. We compared the
original Hive, HIP, IP without benefit estimation, and IP
with benefit estimation. In HIP, jobs always generate sum-
mary information as long as they have subsequent jobs to

which such summary information can be transferred. In ad-
dition, it transports summary information to the next job
if its size is less than a user-defined threshold, even if the
summary may not be beneficial. Because of such summary
generation and transmission overheads, HIP brought about
a 80 second delay in the execution time of the Q9 linear plan.
In IP without benefit estimation, all jobs in the query plan
always generate summaries and transport them to next jobs.
As a result, such imprudent use of summary information
added a cost of about 125 seconds to the original execution
time. On the other hand, the IP approach which leverages
benefit estimation, could selectively allow summary gener-
ations and transmissions based on cost estimations. This
allowed for maximizing the benefit of IP and preventing any
large performance degradation in worst cases.
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Figure 11: Accuracy for the number of distinct values with
different RSDs

Piggyback Statistics Collection. Statistics collection
which piggybacks query processing may impose penalties on
its performance. This section evaluates the effect of piggy-
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Figure 12: Piggyback statistics collection overhead (a) vary-
ing RSD values (b) varying number of columns

back statistics collection. While processing TPC-H queries,
distinct value cardinalities were generated on columns that
were either join keys or were involved in filter conditions.
The slowdown on execution time was then measured. The
slowdown for each query was calculated as following:

slowdown(%) =
TP − TO

TO
× 100

where TP is the execution time of a query with piggyback
statistics collection, and TO is the execution time of the
original Hive approach. During the experiments, three rela-
tive standard deviations (RSDs) (0.1, 0.01, and 0.001) were
used as a parameter to HyperLogLog. This was done to
change the size of required memory space. As the RSD
value increases, HyperLogLog requires less memory space
while causing higher error rate. Fig.12(a) shows the slow-
downs of the TPC-H queries. As RSD became smaller, the
slowdown of query processing performance increased. When
RSD = 0.001, slowdowns were between 6% and 41% while
error rates in distinct value cardinalities were less than 0.4%.
RSD = 0.01 caused 4-33% slowdowns with less than 1.6%
error rates. With RSD = 0.1, slowdowns were between 4%
and 31% with error rates less than 30.7%. Fig.11 shows error
rates in distinct value cardinality estimation on a set of key
columns. In the experiment, processing overhead to generate
statistics was the main factor that affected the slowdowns
of query execution times. For TPC-H Q7, the processing
overhead for statistics generation affected about 97% of the
slowdowns when RSD is 0.1 and 0.01, while registering par-
tial statistics caused 3% of the slowdowns. However, when
RSD = 0.001, the overhead to register partial statistics to
the statistics repository caused about 19% of the slowdown.
As a result, as the RSD value increases, partial statistics reg-
istration overhead can be one of the dominant factors that
affect query performance.

Next, slowdowns were measured by manually changing
the number of columns on which distinct value cardinali-
ties were generated. This experiment used a query which
loads lineitem table and performs a groupby operation on
l linenumber. RSD was fixed at 0.01. As shown in Fig.12,
the increase in number of columns involving distinct value
cardinality collection, resulted in more processing and statis-
tics transmission overheads, thus increasing slowdown in
query processing time. Hence, choosing minimal columns
from which distinct value cardinalities are collected is nec-
essary to decrease the performance degradation of piggyback
statistics collection.

5. CONCLUSIONS
We present an adaptive information passing approach for

early pruning of intermediate states in a MapReduce data
processing workflow. The approach is based on a MapReduce-
aware cost model for estimating potential benefits or loss
of information passing in a particular workflow. We also
present a light-weight approach for computing statistics by
piggybacking on operator execution. Our approach for in-
tegrating the proposed information passing technique into
a popular platform, Apache Hive, is presented. A compre-
hensive empirical evaluation using two datasets shows the
benefits of our approach over existing techniques.
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Abstract

YinzCam is a cloud-hosted service that provides sports
fans with real-time scores, news, photos, statistics, live
radio, streaming video, etc., on their mobile devices.
YinzCam’s infrastructure is currently hosted on Ama-
zon Web Services (AWS) and supports over 7 million
downloads of the official mobile apps of 40+ profes-
sional sports teams and venues. YinzCam’s workload is
necessarily multi-modal (e.g., pre-game, in-game, post-
game, game-day, non-gameday, in-season, off-season)
and exhibits large traffic spikes due to extensive usage by
sports fans during the actual hours of a game, with nor-
mal game-time traffic being twenty-fold of that on non-
game days.

We discuss the system’s performance in the three
phases of its evolution: (i) when we initially deployed the
YinzCam infrastructure and our users experienced unpre-
dictable latencies and a large number of errors, (ii) when
we enabled AWS’ Auto Scaling capability to reduce the
latency and the number of errors, and (iii) when we an-
alyzed the YinzCam architecture and discovered oppor-
tunities for architectural optimization that allowed us to
provide predictable performance with lower latency, a
lower number of errors, and at lower cost, when com-
pared with enabling Auto Scaling.

1 Introduction

Sports fans often have a thirst for real-time information,
particularly game-day statistics, in their hands. The as-
sociated content (e.g., the game clock, the time at which
a goal occurs in a game along with the players involved)
is often created by official sources such as sports teams,
leagues, stadiums and broadcast networks.

From checking real-time scores to watching the game
preview and post-game reports, sports fans are using
their mobile devices extensively [11] and in growing
numbers in order to access online content and to keep up

to date on their favorite teams, according to a 2012 re-
port from Burst Media [10]. Among the surveyed sports
fans, 45.7% said that they used smartphones (with 31.6%
using tablets) to access online sports-content at least oc-
casionally, while 23.8% said that they used smartphones
(with 17.1% using tablets) to watch sporting events live.
This trend prevails despite the presence of television–
in fact, fans continued to use their mobile devices to
check online content as a second-screen or third-screen
viewing-experience even while watching television.

YinzCam started as a Carnegie Mellon research
project in 2008, with its initial focus being on provid-
ing in-venue replays and in-venue live streaming camera
angles to hockey fans inside a professional ice-hockey
team’s arena [5]. The original concept consisted of a
mobile app that fans could use on their smartphones, ex-
clusively over the in-arena Wi-Fi network in order to re-
ceive the unique in-arena video content. While YinzCam
started with an in-arena-only mobile experience, once the
research project moved to commercialization, the result-
ing company, YinzCam, Inc. [15], decided to expand its
focus beyond the in-venue (small) market to include the
out-of-venue (large) market.

YinzCam is currently a cloud-hosted service that pro-
vides sports fans with real-time scores, news, photos,
statistics, live radio, streaming video, etc., on their mo-
bile devices anytime, anywhere, along with replays from
different camera angles inside sporting venues. Yinz-
Cam’s infrastructure is currently hosted on Amazon Web
Services (AWS) and supports over 7 million downloads
of the official mobile apps of 40+ professional sports
teams and venues within the United States.

Given the real-time nature of events during a game and
the range of possible alternate competing sources of on-
line information that are available to fans, it is critical for
YinzCam’s mobile apps to remain attractive to fans by
exhibiting low user-perceived latency, a minimal num-
ber of user errors (visible to user in the form of time-
outs occuring during the process of loading a page), and
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Figure 1: The trend of a week-long workload for a hockey-team’s mobile app, illustrating modality and spikiness. The
workload exhibits the spikes due to game-day traffic during the three games in the week of April 15, 2012.

real-time information updates, regardless of the load of
the system. Ensuring a responsive user experience is
the overarching goal for our system. Our infrastructure
needs to be able to handle our unique spiky workload,
with game-day traffic often exhibiting a twenty-fold in-
crease over normal, non-game-day traffic, and with un-
predictable game-time events (e.g., a hat-trick from a
high-profile player) resulting in even larger traffic spikes.

Contributions. This paper describes the evolution of
YinzCam’s production architecture and distributed in-
frastructure, from its beginnings three years ago, when
it was used to support thousands of concurrent users, to
today’s system that supports millions of concurrent users
on any game day. We discuss candidly the weaknesses
of our original system architecture, our rationale for en-
abling Amazon Web Services’ Auto Scaling capability
[2] to cope with our observed workloads, and finally,
the application-specific optimizations that we ultimately
used to provide the best possible scalability at the best
possible price point. Concretely, our contributions in this
paper are:

• An AWS Auto Scaling policy that can cope with
such unpredictably spiky workloads, without com-
promising the goals of a responsive user experience;

• Leveraging application-specific opportunities for
optimization that can cope with these workloads
at lower cost (compared to the Auto Scaling-
alone approach), while continuing to meet the user-
experience goals;

• Lessons learned on how Auto Scaling can often
mask architectural inefficiencies, and perform well
(in fact, too well), but at higher operational costs.

The rest of this paper is organized as follows. Section
2 explores the unique properties of our workload, includ-
ing its modality and spikiness. Sections 3, 4, and 5 de-
scribe our Baseline, Auto Scaling, and Optimized system
configurations, respectively. Section 6 presents a perfor-
mance comparison of our three system-configurations.
Section 7 describes related work. Finally, we conclude
in section 8.

2 Motivation

In this section, we explore the properties our workload
in depth, describing the natural phenomena that cause its
modality and spikiness. First, let’s consider the modal
nature of our workloads. Each workload begins in the
non-game mode, where the usage is nearly constant and
follows a predictable day-night cycle. In Figure 1, this
can be seen on April 16, 17, 19, and 20. On game days,
such as April 15, 18, and 20, our workload changes con-
siderably. In the hours prior to the game event, there is a
slow build-up in request throughput, which we refer to as
pre-game mode. As the game-start time nears, we typi-
cally see a load spike where the request rate increases
rapidly as shown in Figure 2. The system now enters
in-game mode, where the request rate fluctuates rapidly
throughout the game. In the case of hockey games, these
fluctuations define sub-modes where usage spikes during

2
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Figure 2: The trend of a game-time workload for a
hockey-team’s mobile app, illustrating modality and
spikiness. The workload shown is for a hockey game
in April 2012.

the first, second, and third hockey periods and drops dur-
ing the 20-minute intermissions between periods. The
load drops off quickly following the end of the game
during what we call the post-game mode. Following the
post-game decline, the system re-enters non-game mode
and the process repeats.

In addition to modality, our workload exhibits what
we call spikiness. We define a spiky workload to be
one where the request rate more than doubles within a
15-minute period. The workload shown in Figure 2 ex-
hibits spikiness at 7:30pm, towards the end of the pre-
game phase. Between 7:30 and 7:45, the request rate
of our workload more than doubled, and it nearly dou-
bled again by 8:00pm. The request rate reached its max-
imum between 9:15 and 9:30 in the middle of the sec-
ond period, when several significant scoring-events oc-
curred. In addition to the rapid increases, our workload
also shows equally-rapid decreases as the system enters
the post-game mode, with the workload nearly halving
in request rate between 10:15pm and 10:30pm.

To understand why our workload has these properties,
we have to consider our users’ demand for app content.
Both figures 1 and 2 show the number of home-screen
views in one of our hockey-team apps. Typically, this
page shows news and media items as well as the box
score of the previous game played. However, during
games, the home screen shows real-time data such as live
team-statistics and the game clock as well as a portion
of team’s Twitter feed. This effectively provides fans
with a way to follow the game without being tuned in

via radio or television. It also provides a second screen
that can augment an existing radio or television broad-
cast with live statistics and Twitter updates. Our fans
have found these features to be tremendously useful and
compelling, and our workload shows that these features
are used heavily during periods when the game is in play.
At other times, the app provides a wealth of information
about the team, players, statistics, and the latest news.
These functions, which lack a real-time aspect, have their
usage spread evenly throughout the day.

3 Configuration 1: Baseline

Figure 3 shows the architecture of our system when we
first began publishing our mobile apps in 2010. The
system is composed of two subsystems using a three-
tier architecture, one consuming new content and the
other pushing views of this content to our mobile apps.
The two subsystems share a common relational database,
shown in the middle of the diagram.

The content-aggregation tier is responsible for keep-
ing the relational database up-to-date with the latest app-
content, such as sports statistics, game events, news and
media items, and so on. It runs across multiple EC2
instances, periodically polling information sources and
identifying changes to the data. The content-aggregation
tier then transforms these changes into database update
queries, which it executes to bring the relational database
up-to-date. Since these updates are small and infrequent,
the load on the EC2 instances and database is negligi-
ble. The infrequency of updates also allows us to use
aggressive query-caching on our app servers, preventing
the database from becoming a bottleneck.

Our apps periodically retrieve new information from
the content-storage tier in the form of XML documents.
The app then displays information from the XML docu-
ment to the user in various ways. The content-delivery
tier is responsible for composing views of the relational
data as XML documents that are ready for consumption
by our apps. In response to a request for XML data,
the content-delivery tier executes one or more database
queries and synthesizes the results into an XML docu-
ment on the fly. This task is both I/O-intensive and CPU-
intensive. Fortunately, scaling up this component is sim-
ply a matter of adding additional EC2 instances behind a
load balancer.

However, despite being conceptually simple, we en-
countered multiple problems scaling up our system as the
size of our user-base increased. Initially, scaling up the
content-delivery tier was an entirely-manual task. We did
this before every sporting event, and we could only guess
how many additional servers we would need to handle
the CPU load for the game. Since the spikes we see
are of varying magnitude, we would often provision too
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Figure 3: Baseline Configuration

much or too little, either wasting money on resources we
didn’t need or frustrating our users with high latency and
errors. In the results section, we describe the high re-
sponse latency of our baseline architecture when under-
provisioned for a game workload.

4 Configuration 2: With Auto Scaling

We first adopted EC2 Auto Scaling [2] to deal with the
CPU-load-management problem. Auto Scaling is a
technique that allows system administrators to automat-
ically scale a fleet of EC2 resources up or down to meet
current workload-demands. We defined an Auto Scaling
policy that allowed our system to adapt to the spikes in
our workload.

We follow an aggressive scale-up policy in our sys-
tem to cope with our spiky workloads. Spikes in our
workload happen very quickly, and if we do not scale
our resources quickly, many of our users experience high
latency and errors while additional resources are be-
ing added. We use current CPU-usage in our content-
delivery tier to determine when to add additional servers.
We have set the CPU-usage threshold for scale up to a
low value of 30% average over 1 minute, in an attempt to
catch spikes early. We also scale up by doubling the size
of the fleet to make sure that we have enough instances
available to handle double the workload volume.

On the other hand, we defined a scale-down policy
that was slow and cautious. There are periods of lower-
volume usage (such as between periods in a hockey

game) where we did not want to scale down prematurely.
Furthermore, scaling down too rapidly could remove too
many resources from the pool, forcing the system to im-
mediately scale up after the next CPU-utilization check.
This could cause the system to flap back and forth be-
tween two fleet sizes, wasting EC2 resources.

We downscale our fleet of servers by removing
one server at a time and making sure that the CPU
usage in our content-delivery tier is stable for a
longer period of time before we do another round
of downscaling. Thus, our Auto Scaling policy can
be described as Multiplicative-Increase-Linear-Decrease
(MILD). This policy was inspired by the Additive-
Increase-Multiplicative-Decrease (AIMD) policy for
congestion control used in TCP. As with congestion con-
trol, our scaling policy attempts to prevent load-collapse
by cautiously modifying parameters of the system until
the workload matches the system’s capacity. The major
difference between MILD and TCP’s AIMD is that TCP
gradually increases the workload until the network is at
capacity. Since we do not have the ability to rate-limit
our workload, we take the opposite approach of gradu-
ally reducing our system’s maximum capacity until this
capacity matches the workload.

As described in section 6, Auto Scaling does solve the
high-latency problem caused by high CPU load for the
baseline configuration. Adding additional instances ef-
fectively adds more CPU resources, and when placed be-
hind a round-robin load-balancer such as Amazon’s ELB
[3], each instance gets an equal share of the workload.
Furthermore, Auto Scaling only increases the size of the
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fleet when the workload demands it, so we don’t have
to over-provision for each game. With Auto Scaling, we
were able to scale up our system to get acceptable laten-
cies in the face of our spiky workload even though our
system had a sub-optimal design with glaring inefficien-
cies.

Unfortunately, masking inefficiencies with Auto Scal-
ing does not come without a cost. We had to pay for up
to 15 additional instances per team during each game,
which adds up to a considerable increase in operation
costs over an entire season of games (for our hockey
apps, 82 regular-season games per team). At this point,
we wondered if we could lower our operations costs by
removing the inefficiencies in our architecture, thus low-
ering our CPU requirements and the number of instances
required to handle our workload during games. The sub-
sequent analysis of the inefficiencies in our system led us
to the optimized architecture we describe next.

5 Configuration 3: Optimized

Our optimized architecture is the result of studying
our baseline architecture, identifying inefficiencies, and
modifying the architecture to correct them. After study-
ing our system, we identified two major problems with
our architecture. The first problem was in our request
handling, where we realized that every request required
the server to generate a new XML document from data
stored in the database. Often, the system generated mul-
tiple identical XML documents within a short period of
time. The second was in our database layer, where we
noticed that certain queries were being executed multiple
times within a few seconds, each returning the same re-
sult. These observations led us to add two caching-layers
to our architecture, which we describe below.

In response to the observation that every request re-
quired XML generation, we added a caching layer in
front of the content-delivery tier. This layer receives re-
quests from clients and serves pre-generated XML con-
tent if the cache time on the content has not expired; oth-
erwise, it regenerates the XML content using the content-
delivery tier and stores the content to serve subsequent
requests. This dramatically reduces instance CPU uti-
lization, since new pages are only generated when cached
content expires (instead of on every request).

We implemented our caching layer using the output-
caching feature of the Microsoft IIS web server, which
required very little additional code or configuration on
top of our existing IIS-based content-delivery tier. We
assigned groups of XML documents a cache-expiration
time based on how much staleness the content could tol-
erate. For example, XML documents describing a news
article are unlikely to change after publication and so
have a cache-expiration time of a day or more, while

documents describing the latest game events change fre-
quently and have cache-expiration times on the order of
seconds.

Our second optimization was another caching-layer
between the content-delivery tier and the content-storage
tier, in response to the observation that the content-
delivery tier was executing multiple queries for the same
data in rapid succession. While our relational database
has an internal query cache, some of our queries generate
tens of megabytes of data. When several of these queries
are run in parallel, this volume of data can quickly sat-
urate the network link between our EC2 instances and
the database. To remedy this, we added a cache of query
results in the content-delivery tier.

This cache is implemented in a similar fashion to the
output cache. When a server in the content-delivery tier
needs to execute a database query, it first looks up the
query in a table of query results. If the query is found
in the table and the result has not expired, the result
from the table is used to generate the XML. Otherwise,
the generator runs the database query directly and up-
dates the table with the results. Like individual XML-
documents, each query is assigned a cache time based on
the staleness-tolerance of the data.

6 Evaluation

We evaluated our three system architectures using a
HTTP load generator and a trace of a production work-
load. We ran the three-hour trace and recorded the av-
erage latency seen over consecutive 60-second intervals.
We then compared the results of these tests to determine
the effectiveness of each approach in reducing the re-
sponse latency seen by our users.

We built our testbed entirely on EC2, utilizing EC2’s
internal network for communication between simulated
clients and the view generation service. Using the logs
collected during the April 18, we simulated clients by us-
ing a program that replays the log file exactly as it was
recorded using the timestamps associated with each re-
quest. The EC2 instance used to simulate clients was of
type m1.xlarge.

We ran our tests against a copy of our production sys-
tem. This copy was set up in an identical configuration as
our production system, except it was not serving produc-
tion traffic. To make this copy, we duplicated both the
load balancer configuration and the Auto Scaling config-
uration. We used the same operating system image as
the production service with the same EC2 instance type
(c1.medium). We also created an isolated read replica of
our database used only by the EC2 instances involved in
the test.

Our test trace was a three-hour log of traffic served
by our production system during a hockey game in April
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Figure 4: The average latency of our three system config-
urations throughout a 3-hour production workload trace.
The workload was recorded during a hockey-game in
April 2012.

2012. This trace captures all of the spikes in our work-
load. For each configuration of our system, we replayed
this trace in real time using our client simulator. Each
test was run in isolation on our test infrastructure, and all
resources were rebooted between runs.

We tested three configurations of our system: Base-
line, Auto Scaling, and with Optimizations. The Base-
line configuration is the system described in section 3,
running on a single instance through the entire trace.
The Auto Scaling configuration is the Baseline config-
uration running with the Auto Scaling policies described
in section 4, configured with one initial instance but a
maximum of sixteen. Finally, the Optimized configura-
tion is the system described in section 5, which extends
the Baseline configuration with additional caching to im-
prove performance. Like the Baseline configuration, the
Optimized configuration is restricted to a single instance.

Figure 4 shows a comparison of average latency over
60-second windows throughout the entire 3-hour trace
across all three configurations. The baseline configu-
ration performs much worse than either the Auto Scal-
ing or Optimized, due to the restricted amount of CPU
time available on a single instance. Both Auto Scaling
and Optimized perform far better through their respective
mechanisms for coping with heavy load - Auto Scaling
simply adds more resources to the pool, while Optimized
makes more efficient use of CPU resources.

Figure 5 shows the same trace comparison as in figure
4, except zoomed-in to show the fine differences between
the Auto Scaling and Optimized cases. This compari-
son shows that Optimized has both lower average-latency
and lower jitter than the Auto Scaling case throughout
the entire trace. Through careful optimization, we were
able to outperform Auto Scaling using just a fraction of

Figure 5: The same results shown figure 4, zoomed in
to show the differences between the Auto Scaling and
Optimized configurations.

the eight instances that Auto Scaling required to achieve
comparable performance.

7 Related Work

A substantial amount of research has been done in the
area of using Auto Scaling to cope with workloads that
have a high peak-to-average ratio. A number of related
works use predictive models to forecast the workload and
then use Auto Scaling to dynamically adjust the resource
usage to match the predicted workload. The main differ-
ence between some of these proposals is the way predic-
tive models are built and used. For instance, [12], [1], [8]
use control-theoretic models to predict workloads while
[7], [13] use autoregressive moving average (ARMA) fil-
ters for prediction. Mao et. al. [9] use Auto Scaling to
scale up or down cloud infrastructure to ensure that all
job deadlines are met under a limited budget. There is
also a significant amount of research done in the area of
workload modeling and prediction, even though the pro-
posed systems do not explicitly mention using Auto Scal-
ing to cope with varying work load. Gmach et. al. [6]
use resource pools that are shared by multiple applica-
tions and propose a process for automating the efficient
use of such resource pools. Shivam et. al.[14] use an
active-learning approach to analyze the performance his-
tories of hosted applications to build predictive models
for future use of the applications and use the predicted
values for future resource assignment. Chandra et. al.
[4] propose to capture the transient behavior of web ap-
plications workload by modeling the server resource.

While we can certainly benefit from some of the
workload-prediction-related work, as we demonstrate in
Section 2, our workloads can be spiky and are often hard
to predict in advance (e.g. predicting whether a player
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will score a hat-trick). We believe that contextual pre-
diction e.g., prediction based on the analysis of statistics
feeds to determine what might be going on in the game
(a player close to scoring a hat-trick), or prediction based
on the analysis of news feeds to learn about important
events (like return of a favorite player), might be more
appropriate and useful in our context.

8 Conclusions and Reflections

Auto Scaling is often provided by IaaS providers as a
technique by which applications can scale up/down re-
sources to meet the current demand. Our results show
that Auto Scaling works well, in-fact so well that we
were able to take a system with obvious architectural
flaws and make it perform nearly as well as a fully-
optimized version. However, hiding these inefficiencies
comes with the price of additional infrastructure. In our
case, our inefficient Baseline-configuration required up
to eight times the resources of our efficient Optimized-
configuration to achieve comparable performance.

On the other hand, the optimizations that we made
were fairly simple and straightforward to identify and
implement. This may not be the case with all systems,
and optimizing effectively often requires considerable
skill and effort. However, if it can be done, the payoff
can be much greater than simply using Auto Scaling with
an inefficient system. In our case, our thoughtful opti-
mizations required greater insight and more development
time, but paid off through lower costs, lower latency, and
lower jitter than either of the other configurations.
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Abstract
Large-scale data exploration using Big Data platforms
requires the orchestration of complex analytic workflows
composed of atomic analytic components for data selec-
tion, feature extraction, modeling and scoring. In this
paper, we propose an approach that uses a combination
of planning and machine learning to automatically deter-
mine the most appropriate data-driven workflows to ex-
ecute in response to a user-specified objective. We com-
bine this with orchestration mechanisms and automati-
cally deploy, adapt and manage such workflows across
Big Data platforms. We present results of this automated
exploration in real settings in healthcare.

1 Introduction

With the emergence of multiple Big Data platforms that
handle large volumes of streaming and stored data, it is
becoming possible to support massive data exploration
tasks in many different domains. These domains include
cybersecurity, healthcare, financial services, manufac-
turing process control, as well as several environmental
monitoring applications. More specifically, in intensive
care, healthcare providers need large-scale and real-time
exploration of medical records, test results, and physi-
ological data streams from monitored patients to detect
complications as early as possible. There are several
ways to explore this data for these detection problems.
As a result, such an exploration requires constructing and
orchestrating a large number of analytic flows, i.e. work-
flows composed of atomic analytic components for data
selection, feature extraction, modeling, and scoring. The
scale of data requires the use of a distributed setting, po-
tentially across multiple compute platforms (e.g. offline
learning on Hadoop and online scoring on a real-time
stream computing platform). This places a near insur-
mountable burden on end users and analysts who want
to utilize these platforms and analytics in their domain,

and motivates the need for autonomic management of the
analytic workflows.

In this paper we propose a solution based on auto-
nomic computing principles for creating, deploying, self-
managing and adapting analytic workflows in response to
an end-user’s high level specification of their objectives.
Specifically, we propose an approach that combines plan-
ning and machine learning to automate the composi-
tion and choreography of these workflows in large-scale
distributed data exploration tasks. The use of machine
learning in autonomic compute systems has been ex-
plored previously in limited settings related to scheduling
and resource management. In [14] [20] the authors use
reinforcement learning for fairly scheduling resources in
a large-scale production grid, and resource allocation in
distributed settings, respectively. The use of planning in
software composition with semantic constraints has been
studied in web services [18]. We build on an existing
planning-based composition tool, MARIO [15], which
was originally created to allow end-users to compose and
deploy analytics on multiple platforms.

Combinations of planning and learning have been used
in robotics [3] for exploring and partitioning complex
state spaces in noisy and stochastic settings, and for im-
itation learning [16]. However this work is primarily fo-
cused on exploring uncertain environments as opposed
to analytic workflow composition, selection, and orches-
tration, as discussed in this paper. Planning and learning
for analytic workflow selection has been recently stud-
ied in [10]. The authors use a data mining ontology to
capture an algorithm’s inductive bias, and use learning
to select the algorithm to use in different settings. How-
ever, this does not consider the problem of constructing
analytic workflows by dynamically composing such in-
dividual algorithms.

In contrast, in this paper, we focus on both the com-
position of analytic flows as well as the data-driven dy-
namic selection of appropriate flows to meet an end-user
objective. By describing atomic analytic components
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with semantic annotations, we provide end users with
the ability to specify their objectives using a business
relevant semantic vocabulary. This objective is associ-
ated with an appropriate objective or loss function that
may be used to evaluate performance. We use planning
techniques to identify feasible analytic compositions in
response to the user-specified goal. We then use online
learning to iteratively explore the space of feasible com-
positions to determine the most appropriate workflows
to deploy in a data-driven manner. We combine plan-
ning and learning with orchestration mechanisms that al-
low us to deploy and manage analytic workflows on a
large-scale, real-time, distributed stream processing plat-
form (IBM InfoSphere Streams) [19]. This automation
allows us to adapt to dynamics in the data, availability
of new analytic components, as well as system resource
constraints, while providing predictive performance.
This paper is organized as follows. We describe the

technical details of our approach and the underlying sys-
tem architecture in Section 2, including the planning
component 2.1 and the learning component 2.2. We then
describe results of using this system on real-world explo-
ration problems in a healthcare setting in Section 3 and
highlight both predictive performance as well as system
dynamics. We finally conclude with a discussion and di-
rections for future work in Section 4.

2 System Description

Our design for an autonomic system for data exploration
is based on three observations of the typical application
scenario: (i) there are multiple analysis workflows that
have different degrees of usefulness for a data analysis
objective (and that degree may change over time); (ii)
each such workflow is a combination of data sources
and analytics, including feature extraction, model build-
ing and scoring components; (iii) available computing
resources may limit the number of workflows (combina-
tions) that can be in execution at any time.

Consider a healthcare application scenario [1] in
which the objective is to predict complications in an ICU
setting ahead of time. The available data includes of-
fline data such as histories and outcomes of previous
patients, the history of the current patient; slow chang-
ing data such as results of physician ordered tests; and
live streaming data such as sensor measurements from
the patient’s monitor units (e.g., ECG, blood oxygen lev-
els, respiration rate, etc.). The system also has available
analytics that can extract both simple and complex fea-
tures from this data, build a variety of machine learning
models from this data (including but not limited to de-
cision trees, SVMs, etc.). Compositions of these algo-
rithms into workflows are required to solve the detection
problem, however only some workflows are meaningful,

Figure 1: System architecture

and moreover the choice of workflow depends on context
and varies over time. We use planning and learning to
dynamically determine the most effective analytic work-
flow to construct and deploy given our computational re-
sources, and the user specified task.
With these objectives in mind, we propose a design

described in Figure 1. There are two main components
of the system described in the remainder of this section.
The planner has access to a repository of descriptions of
analytic components and patterns available to the system.
The analytic components are semantically annotated, and
together with the constraints expressed in the patterns de-
scribe the space of analytic workflows that can be auto-
matically composed. The purpose of the planner is to
discover the set of goals and parameters that match a spe-
cific objective such as predicting patient complications,
and for each such goal to automatically compose, gen-
erate code and deploy an analytic workflow that realizes
the goal. A specific goal relevant in intensive care may
be to detect ectopic or abnormal heart beats by observing
electrocardiograms (ECG), identifying individual heart
beats, extracting spectral features, and classifying them
using a decision tree algorithm.

The learner’s mission is threefold: (i) over time, it
learns the effectiveness of the various analytic workflows
deployed for the objective; (ii) it makes a single predic-
tion for specific complications as a function of the ef-
fectiveness of the analytic workflows and their individ-
ual predictions; (iii) it samples from the space of avail-
able analytic workflows that match our computational re-
sources – the sampling is performed as a function of the
learned effectiveness of workflows. The learner will con-
tinuously re-evaluate the current mix of analytic work-
flows deployed and, when deciding to change this set,
communicate with the planner which will compose and
deploy the analytic workflows, potentially on multiple
platforms. The learner limits the total load on the sys-
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tem by limiting the number of flows that are active at
any given time, and the middleware platforms further en-
sure efficient allocation of distributed computational re-
sources to the flows selected by the learner.

In our implementation, the planner (including orches-
tration components) is running as a set of plugins in the
Equinox OSGI container, while the learner component is
running as a streams processing application on the IBM
InfoSphere Streams platform. The two components com-
municate via a REST API over HTTP. We now describe
these components in more detail.

2.1 Planning Component: MARIO
We rely on automated planning to adaptively determine
the set of available analytic workflows given changing
conditions, resources, data sources, data transforms, and
analytics. Any new analytic added to our system is au-
tomatically combined with other compatible analytics to
generate multiple new workflows. The planner also auto-
matically eliminates inefficient workflows based on esti-
mates of computational cost and reasoning about seman-
tic equivalence of results. The remaining workflows are
then made available for the learner to instantiate.

The planning, deployment orchestration, and devel-
opment environment (for describing workflow composi-
tion constraints and semantics of analytics) in our imple-
mentation are provided by MARIO (Mashup Automa-
tion with Runtime Invocation and Orchestration) [15].
MARIO is responsible for:

1. Generating the complete set of distinct, efficient and
valid analytic flows, given the set of analytics, data
sources and composition patterns.

2. Generating platform-specific code and deploying
individual selected flows with specified parameter
values when instructed by the learner.

Our implementation is capable of generating code for
IBM InfoSphere Streams and can be extended with plug-
in code generators for other Big Data platforms, such as
Apache Hadoop. In addition, MARIO provides a web
application for end users, allowing them to inspect the
results of running flows, predictions made by the learner,
and request additional processing to be deployed.

SPPL planner MARIO uses a specialized planner to
solve compositions as planning problems described in
SPPL [17]. SPPL is derived from the general-purpose
domain description language PDDL [8] and includes
modifications to improve planning performance in work-
flow composition applications. In SPPL, description of
the planning task includes description of planning do-
main, consisting of a set of actions with preconditions

and effects defined as lists of user-defined predicates, and
description of the planning problem containing the pred-
icates of the initial state and the goal state. Given the
planning task, the SPPL planner finds an optimal plan,
i.e., a partially ordered set of actions that achieve the goal
state when applied to the initial state, and optimize a lin-
ear objective subject to linear budget constraints.

Cascade composition patterns MARIO generates
SPPL descriptions automatically based on composition
patterns specified in Cascade [15] that describe com-
position constraints and software component semantics.
Composition constraints are defined by defining a flow
graph with points of variability and parameter ranges.
Figure 2 includes an example pattern described in Cas-
cade for a simple classification problem we used in ex-
periments. The graph consists of two nodes, transform
and classification, with two possible implementations of
the transform. Ranges of parameters are specified as enu-
merations separated by a vertical bar “|”. Implementa-
tions of Classification, Features DCT and Features FFT
are defined separately in Cascade by providing platform-
specific code fragments. Different choices of parameter
values or implementations of the transform can be se-
lected independently, thus generating many possible in-
dividual workflows based on the pattern.

In general, Cascade patterns can describe any di-
rected acyclic graphs and can be recursive. For example,
Classification can be defined as another pattern consist-
ing of lower-level components. Individual components,
i.e. analytics or data sources, can be implemented in
any programming language supported by MARIO. Since
MARIO only generates code for execution on target Big
Data platforms and does not process any data itself, it
places no restrictions on supported data types or the com-
plexity of analytics. MARIO does not verify schema
compatibility between connected components, and Cas-
cade Developers have to ensure that the pattern enforces
input/output compatibility of components.

2.2 Learning Component: Learner
At each step, the planner identifies the current set of
feasible analytic flows, but it cannot tell which of these
flows are useful for the current prediction problem. The
goal of the learner is to automatically explore the space
of feasible flows, learning the best current combina-
tion to deploy, subject to resource constraints. This is
achieved in a data-driven way using feedback from the
environment.

Our core learning algorithm is online gradient descent
with several improvements, including adaptive feature-
dependent gradient updates [6, 12] modified for loss non-
linearity as described in [11]. This approach works very
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composite EctopicBeatDetectionPattern(output o) {

param

string $NUM_PTS:

UserParam("Number_Of_DCT_Features","|16|32|48|");

string $MODELTYPE:

UserParam("MODELLING_TYPE","|J48|NB|");

string $MODELTRAINING:

UserParam("NUMBER_OF_TRAINING_SAMPLES",

"|500|1000|2000|");

graph

stream transform =

Features_DCT(){ param DCT_NUM_PTS: $NUM_PTS; }

| Features_FFT(){ param FFT_NUM_PTS: $NUM_PTS; }

stream o = Classification(transform){

param CLASS_NUM_PTS: $NUM_PTS;

MODELTYPE: $MODELTYPE;

MODELTRAINING: $MODELTRAINING; }

}

Figure 2: Example of a Cascade pattern.

well in high dimensional sparse feature spaces, typical in
the applications we target.
We now describe the meta-learning problem (learning

across other analytics which may themselves use learn-
ing), starting with the full information setting, when the
learner can run and observe outputs of all available ana-
lytic flows at each step. Then we discuss the exploration
problem arising from not being able to run most flows at
every step due to resource constraints.

The meta-learner operates in an online setting where it
repeatedly

1. receives input vector xt ∈ R
d , which includes the

outputs of all available analytic flows at time t,

2. makes its prediction ŷt =wt ·xt of the target variable
yt ∈ R, where wt ∈ R

d is the current linear model.

3. upon receiving feedback yt , updates

wt+1 ←wt −2ηt(ŷt − yt)xt ,

where ηt is the learning rate at time t.

While the update rule above assumes the squared loss
ℓ(ŷ,y) = (ŷ − y)2 commonly used in regression, other
loss functions are supported as well. The choice of the
loss function is driven by the prediction problem. The
gradient update actually used in the system is more com-
plex, based on a combination of improvements described
in detail in [6, 12, 11]. Other learning parameters of the
learner that govern the form of the gradient, e.g. the
learning rate can be optimized on a given problem using
progressive validation loss [2, 4].
The analytic flow exploration problem requires exten-

tions to this basic setting. Under resource constraints,
when the number of feasible flows is large, they cannot
be all instantiated together, hence the learner needs to

carefully select which flows to run. Thus instead of ob-
serving the entire vector x, the learner can only probe
into it sparingly, observing only a small subset of values
each time. Such attribute efficient learning for linear re-
gression has recently been explored [5, 9], and we build
on these for our exploration. While we omit details here,
the intuition derives from the model in the basic setting.
When properly normalized to account for the scale of
flow outputs, the learned weight vector wt indicates the
relative importance of each flow. Flows whose weights
are close to zero do not have much predictive edge for
the current prediction problem. The learner’s model wt
is continuously adapted to changes in the underlying data
distribution, as illustrated in Section 3, and this model
may be used (e.g. as a probability distribution) to control
how the flows are sampled.

There are several other open problems for this explo-
ration. First, we need to account for switching cost con-
siderations associated with starting and stopping work-
flows. Second, we need a mechanism for learning new
useful nonlinearities automatically from data. Finally,
while in many applications, the loss function is known
(as in classification or regression), there are scenarios,
e.g. contextual bandit learning [7] where the loss func-
tion has to be learned as well. We are extending our
learner component to tackle these open problems, and
our results on these extensions will be described in detail
in a separate publication.

3 Experimental Results

In this section, we describe two different types of illustra-
tive results – results on a simulated example to highlight
the adaptation and convergence of the learning based ex-
ploration, and some preliminary results on real-world
datasets in healthcare.

3.1 Convergence and Adaptation Results
To illustrate the system’s convergence and adaptation, we
generated a regression dataset consisting of five features,
x1, . . . ,x5, with values drawn independently at random
from [0,1] at every step. We then set the label at differ-
ent time periods as shown in Table 1. We set α = t−ts

te−ts .
The experiment includes both sudden as well as grad-
ual variations in the label characteristics. We create 15
analytic flows, that correspond to five self-products, and
the ten pairwise products of features x1, . . . ,x5, and use a
squared loss function ℓ(ŷ,y) = (ŷ− y)2.

Figure 3 shows the corresponding instantaneous
squared loss. The best constant’s loss in this generated
example was 0.1395, with the best constant predictor
being 0.1675. The adaptive learner gives a relative im-
provement of 96.4% in squared loss in this case. Observe
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Start(ts) End(te) y
1 4000 (x1 −x2)

2

4001 6000 (x2 −x3)
2

6001 8000 (1−α)(x2 −x3)
2 +α(x4 −x5)

2

8001 10000 (x4 −x5)
2

Table 1: Generated Data.
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Figure 3: Instantaneous squared loss

the sharp increase in loss in step 4,000 when the target
sharply changes to another function. The loss increases
smoothly when the target starts to drift away from the
learned function in step 8,000.
Figure 4 shows how the weights of different flows

evolve in this experiment. The red curve corresponds to
flow x2

1, which is predictive only in the first 4,000 steps,
while the target is x2

1 −2x1x2 + x2
2. Its weight goes down

to 0 when it no longer carries any predictive signal. The
green curve corresponds to flow x1x2; the system learned
to use it with coefficient -2 for the first target, and then
the coefficient went down to 0 when the target changed
to x2

2 −2x2x3 + x2
3. The coefficients of features x1, . . . ,x5

are close to 0 for the entire experiment.
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Figure 4: Weight evolution of different analytics

3.2 Exploring Healthcare Data

We consider an exploration problem in healthcare, fo-
cused on streaming analysis of Electro Cardiogram
(ECG) signals from hospitalized patients. The applica-
tion is focused on identifying ectopic or irregular heart-
beats, that are indicative of potential problems to the pa-
tient. Detecting such beats from ECG signals may be
viewed as a binary classification problem, and requires
online learning to adapt to the time-verying nature of the
input signals that vary with patient state, medications etc.
We make use of annotated data from the MIT Phys-

iobank [13], a database with around 135000 annotated
heartbeats (around 16000 ectopic)- corresponding to raw
ECG data from 47 patients. The analytic workflow re-
quired for ectopic beat detection includes heartbeat and
feature extraction, followed by binary classification. The
Cascade pattern is shown in Figure 2. There is a choice
between different transformations (DCT or FFT) with re-
tention of only $NUM PTS (16, 32, 64) coefficients, for
feature extraction.
As classifiers, we use Weka [21] implementa-

tions of Decision Trees (J48) and Naive Bayes (NB)
with periodic retraining - controlled by parameter
$MODELTRAINING (500, 1000, 2000), i.e. retraining of
the model is performed every $MODELTRAINING heart-
beats. Hence, the resulting analytic flow space includes
36 combinations (2 transforms, 2 classifiers, and 3 values
each for $NUM PTS, and $MODELTRAINING).
These flows are deployed on the IBM InfoSphere

Streams processing platform. We deploy a separate data
source and feature extraction job for each patient, with a
common set of classifier flows for all patients that are se-
lected dynamically by the interaction between the learner
and the planner. We deploy these jobs across a cluster
with 8 compute nodes with 8 cores each and a shared
filesystem.
We compare the prediction performance (in terms of

probability of detection pD and probability of false alarm
pF ) of this automated deployment with the best hand-
tuned deployment, achieved after multiple man-hours of
experimenting and tuning in batch mode. We also in-
clude results to indicate the impact of different resource
constraints on the deployment. These are shown in Ta-
ble 2. For each automated experiment, we were allowed
to deploy a maximum of 5 analytic flows at one time.
As we can see, the results of automated deployment ex-
periment 1 (A1) are comparable to the best handtuned
results - slightly higher pD and slightly higher pF – a
strong argument for automation. Additionally, by com-
paring A1 with A2, we observe that performance suffers
as fewer resources are available. This is explained by
the flow startup time - the time it takes since when the
flow is requested by the learner to the time it starts pro-

5
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Test Nodes Flow Startup Time pD pF
HandTuned 8 nodes – 0.75 0.045

A1 8 nodes 90 sec 0.77 0.05
A2 4 nodes 205 sec 0.72 0.14

Table 2: Prediction Performance.

ducing predictions. In A2, with 4 nodes, most nodes are
busy, hence it takes longer for a requested flow to be de-
ployed (on average 205 seconds, during which time the
flow misses processing around 240 beats)- and hence the
prediction performance suffers. The difference of 0.1 in
false alarm rate corresponds to around 12000 more nor-
mal beats being labeled ectopic.
We are conducting more detailed validation of these

results with a more complex analytic flow space (with
larger number of possible flows), with a dynamic change
in the available analytics, and with finer grained perfor-
mance and resource measurements.

4 Conclusion and Next Steps

We present a system that uses combinations of planning
and machine learning to automate the orchestration of
analytic workflows in Big Data settings. We use planning
to identify feasible analytic workflows given descriptions
of composition patterns and individual analytical build-
ing blocks. We use learning to explore the space of pos-
sible workflows and automatically identify appropriate
combinations of these flows to deploy in response to dy-
namically changing data characteristics. We deploy this
system to tackle a real-time ectopic beat detection prob-
lem in healthcare, and show that the automated system
is able to produce results comparable with the best hand-
tuned analytics. We are in the process of replicating these
results across other domains such as cybersecurity, and
using other Big Data platforms such as Hadoop. Interest-
ing directions for future research include the use of hier-
archical learning and planning, system resource schedul-
ing and adaptation, and combining these with domain-
specific reasoning to exploit domain expertise better.
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Abstract

Hadoop is the de-facto standard for big data analytics applica-
tions. Presently available schedulers for Hadoop clusters assign
tasks to nodes without regard to the capability of the nodes.
We propose ThroughputScheduler, which reduces the overall
job completion time on a clusters of heterogeneous nodes by
actively scheduling tasks on nodes based on optimally match-
ing job requirements to node capabilities. Node capabilities
are learned by running probe jobs on the cluster. Through-
putScheduler uses a Bayesian, active learning scheme to learn
the resource requirements of jobs on-the-fly. An empirical eval-
uation on a set of sample problems demonstrates that Through-
putScheduler can reduce total job completion time by almost
20% compared to the Hadoop FairScheduler and 40% com-
pared to FIFOScheduler. ThroughputScheduler also reduces
average mapping time by 33% compared to either of these
schedulers.

1 Introduction

Map-Reduce frameworks, such as Hadoop, are the tech-
nology of choice for implementing mayn big data appli-
cations. However, Hadoop and other frameworks typ-
ically assume a homogeneous cluster of server nodes
and assign tasks to nodes regardless of their capabili-
ties, while in practice, data centers may contain a het-
erogeneous mix of servers. When the jobs executing
on the cluster also have heterogeneous resource require-
ments, which is typical, then it is possible to signifi-
cantly increase processing throughput by actively match-
ing jobs to server capabilities [2, 4, 6]. In this paper,
we present the ThroughputScheduler, which actively ex-
ploits the heterogeneity of a cluster to reduce the overall
execution time of a collection of concurrently executing
jobs with distinct resource requirements. This is accom-
plished without any additional input from the user or the
cluster administrator.

Optimal task allocation requires knowledge about both

the resource requirements of jobs and the resource capa-
bilities of servers, e.g., their relative CPU and disk I/O
speeds. The ThroughputScheduler derives server capa-
bilities by running “probe” jobs on the cluster nodes.
These capabilities drift very slowly in practice and can
be evaluated at infrequent intervals, e.g., at cluster set-up.
In contrast, each new job has a-priori unknown resource
requirements. We therefore present a learning scheme to
learn job resource requirements on-the-fly.

The practicality of our solution relies on the structure
of jobs in Hadoop. These jobs are subdivided into tasks,
often numbering in the thousands, which are executed in
parallel on different nodes. Mapping tasks belonging to
different jobs can have very different resource require-
ments, while mapping tasks belonging to the same job
are very similar. This is true for the large majority of
practical mapping tasks, as Hadoop divides the data to be
processed into evenly sized blocks. For a given job, we
can therefore use online learning to learn a model of its
resource requirements from a small number of mapping
tasks in an explore phase, and then exploit this model
to optimize the allocation of the remaining tasks. As
we will show, this can result in a significant increase
in throughput and never reduces throughput compared to
Hadoop’s baseline schedulers (FIFO and FairScheduler).
We focus on minimizing the overall time to completion
of mapping tasks, which is typically the primary driver
of overall job completion time.

The next section reviews scheduling in Hadoop, fol-
lowed by a discussion of related work. We then define a
model of task completion time based on server capabili-
ties and task requirements. We derive a Bayesian exper-
imental design for learning the parameters of this model
online, and present a real-time heuristic algorithm to op-
timally schedule tasks onto available cluster nodes using
this model. Finally, we show empirically that Through-
putScheduler can reduce overall job execution time by
up to 40% on a heterogeneous Hadoop cluster.
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2 Hadoop Scheduler

In this section we briefly review the scheduler of Hadoop
YARN [1]. YARN has a central entity called the resource
manager. The resource manager has two primary mod-
ules: Scheduler and ApplicationManager. For every in-
coming job the ApplicationManager starts an Applica-
tionMaster on one of the slave nodes. The Application-
Master makes resource requests to the resource manager
and is also responsible for monitoring the status of the
job. Jobs are divided into tasks and for every task the
scheduler assigns a container upon the request from the
corresponding ApplicationMaster. A container specifies
the node to run the task on and a fixed amount of re-
sources (memory and CPU cores). YARN supports al-
locating containers based on the available resources (as
of now just based on memory) on the nodes, but it has
no mechanism to determine the actual resource require-
ments of a job.

To coordinate the allocation of resources for concur-
rent jobs, Hadoop provides three different schedulers:
FIFO-, Fair- and CapacityScheduler. FairScheduler is
the most popular scheduler among all because it enables
fairness among concurrently executing jobs by giving
them equal resources. All of Hadoop’s schedulers are
unaware of the actual resource profiles of jobs and the
capabilities of node in the cluster and therefore often al-
locate resources sub-optimally.

3 Related Work

Recently, researchers have realized that the assumption
of a homogeneous cluster is no longer true in many sce-
narios and have started to develop approaches that im-
prove Hadoop’s performance on heterogeneous clusters.

Speculative execution, a feature of Hadoop where a
task that takes longer to finish than expected gets re-
executed preemptively on a second node assuming the
first may fail, can lead to degraded performance on het-
erogeneous clusters. This is because the scheduler’s
model of how long a task should take does not take the
heterogeneous resources into account, leading to many
instances of unnecessary speculative executions for tasks
executing on slower nodes. The LATE Scheduler [9] im-
proves speculative executing for heterogeneous clusters,
to only speculatively execute tasks that will indeed finish
late using the concept of straggler tasks [3]. However,
the approach assumes that the hardware capabilities and
the task resource profiles are already known rather than
being discovered automatically.

The Context Aware Scheduler for Hadoop (CASH) [5]
assigns tasks to the nodes that are most capable to satisfy
the tasks’ resource requirements. Similar to our approach
CASH learns resource capabilities and resource require-

ments to enable efficient scheduling. However, unlike
our online learning, CASH learns capabilities and re-
quirements in offline mode. The performance of CASH
is evaluated on a Hadoop simulator rather than a real
cluster. Tian et al. propose a dynamic scheduler which
learns job resource profile on the fly [8]. Their sched-
uler only considers the heterogeneity in the workload
and assumes a homogeneous cluster to assign tasks to
nodes. An architecture of a resource-aware cloud-driver
for heterogeneous Hadoop clusters was proposed to im-
prove the performance and increase fairness [7]. The
cloud-driver tries to improve the performance by provid-
ing more efficient fairness among jobs in terms of re-
source allocation. Unlike our approach, the cloud-driver
assumes that cluster capabilities are already known and
it has abstract knowledge of job resource requirements.

4 Approach

In this section we describe the design for a scheduler
that optimizes the assignment of tasks to servers. To do
this, we need the task requirements and server capabil-
ities. Unfortunately, these requirements and capabilities
are not directly observable as there is no simple way of
translating server hardware specifications and task pro-
gram code into resource parameters. We take a learning
based approach which starts with an explore phase where
parameters are learned followed by an exploit phase in
which the parameters are used to allocate tasks to servers.
To learn these parameters by observation, we propose a
task execution model that links observed execution times
of map tasks to the unobservable parameters. We assume
that map tasks belonging to the same job have very sim-
ilar resource requirements. In the remainder of this sec-
tion, we introduce the task model and then describe the
explore and exploit phases.

4.1 Task Model

The task performance model predicts the execution time
of a task on a server given the task resource require-
ments and the capabilities of the server node. We model
a task as a set of resource specific operation types such
as reading data from HDFS, performing computation,
or transferring data over the network. The task re-
source requirements are represented by a vector θ =
[θ1,θ2, . . . ,θN ] where each component represents the to-
tal requirement for an operation type (e.g., number of
instructions to process, bytes of I/O to read). The ca-
pabilities of the server are described by a corresponding
vector κ = [κ1,κ2, . . . ,κN ] which represent rates for pro-
cessing the respective operation type (e.g., FLOPS or I/O
per second).

2
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In theory, some of these operations could take place si-
multaneously. For instance, some computation can occur
while waiting for disk I/O. In practice this does not have
a large impact on Hadoop tasks we studied. We therefore
assume that the requirements for each operation type are
processed independently. The time required to process
a resource requirement is the total magnitude for the re-
quirement divided by the processing rate. The total time
T j to process all resource requirements on server j is the
sum of the times for each operation type

T j = ∑
k

θk

κ j
k

+Ω j (1)

where Ω j is the overhead to start the task on the server.
We assume that every job imposes the same amount of
overhead on a given machine. In this paper, we consider
a two dimensional model in which κ = [κc,κd ] repre-
sents computation and disk I/O server capabilities and
θ = [θc,θd ] represents the corresponding task require-
ments. Hence, the task duration model reduces to:

T j =
θc

κ j
c
+

θd

κ j
d

+Ω j. (2)

The parameters κc and κd abstractly capture many
complex low-level hardware dependencies. For example,
κc internally accounts for the kind of operations needed
to be performed (flops or integer ops or memory ops).
Similarly, κd is dependent on disk speed, seek time, etc.
In practice, it is very difficult to build a task model as
a function of these low level parameters. To keep the
model simple and easier to understand we use such ab-
stract parameters.

4.2 Explore
We learn server resource capabilities and task resource
requirements separately. First we learn server capabil-
ities offline. Then using these capabilities we actively
learn the resource requirements for jobs online.

4.2.1 Learning Node Capabilities

We assume server capabilities κ j’s and overhead Ω j do
not change frequently and can be estimated offline. The
server parameters are estimated by executing probe jobs.
Since the time we measure is the only dimension with
fixed units, the value of the parameters is underdeter-
mined. We resolve the unidentifiability of the system by
choosing a ‘unit’ map task to define a baseline. The unit
map task has an empty map function and it does not read
or write from/to HDFS.

The computation (θc) and disk task requirements (θd)
are both zero, therefore Equation 2 allows us to estimate
Ω. Multiple executions are averaged to create an accurate

point estimate. Note that Ω includes some computation
and disk I/O that occur during start up.

One could imagine attempting to isolate the remaining
parameters in the same fashion, however, it is difficult to
construct a job with zero computation or zero disk I/O.
Instead we construct jobs with two different levels of re-
source usage defined by a fixed ratio η .

Let’s assume we aim to determine κc. First we run a
job J1

c = 〈θc,εd〉 with fixed disk requirement εd (J1
c might

be a job which simply reads an input file and processes
the text in the file). We compute the average execution
time of this job on each server node. According to our
task model the average mapping time for every machine
i can be given as

T i
1 =

θc

κ i
c
+

εd

κ i
d
+Ωi (3)

Next we run a job Jη
c which reads the same input but the

processing is multiplied by η compared to J1
c . Therefore,

the resource requirements of Jη
c can be given as Jη

c =
〈ηθc,εd〉. The average mapping time for every node can
be given as

T i
n =

ηθc

κ i
c

+
εd

κ i
d
+Ωi (4)

We solve for εd
κd

in equations 3 and 4, set them equal and
solve for κ i

c to get:

κ i
c =

θc(η −1)
T i

n −T i
1

(5)

This equation gives us κ i
c in terms of a ratio. To make it

absolute, we arbitrarily choose one node as the reference
node. We set κ1

c = 1 and κ1
d = 1 and then solve equa-

tion 5 for θc. Once we have the task requirements θc in
terms of the base units for server one, we can use this job
requirement to solve for the server capabilities on all the
other nodes. Similarly we estimate κd .

Normally in Hadoop, the output of map tasks goes
to multiple reducers and may be replicated on several
servers. This would have the effect of introducing net-
work communication costs into the system. To avoid that
while learning node capabilities, we set the number of re-
ducers to zero and set the replication factor to one.

Table 1 gives an example of computed server capa-
bility parameters for a five node cluster of heterogenous
machines. The algorithm correctly discovers that there
are two classes of machines.

4.2.2 Learning Job Resource Profile

In this phase the resource requirements for tasks are
learned in an online manner without interrupting produc-
tion use of the cluster. To enable online learning we col-
lect task completion time samples from actual production

3
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Node κc κd Ω
Node1 1 1 45
Node2 1 1 45
Node3 7.5 2.5 5.3
Node4 7.5 2.5 5.3
Node5 7.8 2.6 4.8

Table 1: Recorded Node Capabilities and Overhead

jobs. With every new time sample we update our belief
about the resource profile [θc, θd ] of the job.

We assume that the observed execution time T j is nor-
mally distributed around the value predicted by the task
duration model given by Eq. 2. Given a distribution over
resource parameters [θc,θd ], the remaining uncertainty
due to changing conditions on the server (i.e., the obser-
vation noise) is given by a standard deviation σ j.

T j ∼ N

(
θc

κ j
c
+

θd

κ j
d

+Ω j, σ j

)
(6)

Starting with prior beliefs about task requirements
p(θc,θd) and the execution model based likelihood func-
tion p(T j | θc,θd ,κ

j
c ,κ j

d ,σ
j), Bayes’ rule allows us to

compute a joint posterior belief over [θc,θd ]:

p(θc,θd | T j,κ j
c ,κ

j
d ,σ

j) = α p(T j | θc,θd ,κ j,σ j)p(θc,θd)

For our two-dimensional CPU and disk usage exam-
ple, the likelihood has the form (Empirically we ob-
served an observed variance of approximately +/- 3 in-
dicates a standard deviation of 1, therefore, σ j = 1):

p(T j | θc,θd ; κc,κd) =
1√
2π

exp

(
T j − θc

κ j
c
− θd

κ j
d
−Ω j

)2

2

Note that the execution time is normally distributed
around a line defined by the server capabilities [κc,κd ].
The joint distribution of the likelihood is not a bivari-
ate normal, but a univariate Gaussian tube around a line.
This makes sense, as a given execution time could be due
to a slow CPU and fast disk or a fast CPU and slow disk.

When a job is first submitted we assume that the
resource requirements for its tasks are completely un-
known. Assuming an uninformative prior, the posterior
distribution after the first observation is just proportional
to the likelihood.

p(θc,θd | T j) =
1√

2πσ j
exp

(
T j − θc

κc
− θd

κd
−Ω j

)2

2

For the second and subsequent updates we have a defi-
nite prior distribution and likelihood function. These two
are multiplied to obtain the density of the second poste-
rior update. Let the first experiment be on machine j

with capability κ j and let the observed time be T j. Let
the second experiment be on machine k with capability
κk and let the observed time be T k. The resulting poste-
rior distribution is

p(θc,θd | T j,T k) =

1√
2π

exp




(
T j− θc

κ j
c
− θd

κ j
d
−Ω j

)2

2 +

(
T k− θc

κk
c
− θd

κk
d
−Ω j

)2

2


 (7)

We omit the derivation for space, but we do give the
update rules here. With every time sample we can re-
cover the mean µθc,θd and covariance matrix Σθc,θd by
using the property of the bivariate Gaussian distribution.
Expanding the exponent of Equation 7 and collecting the
θc and θd term gives us a conic section in standard form:

a20θc
2 +a10θc +a11θcθd +a01θd +a02θd

2 +a00 = 0 (8)

There is a transformation to map between the coeffi-
cients of a conic in standard form and the parameters of
a Gaussian distribution. The mean and covariance of the
distribution with the same elliptical form is given by:
[

µθc

µθd

]
=

[
(a11a01 −2a02a10)/(4a20a02 −a2

11)

(a11a10 −2a20a01)/(4a20a02 −a2
11)

]
(9)

Σ−1
θcθd

=

[
a20

1
2 a11

1
2 a11 a02

]
(10)

For every new time sample we compute coefficients
anm for equation 8. These coefficients determine the up-
dated value of µθc , µθd , and Σθc,θc .

Because we recover both the mean and the covari-
ance of task requirements, we can quantify our degree
of uncertain about task requirements, and hence decide
whether to keep exploring or starting to exploit this
knowledge for optimized task scheduling. In this paper
we sample tasks until we get a determinant for the co-
variance matrix |Σθc,θd | < 0.007. Table 2 summarizes
resource requirements learned by the online inference
mechanism for some of the Hadoop example jobs. When
we compare the ’Pi’ job, which calculates digits of Pi,
to RandomWriter, which writes bulk data, we see that
the algorithm correctly recovers the fact that Pi is com-
pute intensive (large µθc ) whereas RandomWrite is disk
intensive (large µθd ). Other Hadoop jobs show interme-
diate resource profiles as expected. The JIO job will be
described further in the experimental section. The ’#
of Tasks’ column gives the number of tasks executed to
reach the desired confidence.

4.3 Exploit
Once the resource profile of a job is learned to sufficient
accuracy we switch from explore to exploit. The native
Hadoop scheduler sorts task/machine pairs according to

4
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Job µθc µθd |Σθcθd | # of Tasks
Pi 24.00 6.30 0.0038 109
Random
Writer

27.26 234.62 0.0061 28

Grep 15.82 8.10 0.0038 90
WordCount
(1.5 GB)

43.50 22.50 0.00614 31

WordCount
(15 GB)

138.05 206.40 0.00615 32

JIO 5.60 96.46 0.0063 30

Table 2: Job resource profile measurements with vari-
ance and number of tasks executed

whether they are local (data for the task is available on
the machine), on the same rack, or remote. We intro-
duce our routine based on our task requirements estima-
tion called ”SelectBestJob” to break ties within each of
these tiers as shown in Algorithm 4.1: If we have two
local jobs, we would run the one most compatible with
the machine first.

Algorithm 4.1: THROUGHPUTSCHEDULER(Cluster,Request)

for each Node N ∈ Cluster

do




JobsWithLocalTasks ← N.GETJOBSLOCAL(Request)
JobsWithRackTasks ← N.GETJOBSRACK(Request)
JobsWithOffSwitchTasks ← N.GETJOBSOFFSWITCH(Request)
if LocalJobs �= NULL

then
{

J ← SELECTBESTJOB(LocalJobs,N)
ASSIGNTASKFORJOB(N,J)

else if RackJobs �= NULL

then
{

J ← SELECTBESTJOB(RackJobs,N)
ASSIGNTASKFORJOB(N,J)

else
{

J ← SELECTBESTJOB(OffSwitchJobs,N)
ASSIGNTASKFORJOB(N,J)

Algorithm 4.2: SELECTBESTJOB(NodeN,Listo f Jobs)

return (argminJ∈ListOfJobs
norm(θ J

c )
norm(κN

c )
+

norm(θ J
c )

norm(κN
c )
)

SelectBestJob, shown in Algorithm 4.2, selects job J
that minimizes a score for task completion on node N.
However, rather than using absolute values of θc, θd , κc
and κd , we use the normalized value of these parame-
ters to define the score. While absolute values repre-
sent expected time of completion, which can be mea-
sured in seconds, job selection based on these numbers
would always favor short tasks over longer once and fast
machines over slower ones. This would not achieve the
optimized matching of job requirements to server capa-
bilities. For example, consider Nodes 1 and 3 in Table
1. Node 3 is almost 7.5 times faster than Node 1 in
terms of CPU, but only 2.5 times faster in terms of disk.
Hence, intuitively, disk intense jobs are better scheduled
on Node 1, since the relativly higher CPU performance
of Node 3 is better used for CPU intense jobs (if there are
any). To account for this relativity of optimal resource

matching, we normalize both jobs and machines to make
their total requirements and capabilities sum to one for
each resource x (here x ∈ {c,d}):

norm(θ i
x) =

µθ i
x

∑k µθ i
k

norm(κ j
x ) =

κ j
x

∑5
k=1 κk

x

5 Experimental Results

To evaluate the performance of ThroughputScheduler we
conducted experiments on a five node Hadoop cluster at
PARC (see Table 1).

5.1 Evaluation on Heterogeneous Jobs
We evaluate the performance of our scheduler on jobs
with different resource requirements. Since the Hadoop
benchmarks do not contain highly I/O intensive jobs (cf.
Table 2), we constructed our own I/O intensive Map-
Reduce job, JIO. JIO reads 1.5 GB from HDFS, and
writes files totaling 15 GB back to HDFS. This resembles
the resource requirements of many expand-translate-load
(ETL) applications used in big data applications to pre-
process data using Map-Reduce and writing into HBase,
MongoDB, or another disk-backed database. We learn
JIO’s resource profile using the job learner described in
the Explore section. The learned resource requirement of
JIO is listed in Table 2. To evaluate ThroughputSched-
uler on drastically heterogeneous job profiles, we run
JIO along with the Hadoop benchmark Pi, which is
CPU intense. We compare the performance of Through-
putScheduler with FIFO- and FairScheduler—for a sin-
gle user, CapacityScheduler is no different from FIFO.

5.1.1 Job Completion Time

We first compare the performance of the proposed sched-
uler in terms of overall job completion time. In case of
multiple jobs, the overall job completion time is defined
as the completion time of the job finishing last. In this
experiment we study the effect of heterogeneity between
job resource requirements, which we can quantify as the
ratio of disk I/O to CPU requirement of a job: h = θd

θc
. In

order to vary this quantity we vary the I/O load of JIO fur-
ther by varying the replication factor of the cluster: the
higher the replication factor, the higher the I/O load of a
job. This impacts disk I/O intense jobs more than others.

These results show that ThroughputScheduler per-
forms better than FIFO- and FairScheduler in all cases.
The relative performance increase of our scheduler in-
creases as the heterogeneity of the two jobs increase, as
simulated by an increased replication factor: up to 40%
compared to FIFO, and 20% compared to Fair. Note that
both the Fair- and the ThroughputScheduler benefit from

5
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Fifo	   Fair	   Throughput	  

Figure 1: Overall job completion time in minutes (Y
axis) on heterogeneous nodes at PARC for different rel-
ative values of h = θd

θc
. Disk load θd is increased by in-

creasing the replication number.

higher replication as they can better take advantage of
data locality. The improvements of ThroughputSched-
uler beyond Fair- are purely due to our improved match-
ing of jobs to computational resources.

Job FIFO Fair Throughput

Pi 9 sec 9 sec 6 sec
JIO 2 min 15 sec 2 min 2 min 10 sec

Table 3: Comparison of Average Mapping Time

To better understand the source of this speed-up,
we considered the average mapping time for each job
(throughput). Table 3 summarizes these results and pro-
vides the explanation for the speed-up: our scheduler im-
proves the throughput of Pi by 33%, while maintaining
the throughput of JIO compared to the other schedulers.
Since Pi has very many mapping tasks, these savings pay
off for the overall time to completion.

5.2 Performance on Benchmark Jobs
To estimate the performance of ThroughputScheduler on
realistic workloads, we also experimented with the exist-
ing Hadoop example jobs. We ran the job combinations
of concurrent jobs shown in Table 4.

Comb1 Grep (15 GB) + Pi (1500 samples)
Comb2 WordCount (15 GB) + Pi (1500 samples)
Comb3 WordCount (15 GB) + Grep (15 GB)

Table 4: Job Combination

The performance comparison in terms of job comple-
tion time is presented in Figure 2. For these workloads
ThroughputScheduler performs better than either of the
other two in all cases. For Comb2 the job completion
time is reduced by 30% compared to FIFO. For Comb3

0:00	  

2:24	  

4:48	  

7:12	  

9:36	  

12:00	  

14:24	  

Comb1	   Comb2	   Comb3	  

Fifo	   Fair	   Throughput	  

Figure 2: Job Completion time in minutes (Y axis) of
combinations of Hadoop example jobs.

all three schedulers perform similarly because both jobs
are CPU intensive (cf. Table 2).

Job Combination FIFO Fair Throughput

Pi(1500sample), WC(15GB) 440s 319s 310s
Pi(1500sample), Grep(15GB) 210s 224s 214s

WC(15GB), Grep(15GB) 225s 262s 214s

Table 5: Completion time of job combinations on a ho-
mogeneous cluster.

5.3 Performance on Homogeneous Cluster

We ran additional experiments on a set of homogeneous
cluster nodes, to ensure such a setup would not cause
ThroughputScheduler to produce inferior performance.
These results are shown in Table 5.

6 Conclusion

ThroughputScheduler represents a unique method of
scheduling jobs on heterogeneous Hadoop clusters us-
ing active learning. The framework learns both server
capabilities and job task parameters autonomously. The
resulting model can be used to optimize allocation of
tasks to servers and thereby reduce overall execution
time (and power consumption). Initial results confirm
that ThroughputScheduler performs better than the de-
fault Hadoop schedulers for heterogenous clusters, and
does not negatively impact performance even on homo-
geneous clusters.

While our demonstration uses the Hadoop system, the
approach implemented by ThroughputScheduler is ap-
plicable to other framework of distributed computing as
well.

6
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Abstract
The past decade has witnessed an astonishing growth

in unstructured information in enterprises. The com-
mercial value locked in enterprise unstructured informa-
tion is being increasingly recognized. Accordingly, a
range of textual document analytics—clustering, classi-
fication, taxonomy generation, provenance, etc.— have
taken center stage as a potential means to manage this
explosive growth in unstructured enterprise information,
and unlock its value.

Several analytics are time-intensive: the time taken to
complete processing the increasingly large volumes of
data is significantly more than real-time. However, users
are increasingly demanding real-time services that rely
on such time-intensive analytics. There is clearly a ten-
sion between the aforementioned two developments.

In light of the preceding, vendors increasingly realize
that while an analytic may take a longer time to con-
verge, they need to extract useful information from it
in real-time. Furthermore, this information has to be
application-driven. In other words, it is often not an op-
tion to simply “wait until the analytic has finished run-
ning:” they must start providing the user with informa-
tion while the analytic is still running. In summary, there
is an emerging stress in Enterprise Information Manage-
ment (EIM) on application-driven real-time information
being extracted from time-intensive analytics.

A priori, it is not clear what could be extracted from an
analytic that has yet to complete, and whether any such
information would be useful. As of the present, there is
little or no research literature on this problem: it is gener-
ally assumed that all of the information from an analytic
will be available upon its completion.

We present an approach to this problem that is based
on decomposing the objective function of the analytic,
which is a global function that determines the progress of
the analytic, into multiple local, user-centric functions.
How can we construct meaningful local functions? How
can such functions be measured? How do these functions
evolve with time? Do these functions encode useful in-

formation that can be obtained real-time? These are the
questions we will address in this paper.

We demonstrate our approach using local functions
on document clustering using the de facto standard
algorithm—k-means. In this case, the multiple local
user-centric functions transform k-means into a flow al-
gorithm, with each local function measuring a flow. Our
results show that these flows evolve very differently from
the global objective function, and in particular, may often
converge quickly at many local sites. Using this property,
we are able to extract useful information considerably
earlier than the time taken by k-means to converge to its
final state.

We believe that such pragmatic approaches will have
to be taken in order to manage systems performing ana-
lytics on large volumes of unstructured data.

1 Introduction

1.1 Enterprise Information Management

Enterprises spend billions of dollars annually to manage
unstructured information; namely information that exists
mostly as text in documents having multiple formats, but
no fixed schema (unlike, say, a database which is queried
using SQL). These documents reside on desktops, lap-
tops, email exchanges, web and file servers, wikis, and
sharepoint repositories. This segment of enterprise in-
formation is growing much faster than structured infor-
mation, and already it is estimated that 70% of all infor-
mation in an enterprise exists in unstructured formats.

Due to the lack of structure, managing unstructured
information poses unique challenges. Currently, major
drivers for these management efforts include applica-
tions such as eDiscovery, compliance requirements for
different categories of documents necessitated by new
laws such as HIPAA, IT management operations, docu-
ment searches made by employees in various capacities,
sales force support needs, and a host of other applica-

1
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tions. Analytics1 of various types—clustering, classifi-
cation, taxonomy extraction, to name a few prominent
ones—are generally regarded as the primary techniques
that will help meet these challenges and enable such ap-
plications. Analytics for enterprise unstructured infor-
mation, viewed through the prism of end-user applica-
tions, form the broad context for our work.

1.2 Emerging Problem: Real-Time Extrac-
tion of Information

Analytics, generally speaking, uncover relationships in
unstructured information. The greater the volume of the
information, the more time it takes for an analytic to pro-
cess the information, and extract relationships. Work-
flows in enterprise information management are increas-
ingly complex, and require analytics inputs at various
stages. These stages are pipelined together. Users of
these applications demand the ability to perform work-
flows in near real-time: any application that requires the
user to “wait until the current stage completes” is a sig-
nificant dent on market acceptance.

Therefore, on the one hand, analytics are needed to
enable applications that require unstructured information
management at scale. On the other hand, the time taken
by a particular analytic to complete at scale prevents its
use in the application.

In light of the above catch-22 situation, there has been
a great deal of attention devoted to making analytics
run faster. We wish, instead, to highlight an emerging
paradigm: vendors are increasingly trying to obtain “just
enough” information from an analytic that can satisfy the
current need of the user, and enable them to move to the
next stage of their workflow. In other words, they want
to provide enough information to the user that hides the
actual run time of the analytic from them. The analytic
may well take significantly longer to complete, but how
can we extract useful application-enabling information
from it in near real-time? As of now, there is little or
no work on this question, and to our knowledge we are
the first to frame it explicitly. We believe that this ques-
tion will become increasingly important as the scales of
unstructured information grow.

1.3 Our Approach: Local User-Centric
Functions

Most analytics try to optimize (usually minimize or max-
imize) some global objective function. For example,
clustering tries to minimize the sum of distances of doc-
uments to cluster centroids. However, these objective
functions are mathematical objects: end-users do not

1An analytic is, broadly, a functionality that examines data, ana-
lyzes it, and draws inference based upon the results of the analysis.

usually think in terms of objective functions. Rather,
they have more application-centric concerns.

Our approach is to try to “partition” the global ob-
jective function into local functions that are user and
application-centric, and that capture what the user might
be interested in from the analytic. Then, we will try to
measure these local functions. The hope is that while
the global objective function captures the overall con-
vergence behavior of the analytic, these local functions
might already start yielding information to the user that
is precisely of the form that they are interested in. The
idea is that while the global state of the analytic is de-
termined by the global objective function, the evolution
of local states might be tracked using our local func-
tions. These local functions, if they are appropriately
constructed, might give users information that they can
start acting upon immediately. Furthermore, by view-
ing the analytic as a conglomeration of locally evolving
states, we can provide information to the user “piece-
meal” instead of all at once, especially since that more
accurately reflects how the user will digest the informa-
tion anyway.

1.4 Contributions
Our main contributions are sketched below:

1. We frame the question of real-time piece-by-piece
extraction of information from time-intensive analytics.
We believe that this question will be increasingly impor-
tant in the future, given the explosive growth of unstruc-
tured information.

2. We present a novel approach to the problem above,
based on inspecting analytics algorithms locally using
user-defined functions.

3. We work out our approach for an important
analytic—text clustering—that is key to several EIM ap-
plications.

2 Key Idea: Defining User-Centric Objec-
tives with Local Functions

As stated in the introduction, most analytics are defined
in terms of an objective function that is to be maxi-
mized/minimized over the course of the run-time of the
analytic. For example, k-means clustering is often de-
fined as follows. Given m data-points x = {x1, . . . ,xm},
each of which is a d-dimensional vector, find k “means”
µ = {µ1, . . . ,µk}, also d-dimensional, such that the fol-
lowing objective function is minimized.

E(x,µ) =
m

∑
i=1

L(xi,µ j), (1)

where µ j is the closest of the k means to xi in terms of
the norm L.

2
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We may write the function above as a sum of sums:
each outer sum would pertain to a single µ j. Thus,

E(x,µ) =
m

∑
i=1

k

∑
j=1

L(xi,µ j), (2)

where the inner sum is over all data-points that are clos-
est to µ j. The general form of the objective function then
becomes “optimize some global function (the sum, in the
case above) of local pieces.” A “local piece” here is the
inner sum that pertains only to a single cluster, and there-
fore can be computed locally at each cluster.

Moreover, as noted earlier, objective functions such as
(1) are far from the mind of the end-user of an analytic.
The user is concerned with something that describes the
problem from their perspective. The enterprise user fre-
quently wants to associate some meaning to the informa-
tion that the analytic extracts as it runs.

Can we then, partition the objective function into local
pieces, with the additional desideratum of making each
local piece pertain to the user’s requirements? How do
these local functions converge? Do they all converge uni-
formly, at the same rate as the global function, or do they
display non-uniform convergence behavior? Do a ma-
jority of them converge quickly, well before the conver-
gence of the global objective function? These are some
of the questions our empirical work will try to uncover.

At this time, we will empirically analyze, in some de-
tail, our chosen example analytic—document clustering
with k-means. We choose document clustering with k-
means because it is arguably the first analytic that a user
might want to run in a large number of enterprise ap-
plications. Most EIM vendors today offer the ability to
cluster a user’s data, but several applications which could
potentially use this clustering do not do so since it takes
considerably longer than real-time to finish clustering a
large dataset. In summary, we are aware of several appli-
cations that need clustering, but currently rely on a static,
older clustering of the data instead of allowing the user
to dynamically cluster data as they proceed through their
workflow. We show how our approach can mitigate this
situation, and how we can instrument k-means with lo-
cal user-centric functions to extract near real-time infor-
mation that is useful to the user at their current stage of
workflow.

3 Example: Document Clustering with k-
means

The k-means algorithm is ubiquitous in data mining [10].
k-means can be used at various stages in EIM: to under-
stand high-level organization of data [2, 5, 6], to organize
search results [3], to extract semantic information such
as labels [4], and so on. k-means is also time-intensive,
and therefore a good candidate for us to demonstrate our
approach.

Local Function: 
Converged Flow

Semantic Flow Between 
Clusters

4

3

21

6

5

Local Function: 
Converging Flow

Figure 1: Schematic of the view of k-means through lo-
cal functions: k-means is a set of pairwise flows, most
of which abate early. Once flows to and from a cluster
have abated—as has happened to Cluster 5—, we may
extract semantic meaning from it. This can happen very
early during run-time, long before final convergence of
k-means.

3.1 Preliminaries
We briefly provide the framework of the document rep-
resentation we use. Since we are clustering text, we use
a tf-idf weighted bag-of-words vector representation for
the documents [7]. We use a standard stoplist, and re-
move all words that occur fewer than three times in the
corpus. As is standard, we normalize each vector to
unit length so that if two documents of different lengths
are still speaking of the same topics, they are regarded
equally [8]. Finally, we use the cosine of the angle
between the vectors as our similarity metric since it is
known to outperform metrics such as Euclidean distance
for text applications [9].

We use the random assignment version of k-means (as
opposed to Forgy), where each document is randomly
assigned a cluster at initialization. Cluster centroids are
then computed, and re-assignment of documents to the
closest (in terms of cosine similarity) cluster is done iter-
atively until there is no further movement of documents
between clusters.

3.2 User-Centric Objectives: Concept
Classes

A key component of our approach is to replace the focus
on the global objective function with local user-centric
functions. These functions should capture the domain-
specific requirements of the user. What would such re-
quirements be in the case of enterprise applications of
document clustering?

A large majority of EIM applications that (could) use
clustering want to understand the semantics, or “mean-
ing” of each cluster. In other words, clustering is seen as

3
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a technique that groups the data into conceptually coher-
ent groups, each group speaking of a coherent class of
concepts. These concepts are then used in the next stage
of the EIM pipeline: for example, they may be used in
scatter-gather type workflows (for example, some eDis-
covery workflows), to create taxonomies (for records
management or classification), and so on. Therefore, the
first task in capturing the user’s requirements is to com-
pute, from each cluster, a set of coherent concepts that it
speaks about.

3.2.1 Cluster Digests: Concept Labels

Definition 1 Define Di as the Boolean indicator vari-
able for document inclusion into Ci. Define t j,D as the
Boolean indicator variable for term inclusion in a docu-
ment.

Di[D,Ci] =

{
1, if D ∈Ci,
0, else;

t j,D[t j,D] =

{
1, if t j ∈ D,
0, else.

(3)

Therefore, Di is a random variable whose arguments
are [D,Ci]. t j,D is a random variable with arguments
[t j,D]. Therefore, for a fixed i and j, both of these are
random variables over the set of documents. In this case,
their mutual information is well defined.

Definition 2 We define I[i, j] as the mutual information
between the random variables Di and t j,D.

Conceptually, this measures the increase in (condi-
tional) probability of a document being placed by the k-
means algorithm in cluster Ci given that it has the term
t j. In practice, we also perform thresholding: namely, we
only count those terms that occur at least five times in the
corpus in order to preclude terms that may occur only in
a few documents, all of whom land in one cluster.

Definition 3 For � > 0, the � concept labels associated
to cluster Ci are the top � terms {t j} in the corpus in
descending order of I[i, j]. We denote the set of concept
labels for Ci by Ti.

3.3 Local Functions: Concept Flows
In order to demonstrate our approach, we construct
certain functions that can be measured retroactively:
namely, measuring them requires the algorithm to have
converged. However, the empirical properties of these
functions will suggest that, indeed, these functions can
be approximated in real-time.

At each iteration of the k-means algorithm, documents
move between clusters. We wish to measure how much
information that is core to the cluster enters and leaves
each cluster as a result of this.

In order to measure this “concept flow” when a docu-
ment moves between cluster Ci1 and Ci2 , we measure the
presence of terms in the document that are concept labels
for Ci1 and Ci2 . By taking the difference of these two
quantities, we obtain a measure of the “concept flow” as-
sociated to the movement of the document.

We wish to measure the flow of concepts in both di-
rections between a pair of clusters, at any iteration.

Definition 4 Let � > 0 and m < n. Let document D move
from Ci1 and Ci2 at iteration m of k-means. Let n j,D be
the number of times term t j occurs in document D. The
forward concept flow associated with the document D at
iteration m is defined as

σ f [D,m] := ∑
t j∈Ti1

n j,D. (4)

The reverse concept flow associated with the document
D at iteration m is defined as

σr[D,m] := ∑
t j∈Ti2

n j,D. (5)

The total concept flow associated with the document D
at iteration m is defined as

σt [D,m] := σ f [D,m]−σr[D,m]. (6)

We also define the net quantities obtained by summing
the above over all documents that move from one cluster
to another.

Definition 5 The net forward concept flow from cluster
Ci1 to cluster Ci2 at iteration m is defined as

Σ f [i1, i2,m] := ∑
D∈Ci1

σ f [D,m]. (7)

The net reverse concept flow from cluster Ci1 to cluster
Ci2 at iteration m is defined as

Σr[i1, i2,m] := ∑
D∈Ci1

σr[D,m]. (8)

The net concept flow from cluster Ci1 to cluster Ci2 at
iteration m is defined as

Σt [i1, i2,m] := ∑
D∈Ci1

σt [D,m]. (9)

Finally, we define the average per-cluster-pair quanti-
ties.

Definition 6 The average forward concept flow between
and ordered cluster pair at iteration m is defined as

Σ f [m] =
1

k(k−1) ∑
i1,i2;i1 �=i2

Σ f [i1, i2,m]. (10)

4
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The average reverse concept flow between an ordered
cluster pair at iteration m is defined as

Σr[m] =
1

k(k−1) ∑
i1,i2;i1 �=i2

Σr[i1, i2,m]. (11)

The average (net) concept flow between an ordered
cluster pair cluster at iteration m is defined as

Σt [m] =
1

k(k−1) ∑
i1,i2;i1 �=i2

Σt [i1, i2,m]. (12)

Notice that although we are measuring the semantic
flow, as described above, during pre-convergence itera-
tions of k-means, we obtain the labels only after con-
vergence. Let c denote the iteration at which k-means
converges. Then, measurement of semantic flows, with
respect to the final labels, at iteration m(< c) requires
us to wait until convergence at iteration c. However, let
us now inspect these flows carefully, and see if we may
approximate them in real-time.

4 Experimental Results

4.1 Datasets and Protocol
We used two standard benchmark datasets for document
clustering. The first is N20, the 20 Newsgroups dataset
that contains roughly 20,000 articles posted to 20 usenet
group. The articles are more or less evenly divided be-
tween the newsgroups; however some newsgroups are
highly related, while others are not. The second dataset is
REU, the Reuters-21758 dataset that has documents from
Reuters newswire having 82 primary topics. For both
datasets, we ran k-means with the “natural” number of
clusters k—namely, 20 for N20, and 82 for REU.

We ran each clustering experiment five times. Since
our results require us to examine concept flows between
specific pairs of clusters, and these pairs change from
experiment to experiment, we picked the experiment that
was most typical of the five (in terms of convergence be-
havior) to depict our results. The variance between ex-
periments was minor, and the form of the results did not
change from experiment to experiment.

For the most typical experiment (as described above),
the clustering of N20 took 35 iterations, while that for
REU took 52 iterations. For each experiment, we ordered
the k(k−1) ordered pairs of clusters by descending order
of semantic flows, summed over iterations [10,15]. Next,
we measured the changes in semantic flow for all these
pairs as the experiment progressed. Fig. 2 shows results
for REU.

4.2 Properties of Concept Flows
The inspection of the graphs in Fig. 2, and the similar
graphs for N20 (which we could not show due to lack

of space) immediately lead us to the following empirical
result:

1. Local functions, unlike objective functions, are
not monotone. The sequence Σt [i1, i2,1],Σt [i1, i2,2], . . .
shows a zig-zag behavior until it falls to zero.

2. The average flow first rises sharply, but then starts
to fall sharply after only a few (less than 5) iterations for
both datasets. Compare this to the convergence time for
each dataset (52 and 35 iterations, respectively).

3. The average reverse flow has also nearly abated by
this time (i.e., by 5 iterations).

4. In the few cases of cluster pairs where flows are
significant even after they have abated in other pairs; we
found that the clusters themselves are semantically re-
lated.

These empirical results, repeated over multiple exper-
iments, suggest that for a large majority of clusters, the
“documents that matter” have already been placed into
their correct clusters well before final convergence of k-
means. Thus, our flow measurements uncover an “almost
everywhere convergence” of k-means well before it con-
verges globally in terms of its objective function.

We have experimented with other values for k, and the
results are similar.

4.3 Near Real-Time Information
At this time, we can answer the question “what informa-
tion can be extracted in near real-time as a result of the
properties in §4.2?”

We have seen, empirically, that local flow functions for
a majority of cluster pairs abate very quickly—between
5 and 10 iterations. At this time, we can extract concept
classes for each cluster. For a majority of the clusters,
these concept classes will continue to be accurate at con-
vergence. The few clusters where these concept classes
change significantly can be detected by our local con-
cept flow function measurements, and updated accord-
ingly. In this manner, we can already provide the user
with a large proportion of the information that they de-
sired from the analytic, but well before the analytic actu-
ally converges. In cases where k-means takes of the order
of a few minutes to complete, the time taken to provide
this information will be of the order of (tens of) seconds,
which can enable a near real-time workflow.

The key idea behind our approach is to use the “almost
everywhere convergence” to start providing local infor-
mation to the user at places where such convergence has
already happened, and not wait for global convergence.

In general, in any workflow where each cluster has to
be further examined, we can supply the user with infor-
mation on all the clusters that have already converged,
so that they can begin examining those. This yields sev-
eral examples of enterprise workflows where local infor-
mation gathered as described above can enable real-time
workflows. One example is a large eDiscovery workflow.

5
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Figure 2: The first ten graphs show the top ten semantic flows for a run of k-means on REU. The Y-axis measures
flows. A majority of the lower-ranked flows abate much quicker, and even the highest ranked flows tend to abate well
before convergence. Legends are shown only on the first graph. The next graph is the average flow, taken over all pairs
(not just the topmost). The final graph is the total number of documents that move at each iteration of k-means. In all
graphs, the X-axis is the iteration number. For lack of space, only the experiments on REU are shown; similar results
were observed on N20.

Mid-sized eDiscovery cases frequently have to examine
a few hundred thousands of documents in a limited time-
frame. For example, in early case assessment, this time
frame might be only a few weeks. If clustering is used
to organize the inspection of these documents, then the
inspection of clusters that have already converged can
begin as soon as their information is available, without
waiting for clustering to converge throughout the cor-
pus. The larger the corpus of documents, the more time
is saved using this real-time enabled workflow, over a
workflow where the user waits for corpus-wide conver-
gence.

In any scatter-gather workflow [2], the user examines
each cluster individually during the gather phase, and de-
cides whether it should be included in the subsequent
scatter phase. This represents another generic workflow

where providing clusters as soon as they have converged
can enable the use to make their decision on the available
clusters, without waiting for the remaining clusters.

A natural question that may be asked is: can a cluster
where convergence seems to have happened “change” its
convergent state? Can it start showing an increased flow
after having seemingly converged? First of all, we must
ensure that the flow has indeed abated for a period of a
few successive (say, 5) iterations. We did not observe
significant flows after a abatement of flows lasting five
iterations. Rarely, we do see a small additional flow in
such cases, for example, the flow 5→ 59 shown in Fig. 2,
but as is the case in the example, it is not very large.

What about pairs of clusters where flow has not abated
till a relatively late stage? We can simply flag such pairs
of clusters as being “semantically related,” to be consid-

6
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ered together for scatter-gather. This accurately reflects,
for instance, eDiscovery workflows.

4.4 Time to Measure Local Functions
With the following pragmatic choices, we can instrument
k-means for real-time local flow functions at insignificant
additional cost.

1. In order to measure the local functions Σt [i1, i2,1],
we need k(k − 1) counters, one for each bidirectional
measurement of flow between each pair of clusters. The
time taken to updating each counter is dominated by the
time to compute the actual move to be made for each
document, and does not significantly increase their sum.

2. Moreover, this need not be done at every iteration,
since all we want is to detect abatement of flows. We
experimented with computing flow only at iteration 5,
10, 20, 30, and so on, yielding satisfactory results.

3. The time taken to compute labels can be signifi-
cant; however, in light of the quick abatement of flows,
we can compute these labels only once, soon after itera-
tion 5.

5 Related Work

We are not aware of any work that studies the behav-
ior of k-means with respect to local user-centric func-
tions. However, more generally, our work may be seen
as a study of the k-means algorithm during its con-
vergence. In this regard, the work that is closest to
ours is [1]. However, there are obvious and funda-
mental differences: besides the core difference of lo-
cal vs. global functions, [1] studied the convergence of
k-means on the IRIS dataset, which has only four di-
mensions. One of the primary properties of text docu-
ment corpora that distinguish it is the high-dimensional
and sparse nature of the feature vectors. As expected
given these important differences, the results of the ex-
periments (namely, the trajectories of the functions under
study) vary greatly. As but one example, the behavior of
the sequence Σt [i1, i2,1],Σt [i1, i2,2], . . . is very dissimilar
to that of objective function values.

6 Conclusion and Future Work

We have demonstrated that time-intensive analytics such
as clustering can be calibrated to yield information in
near real-time due to an empirically observed almost-
everywhere local convergence property. This real-time
information can enable users to conduct their workflows
without waiting for the analytic to converge everywhere.

This work was motivated by real-world applications
of clustering in EIM. In particular, we are intrigued by
the possible applications of the techniques of this paper
to cluster-based retrieval over large document corpora.

Abstractly, we have a ranking of clusters based on their
convergence. We also have a retrieval ranking of clusters
based on their relevance to some information need. Can
a meaningful merger of these two rankings be done to
provide the user with the most relevant information to
their need, as quickly as it is available?
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Abstract
An increasing number of MapReduce applications are written us-
ing high-level SQL-like abstractions on top of MapReduce engines.
Such programs are translated into MapReduce workflows where the
output of one job becomes the input of the next job in a workflow.
A user must specify the number of reduce tasks for each MapRe-
duce job in a workflow. The reduce task setting may have a signifi-
cant impact on the execution concurrency, processing efficiency, and
the completion time of the worklflow. In this work, we outline an
automated performance evaluation framework, called AutoTune, for
guiding the user efforts of tuning the reduce task settings in MapRe-
duce sequential workflows while achieving performance objectives.
We evaluate performance benefits of the proposed framework using
a set of realistic MapReduce applications: TPC-H queries and cus-
tom programs mining a collection of enterprise web proxy logs.

1 Introduction

Many companies are embracing MapReduce environments
for advanced data analytics over large datasets. Optimiz-
ing the execution efficiency of these applications is a chal-
lenging problem that requires the user experience and exper-
tize. Pig [4] and Hive [10] frameworks offer high-level SQL-
like languages and processing systems on top of MapReduce
engines. These frameworks enable complex analytics tasks
(expressed as high-level declarative abstractions) to be com-
piled into directed acyclic graphs (DAGs) and workflows of
MapReduce jobs. Currently, a user must specify the number
of reduce tasks for each MapReduce job (the default setting
is 1 reduce task). Determining the right number of reduce
tasks is non-trivial: it depends on the input sizes of the job,
on the Hadoop cluster size, and the amount of resources avail-
able for processing this job. In the MapReduce workflow, two
sequential jobs are data dependent: the output of one job be-
comes the input of the next job, and therefore, the number
of reduce tasks in the previous job defines the number (and
size) of input files of the next job, and may affect its per-
formance and processing efficiency in unexpected ways. To

∗This work was mostly done uring Z. Zhang’s internship at HP Labs. Prof. B. T. Loo
a nd Z. Zhang are supported in part by NSF grants CNS-1117185 and CNS-0845552.

demonstrate these issues we use a Grep program provided
with the Hadoop distribution. This program consists of a
workflow with two sequential jobs: the first job (J1) searches
for strings with the user-specified patterns and counts them
for each matched pattern. The second job (J2) reads the out-
put of the first job and sorts the patterns according to their
appearance frequencies. We execute this program with 15
GB of input data on a Hadoop cluster with 64 worker nodes.
Each node is configured with 2 map and 1 reduce slots, i.e.,
with 128 map and 64 reduce slots overall. Figure 1 shows the
execution times of both jobs J1 and J2 as we vary the number
of reduce tasks in J1. (The number of reduce task for J2 is
fixed to 1).
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Figure 1: A Motivating Example.

Figure 1 (a) shows that the J1 execution time significantly
depends on the number of reduce tasks. A low number of re-
duce tasks limits the job execution concurrency and leads to
an increased job completion time. A high number of reduce
tasks improves the execution parallelism and the job process-
ing time, but at some point (e.g., 512 reduce tasks), it leads to
an increased overhead and increased job processing time.

As the outputs generated by J1 become inputs of J2, the
number of output files and their sizes may have a significant
impact on the performance of J2. Figure 1 (b) shows how the
reduce task settings of J1 impact the completion time of J2.

In this work, we outline a novel performance evaluation
framework, called AutoTune, that automates the user efforts
of tuning the numbers of reduce tasks along the MapReduce
workflow. It consist of the following key components:
• The ensemble of performance models that orchestrates
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the prediction of the workflow completion time at the
cluster and application levels.

• Optimization strategies that are used for determining the
numbers of reduce tasks along the jobs in the MapRe-
duce workflow for achieving the performance objectives
and for analyzing the performance trade-offs.

We validate the accuracy, efficiency, and performance bene-
fits of the proposed framework using a set of realistic MapRe-
duce applications executed on 66-nodes Hadoop cluster. This
set includes TPC-H queries and custom programs mining a
collection of enterprise web proxy logs. Our case study shows
that the proposed ensemble of models accurately predicts
workflow completion time. Moreover, the proposed frame-
work enables users to analyze the efficiency trade-offs. Our
experiments show that in many cases, by allowing 5%-10%
increase in the workflow completion time one can gain 40%-
90% of resource usage savings. The ability to optimize the
amount of resources used by the programs enables efficient
workload management in the cluster.

This paper is organized as follows. Section 2 presents the
problem definition and outlines our solution. Sections ??-3
describe the ensemble of performance models and optimiza-
tion strategies. Section 4 evaluates the framework accuracy
and effectiveness of optimization strategies. Section 5 out-
lines related work. Section 6 presents conclusion and future
work directions.

2 AutoTune Solution Outline

Currently, a user must specify the number of reduce tasks for
each MapReduce job in a workflow (the default setting is 1
reduce task). The reduce task setting defines the number of
paraller tasks that are created for processing data at the reduce
stage and the amount of data which is processed and written
by each task. As a result, the reduce tasks settings impact
the efficiency of the map stage processing in the next job. If
too many small output files created it leads to a higher pro-
cessing overhead and a higher number of map slots is needed
for these files processing. Our main goal is to determine the
reduce tasks settings that optimize the workflow overall com-
pletion time. Typically, the Hadoop cluster is shared by mul-
tiple users and their jobs are scheduled with Fair or Capacity
Schedulers. Under these schedulers the cluster resources are
partitioned into pools with separate queues and priorities for
each pool. The unused cluster resources can be allocated to
any pool(s) with jobs that can utilize these resources. There-
fore, an additional goal is to minimize the workflow resource
usage for achieving this optimized time. Often nearly optimal
completion time can be achieved with a significantly smaller
amount of resources (compare the outcome of 32 and 64 re-
duce task settings in Figure 1).

AutoTune solution relies on the following Pairwise Op-
timization Theorem: the optimization problem of the entire
workflow can be efficiently solved through the optimization
problem of the pairs of its sequential jobs.

Proof: Figure 2 shows a workflow that consists of three se-
quential jobs: J1,J2, and J3. To optimize the workflow com-

Figure 2: Example workflow with 3 sequential jobs

pletion time we need to tune the reduce task settings in jobs
J1,J2, and J3. A question to answer is whether the choice of
reduce task setting in job J1 impacts the choice of reduce task
setting in job J2, etc.

A critical observation here is that the size of overall data
generated between the map and reduce stages of the same
job and between two sequential jobs does not depend on the
reduce task settings of these jobs. For example, the over-
all amount of output data Dout

1 of job J1 does not depend on
the number of reduce tasks in J1. It is defined by the size
and properties of Dinterm

1 , and the semantics of J1’s reduce
function. Similarly, the amount of Dinterm

2 is defined by the
size of Dout

1 , properties of this data, and the semantics of J2’s
map function. Again, the size of Dinterm

2 does not depend
on the number of reduce tasks in J1. Therefore the amount
of intermediate data generated by the map stage of J2 is the
same (i.e., invariant) for different settings of reduce tasks in
the previous job J1. It means that the choice of an appropri-
ate number of reduce tasks in job J2 does not depend on the
choice of reduce task setting of job J1. It is primarily driven
by an optimized execution of the next pair of jobs J2 and J3.
Finally, tuning the reduce task setting in J3 is driven by opti-
mizing its own completion time.�

In such a way, the optimization problem of the entire work-
flow can be efficiently solved through the optimization prob-
lem of the pairs of its sequential jobs. Therefore, for two
sequential jobs J1 and J2, we need to design a model that
evaluates the execution times of J1’s reduce stage and J2’s
map stage as a function of a number of reduce tasks in J1.
Such a model will enable us to iterate through a range of re-
duce tasks’ parameters and identify a parameter that leads to
the minimized completion time of these jobs and evaluate the
amount of utilized resources (both reduce and map slots used
over time).

While there were quite a few research efforts to design a
model for predicting the completion time of a MapReduce
job [6, 5, 11, 12, 13], it still remains a challenging research
problem. The main challenge is to estimate the durations of
map and reduce tasks (and the entire job) when these tasks
process different amount of data (compared to past job runs).

Some earlier modeling efforts for predicting the job com-
pletion time analyze map and reduce task durations [12] from
the past job runs, and then derive some scaling factors for task
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execution times when the original MapReduce application is
applied for processing a larger dataset [13, 11]. Some other
efforts [6, 5, 11] aim to perform a more detailed (and more ex-
pensive) job profiling and time prediction at a level of phases
that comprise the execution of map and reduce tasks.

In this work, we pursue a new approach for designing
a MapReduce performance model that can efficiently pre-
dict the completion time of a MapReduce application for
processing different given datasets as a function of allo-
cated resources. It combines the useful rationale of the de-
tailed phase profiling method [6] for estimating durations of
map/reduce tasks with fast and practical analytical model de-
signed in [12]. However, our new framework proposes a
very different approach to estimate the execution times of
these job phases. We observe that the executions of map and
reduce tasks consist of specific, well-defined data process-
ing phases. Only map and reduce functions are custom and
their computations are user-defined for different MapReduce
jobs. The executions of the remaining phases are generic,
i.e., strictly regulated and defined by the Hadoop processing
framework. The execution time of each generic step depends
on the amount of data processed by the phase and the per-
formance of underlying Hadoop cluster. In the earlier pa-
pers [6, 5, 11], profiling is done for all the phases (including
the generic ones) for each application separately. Then these
measurements are used for predicting a job completion time.

In our work, we design a set of parameterizable mi-
crobenchmarks [16] to measure generic phases and to derive
a platform performance model of a given Hadoop cluster. We
distinguish five phases of the map task execution and three
phases of the reduce task execution as shown in Figure 3.

Figure 3: MapReduce Processing Pipeline.

We concentrate on profiling of generic (non-customized)
phases of the MapReduce processing pipeline (opposite to
phase profiling of specific MapReduce jobs). By run-
ning a set of diverse benchmarks on a given Hadoop clus-
ter we collect a useful training set (that we call a plat-
form profile) that characterizes the execution time of dif-
ferent phases while processing different amounts of data.
This profiling can be done in a small test cluster with
the same hardware and configuration as the production
cluster. Using the created training set and a robust lin-
ear regression we derive a platform performance model
Mplatform = (Mread,Mcollect,Mspill,Mmerge,Mshuffle,Mwrite)
that estimates each phase duration as a function of processed
data:

T J
phase = Mphase(DataJ

phase), (1)

where phase ∈ {read, collect, spill, merge, shuffle, write}.

The proposed evaluation framework aims to divide i) the
performance characterization of the underlying Hadoop clus-
ter and ii) the extraction of specific performance properties
of different MapReduce applications. It aims to derive once
an accurate performance model of Hadoop’s generic execu-
tion phases as a function of processed data, and then reuse
this model for characterizing performance of generic phases
across different applications (with different job profiles).

For profiling map and reduce phases (user-defined map
and reduce functions) of production MapReduce jobs we
apply our alternative profiling tool based on BTrace ap-
proach [2]. It can be applied to jobs in the production cluster.
Since we only profile map and reduce phase execution – the
overhead is small.

Once we approximate the execution times of map and re-
duce tasks, we could model the completion time of a single
job by applying the analytical model designed in ARIA [12].
The proposed performance model utilizes the knowledge
about average and maximum of map/reduce task durations for
computing the lower and upper bounds on the job completion
time as a function of allocated map and reduce slots. Equa-
tion 2 shows the lower-bound on the job completion time:

T low
J =

NJ
M ·MJ

avg

SJ
M

+
NJ

R ·RJ
avg

SJ
R

(2)

where MJ
avg (RJ

avg) represent the average map (reduce) task
duration, NJ

M (NJ
R) denote the map (reduce) task number and

SJ
M (SJ

R) reflect the number of map (reduce) slots for process-
ing the job. The computation of the upper bound on the job
completion time is slightly different (see [12] for details: the
formula involves the estimates of maximum map/reduce task
durations). As it is shown in [12], the average of lower and
upper bounds serves as a good prediction of the job comple-
tion time (it is within 10% of the measured one).

3 Two Optimization Strategies

According to Pairwise Optimization Theorem the optimiza-
tion problem of reduce task settings for a given workflow
W = {J1, ...,Jn} can be efficiently solved via the optimiza-
tion problem of the pairs of its sequential jobs. Therefore, for
any two sequential jobs (Ji,Ji+1), where i = 1, ...,n− 1, we
need to evaluate the execution times of Ji’s reduce stage and
Ji+1’s map stage as a function of the number of reduce tasks
NJi

R in Ji (see the related illustration in Figure 2, Section 2).
Let us denote this execution time as Ti,i+1(N

Ji
R ).

By iterating through the number of reduce tasks in Ji we
can find the reduce task setting NJi,min

R that results in the
minimal completion time T min

i,i+1 for the pair (Ji,Ji+1), i.e.,

T min
i,i+1 = Ti,i+1(N

Ji,min
R ). By determining the reduce task set-

tings s for all the job pairs, i.e., smin = {NJ1,min
R , ...,NJn,min

R },
we can determine the minimal workflow completion time
TW (smin). AutoTune can be used with Hadoop Fair Sched-
uler or Capacity Scheduler and multiple jobs executed on a
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cluster. Both schedulers allow configuring different size re-
source pools each running jobs in the FIFO manner. Note,
that the proposed approach for finding the reduce task setting
that minimizes the workflow completion time can be applied
to a different amount of available resources, e.g., the entire
cluster or a fraction of available cluster resources. Therefore,
the optimized workflow execution can be constructed for any
size resource pool managed (available) in a Hadoop cluster.

We aim to design the optimization strategy that enables
a user to analyze the possible trade-offs, such as workflow
performance versus its resource usage. We aim to answer the
following question: if the performance goal allows a specified
increase of the minimal workflow completion time TW (smin),
e.g., by 10%, then what is the resource usage under this work-
flow execution compared to RW (smin)?

We define the resource usage Ri,i+1(N
Ji
R ) for a sequential

job pair (Ji,Ji+1) executed with the number of reduce tasks
NJi

R in job Ji as follows:

Ri,i+1(N
Ji
R ) = T Ji

R task ×NJi
R +T Ji+1

M task ×NJi+1
M

where NJi+1
M represent the number of map tasks of job Ji+1,

and T Ji
R task and T Ji+1

M task represent the average execution time of
reduce and map tasks of Ji and Ji+1 respectively. The resource
usage for the entire MapReduce workflow is defined as the
sum of resource usage for each job within the workflow.

Table 1 summarizes the notations that we use for defining
the optimization strategies below.

Table 1: Notation Summary
Ti,i+1(N

Ji
R ) Completion time of (Ji,Ji+1) with NJi

R reduce tasks
Ri,i+1(N

Ji
R ) Resource usage of pair (Ji,Ji+1) with NJi

R reduce tasks
TW (s) Completion time of the entire workflow W with setting s
RW (s) Resource usage of the entire workflow W with setting s
T min

i,i+1 Minimal completion time of a job pair (Ji,Ji+1)

NJi ,min
R Number of reduce tasks in Ji that leads to T min

i,i+1
w increase Allowed increase of the min workflow completion time
NJi ,incr

R Number of reduce tasks in Ji to meet the increased time

The first algorithm is based on the local optimization. The
user specifies the allowed increase w increase of the min-
imal workflow completion time TW (smin). Our goal is to
compute the new workflow reduce task settings that allow
achieving this increased completion time. To accomplish this
goal, a straightforward approach is to apply the user-defined
w increase to the minimal completion time T min

i,i+1 of each pair
of sequential jobs (Ji,Ji+1), and then determine the corre-
sponding number of reduce tasks in Ji. The pseudo-code
defining this strategy is shown in Algorithm 1. The com-
pletion time of each job pair is locally increased (line 2), and
then the reduce task settings are computed (lines 4-6).

While this local optimization strategy is simple to imple-
ment, there could be additional resource savings achieved if
we consider a global optimization. Intuitively, the resource
usage for job pairs along the workflow might be quite differ-
ent depending on the job characteristics. Therefore, we could
identify the job pairs with the highest resource savings (gains)

Algorithm 1 Local optimization strategy for deriving workflow
reduce tasks’ settings

1: for i ← 1 to n do
2: T incr

i,i+1 = T min
i,i+1 × (1+w increase)

3: NJi,cur
R ← NJi,min

R
4: while Ti,i+1(N

Ji,cur
Ri

)< T incr
i,i+1 do

5: NJi,cur
R ← NJi,cur

R −1
6: end while
7: NJi,incr

R ← NJi,cur
R

8: end for

for their increased completion times. The pseudo-code defin-
ing this global optimization strategy is shown in Algorithm 2.

Algorithm 2 Global optimization strategy for deriving workflow
reduce tasks’ settings

1: scur = smin = {NJ1,min
R , ...,NJn,min

R }
2: Tw incr = TW (smin)× (1+w increase)
3: for i ← 1 to n do
4: NJi,incr

R ← NJi,min
R

5: end for
6: while true do
7: bestJob =−1, maxGain = 0
8: for i ← 1 to n do
9: NJi,tmp

R ← NJi,incr
R −1

10: stmp = scur ∪{NJi,tmp
R }−{NJi,incr

R }
11: if TW (stmp)≤ Tw incr then

12: Gain =
RW (smin)−RW (stmp)
TW (stmp)−TW (smin)

13: if Gain > MaxGain then
14: maxGain ← Gain, bestJob ← i
15: end if
16: end if
17: end for
18: if bestJob =−1 then
19: break
20: else
21: NbestJob,incr

R ← NbestJob,incr
R −1

22: end if
23: end while

First, we apply the user-specified w increase to determine the
targeted completion time Tw incr (line 2). The initial number
of reduce task for each job Ji is set to NJi,min

R (lines 3-5), and
then we go through the iteration that at each round estimates
the gain we can get by decreasing the number of reduce tasks
by one for each job Ji. We aim to identify the job that has the
smallest response time increase with the decreased amount
of reduce tasks while satisfying the targeted workflow com-
pletion time (lines 8-17). We pick the job which brings the
largest gain and decrease its reduce task setting by 1 (line 21).
Then the iteration repeats until the number of reduce tasks in
any job cannot be further decreased because it would cause
a violation of the targeted workflow completion time Tw incr
(line 11).
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4 Evaluation

Experimental Testbed and Workloads. All experiments
are performed on 66 HP DL145 G3 machines. Each ma-
chine has four AMD 2.39GHz cores, 8 GB RAM and two
160 GB 7.2K rpm SATA hard disks. The machines are set
up in two racks and interconnected with gigabit Ethernet. We
use Hadoop 1.0.0 and Pig-0.7.0 with two machines dedicated
toJobTracker and NameNode, and remaining 64 machines as
workers. Each worker is configured with 2 map and 2 reduce
slots. The HDFS blocksize is set to 64MB. The replication
level is set to 3. We disabled speculative execution since it
did not lead to significant improvements in our experiments.

To validate the accuracy, effectiveness, and performance
benefits of the proposed framework, we use queries from
TPC-H benchmark and custom queries mining a collection
of web proxy logs. TPC-H [3] is a standard database bench-
mark for decision-support workloads. It comes with a data
generator for creating the test database. The input dataset
size is controlled by the scaling factor: the scaling factor of 1
generates 1 GB input dataset. Our second dataset contains 6
months access logs of the enterprise web proxy during 2011-
2012 years.

TPC-H and proxy queries are implemented using Pig [4].
Queries are translated into sequential MapReduce workflows
that are graphically represented in Fig. 4.

Sort Group 

(a) TPC-H Q1

Join Group 

(b) TPC-H Q19

Sort 

Join 

Group 

(c) proxy-Q1

Join 

Group 

Group Group 

(d) proxy-Q2

Figure 4: Workflows for TPC-H and Proxy queries.

AutoTune Performance Benefits. Since it is infeasible
to validate optimal settings by testbed executions (unless we
exhaustively execute the programs with all possible settings),
we evaluate the models’ accuracy to justify the optimal set-
tings procedure.

We execute two queries TPC-H Q1 and TPC-H Q19 with
the total input size of 10 GB in our 66-node Hadoop clus-
ter. Figure 5 shows measured and predicted query comple-
tion times for a varied number of reduce tasks in the first job
of both workflows (the number of reduce tasks for the second
job is fixed in these experiments). First of all, results pre-
sented in Figure 5 reflect a good quality of our models: the
difference between measured and predicted completion times
for most of the experiments is less than 10%. Moreover, the
predicted completion times accurately reflect a similar trend
observed in measured completion times of the studied work-
flows as a function of the reduce task configuration. These
experiments demonstrate that there is a significant difference

(up to 4-5 times) in the workflow completion times depending
on the reduce task settings.
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Figure 5: Model validation for TPC-H Q1 and TPC-H Q19.

Figure 5 shows that the query completion time decreases
with the increased number of reduce tasks (because it leads
to a higher concurrency degree and a smaller amount of data
processed by each task). However, at some point job settings
with a high number of reduce tasks (e.g., 256) may have a
negative effect due to higher overheads and higher resource
allocation required to process such a job.

Another interesting observation from the results in Fig-
ure 5 is that under two settings with a number of reduce tasks
equal to 64 and 128 the workflow completion times are very
similar while the number of required reduce slots for a job ex-
ecution increases twice. As shown later in this section, Auto-
Tune enables the user to identify useful trade-offs in achieving
the optimized workflow completion time while minimizing
the amount of resources required for a workflow execution.

Why Not Use Best Practices? There is a list of best
practices [1] that offers useful guidelines in determining the
appropriate configuration settings. The widely used rule of
thumb suggests to set the number of reduce tasks to 90%
of all available resources (reduce slots) in the cluster. In-
tuitively, this maximizes the concurrency degree in job ex-
ecutions while leaving some “room” for recovering from the
failures. This approach may work under the FIFO scheduler
when all the cluster resource are (eventually) available to the
next scheduled job. This guideline does not work well when
the Hadoop cluster is shared by multiple users, and their jobs
are scheduled with Fair or Capacity Schedulers. Moreover,
the rule of thumb suggests the same number of reduce tasks
for all applications without taking into account the amount of
input data for processing in these jobs.

To illustrate these issues, Figure 6 shows the impact of the
number of reduce tasks on the measured query completion
time for executing TPC-H Q1 and TPC-H Q19 with different
input dataset sizes. The rule of thumb suggests to use 115
reduce tasks (128*0.9=115). However, as we can see from
the results in Figure 6 (a), for dataset sizes of 10 GB and
15 GB the same performance could be achieved with 50% of
the suggested resources. The resource savings are even higher
for TPC-H Q1 with 5 GB input size: it can achieve the nearly
optimal performance by using only 24 reduce tasks (this rep-
resents 80% savings against the rule of thumb setting). The
results for TPC-H Q19 show similar trends and conclusion.
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Figure 6: Effect of reduce task settings for processing the same job
with different input dataset sizes (measured results).

In addition, Figure 7 shows the effect of reduce task set-
tings on the measured completion time of TPC-H Q1 query
when only a fraction of resources (both map and reduce slots)
is available for the job execution. Figures 7 (a) and (b) show
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Figure 7: Effect of reduce task settings when only a fraction of
resources is available (measured results).

the results with the input dataset size of 10 GB and 1 GB
respectively. The graphs reflect that when less resources are
available to a job (e.g., 10% of all map and reduce slots in
the cluster), the offered rule of thumb setting (115 reduce
tasks) could even hurt the query completion time since the
expected high concurrency degree in the job execution cannot
be achieved with limited resources while the overhead intro-
duced by a higher number of reduce tasks causes a longer
completion time. This negative impact is even more pro-
nounced when the input dataset size is small as shown in Fig-
ure 7 (b). For example, when the query can only use 10% of
cluster resources, the query completion time with the rule of
thumb setting (115 reduce tasks) is more than 2 times higher
compared to the completion time of this query with eight re-
duce tasks.

Analyzing Performance Trade-offs. Now, we evaluate
two optimization strategies introduced in Section 3 for deriv-
ing workflow reduce task settings and analyzing the achiev-
able performance trade-offs. Figure 8 presents the normalized
resource usage under local and global optimization strategies
when they are applied with different thresholds for a work-
flow completion time increase, i.e., w increase= 0%, 5%,
10%, 15%. Figures 8 (a)-(b) show the measured results for
two TPC-H queries with the input size of 10GB (i.e., scal-
ing factor of 10), and Figures 8 (c)-(d) show results for two

proxy queries that process 3-month data of web proxy logs.
For presentation purposes, we show the normalized workflow
resource usage with respect to the resource usage under the
rule of thumb setting that sets the number of reduce tasks in
the job to 90% of the available reduce slots in the cluster. In
the presented results, we also eliminate the resource usage of
the map stage in the first job of the workflow as its execution
does not depend on reduce task settings.
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Figure 8: Local and global optimization strategies: resource usage
with different w increase thresholds.

The results are quite interesting. The first group of bars
in Figure 8 shows the normalized resource usage when a
user aims to achieve the minimal workflow completion time
(w increase= 0%). Even in this case, there are 5%-30% re-
source savings compared to the rule of thumb settings. When
w increase= 0% the local and global optimization strategies
are identical and produce the same results. However, if a
user accepts 5% of the completion time increase it leads to
very significant resource savings: 40%-95% across different
queries shown in Figure 8. The biggest resource savings are
achieved for TPC-H Q1 and Proxy Q1: 95% and 85% respec-
tively. Moreover, for these two queries global optimization
strategy outperforms the local one by 20%-40%. As we can
see the performance trade-offs are application dependent.

In summary, AutoTune offers a useful framework for a
proactive analysis of achievable performance trade-offs to en-
able an efficient workload management in a Hadoop cluster.

5 Related Work

Several different approaches were proposed for predicting the
performance of MapReduce applications [6, 5, 11, 12, 17].

In Starfish [6], the authors apply dynamic Java instrumen-
tation to collect a run-time monitoring information about job
execution. They create a fine granularity job profile that con-
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sists of a diverse variety of metrics. This detailed job profil-
ing enables the authors to predict the job execution under dif-
ferent Hadoop configuration parameters, automatically derive
an optimized cluster configuration, and solve cluster sizing
problem [5]. Tian and Chen [11] propose predicting a given
MapReduce application performance from a set of test runs
on small input datasets and a small Hadoop cluster. By exe-
cuting a variety of 25-60 test runs the authors create a training
set for building a model of a given application. It is an inter-
esting approach but the model has to be built for each appli-
cation and cannot be applied for parameter tuning problems.
ParaTimer [7] offers a progress estimator for parallel queries
expressed as Pig scripts [4]. In the earlier work [8], the au-
thors design Parallax – a progress estimator that aims to pre-
dict the completion time of a limited class of Pig queries that
translate into a sequence of MapReduce jobs. These models
are designed for estimating the remaining execution time of
workflows and DAGs of MapReduce jobs. However, the pro-
posed models are not applicable for optimization problems.

ARIA [12] builds an automated framework for extracting
compact job profiles from the past application run(s). These
job profiles form the basis of a MapReduce analytic per-
formance model that computes the lower and upper bounds
on the job completion time. ARIA provides an SLO-based
scheduler for MapReduce jobs with timing requirements. The
later work [17] enhances and extends this approach for per-
formance modeling and optimization of Pig programs. In
our work, we design a different profiling of MapReduce jobs
via eight execution phases. The phases are used for estimat-
ing map/reduce tasks durations when the job configuration is
modified.

MRShare [9] and CoScan [14] offer frameworks that
merge the executions of MapReduce jobs with common data
inputs in such a way that this data is only scanned once, and
the workflow completion time is reduced. AQUA [15] pro-
poses an automatic query analyzer for MapReduce workflow
on relational data analysis. It tries to optimize the workflow
performance by reconstructing the MapReduce DAGs to min-
imize the intermediate data generated during the workflow
execution.

In our work, we focus on optimizing the workflow perfor-
mance via tuning the number of reduce tasks of its jobs under
a given Hadoop cluster configuration. We are not aware of
any published work solving this problem.

6 Conclusion
Optimizing the execution efficiency of MapReduce work-
flows is a challenging problem that requires the user experi-
ence and expertize. In this work, we outline the design of Au-
toTune - the automated framework for tuning the reduce task
settings while achieving multiple performance objectives. We
observe that the performance gain for minimizing a workflow
completion time has a point of diminishing return. In the fu-
ture, we plan to design useful utility functions for automating
the trade-off part of analysis in the optimization process.
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Abstract

Machine-to-Machine (M2M) paradigm is a novel

communication technology under standardization at both

the ETSI and the 3GPP. It involves a set of sensors and

actuators (M2M devices) communicating with M2M ap-

plications via M2M gateways, with no human interven-

tion. For M2M communications trust and privacy are

key requirements. This drove us to propose a host iden-

tity protocol (HIP) based M2M overlay network, called

HBMON, in order to ensure private communications be-

tween M2M devices, M2M gateway and M2M applica-

tions. In this paper, we first propose to add the self-

healing capabilities to the M2M gateways. We enable

at the M2M gateway level the REAP protocol, a failure

detection and locator pair exploration protocol for IPv6

multihoming nodes. We also add mobility management

capabilities to the M2M gateway in order to handle M2M

devices mobility. Furthermore, in this paper we add the

self-optimization capabilities to the M2M gateways. We

also modify the REAP protocol to continuously moni-

tor the overlay paths in order to always select the best

available one in term of RTT. We implement our solution

on the OMNeT++ network simulator. Results highlight

the novel gateway capabilities: it recovers from failures,

handle mobility and always select the best available path.

1 Introduction

Embedded systems such as sensors, smart meters and

smart cards are experiencing a tremendous prolifera-

tion. Several market forecast predict that the number

of these devices will soon outnumber the people on

earth. According to the Wireless World Research Fo-

rum (WWRF), by 2017 we will have 7 trillion wireless

devices serving 7 billion people [20]. Juniper Networks

predicts that in 2015, the number of connections between

embedded equipments will reach over 500 millions [11].

Machine-to-machine (M2M) communication is consid-

ered to be an adequate framework to handle the com-

munication between these embedded systems and their

corresponding applications. M2M communication is a

novel communication technology under standardization

at both the European Telecommunications Standardiza-

tion Institute (ETSI) [10] and the 3rd Generation Part-

nership Project (3GPP) [19]. M2M communication is

based on an autonomous communication between sen-

sors/actuators and correspondent application over the In-

ternet. The M2M architecture introduces a new level of

indirection between the sensors/actuators and the appli-

cation namely the M2M gateway. The M2M gateway

aggregates data packets received form sensors and sends

them to the M2M application. It generally communicates

with M2M devices via short range communication tech-

nologies.

Internet is based on the well-known paradigm: ”keep-

it simple in the middle, smart at the edge” [18], which

survived for the last four decades. Nonetheless, the M2M

gateway breaks this paradigm, instead of ”keep-it simple

in the middle, smart at the edge”, it shifts the intelligence

towards the middle, at the access level. Hence, M2M

technologies leads us to imagine and conceive a novel

inter-networking architecture. One of the key require-

ment of M2M communications is the privacy of the col-

lected information. This requirement drove us to build

an M2M overlay network over the Internet based on the

Host Identity Protocol (HIP) [14, 15], named HBMON

(HIP-based M2M Overlay Network) [6]. In this previous

work, we have addressed the formation and the mainte-

nance of the overlay.

In this paper, we propose to add the autonomic man-

agement of the overlay. We mainly focus on the self-

healing and self-optimization autonomic properties. We

enable at the M2M gateway level the REAP protocol, a

failure detection and locator pair exploration protocol for

IPv6 multihoming nodes [1]. Thus, in our overlay, M2M

gateways are able to autonomically detect failures of the

overlay links and recover from them. We also add to
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the M2M gateway the mobility management capabilities.

M2M devices mobility can be considered as a failure of

the first hop and a failure detection and recovery proto-

col may handle M2M device mobility. Nonetheless, we

need to use a specific mobility support to efficiently han-

dle M2M device mobility as we demonstrated in [7]. In

our design, M2M gateways are also able to monitor the

available overlay paths and dynamically select the best

path in term of Round Trip Time (RTT). We implement

our solution on the OMNeT++ network simulator. Re-

sults show that our solution is able to detect overlay link

failures and recover from them. It is also able to self-

optimize the selection of the overlay paths.

The remaining of this paper is organized as follows.

Section 2 gives an overview of our previous work HB-

MON [6], then it details the REAP protocol, finally it

focuses on the mobility support in the HIP protocol.

Section 3 highlights our contribution; namely the self-

healing and optimizing of the HIP-based M2M overlay

network. Section 4 presents our simulation results. Sec-

tion 5 concludes the paper.

2 Related works

In this section, we first give an overview of our previous

work on M2M overlay network namely the HIP-based

M2M overlay network. Then we detail REAP, a failure

detection and locator pair exploration protocol for IPv6

multihoming nodes [1]. Finally, we focus on the mobility

support in the HIP protocol.

2.1 The HIP-based M2M overlay network

An M2M communication involves an M2M device com-

municating with an M2M application via M2M gate-

ways, with no human intervention. The first ”Machine”

in a Machine-to-Machine communication is a device em-

bedding a sensor and an actuator. The second ”Ma-

chine” is a device which processes the collected infor-

mation from the sensor and according to these informa-

tion may remotely control the actuator. The ”to” refers

to the M2M end-to-end communication network con-

necting the two machines. M2M devices upload their

traffic to an M2M Gateway which aggregates data col-

lected from several M2M devices and sends them to a

corresponding M2M gateway or to an M2M application.

The M2M application has a middleware layer where data

collected from different M2M devices can be presented

to the different applications and services to be further

processed. M2M application portfolio covers a broad

spectrum, ranging from industrial applications, to smart

cities, and vehicular technologies. However, in all these

applications, M2M communication trust and privacy are

key requirements [2].

In order to build a secure M2M network, we proposed

in a previous work a HIP-based M2M overlay network

called HBMON [6]. Overlay networks are private logi-

cal networks built on the top of an existing network in-

frastructure (Internet for e.g.,). The overlay paradigm

breaks the end-to-end principal. Instead of ”keep-it sim-

ple in the middle, intelligent at the edge” [18], over-

lay networks move intelligent toward the middle. Over-

lay networks rely on middle-boxes (such as overlay

router) connected through logical links referred as over-

lay links. Middle-boxes translates on-demand overlay

links into Internet paths. Overlay networks are special-

ized networks such as peer-to-peer networks, Content-

delivery networks (CDN), resilient routing networks and

enhanced end-to-end security networks [3].

To define and manage our private M2M overlay net-

work we use the Host Identity Protocol (HIP) [14, 15].

HIP introduces a new sub-layer between the transport

and the IP layer. The HIP layer decouples end-host

identification from its localization. End-hosts are iden-

tified with a cryptographic namespace named Host Iden-

tity Tag (HIT) while IP addresses are used as end-host

locators. HIP introduces a proxy element in the net-

work architecture, the rendezvous server which holds a

secure binding between end-hosts IP addresses and their

HITs. Finally, HIP is able to manage both mobility and

multihoming transparently to upper layer protocols and

thus provides session survivability upon end-host mobil-

ity or failures in the currently used path [16]. M2M de-

vices within our overlay network may embed several net-

work interfaces associated with distinct access technolo-

gies, each one associated with a distinct Internet Service

Provider (ISP). Therefore, such M2M devices may be

considered as multihomed M2M devices. Furthermore,

M2M devices may be embedded in a vehicle to be traced

or tracked and so they can be considered as mobile M2M

devices, as they change their point of attachment to the

network while they move.

In our previous work [6], we focused on the organiza-

tion and the membership management of the M2M de-

vice within the overlay. We also proposed a novel IPv6

address assigning method in order to configure the over-

lay members with private IPv6 addresses. From an au-

tonomic networking perspectives, we enabled the self-

configuration and self-protection properties. The self-

configuration properties allows the autonomic system to

dynamically adapt itself to the deployment of new com-

ponents or changes in its environment. In the HBMON,

this functionality is provided by the registration func-

tionality of the HIP protocol which allows M2M devices

to autonomically register themselves with a rendezvous

server and distribute overlay information between over-

lay members. The self-protection properties main goal

is to give the system the possibility to protect itself from

2
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intrusion and any hostile behavior. The cryptographic

namespace HIT with the private addresses used within

the overlay are the features used by the M2M devices in

the HBMON to protect themselves from attacks.

2.2 The reachability protocol: REAP

Multihomed terminals have at least two IP addresses con-

figured concurrently, each one associated with a distinct

Internet Service Provider (ISP). These terminals are then

reachable via different paths [4]. A multihomed termi-

nal can spread its outgoing traffic among the available

paths by applying a load sharing or balancing schedul-

ing technique. However, such a scheduling technique

has a negative impact on TCP. In fact, TCP segments

sent on paths with lower delays may results in out-of-

order TCP segments. Upon receiving an out-of-order

segment, destination’s TCP immediately sends a dupli-

cated acknowledgment. Three duplicated acknowledg-

ments results into the reduction of the TCP congestion

window. Therefore, TCP erroneously concludes that du-

plicated acknowledgments are due to packet losses and

enters in a congestion avoidance phase. Hence, multi-

homed terminal generally consider one path as primary

and the alternate paths as backups. If a failure occurs

in the primary path, multihomed terminals rehome their

ongoing session to a backup path [8, 9]. The IETF has

standardized a protocol for failure detection and locator

pair exploration protocol for IPv6 multihoming termi-

nals named the reachability protocol (REAP) [1]. The

IETF has designed this protocol for the specific use of

the Shim6 protocol. Shim6 is a host-centric multihom-

ing management protocol [17].

REAP relies during its functioning on two timers (send

timer, keepalive timer) and a state machine assuming that

the communicating nodes have a prior knowledge about

their locators. REAP starts the send timer whenever a

node sends a packets. If this node has not received any

packet until the send timer expires, it performs a full

reachability exploration. Otherwise, it stops the send

timer and starts the keepalive timer. If the node has not

sent any packet until the keepalive timer expiry, then it

sends a REAP keepalive message to its corresponding

peers. If the corresponding peers receives a keepalive

message, then it should stop the send timer and starts the

keepalive one. The REAP specification recommends that

the keepalive timer should be equal to the send timer di-

vided by three. These two timers are mutually exclusive.

In other word, the node is either expecting to receive a

payload or preparing to send data. So the send timer is

stopped when a payload or keepalive message is received

and the keepalive timer is stopped when a payload is gen-

erated.

When REAP detects a failure, it starts a full reach-

ability exploration in order to find a new bidirectional

working address pair using Probe messages to perform

the exploration and associates a state to each probe in-

dicating the status of the communication. REAP defines

three states. The first state is OPERATIONAL, it indi-

cates that both of peers consider that their communica-

tion does not suffer from any failure. The second state is

INBOUNDOK, it reflect the case where the peer con-

siders that its communication has apparently no prob-

lem, but its correspondent peer has discovered a failure.

The third state is EXPLORING, indicates that the peer

has just discovered a problem and has not received any

packet form its peers while it should has received.

REAP failure recovery procedure is as follows. First,

REAP creates a list of all possible pair of addresses by

combining the local locator list and the peer locator list

and sorts this list according to some priority specified

by the user. Then, it switches its state to Exploring and

sends four probes successively, a probe every 0.5s. If it

does not receive any probe, it retransmits a probe, but

this time the retransmission is controlled by a back-off

timer. A node in the OPERATIONAL state and receiving

a probe having EXPLORING state means that its corre-

spondent peer has not received its outgoing traffic. This

peer then sends a probe having an INBOUNDOK state.

A peer in the EXPLORING state and receiving an IN-

BOUNDOK probe conclude that its correspondent peer

has received its probe and also that the probed locator

pair address is bidirectionally reachable. Thus, it sends

a probe having an OPERATIONAL state and finally the

communication can be resumed.

2.3 HIP mobility support

Before exchanging any data packets, HIP-enabled com-

municating nodes have to establish a context. The HIP

context is established after a four-way handshake con-

trol messages I1,R1,I2,R2. This mechanism is based

on a secure exchange of cryptographic keys to authen-

ticate communicating hosts [15]. HIP also introduces a

registrar element in its architecture: a rendezvous node

(RVS) which binds nodes identification with their loca-

tions [13]. HIP nodes update their binding in the RVS

node upon each change in their network connectivity.

The HIP node may also interact with the the RVS ele-

ment while establishing the HIP context. In fact, when

a HIP node wants to establish a HIP association with a

node known only by its HIT, it sends the I1 packet to the

RVS indicating the Responder HIT. The RVS resolves

the destination HIT into an IP address and relays the

packet to the destination. After receiving an incoming

I1 packet from a RVS, the Responder directly answers

the Initiator and the HIP context establishment is then

performed [13].

3
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The HIP communication between two hosts is based

on a security association (SA) which is established upon

the HIP Base Exchange mechanism [15]. A SA is a set

of security parameters agreed by two hosts in order to

encrypt and authenticate transferred data. However, sev-

eral SAs may be established between two hosts such as

each SA has its own identifier which is called Security

Parameter Index (SPI). The main role of HIP layer is to

demultiplex incoming packets to host identity tag (HIT)

using the SPI value in the packet and to multiplex outgo-

ing packets to the address source and interface according

the SPI value in packet. Consequently, in a HIP network,

the locator is not only a IP address but also a key index-

ing the correspondent security association [16]. Thus,

when one of two HIP nodes having an ongoing commu-

nication changes its current location to another attach-

ment point, it acquires a new IP address and changes

the SPI into SA. So, the moving HIP node has to re-

port to the correspondent node about its new locator in

order to maintain the HIP SA. In the following, we il-

lustrate how the Host Identity Protocol supports mobil-

ity. The basic HIP mobility scenario is illustrated as fol-

lows. For setting up the HIP mobility mechanism, there

are two ways to be considered; either, mobility with a

single SA pair (only one IP address bound to an inter-

face) without re-keying or mobility with a single SA pair

with re-keying. In the former case, which is the sim-

plest one, when the mobile host moves and obtains a new

IP address, it notifies the correspondent host sending an

UPDATE message containing the new IP address in the

LOCATOR parameter and the Old SPI and New SPI val-

ues in ESP-INFO parameter. When the correspondent

host receives the UPDATE packet, it checks the new ad-

dress and makes it UNVERIFIED in the interim, while

the old address is DEPRECATED. Then it acknowledges

the mobile host by the second UPDATE message which

contains an ECHO REQUEST to validate the new peer

address. As well, it includes ESP INFO with Old and

New SPIs set to the current outgoing SPI. Lastly, once

receiving the second UPDATE message, the mobile node

sends the last UPDATE message including an ECHO

RESPONSE in order to definitely validate the new ad-

dress. Indeed, when the correspondent host receives this

ECHO RESPONSE, it automatically marks the new ad-

dress as ACTIVE and removes the old address. For the

second case, a new ESP session key will be regenerated.

The mobile host sends the UPDATE message containing

a new SPI for the incoming SA. The correspondent host

upon receiving the UPDATE message, executes the re-

key and replies with the a second message containing its

own new SPI, then the readdressing proces ends as with-

out re-keying case.

3 Autonomic management of the HBMON

M2M devices, as defined by the ETSI, are sensors or me-

ters that collect data from the environment and upload

them to an M2M application [10]. M2M devices and/or

M2M gateways are usually equipped with several ac-

cess technologies associated with distinct ISPs. They are

therefore multihomed entities and consequently several

overlay paths exists between M2M devices and M2M

applications. M2M devices are generally connected to

the M2M gateway with short range technologies (ZigBee

for e.g.,); whereas, M2M gateways are usually multi-

homed middle-boxes, equipped with several access tech-

nologies. One of the most fundamental constraint that

should be satisfied by M2M technology is communica-

tion reliability, especially for fault-tolerant oriented ap-

plications such as e-Health monitoring. To ensure com-

munication reliability, we add to our architecture failure

detection and recovery capabilities along with path mon-

itoring functionalities.

Moreover, according to the targeted application, M2M

devices can either be static or mobile nodes. Mobile

nodes usually execute a layer 2 (L2) handover which

may be followed by a layer 3 (L3) handover. As a re-

sult of the L3 handover, current end-host IP addresses is

changed to a new topologically correct one. IP addresses

have a dual role, they are considered at the same time

end-host locator and session identification. Hence, with-

out an adequate support, running transport session are

broken as a consequence of a L3 handover. To ensure

transport session survivability upon movement, session

identification should remain stable while end-hot loca-

tor is changed. HIP addresses this issue by introducing

a new stable cryptographic Host Identity Tag (HIT) as

node identifier [14]. Mobility can be considered as a fail-

ure in the first hop of the path between the M2M device

and the M2M application. Thus, we can easily manage

the M2M device mobility through the REAP protocol, a

failure detection and recovery protocol. Nonetheless, we

have shown in [7] that managing the mobility with a fail-

ure detection and recovery protocol leads to a huge L3

handover latency. Therefore, we rely on the HIP proto-

col to handle the mobility of our M2M devices within

our overlay. From an autonomic networking perspective,

the self-healing property includes failures detection and

recovery capability as well as mobility management.

HIP already ensures the self-configuring and the self-

protecting properties of the autonomic management of

our M2M overlay network. In order to provide the re-

maining properties (self-healing and self-optimization),

we propose to add the REAP support in the M2M gate-

ways of our HBMON.

4
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3.1 Self-healing of the HBMON

3.1.1 Failure detection and recovery

In our M2M overlay network, several overlay paths

might exist between the gateway and the correspond-

ing M2M applications. This path diversity is highly

recommended for specific fault-tolerant system such as

security-oriented applications. In order to design a re-

silient M2M overlay network, we use the REAP proto-

col to: (i) monitor the existing paths, (ii) detect failures

and recover to a new working path. We enable REAP

at the gateway level for several reasons. First of all, in

our design [6], the overlay architecture is maintained at

the gateway, which is viewed form a HIP perspective

as Rendezvous node. Second, the overlay link diver-

sity starts at the gateway level as the sensors are usu-

ally single-homed entities. Thus, we couple HIP with

REAP at the gateway level. We define new parameters in

the HIP messages to support the REAP protocol namely

”PROBE” and ”KEEP ALIVE”. They are of type ”NO-

TIFY”. The former is exchanged between peers when

a failure is detected and the latter is used to monitor

unidirectional communications. We add to the HIP two

REAP timers, namely send and keepalive timers. If a

peer’s send timer expires without receiving any incom-

ing packets, the peer assumes that a failure has affected

its currently used overlay path and starts exploring the re-

maining available overlay paths. In unidirectional com-

munications, the peer has to periodically inform its cor-

responding node that the currently used overlay link is

working. When the keepalive timer expires, the peers

sends a keepalive message. At the beginning of a com-

munication, the M2M gateway exchanges with the M2M

application data packets and eventually keepalive mes-

sages. REAP only monitors the currently used overlay

link. If REAP detects a failure through the expiry of the

send timer, REAP starts the overlay paths explorations.

During this exploration, REAP sends probe messages

on each available overlay link having the status explor-

ing. The corresponding peer receiving the probe mes-

sage replies with a probe message indicating the status

of the probed overlay link. Upon receiving a probe mes-

sage with the status inbound OK, REAP replies with a

probe with an operational state and switch the ongoing

communication to this newly operational overlay link.

3.1.2 Mobility management

To efficiently manage M2M devices mobility, we pro-

pose to enhance the HIP rendez-vous server functionali-

ties, embed at the M2M gateway level, to ensure session

survivability between HBMON members.

First of all, an M2M device, member of the HBMON,

performs a layer 2 (L2) handover. Once the layer 2

connectivity is established, the M2M device receives an

IPv6 router advertisement from the new access router

and configures a new global IPv6 address. At this stage,

both M2M devices corresponding peers and the HBMON

rendez-vous servers are not aware about the M2M device

new location. To correctly handle the HBMON mobile

nodes (HMN) mobility, we introduce in the HIP protocol

the following signaling messages. (i) RVS Discovery:

This signaling message allows to discover the nearest

HBMON Rendez-vous server (NHRVS). This message

is sent in anycast. (ii) HMN Loc Up: Contains two main

fields; (1) NEW IP: to report the new HMN’s IP address

to the correspondent node, (2) CONTEXT Req: to re-

quest the HBMON Context. (iii) Context Update: Once

a HMN obtains a new IP address upon moving, it should

inform all the rendez-vous server (HRVS) members of

the HBMON multicast group about this new IP address.

This message is sent in multicast via the old HRVS.

Fig. 1 illustrates this mechanism through an example

where a HBMON overlay is established between a HB-

MON mobile node (HMN) and a HBMON correspon-

dent node (HCN), HMN and HCN have an ongoing com-

munication and the HMN moves to another autonomous

systems (AS). This strategy is an enhanced version of

the HIP mobility management presented in [16]. Fig. 2

presents the sequence diagram of the exchanged signal-

ing messages for this strategy.

Figure 1: Mobility management scenario

When the HMN moves and acquires a new topolog-

ically correct IP address (step 1 Fig. 1), it sends an

RVS Discovery message containing the old HBMON

Rendez-vous server’s (HRVS’s) IP address and its HIT

(step 2 Fig. 1). The RVS Discovery message is sent to

a specific anycast address in order to discover the near-

est HBMON rendez-vous server (NHRVS). After that,

the HMN reports its new IP address to its HCNs us-

5
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ing the HIP mobility mechanism; as explained in sec-

tion 2.3 (step 4 Fig. 1). The new RVS notifies the old

HRVS about the new HMN location and triggers the HB-

MON context update by sending the Context Req mes-

sage (step 3 Fig. 1). Once the old HRVS receives a Con-

text Req message, it updates the mapping between the

HMN’s HIT and its new IP address. Afterwards, it up-

dates the HBMON context forwarding to all HBMON

RVS the Context Update message (step 5 Fig. 1). This

message is sent on specific multicast address including

all HBMON rendez-vous servers.

Figure 2: Mobility management sequence diagram

Consequently, we build a self-healing HIP-based

M2M overlay network by adding both the failure detec-

tion and recovery capability to the M2M gateway, and

the M2M device mobility management.

3.2 Self-optimization of the HBMON

The available overlay paths have different network char-

acteristics (RTT, jitter, errors,...) as they cross different

Internet Service Providers. An overlay link can expe-

rience for a certain period of time a degradation of its

network characteristics. Such overlay link can be used

by an M2M communication requiring a certain level of

quality of service. We propose to use the REAP explor-

ing mechanism to offer to the M2M running communi-

cation always the best available link. Instead of trigger-

ing the REAP exploring process at the expiry of the send

Timer, we continuously monitor the available paths and

infer their respective RTT. If the currently used overlay

link experience a degradation of its RTT, REAP proposes

to HIP a new destination/source address pair of an over-

lay link having lower RTT. If we frequently perform the

inferring of the RTT and overlay paths switching, we can

cause overlay paths oscillation, known as route flapping.

To avoid route flapping, we add a new timer, namely

probe timer which defines the time between two consec-

utive path exploration. Thus, our HIP-based M2M over-

lay network is self-optimized as it always selects the best

available overlay path in term of RTT.

4 Evaluation

To evaluate our proposal, we use the OMNeT++ simula-

tor coupled with the HIPSim++ framework. We imple-

ment the autonomic management of the HBMON in the

HIPSim++ framework.

4.1 Failure detection and recovery time

The targeted testbed consists of an M2M device con-

nected to a mutlihomed M2M gateway. The M2M gate-

way has four available overlay paths having the follow-

ing RTTs: 50ms, 100ms, 150ms and 200ms. The cor-

respondent node is an M2M application. We set all the

wireless accesses to 802.11b at 11Mbit/s. Between the

M2M application and the M2M device we use two types

of traffic: the first one is an UDP flow having the fol-

lowing characteristics: 20 Bytes the packet length and

40 ms the inter-packet interval, the second traffic is TCP

flows, namely an FTP application with hight data traffic.

We focus on two metrics: the application recovery time

and the instant throughput. The application recovery

time (ART) is defined as latency between the last packet

received/sent before the outage and the first packet re-

ceived/sent after the outage.

We evaluate in this section the failure detection and

recovery capabilities of our solution. A failure occurs

after 20s from the beginning of the communication and

lasts twice as the send timer. We measure the ART of

UDP traffic and the TCP/FTP traffic. Results are pre-

sented by Fig. 3, the x-axis is the send timer value while

the y-axis is the measured ART. La Oliva et al [12]. have

already measured the ART of both TCP and UDP traf-

fic. By this figures, we aim to validate our REAP im-

plementation in the HIPSim++ framework. We obtain

the same results as the one obtained by La Oliva et al.

in [12]. Results show that for an UDP application, the

ART time increases linearly while we increase the send

timer value; whereas, for TCP application the ART ex-

periences several plateaus. After failure recovery, UDP

application immediately sends data packets to the newly

selected path. Even if a new overlay path is selected,

TCP does not send immediately its data segments. TCP

has to wait until the TCP Retransmission Timeout (RTO)

timer expiry. TCP does not distinguish between a fail-

ure recovery process and the congestion in the currently

used path [5]. It adjusts the RTO timer as if it has expe-

rience of a congestion phase which explains the plateaus

in Fig. 3

6
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Figure 3: Application recovery time after an outage

4.2 Mobility management

We evaluate in this section the mobility management ca-

pabilities of our solution. In this scenario, we config-

ure two M2M devices: HMN1 and HMN2, registered

respectively with HRVS1 and HRVS2. HMN1 has a

802.11b interface associated with access point AP1 and

HMN2 has a 802.11b interface registered with access

point AP2. HMN1 is a static node; whereas, HMN2

is a moving according to the random waypoint model.

HMN1 and HMN2 exchange a 1 Mbit/s UDP traffic. We

load the visited network with three nodes, each of them

generating a UDP traffic at 1 Mbit/s In our simulation,

we measured the ART which is the latency elapsed be-

tween the last packet sent with the old IP address and the

first packet sent with the new IP address. The histogram

presented in Fig. 4 illustrates the measured ART for an

empty and loaded visited network.

The ART latency is decomposed into 4 phases:

(i) L2 handover, (ii) RVS Discovery, (iii) HB-

MON Context Update and (iv) Location Update. In

an empty visited network, the L2 handover latency is

0.65s, the RVS Discovery latency is 0.2s. The HB-

MON Context Update latency is 1.7s and the Loca-

tion Update latency is 1.05s. In a loaded visited network,

the L2 handover latency is 0.819s, the RVS Discovery

latency is 0.4s, the HBMON Context Update latency is

2.3s and the Location Update latency is 1.4s. We observe

that with our solution, running session effectively resume

after the mobility. The mobility singling lasts more than

3.6s for the case of an empty visited network (the best

measured case) which is inadequate for real time appli-

cations. Nonetheless, M2M applications are usually low

data-rate application, and providing session survivability

- even after 3.6s of interruption- is preferable than com-

pletely losing the currently ongoing session.
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Figure 4: Application recovery time after after M2M de-

vice mobility

4.3 Path exploration

We evaluate in this section the self-optimization capabil-

ity of our solution. We modify REAP to actively monitor

the available paths in order to offer the ongoing M2M

communication the best available overlay path in term of

RTT.

We focus on the following scenario: the currently used

overlay path has an RTT of 50ms and a transient fail-

ure affects this path after 20s of the beginning of the

M2M communication, the failure lasts the double of the

probe timer. Fig. 5 shows the obtained results for a TCP

session and a probe timer set to 3s. The x-axis is the

time in second and the y-axis is the instant throughput.

The obtained results show that during the first 20s, the

throughput reaches its maximum because the used path

has the minimum RTT (50ms). After the failure recov-

ery, REAP detects a new working overlay path having

the second best RTT (100ms). As soon as the best over-

lay path (50ms) recovers forms its failure, M2M com-

munication switches to this new path and the through-

put reaches again its maximum value. Fig. 6 shows the

obtained results for a running UDP session and a probe

timer set to 3s. The obtained results show the same be-

havior as for the TCP case in Fig. 5. After the outage,

the UDP session is rehomed to a new working ovelray

path (100ms). As soon as the new overlay path (50ms)

becom ready, the UDP session is rehomed to this newly

available path, and the throughput reaches again its max-

imum value.

In a second scenario, we explore the self-optimization

capability of our solution by modifying the load of the

currently used overlay path. The M2M communication

starts in the overlay path having the lowest RTT. A con-

gestion appears in this path, so the TCP ongoing con-

7
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nection experiences packet losses, TCP reduces its con-

gestion window which impact the instant throughput of

the M2M communication. Our solution detects the qual-

ity degradation of the path and switches the communi-

cation to the second best path in term of RTT. Results

presented by Fig. 7 and Fig. 8 shows this dynamic se-

lection of the most stable path. During the first 20s, the

M2M communication flows via the path having the low-

est RTT (50ms). We inject in this path aggressive UDP

traffic, creating therefore a congestion path. Our solu-

tion detects the degradation of the RTT of this path and

its fluctuations. It switches the ongoing communication

to the second path. We repeat the same scenario on this

second path. Our solution switches one more time the

communication to a third path and finally to the last one

until it finds a stable path in term of RTT and packet loss.

From Fig. 5, Fig. 6, Fig. 7 and Fig. 8 we clearly see

that we build a self-optimized solution. It is able to detect

failure in the currently used overlay path, select a new

working path and monitor the remaining paths.
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5 Conclusion

M2M communication is a new paradigm under standard-

ization at both the ETSI and the 3GPP. This novel tech-

nology breaks the end-to-end principle as it introduces

a novel element in the network architecture namely the

M2M gateway. The M2M gateway aggregates the data

collected from the M2M devices and sends them to a cor-

respondent M2M application. In a previous work [6],

we have designed a HIP-based M2M overlay network

over the existing Internet. This overlay ensures a private

communication between M2M devices and their corre-

sponding M2M applications. In this work, we added

the autonomic management of our M2M overlay net-
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work. We focused mainly on the self-healing and the

self-optimized autonomic properties. We enhanced the

M2M gateway with the failure detection and recovery

mechanism, M2M device mobility management and with

autonomic path selection capabilities. We implemented

and evaluated our solution on the OMNeT++ network

simulator. Results shows that the gateway is able to

switch from one overlay path to another either due to fail-

ure or due to the path characteristic degradation. Results

also show that M2M devices running sessions survive to

the mobility episode. We are currently implementing this

solution on the phidget1 testbed.
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Abstract—Devices in future Internet of Things (IoT) will be
scavenging energy from the ambiance for all their operations.
They face challenges in various aspects of network organization
and operation due to the nature of ambient energy sources such
as, solar insolation, vibration and motion. In this paper we
analyze the classical two-way algorithm for neighbor discovery
(ND) in an energy harvesting IoT. Through analysis, we outline
the parameters that play an important role in ND performance
such as node density, duty cycle, beamwidth and energy profile.
We also provide simulation results to understand the impact of
the energy storage element of energy harvesting devices in the
ND process. We demonstrate that there exist trade-offs in choices
for antenna beamwidth and node duty cycle, given node density
and energy arrival rate. We show that the variations in energy
availability impact ND performance. We also demonstrate that
the right size of the storage buffer can smooth the effects of
energy variability.

I. INTRODUCTION

In today’s connected world, we have several means of

communicating with others on the go. Not only this, we

can also connect to various objects in our surroundings for

various services. We are on the verge of a future where

there will be thousands of inanimate objects to each human

that will ceaselessly communicate with each other to support

humans. In general this paradigm is termed as “Internet of

Things” (IoT). The nodes or devices in IoT are predominantly

sensors and actuators that will work towards better home

and office automation, maintenance and control of operations

within systems such as vehicles, process industries, stock

management at stores and industries, and so on.

With the growth of number of these devices that would

be networked to support various activities, it is impossible to

power them continuously through grid or batteries. One way

to power them continuously is through harvesting energy from

the ambiance. In light of the number of IoT devices that are

predicted to be employed (25 billion by 2015 [1]) and the

nature of applications, it becomes important to study devices

that employ energy harvesting technologies as we elaborate in

this paper.

The importance of neighbor discovery in IoT devices is

evident when considering the nature of these devices and

networks that need perform self-management, self-healing and

self-configuration. An IoT device needs to learn about its

immediate environment to be capable of performing these

tasks, thus justifying a dedicated study towards neighbor

discovery protocols in this special class of networked devices.

Energy harvesting depends on the ambient source. It de-

pends on the deployed location and on the type of the harvester

as well. Energy harvesting at any node varies heavily with

space and time across the deployed set of IoT devices, leading

to the necessity of designing communication protocols that

accommodates these variations. Specifically, in this paper we

focus on the issue of neighbor discovery (ND) for energy har-

vesting IoT (EH-IoTs) devices. In traditional sensor networks,

ND is performed implicitly. Given the variable instantaneous

energies in EH-IoTs, however, the energy harvesting nodes can

leave and re-enter the network. Thus, ND is no longer a trivial

task in such networks and also it is not only performed at the

deployment stage of the network but also at regular intervals.

In EH-IoT networks, every node may see different energy

availability e.g., a device with photovoltaic (PV) panel facing

south and another facing north. Such heterogeneity implies

that the burden of ND could be handed over to a node that

sees more frequent or larger quantities of energy. If nodes are

equipped with prior knowledge of energy availability through

a reliable energy prediction algorithm, they could pro-actively

support ND process.

It is interesting to investigate with both directional and

omnidirectional antennas for the ND process in EH-IoTs.

In the directional case, intuitively, the nodes’ responses for

discovery messages may have lesser collisions due to lesser

node density, and hence may take lesser time for discovery of

all the nodes. Additionally, this would result in energy savings,

further contributing to lower discovery time.

In this paper we propose a general analytical model for

ND in an EH-IoT setting. We make notes on the impact

of important parameters - beamwidth, duty cycle, density

– on performance, a detailed study of the effect of energy

variability and its mitigation through the choice of energy

storage capacity. We do this with the help of the analytical
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model of a setup in which one EH node attempts ND to

find its immediate neighbors (all EH-IoT devices) with an

omnidirectional and directional antenna. Through numerical

results from this model, we find the extent of impact of

important parameters. These are supported with simulation

results.

The organization of this paper is as follows. We introduce

some pertinent related literature in Section II. We describe

an ND algorithm that follows a simple three-way handshake

for nodes to discover each other, as an analytical model in

Section III. The parameters that influence ND performance

are outlined with the help of numerical results in Section IV.

The results of the simulation of this ND algorithm under a

realistic energy regime are discussed in Section V. Numerical

and simulation results are discussed and recommendations are

provided in Section VI. Finally, Section VII concludes this

paper with some recommendations for system and network

choices.

II. RELATED WORK

ND in wireless sensor networks is not considered to be

a problem by itself as it is traditionally performed by MAC

protocols as an implicit operation. However, as Dutta and

others point out in [2], ND is not a trivial problem in

networks where it is not easy or practical to predict if and

when a node will find a neighbor nearby. These networks

include mobile networks in which energy is a constraint –

e.g., battery operated ad hoc networks. With respect to low

or optimal energy consumption, Madan and Lall present a

minimum energy method for ND [3]. Their solution rests on

the computation of a minimum energy graph at design time

by solving a stochastic shortest path problem. Both Dutta

and Madan consider energy conservation in constrained setups

during ND. However, the problem of energy conservation is

not primary in energy harvesting. Over a long duration of

time, a node can receive sufficient energy to perform various

operations, but instantaneous availability is limited. Thus,

the major issue posed by harvesting is variations in energy

availability and thus must be handled differently. Furthermore,

storage of energy in devices such as supercapacitors introduces

loss due to leakage, which implies it is not ideal to wait for

energy accumulation in storage devices for use over a long

period of time. Thus, the design of a network of EH-IoTs is

non-trivial.

Iyer et al., define a protocol NetDetect where neighbor dis-

covery is performed using periodic beacon transmissions [4].

Here, the rate of beaconing is based on the estimate of the

number of nodes in the neighborhood. However in case of

energy harvesting networks, a popular technique adopted for

energy management is to adapt the duty cycle to the rate

of energy harvesting [5], [6]. Such a rate adaptation causes

additional complexity in ND process.

Various ND algorithms have been analyzed for wireless

networks that use directional antennas. Vasudevan et al. [7]

classify them into two major categories – direct and gossip

based. They present an analytical approach to comparing algo-

rithms. The authors discuss antenna beamwidth selection based

on the optimal transmission probability for best performance.

Similarly, the effect of beamwidth and propagation models

on the performance of ND protocols for 60 GHz networks is

analyzed in detail by An et al. [8]. Analysis of ND in ad-

hoc networks is discussed by An and Hekmat [9]. Several

works deal with neighbor discovery in ad hoc networks [10],

[3], [11]. Zhang and Li conduct a performance analysis of

several random and scan-based algorithms for directional ND

in ad hoc networks [12]. Their study concludes that an iterative

scanning method performs better. We employ such an iterative

scanning method in our study as well.

The impact of variations in energy availability on the

ND process (whether omnidirectional or directional), as is

observed in an energy harvesting system, has not been inves-

tigated to the best of our knowledge. In order to study this, it

becomes important to understand the nature of energy harvest-

ing sources. Energy arrival at a harvesting node in a natural

environment is best modeled as a stochastic process due to the

random nature of most natural sources such as sunlight and

wind. Poggi and others demonstrate that the solar radiation

recorded over a period of time can be mapped to a Markov

process [13]. Similarly Ho et al. provide the methodology to

model harvested energy as a non-stationary Markov process

with added context - that is additional information about the

environment in which the device is deployed[14]. Similarly,

in our study, we model energy arrival as a stochastic process

to emulate natural conditions. Thus, we shed some light on

the impact of various important parameters and importantly

varying energy availability on ND in an energy harvesting

setup.

While there is a large body of work on the subject of

neighbor discovery in ad-hoc networks and also in energy-

constrained wireless networks, existing literatures do not suffi-

ciently address ND specifically in energy harvesting networks.

In this paper, we focus on the special circumstances of EH

networks that warrant different solutions than those proposed

before.

III. ANALYTICAL MODEL

In order to understand the factors that impact the ND

process, we study the analytical model of the two-way ND

process which a single node performs to discover all of

its k neighbors. We assume that the number k is known a

priori. Other assumptions are that each node can control the

beamwidth of its antenna, all nodes operate at a duty cycle

and each node is equipped with an energy harvester. Further,

time is divided into equal slots each of which could refer to

one millisecond (as we consider in our simulation study) for

instance. The nodes are synchronized with respect to the slots

i.e., two nodes waking up at a slot will wake up together.

However, note that nodes choose their own wake-up and sleep

times depending on their energy and duty cycle.

We consider a rectangular field in which nodes are placed

at random. One of them is picked to be the “scanning node”



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 195

3

Fig. 1: Example Setting for ND in a set of EH-IoTs

A (marked in red in Fig 1) referred to as A. The scanning

node is similar to a sink or a cluster head since it possesses

higher processing capabilities. This scanning node attempts to

discover all of its immediate neighbors B1, B2, ..., Bk (marked

as black circles) using the two-way ND process. We define

immediate neighbors to be those nodes that fall into the radio

range (given by the large circle) of the scanning node A.

Further, the area that falls in the radio range of A is divided

into sectors (as an example into 8 sectors marked with gray

lines in Fig 1) that represent the area that A spans with its

directional antenna.

Thus, we assume a hierarchical structure with a single

node that acts pro-actively to initiate and perform a neighbor

discovery process. This scenario can be expected, for example,

in smart home settings where a single node behaves as the

home controller or supernode. Also, even in a homogeneous

setting, deployed nodes do not assume the role of a lead as

soon as they come up. Instead, they look for a lead or cluster

head and engage with it. Our assumption allows us to ap-

proach reality better than in a completely homogeneous model.

Furthermore, this is an open problem for energy harvesting

networks in general for the following reasons. Since adaptive

duty cycling and varying energy conditions make it impossible

for nodes to ensure the absence of other scanning nodes by

simply listening long enough, nodes cannot arbitrarily choose

to become scanning nodes themselves. An election process

where nodes choose the node that becomes a cluster head is

not possible before nodes become aware of their neighbors

first, that is not before ND is performed.

The neighbor discovery process involves exchange of a set

of handshake messages between the scanning node and its

immediate neighbors. The scanning node initiates the process

by sending out an ND packet. Any neighbor node that hears the

ND packet responds to it with a response ND (RND) packet. If

the scanning node receives the RND successfully, it sends an

acknowledgment. If not, the neighbor node changes its next

instant of wakeup and the process repeats. At the end of a

single successful run of this process, the scanning node and

a given neighbor have listed each other in their respective

neighbor tables.

In this study, performance metrics considered are : ND time

– the total time taken to discover all one-hop neighbor nodes

and ND ratio – the ratio of number of found nodes to total

number of one-hop neighbor nodes. We focus on ND time

which provides an understanding of the efficiency of the ND

process.

A. Omnidirectional Neighbor Discovery

First, we understand the behavior of the omnidirectional

transmitter. A must discover k nodes labeled B1 to Bk (we

refer to a single one of them simply as B). These are k nodes

that happen to be within the radio link range of A (marked

as black circles in Fig 1). In order to discover these nodes, A
transmits with a probability PtA given as,

PtA =
1

N2way

PeA (1)

A attempts ND at regular intervals once every N2way time

slots. The parameter PeA is the probability that A has the

energy required to initiate and complete the ND process at

that instant of time. This probability in a real system would

be equal to the probability that the required amount of energy

is available to node A. The parameter PtA would describe

periodic discovery attempts if the device operated on a steady

energy supply, e.g. mains supply. However, energy availability

is random in an energy harvested device. Therefore, though the

node is scheduled to perform discovery at regular intervals, the

process can be best described as random due to the parameter

PeA.

Every node B listens for an ND message from A with a

probability, PlB which is given as:

PlB =
1

TB

PeB , (2)

where TB is the on duration of Bi (the node is ON for 1
time slot) and PeB is the probability that B has the energy

to respond to the ND message. Again, for a device running

on a constant energy source, node B would listen for ND

messages at fixed regular intervals. However, the variability

in energy availability at given instances causes the listening

interval to best described as random. It is important to note

here that the instances at which A and B may perform their

respective activities are fixed and regular, whether or not they

do perform scheduled activities at a given instant is dictated

by the availability of energy. Also, N2way and TB are chosen

to be co-prime, in accordance with the Chinese remainder

theorem [15], so that there is never a possibility that two nodes

do not discover each other.

Thus, the probability that an ND packet transmitted by A
reaches B successfully is given as:

PA→B = PtAPlB (3)

This also gives the probability PtB that node B that receives

this ND packet responds to it by sending an RND. In order for

the discovery process to be completed, Bk nodes must respond

to A without their RNDs colliding with each other. The

probability that of k nodes that have not been discovered by

A of which only one responds is given as (1−PtB )
k−1. Thus
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the probability that only a single node reaches the scanning

node successfully (without collisions 1) is given as:

PB→A =

(
k

1

)
PtB (1− PtB )

k−1 (4)

From this expression it is possible to calculate the time

required to find a given node Bi as,

NDTime(i) =
1

PBi→A

(5)

The total time that is required to find all k nodes is given as,

NDTime =

k∑
i=1

1

PBi→A

, (6)

where i denotes the number of nodes out of k that have been

found by A.

The conflict resolution mechanism assumed here can be

described in a practical setup as a three-way handshake mecha-

nism. The scanning node transmits an ND packet, waits for an

response (RND) and retransmits the received RND. Thus both

nodes are informed of the success or failure of this exchange if

the ND and RND packets are received correctly at both ends.

In case of a failure to receive a correct RND, the neighbor

node shifts the instant of its next wakeup by a random number

of time slots. This helps avoid the inadvertent synchronizing

of two or more neighbor nodes. These assumptions are not

factored into our analysis, since we focus here on describing

the scanning node’s performance and the conflict resolution

mechanism is implemented only into neighbor nodes.

B. Directional Neighbor Discovery

Let us now consider a scanning node whose beamwidth

is controlled such that it transmits only to a small sector of

its radio link area. There are changes in the analysis that

we address in this section. We label the directional scanning

node Ad. As in the omnidirectional case, the probability of

transmission at Ad is given as :

PtAd
=

1

N2way

PeAd
, (7)

and the probability that the neighbor node B is listening

remains the same as before, given by Eq 2.

The probability that the node B is in the same sector as

the scanning node is given as θ
2π

= 1

Ns
, where θ gives the

beamwidth of the directional beam and Ns is the resultant

number of sectors into which the circular field is divided. Thus

the probability that node B responds to the ND packet from

Ad is given as PtB (1/Ns) where PtB is defined as before in

the omnidirectional case. The probability that no other node

responds to Ad depends on the number of nodes that fall within

the beam of Ad. We define the probability that of k number of

neighbor nodes there are j nodes in the same beam sector as

our selected node B. In other words, the probability that the

1As we do not study the physical layer here, we assume that if an ND
packet is transmitted without ND collisions, it can be received by devices in
range with probability 1.

sector Nj containing node j is the same as sector NB which

contains node B is:

Pj = P [Nj = NB] =

(
Ns

1

)(
k − 1

j − 1

)(
1−

1

Ns

)k−j (
1

Ns

)j

(8)

Finally, the probability that the node B is successfully discov-

ered by node Ad is given as :

PB→Ad
=

k∑
j=1

Pj

(
j

1

)
PtB

Ns

(
1−

PtB

Ns

)j−1

, (9)

and this reduces to Eq 4 for Ns = 1. Again, the number

of time slots required to discover a single node is given as

1/PB→Ad
and the ND time for all k nodes is the summation

for all nodes Bi :

NDTime =

k∑
i=1

1

PBi→Ad

, (10)

where i = 1, 2, ...k denotes the number of nodes found by

node Ad.

IV. NUMERICAL RESULTS

From the analysis above, we can list the parameters that

define the performance of the ND process as below: (a) Energy

availability (PeA, PeB), (b) Number of nodes or node density

(k), (c) Node duty cycle (given by PtA and PtB (d) Beamwidth

(which gives Ns). In order to understand the impact of each of

these parameters on the performance of A and Ad we plotted

numerical results.

A. Energy Availability

In Fig 2, we see numerical results from the analysis for the

case that k = 40 under several energy availability probabilities

Pe = PeA = PeB for all nodes. In our analytical model,

we have not considered the dynamics of an energy storage

element. Hence, the numerical results indicate the performance

of an ON-OFF system. By considering the energy source to be

random, we allow the model to be applicable with to a variety

of harvesting sources that may or may not be time-dependent

in nature, e.g. vibration-based or wind energy based energy

sources.

The numerical results from this analysis for the case of

varying energy probabilities and a scanning node that has a

beamwidth of θ = 45◦ is given in Fig 3. With lower energy

probabilities, the performance of ND deteriorates.

B. Node Density

The ND time for various values of k or node density for

both an omnidirectional and directional transmitter is observed

in Fig 4. As can be seen, the trend seems to saturate at higher

values of k. This behavior is due to the fact that once a node

has been found, it does not respond to subsequent ND packets

of the scanning node. This factor i that takes values 1 through

k, (appearing in Eq 6 and Eq 10) represents the number of

nodes found at a given instant of time during the ND process

.
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C. Node Duty Cycle

The duty cycle gives the probability that a responding node

B is awake and hence hears the message to respond to the

ND packet from the scanning node. Thus, the parameter of

interest here is the probability that a neighbor node responds

to the ND given by Eq 4 for the omnidirectional case and by

Eq 9 for the directional case. Plotting the ND time against this

parameter gives us insight into the advantage that directional

transmission would provide to the ND process.
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Fig. 5: Effect of Response Probability on ND Time

On the one hand, we see in Fig 5(a) that the ND time

increases dramatically, starting at the extremely low RND

probability of 0.12. On the other hand, the directional trans-

mitter benefits from the factor Pj as there is little impact of a

high probability of response (in Fig 5(b)). In other words, since

there is a low probability of several of the k nodes occupying

the same sector, the ND time is relatively unaffected by the

response probability.

D. Beamwidth

We can see in Fig 6 that the performance gets progressively

worse with an increasing beamwidth. The major cause for this

is the lower probability that at a given time node B is listening
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in the same sector as the one in which A transmits. Another

important factor is the variability of energy availability. We

shall see the ameliorating effect of a storage buffer through

simulation results.
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Fig. 6: Effect of Various Beamwidths on ND time

V. SIMULATION RESULTS

We simulated the setup for the two-way ND scheme for

various parameters. Presented in this section are the results

of the simulation averaged over 1000 runs for each case. We

introduce an energy storage element here which is modeled

on a supercapacitor with linear leakage. Energy arrives to the

supercapacitor following a Poisson arrival process, where each

arrival is a uniform random variable which denotes the amount

of energy harvested. We denote the inter-arrival times of this

process as IA. Every node has an energy storage element and

will initiate or respond to ND process if it has energy greater

than a threshold value. If energy is unavailable, ND is deferred

till the next scheduled time slot. This energy model 2 differs

from the ON-OFF energy model considered in Section III.

The energy model considered in the simulation setup is

specific to an energy harvesting setup that consists of a harvest-

ing sensor (e.g. solar panel or thermoelectric generator) with

harvesting electronics used to step up and regulate harvested

energy and an energy storage device that has very specific

properties. However, our analytical energy model is a much

simpler ON-OFF setup with no storage capacity factored in.

This simple model can be applied with small modifications to

describe any other harvesting setup. While our motive here is

to make a case for the necessity of ND algorithms for energy

harvesting systems, an analytical model of a global energy

harvesting model remains an open problem to be explored

further [17].

A. Effect of Energy Inter-arrival Times

We see the impact of varying IA values on the ND time

in Fig 7. When IA = 15, energy arrival is infrequent and the

system suffers from greater variation in energy availability.

2Further details on the simulation energy model and results can be found
in the companion paper [16].
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Fig. 7: Effect of Energy Interarrival Times for k = 40 on ND

time

Under this condition, the omnidirectional scanning node out-

performs the directional node. However, when energy avail-

ability improves, the directional node recovers substantially.

We may attribute this behavior to three causes: (i) Lower

energy availability impacts the directional node more than

the omnidirectional node as we have observed from numerical

results (ii) The directional node consumes more energy since

it must transmit more ND packets. (iii) There is a smaller

probability that neighbor nodes are listening in the same

sector as the one in which the scanning node transmits – thus

more energy is depleted from storage buffers and ND process

gets deferred more often. However, it can be seen that the

directional transmitter at IA = 10 performs even better than

the omnidirectional transmitter that sees more frequent energy

arrival at IA = 5. Thus we may conclude that the impact of

energy variations on ND time is higher than that of beamwidth.

Though the energy model used to obtain numerical results

in Section IV is different from the model in simulation, we see

that the trends in Fig 7 match numerical results. This implies

that our analytical model provides us with an upper bound for

ND in energy harvesting systems, since they depict a scenario

with no energy storage. We see that adding an energy storage

buffer reduces the ND time considerably, which leads us to

investigate the impact of size of storage element in the next

subsection.

B. Effect of Energy Storage Capacity

In order to understand the impact of variations in energy

availability during ND, we simulated the two-way process

for different supercapacitor capacitance values ‘C’. While the

default value for C was 0.7F which corresponded to 3mJ of

energy storage (for results seen in Fig 7), we see the ND time

for various values of C in Fig 8. The study was conducted for

the IA = 15 case to understand how the system behaves in

the most adverse conditions.

As C increases, the ND time reduces. Since the storage

buffer can store larger amounts of energy, the effects of

constantly changing input energy conditions is reduced as the
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supercapacitor now has a smoothing effect on these variations.

Another interesting consequence of an increased C is that

the difference in the ND time between the directional and

omnidirectional scanning node reduces. For the case where C =

0.9F , the directional scanning node matches the performance

of the omnidirectional one for low values of k and even betters

it for k = 35.
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This improvement in performance is not seen beyond a

threshold C. We see in Fig. 9 that there is no improvement in

ND time from 2.1F to 3.1F and very little improvement from

1.1 to 2.1F . It can be seen that the value of k at which the

directional transmitter performs better than the omnidirectional

one reduces from at k = 35 at C= 0.9F , (seen in Fig. 8) to

k = 25 at C = 1.1F and to k = 20 at C = 2.1F . This allows us

to conclude that energy variability does impact the directional

transmitter more but these effects can be smoothed by using

the right size of storage buffer.

VI. DISCUSSIONS

We have seen that the response probability of neighbor

nodes has a great impact on the ND time. Response probability

of B is in turn heavily impacted by energy availability in

a storage buffer. If this energy is wasted, for example on

collisions, the effect on performance is high. Collisions and the

associated heavy losses occur more often in an omnidirectional

case than in a directional case due to the factor Pj (Eq 8).

We have seen the large effect of node density and duty cycle

on performance. The choice of these parameters must be taken

into account during design and deployment in order to achieve

best performance at least cost to the entire network – given

network parameters such as connectivity and redundancy.

Since there is an obvious trade-off between the node density

and the duty cycle of neighbor nodes, it is important to choose

one parameter given the other.

Next, importance must be given to the impact of beamwidth

with respect to number of neighbors. For example, if the

number of neighbors is low, it is advisable to use a larger

beamwidth in interest of energy expenditure.

Finally, our numerical results suggest that though the direc-

tional transmitter sees lesser impact of response probability, it

suffers heavily due to the decreased probability that nodes A
and B are in the same sector at the same time. Variations

in energy availability across the network also impact the

directional antenna. Nevertheless, we have seen that by making

right design choices for the energy storage buffer size, this

impact can be handled well. So, an energy model for a given

application setting must be first created in order to understand

the frequency of arrival of energy that can be expected in that

setting, to define the size of the storage buffer at design-time.

VII. CONCLUSION & FUTURE WORK

We described the analytical model for ND in a network

of EH-IoT devices. With the help of this model, we outlined

the impact of various important parameters – node density,

node duty cycle, beamwidth and energy availability – on the

ND process. Through numerical and simulation results, we

described the extent of influence of these parameters on ND.

We demonstrated the trade-offs that need to be resolved for

good ND performance – tradeoffs between (i) node density

and duty cycle, (ii) node density and antenna beamwidth,

(iii) energy availability, energy storage and beamwidth. Fi-

nally, recommendations on how to make choices such that

these tradeoffs were resolved were provided.

Future work must focus on studying ND algorithms for

a more homogeneous setup. This remains a complex, open

problem for EH networks. In a universally applicable energy

harvesting model that remains an open issue, a non-linear

leakage model for supercapacitors must be implemented.
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Abstract

Autonomic control is vital to the success of large-scale
distributed and open IoT systems, which must simulta-
neously cater for the interests of several parties. How-
ever, developing and maintaining autonomic controllers
is highly difficult and costly. To illustrate this problem,
this paper considers a system that could be deployed in
the future, integrating smart homes within a smart micro-
grid. The paper addresses this problem from a Software
Engineering perspective, building on the authors’ expe-
rience with devising autonomic systems and including
recent work on integration design patterns. The contri-
bution focuses on a generic architecture for multi-goal,
adaptable and open autonomic systems, exemplified via
the development of a concrete autonomic application for
the smart micro-grid. Our long-term goal is to progres-
sively identify and develop reusable artefacts, such as
paradigms, models and frameworks for helping the de-
velopment of autonomic applications, which are vital for
reaching the full potential of IoT systems.

1 Introduction

The purpose of any computing system is to reach ob-
jectives specified by an external authority. When mul-
tiple authorities can access the system, like in the IoT
(Internet of Things) context, system goals may be con-
flicting, while targeting overlapping system parts. More-
over, such systems must often scale to large numbers of
highly-distributed resources and be adaptable to changes
in their goals, execution context and constituent re-
sources (the systems are open). Autonomic or self-* ca-
pabilities become key to the success of such systems.

This paper illustrates this challenge via a multi-goal,
adaptable and open autonomic system that integrates sev-
eral smart houses into a smart micro-grid. To cover
both the Autonomic Computing (AC) and IoT domains
in this example, the paper employs the generic term au-

tonomic control [28] to designate the system logic that
manages available resources for attaining goals. The
only means for an autonomic controller to pursue its
objectives is via actions it can perform on such man-
ageable resources. To select actions the controller can
rely on decision strategies, knowledge and runtime in-
formation from the environment and the system state.
The key challenge lies in developing the controller logic
that can successfully pursue system goals while ensuring
essential system characteristics - scalability, robustness,
adaptability and openness. We approach this challenge
from a Software Engineering (SE) perspective. Our aim
is to identify, specify and develop reusable artefacts for
analysing and designing autonomic control systems with
the aforementioned properties. The presented work re-
lies on our experience with building autonomic frame-
works [9][10][20][23]. The long-term aim is to build
a comprehensive reference architecture for autonomic
systems.

The generic architecture proposed is constructed on
the assumption that the development and adaptation of
any realistic autonomic system will rely on the integra-
tion of managed resources and control elements of differ-
ent types; integration can occur statically or dynamically.
An important challenge lies in identifying and bring-
ing together the necessary types of abstract architectural
artefacts and concrete control elements that can be used
for system design and integration. Abstract artefacts can
include architectural styles, design patterns and layer-
ing techniques over several axes of abstraction. Con-
trol elements include relatively straightforward control
tasks - such as monitoring, decision-making, execution
or knowledge-management; entire control loops; or com-
binations of the above [15][23]. They can be function-
ally organised based on well-defined abstract entities,
like those indicated above, and interconnected via hard-
coded or loosely-coupled bindings. The overall integra-
tion process can be controlled in a fully centralised, de-
centralised or hierarchical manner [15][9][10][14][23].
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Another important challenge lies in coordinating con-
trol elements for obtaining coherent controllers that
can pursue several goals, adapt and support highly-
distributed, plug-and-play resources. Of major interest
here is the detection and resolution of conflicts that may
occur when integrating elements with contradicting goals
[10] or control strategies [23]. The generic architecture
and methodology presented here focus on addressing
these two major challenges. Other important concerns,
such as timing and synchronisation of integrated actions
are part of ongoing research not covered here. The au-
thors do not claim the novelty of all artefacts in the ar-
chitecture. Indeed, most of these can be found in related
fields such as automatic control [24], collective adaptive
systems [18], multi-agents [14][16], robotics [6], cyber-
netics [2] or autonomic systems [15][7][19]. These pro-
vide a rich repertoire of solutions that address different
parts of the overall challenge.

This paper’s contribution consists in identifying and
extending existing artefacts that can be used for design-
ing autonomic control systems, and assimilating them
into a coherent framework. Some key aspects of the
proposed contribution include: rendering explicit the
conceptual elements included in goal definitions; defin-
ing the problem of building autonomic controllers as one
of mapping declarative actions (goals) into concrete ac-
tions (on managed resources), in a context-aware and ex-
tensible way; combining existing SE techniques for split-
ting the mapping problem into recursively smaller ele-
ments and integrating such elements into flexible overall
solutions; defining integration conflicts and ways of re-
solving them; applying architectural templates and agent
organisation techniques to ensure system coherence and
runtime flexibility. This is illustrated by developing a
multi-goal, adaptable and open smart micro-grid.

The ongoing aim is to help answer questions on:

• How to develop scalable and adaptable feedback
loops?

• How to integrate multiple feedback loops for pursu-
ing many goals at different scales?

• How to deal with system dynamism and openness?

Addressing these concerns is vital for reaching the full
potential of Autonomic Computing and IoT paradigms.
We emphasise the fact that we do not propose a concrete
ready-to-use architecture; this would have to be domain-
specific. Rather, we provide an abstract architecture and
methodology that can guide the design process of au-
tonomic control systems in various domains. The pro-
posed contribution is relevant to both autonomic systems
in general - as it helps design multi-goal, distributed and
adaptive autonomic managers; and to IoT systems - as it
shows how autonomic controllers built in this way can

control system resources to ensure required properties
and functions.

Section 2 describes the sample smart micro-grid ap-
plication, with its requirements and design challenges.
Sections 3 and 4 introduce the conceptual and design as-
pects of the proposed architecture, respectively, illustrat-
ing them via concrete examples from the smart micro-
grid. Section 5 illustrates the complete design of the
prototype application. Section 6 discusses related work
and section 7 concludes the paper and indicates future
research.

2 Smart Houses meet Smart Micro-Grid

2.1 Overall system
In a near-future, it can be envisaged that smart homes
integrate with smart grids to form large-scale, highly-
distributed, dynamic and open IoT systems. This paper
considers this type of system as a relevant use case for
the problem addressed. For the sake of clarity and ex-
pressiveness, the system model is often kept simple, ne-
glecting important aspects such as business models, legal
regulations or fine-grain grid behaviour.

Smart homes are seen here as cyber-physical systems
that integrate and control electrical devices in order to
provide automated services, such as context-aware heat-
ing, entertainment, lighting and security. Individual de-
vices termed “smart” embed their own control logic to
offer some service. For instance, a thermostat can turn
itself up when detecting the home owner’s presence.

A micro-grid is a local, low-tension electrical network.
For simplicity, this paper considers a residential district
organised as a tree, rooted at the district aggregator; the
leaves are the end-user appliances - producers (e.g. solar
panels), consumers (e.g. electrical heaters) or both (e.g.
batteries). The generic term prosumer designates such
endpoints; the associated term prosumption means either
production or consumption. A residential tree is part of
a city grid that is in turn part of the national grid (not
considered here). A house grid is a sub-tree of the district
grid. Its prosumption is measured by a house meter and
equal to the sum of prosumptions of all appliances in the
house. Likewise, the district’s prosumption is the sum of
all household prosumptions.

The load of a grid is defined as the ratio between pro-
ductions and consumptions. It is said to be high when
consumptions overshoot productions, hence requiring
consumption from the parent grid; low load denotes the
opposite. In this paper, load management consists in ad-
justing local productions and consumptions to minimise
the footprint on the parent grid. For simplicity, the paper
will globally refer to the “smart micro-grid” including
implicitly the integrated smart houses.
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2.2 Autonomic control requirements

Let us now define the perimeter of the smart grid’s au-
tonomic controller and identify its most important re-
quirements. First, the controller must pursue several
goals, specified by different authorities. The electricity
provider imposes load management goals for the grid.
In the presented scenarios, these goals take the form of a
Goal Power (GP) interval - [GPlow,GPhigh] - within which
the prosumption of a sub-grid should be maintained. The
exact values will depend on business objectives at differ-
ent grid scales and on the context. Home owners de-
fine different types of goals for their households. These
may be related to comfort - like maintaining a tempera-
ture (heaters) or a lighting ambiance (lamps), or simply
performing activities like washing (washing machine) or
cooking (oven). They may also be related to cost - like
minimising the electricity bill or the environmental im-
pact. Note that such goals can be in conflict.

Hence, the autonomic controller must be able to ei-
ther favour one goal over all others - like prioritising en-
ergy savings over appliance usage or conversely pursuing
comfort at any cost; or target a compromise among all
goals - like only ensuring comfort partially if the grid is
highly loaded. Such preferences are specified by admin-
istrative authorities and may be context dependent (e.g.
user presence or weather). Finally, some preferences can
be overridden implicitly as users handle appliances di-
rectly (e.g. turning-up a heater or cooking).

The autonomic controller must pursue its goals by per-
forming actions on manageable resources, including grid
resources (not discussed here) and electric appliances.
The presented use case focuses on two sample appliances
with specific profiles. First, heaters transform electric en-
ergy into heat; their power can be monitored and set via
specific touchpoints. Second, lamps transform electric
energy into light; their light intensity can be adjusted via
specific touchpoints that measure and set their consump-
tion. While lamps do not usually constitute significant
consumers, they are used here to model diverse equip-
ments with similar profiles, such as microwave ovens or
vacuum cleaners. Finally, privacy concerns impose that
house appliances cannot be controlled from outside the
house within which they reside.

In addition to meeting the goals, the autonomic con-
troller must scale to large numbers of highly-distributed
resources (e.g. appliances). Also, the controller must
adapt to changes in goal specifications (e.g. power inter-
vals), priorities (e.g. comfort vs. savings) and execution
context (e.g. weather). Finally, it must handle “smart” or
standard appliances being plugged-in or out.

3 Conceptual Model

3.1 Goal types and specifications

Goals represent the very purpose of autonomic sys-
tems. Generally, they define a system’s viability zone,
within which its state must be included at any one time
[15][1][2]. A system’s state is defined via a set of vari-
ables whose values can predict its behaviour in the near
future [24] (e.g. a heater’s power setting predicts the
amount of heat it will produce). A system’s state can also
represent its end goal (e.g. a targeted temperature). Goal
definitions are intimately related to the way in which they
can be evaluated - typically via observations on system
state variables. Goals may be declarative or procedural
[17]. Declarative goals indicate what should be achieved
rather than how. They are usually defined as constraints
on system variables, delimiting the viability zone, and
can be evaluated automatically via a utility function over
the system state. Procedural goals indicate (via high-
level policies) how the system should behave in various
situations. This paper focuses on declarative goals, con-
sidering that procedural goals can be induced from these.

A goal definition can include three types of elements -
G (V, S, T), where V defines the viability zone, S the
resources to which it applies, and T the periods over
which it applies. The viability constraints (V) are com-
pulsory and typically accompanied by a utility function
for evaluation purposes. In the smart home example, a
goal can define a viability interval for the power con-
sumption. The Scope element (S) separates the viability
definition from the resource domain to which it is applied
(and evaluated). It is defined via domain constraints that
identify, in a declarative way, the system resources tar-
geted at any one time. In cyber-physical systems, such
as IoT, Scopes can represent physical areas in Euclidian
space; resources located in that area belong to the Scope.
For instance, a goal defining a temperature interval can
be applied to the scope of a house or only of one room.
It will be evaluated using thermometers located across
the house or within that room, respectively. In systems
where physical space is less relevant Scopes can define
other types of resource sets - e.g. a network domain in
a computer cluster. Scopes are particularly relevant to
open systems, where resources can change dynamically
and unpredictably. For example, a power interval can
be defined for a house, without explicitly identifying all
its appliances. Finally, the Time element (T) separates
a goal’s viability constraints and scope from the periods
over which they take effect. For simplicity, this element
is no further developed in the paper; goals implicitly start
when received and end when cancelled or overwritten.

3
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3.2 Goal achievement and evaluation

The only means for an autonomic system to attain its
goal(s) is via actions it can perform on manageable re-
sources [Fig. 1]. Namely, an autonomic controller
should act so as to influence the variables of resources
within the goal’s scope (SG) to maintain them within the
goal’s viability zone (V ) - e.g. to pursue a temperature
goal in a home, a controller acts on the heaters avail-
able in that home. It can be noted here that the set of
resources on which the controller acts - action resources
- is not necessarily equal to the set of resources in the
goal’s scope - goal resources. The only constraints are
that the controller should be able to monitor goal re-
sources for evaluating its goal; and that the action re-
sources should have a controllable influence on the state
of goal resources. Considering a temperature goal in one
room: the room’s atmosphere is the goal resource, since
its temperature is monitred and evaluated; heaters in the
room and in neighbouring rooms are action resources,
since the controller acts upon them to influence the room
temperature. A controller’s action resources for pursu-
ing a goal constitute its Action Scope (SA). The set of
resources whose state they influence is referred to as In-
fluence Scope (SI). Finally, the controller may monitor
resources it cannot control - context resources from a
Context Scope - e.g. outdoor thermometers. In sum-
mary, a controller pursuing a goal G(V,SG) will act on
resources in an action scope SA to influence resources in
a scope SI , where SI includes the resources in SG that are
monitored to evaluate the goal [Fig. 1].

This approach clearly separates a goal’s definition
from the controller’s means to pursue it. This is vital for
adapting a controller’s strategy to changes in its goals,
environment and internal resources. It can also intervene
in tackling multi-goal conflicts, as discussed later. This
conceptual setting allows formulating the problem that
an autonomic controller must solve - i.e. how to attain its
goal(s). It consists in finding a strategy, or mapping func-
tion, which can transform goals into concrete actions;
the solution will be sensitive to the external context and
internal system state. This view generalises the notion
of goal to represent a higher-level declarative action (in-
tentional) that must be translated into concrete actions
(A), executed via resource effectors (imperative) [15].

3.3 Goal translation and division

This subsection identifies the main factors behind the dif-
ficulty of mapping goals into concrete actions and in-
dicates the structural and behavioural concepts that can
help analyse and address them. One factor stems from
an increasing “distance” - or difference in the abstraction
levels - between the goal’s viability specification (V ) and

Figure 1: Goal projection and evaluation.

the concrete actions (A). E.g., in the smart house, a con-
troller must map a “comfort” goal into concrete power
configurations on heaters. A second factor represents a
typical control problem, involving complicated decision-
making capabilities that rely on partial knowledge, react
to fluctuating inputs, avoid oscillations and optimise re-
sults. A third factor intervenes as controllers must adapt
to change - e.g. integrate plug-and-play resources and
change strategies to achieve evolving goals in a variable
environment. The fourth factor stems from the scale of
goal scopes (SG). A large-scale SG often implies a com-
parably large-scale SA which is difficult to control, espe-
cially in an open context. This difficulty increases when
plug-and-play resources are heterogeneous and belong to
different legal authorities.

“Classic” Software Engineering (SE) techniques can
be applied to help address these factors. Layering can
structure controllers along three distinctive axes. First,
abstraction layers can progressively translate goals into
concrete actions (abstraction factor). Each layer maps
higher-level goals (or actions) from the layer above into
lower-level goals (or actions) for the layer below [Fig.
1]; this results in a translation hierarchy. E.g., a “com-
fort” goal is translated into an intermediary “tempera-
ture” goal and then into a concrete “power” configura-
tion. This controller has two abstract layers: the highest
layer pursues the “comfort” goal (declarative); it acts by
setting a “temperature” goal (declarative) on the lower
layer, which acts by setting a “power” goal (imperative)
on a heater. Goal evaluation follows the inverse transla-
tion path - monitored data from SG resources (e.g. tem-
perature) is translated into concepts of the administrative
domain (e.g. comfort). Abstract layers are said to imple-
ment base-level functions, meaning to pursue goals by
acting on resources. Second, control layers can be in-
troduced to add meta-control abilities to such base-level
functions, hence enabling controllers to self-adapt (adap-
tation factor). E.g., when a smart house’s goal changes
from “comfort” to “saving” mode, a meta-control layer
can adapt the behaviour of control elements in the base
layer, as necessary to pursue the new goal. Third, inte-
gration layers can be added to form a control hierarchy
that helps integrate decentralised control elements (be-
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longing to either abstract or control layers, as discussed
below). As integration and abstract layers are often su-
perposed in real system designs the terms are at times
interchanged in the paper.

Encapsulation and modularisation techniques can
complement layering to address a controller’s complex-
ity and adaptability concerns (decision-making and adap-
tation factors). They enable the separation of concerns
in the controller’s logic, facilitating the reuse and inte-
gration of simpler control elements (CEs) into compli-
cated controllers. This is the equivalent of splitting the
controller’s mapping function into complementary parts.
Adaptation can be achieved by replacing or reintegrating
these parts. Domain-specific algorithms are necessary
for implementing CEs and are outside the paper’s fo-
cus. This technique can also be applied to split the goal’s
scope (scalability factor). Here, a goal (G) is split into
complementary goals (Gi) that define the same type of
viability constraints (V ) over smaller scopes (SGi). Each
Gi is assigned to a different control element CEi. E.g., a
comfort goal for a house is split into comfort goals for in-
dividual smart devices; or, the power goal over a district
grid is split into power goals for different houses - here,
the goal value for the district power constraint is also split
into smaller values for each house grid. This approach
can also address the multi-authority issue. E.g., district
controllers (owned by a provider) split their goals among
house controllers (owned by private parties). It also in-
tervenes in goal translation to address resource hetero-
geneity. E.g., comfort is converted into temperature for
thermostats, and into light intensity for lamps. Loose-
coupling and dynamic binding enable runtime integra-
tion of CEs into adaptable controllers.

From a behavioural perspective, most CEs in the
aforementioned structures act only in response to incom-
ing data, like monitoring, analysis or action, from re-
sources, other CEs or administrators. In an integrated
system, CEs trigger each others’ executions thus gener-
ating a control flow through the system [Fig. 2]. The con-
trol flow can pass through CEs within a single layer, like
the MAPE elements of a control loop; as well as across
layers, like a base-control loop triggering a meta-control
loop or an integrator. This is an important concept and
plays a key role in identifying and resolving conflicts.
When a controller pursues a goal, we say that its control
flow serves the goal or carries the ensued action(s).

3.4 Multi-goals, conflicts and resolution

Most autonomic systems will have to follow multiple
goals, given by one or several authorities. In some cases,
multiple authorities issue goals with the same type of vi-
ability constraints (e.g. range of power values) but with
different constraint values (e.g. [1 kW, 2 kW] and [1.5

kW, 3 kW]). In another case, a single authority issues
goals with different constraint types (e.g. comfort and
power savings). The two cases can be combined.

Each goal can be addressed individually as discussed
before. The solutions can then be combined to obtain
multi-goal systems. The main additional problem in-
tervenes when the system’s goals are in conflict. This
concept must be defined before addressing the problem.
At the lowest system level, a conflict occurs when con-
crete actions attempt to change a resource’s variables to
incompatible values - e.g. one action turns a heater’s
power up and another one down. In most cases, con-
flict causes can be traced through the system to vari-
ous sources. Source causes can stem from conflicting
goals, conflicting controller strategies, or both of the
above. Goals are conflicting when they define contra-
dictory viability constraints over overlapping goal scopes
(e.g. different power intervals over the same house grid).
Control strategies are conflicting when they carry con-
tradictory actions through overlapping influence scopes
(SI) (e.g. openning a window during a cold evening to
pursue an air-freshness goal influences the room tem-
perature, causing heaters to power-up and hence jeop-
ertise a power-saving goal). Hence, conflicts may oc-
cur when goals can cause contradictory actions on over-
lapping SIs, the intersection area being referred to as
Conflict Zone [Fig. 2]. Concretely, conflicts do occur
when control flows that service contradictory goals (or
carry contradictory actions) pass through a conflict zone
(within a certain period, which is not discussed here).
To avoid such behaviour, conflict zones must be identi-
fied and special-purpose mechanisms placed in the CEs
within those zones. These include conflict-resolution de-
sign patterns [10] or agent-like CEs that can compromise
among goals (subsection 5.1). Several of these can be
placed along conflicting control flows to improve the ro-
bustness of the resolution process [Fig. 2].

Figure 2: Conflicts and resolution.
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4 Generic Architecture

4.1 Architecture Overview

We can rely on the abstract concepts discussed to define a
generic architecture for designing autonomic control sys-
tems. To remain generic, the proposed architecture is a
logical one, relying on and refining the Autonomic Com-
puting Blueprint [15]. Here, an autonomic system con-
sists of: managed resources, which can be acted upon
and monitored; and an autonomic controller, which re-
ceives and pursues goals. We will show how controllers
can be designed based on the layering, modularisation
and loose-coupling techniques. The controller’s abstract
architecture will be customised and instantiated case-by-
case resulting in application-specific designs. This pro-
cess is highlighted in subsection 4.5 - ‘methodology’.

Typically, an autonomic controller is divided into
application-specific abstract layers, to bridge the con-
ceptual gap between administrative goals and managed
resource parameters. Each abstract layer can be enriched
with one or several control layers, depending on the
adaptability and goal-management needs of its control
function (discussed below). Modularisation is intro-
duced by splitting layers (abstract or control) into control
elements (CEs) of various types (discussed below).

Loose-coupling enables the flexible integration of
control elements (CEs) both within and across layers. In-
tegration can be performed statically or dynamically, to
initially develop and then adapt the controller. Hence,
integration layers can be added to coordinate the dis-
parate actions of CEs within abstract or control layers.
Integration layers can also be modularised via CEs. To
complicate things, integration and control layers can be
further split into abstract layers and/or augumented with
additional control layers.

In a generalised view, abstract, control and integra-
tion layers are conceptually orthogonal. In principle, any
layer type can be divided recursively or added on top of
layers of any other type. All layers are composed of CEs
that can be added, updated or removed during runtime. In
reality, particular combinations of layers and CEs types
will most likely emerge in various application domains.

4.2 Types of layers and control elements

More concretely, CEs can represent: i) control tasks
- control-related functions (e.g. monitoring, decision,
execution, knowledge management, other atomic func-
tions or combinations of these, as shown in [23]); ii)
integration tasks - integration-specific functions (e.g.
application-specific conflict resolution, as detailed in
[10]); and iii) control composites - flexible compositions
of control tasks and (optionally) integration tasks, for

providing more advanced control structures and func-
tions (e.g. single or integrated feedback loops). Control
composites can or not be encapsulated. When encapsu-
lated, they allow building fractal-like structures, which
appear from the outside as a single well-integrated CE
[Fig. 3], hence identical to a control task.

For instance, a base abstract layer that controls a heater
to reach a temperature may consist of four control tasks:
monitoring the temperature, analysing it with respect to
a target, planning a power ajustement and executing it on
the heater. If alternative planning tasks are available, an
integration task can be added to select the best plan to
use in each context. The integrated tasks form a com-
plete control loop that can represent a control composite
(encapsulated or not). This composite can be integrated
with similar composites controlling other heaters and co-
ordinated via an additional integration task.

From a behavioural perspective, CEs may be:

• reactive - acting in response to external stimuli; re-
actions can be stateless or using internal knowledge;

• self-adaptive - able to modify its reactions in re-
sponse to changes;

• agent1-like - managing and negotiating goals given
by other entities; only accepted goals are pursued.

To achieve such behaviours, the proposed architec-
ture defines three types of control layers. Each CE
may include one or several of these layers, in order to
display a more-or-less sophisticated type of behaviour.
First, a base control layer monitors and acts on man-
aged resources following a pre-selected control strategy;
it enables reactive behaviour. Second, a meta-control
or adaptation layer ensures the base layer’s adaptation
to change, by altering or fine-tuning its control strategy
[2][19]; it enables self-adaptive behaviours. Finally, the
goal management layer receives requests for pursuing
goals and decides whether or not to accept them; it en-
ables agent-like behaviours, which are critical for con-
flict resolution. An agent’s decision may be binary or
more nuanced, based on the new goal’s requester author-
ity and conflicts with already accepted goals.

As indicated above, abstract layers for goal trans-
lation are application-specific - hence, no generic types
were identified. Concerning integration solutions, sev-
eral applicable designs were identified in [10] in the form
of integration design patterns (e.g. hierarchy, controller,
stigmergy or cooperation). While abstract, control and
integration layers can be separated conceptually, in real-
ity they can often be implemented within the same appli-
cation layers of CEs (exemplified in section 5).
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4.3 Requirements for integration

Integrating CEs must rely on standardised interfaces and
protocols. While the details of these are domain-specific,
their general semantics and purpose can be identified.
This view is compliant with the Autonomic Computing
Blueprint [15], but extended from control loops to all
CEs [Fig. 3]. Hence, from an external view, CEs are
quite similar. They require monitoring and action inter-
faces for accessing managed resources, including CEs in
lower layers. They also provide monitoring and action
interfaces for giving access to administrators and CEs in
higher layers. These interfaces are the main enablers for
CE layering and integration. Their semantics will differ
depending on the CE type and conceptual layer - e.g.,
monitoring and execution touchpoints for control tasks
in a base-control layer; and, goal specification and evalu-
ation touchpoints for control loops in an adaptation layer.
Their implementations will also differ - e.g., reactive CEs
simply execute incoming actions, while agent-like CEs
may execute, negotiate, or ignore them.

CEs may also provide and require functional interfaces
for exchanges with other CEs [Fig. 3]. As before, these
exchanges are application-specific, but their general pur-
pose will depend on the CE’s function - e.g. in the base-
control layer, they can enable the integration of control
tasks into feedback loops; in the self-adaptive layer, they
can provide access to search and discovery services; for
agent-like CEs, they can intervene in agent negotiation
and self-organisation. Depending on its use, a CE may
or may not provide all of these interfaces.

Figure 3: Control Element interfaces.

4.4 Integration and adaptation

Integrating CEs into multi-goal, distributed and adapt-
able autonomic controllers requires handling problems
of communication, coordination and control. The pro-
posed architecture identifies several integration-specific
CEs to help with such issues. Essential elements include
distributed communication infrastructures, discovery and
repository services. Many such artefacts are available
from related research domains and so not treated here.
Conversely, coordination and control are key concerns
that are especially challenging when CEs and resources
must be integrated dynamically.

Two complementary techniques can be adopted to
address these key issues. The first one relies on facilities

for runtime evaluation, reporting and autonomic adapta-
tion. These allow an autonomic controller to evaluate
itself and adjust its internal composition accordingly, so
as to remain within the viability zone. Support for this
aspect was included in the conceptual model and will be
further developed in future work. The second technique
(developed here) relies on imposing architectural tem-
plates or organisations - a term borrowed from the agent
community [14][26][29]. An organisation defines an in-
variant system core, or template, which can be “filled-in”
dynamically with concrete resources depending on their
availability and state. Imposing an organisation can en-
sure, to a certain extent, structural and behavioural prop-
erties for the resulting adaptive system [9].

An organisation consists of several roles that inter-
act in a well-defined way. A role is defined as a set of
well-specified capabilities - e.g., a “prosumer” role in a
smart grid organisation. The role can be assigned (stati-
cally or dynamically) to any concrete resource that pro-
vides those capabilities - e.g., a heater takes the prosumer
role. Based on the proposed architecture, autonomic con-
trollers are designed as one or several organisations com-
posed. Each organisation is defined based on the generic
artefacts in the architecture, including layers and CEs.
The smart micro-grid exemplified below shows how or-
ganisations designed in this way facilitate system devel-
opment and adaptation. A catalogue of reusable organi-
sations can be progressively developed. A core set was
presented in [10] as integration design patterns. These
include centralised orchestrators, decentralised coordina-
tion via functions embedded in CEs, hierarchical multi-
layer organisations, aggregators and filter interceptors for
integrated control flows.

4.5 Development methodology
We propose a certain sequence of indicative steps for de-
veloping autonomic control systems based on the generic
architecture proposed:

1. specify system goals, defining their viability con-
straints and scopes - Gi(Vi,SGi); the authorities in-
volved are also identified here.

2. identify the managed resources and the concrete ac-
tions that can be executed on them to influence the
state of resources in S; these will make-up the con-
troller’s Action Scope (SAi).

3. identify ‘relevant’ resources that fall into the Influ-
ence Scope (SIi) of this Action Scope (SAi).

4. identify the context resources that can be monitored
and influence control decisions; these will form the
controller’s Context Scope (SCi).

7
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5. for each goal, define the main abstract layers and
their control elements (CEs) required goal transla-
tion and splitting.

6. define an initial integration infrastructure, based
on one or several organisations, ideally predefined
in a catalogue. Essential services like communica-
tion and dynamic discovery must also be addressed
here.

7. identify conflict zones (at each layer) based on the
intersection of influence scopes (SIi) serving incom-
patible goals.

8. modify or extend the initial organisations with
conflict-resolution facilities. One option (devel-
oped in the experiments below) is to add goal-
management control layers to CEs located in the
conflict zones; these CEs become ‘agents’. Another
option is to introduce special-purpose CEs imple-
menting more complicated conflict-resolution de-
sign patterns (as shown in [10]).

9. enhance CEs (as needed) with self-adapting capa-
bilities, by adding adaptation-control layers to
them.

10. further refine any of the existing layers in any of
the CEs (as needed) to enable more complex be-
haviours - e.g. add an adaptation layer to a CE’s
goal-management layer to change its policies dur-
ing runtime; or, further split an adaptation layer into
abstract layers to deal with its complexity.

The first four steps allow defining the controller’s over-
all perimeter - its external inputs (goals and monitoring
information) and outputs (actions and state reporting).
This paper only focuses on goals and actions; future
work will include evaluation and reporting. The fourth
step starts defining the controller’s internal design, based
on successive layers and CEs. Steps five to seven set
in place the integration infrastructure including conflict-
resolution support. The last two steps refine the design
with self-adaptation capabilities at all layers. If needed,
they can further complexify each layer by splitting or en-
hancing them with otrthogonal layers. The smart micro-
grid application exemplifies this procedure next.

5 Illustration via a smart micro-grid

5.1 Design and implementation
Like most SE contributions, evaluating the generic ar-
chitecture proposed cannot rely on formal proofs and
would require too vast experimental resources to rely on
a meaningful empirical approach - e.g. [16]. Hence, for

now, it can only be validated through rigorous argumen-
tation and relevant exemplification, which is the aim of
this section. We show how a smart micro-grid prototype
was designed following the methology depicted above.
Please note that many of the conceptual layers identified
are superposed in the concrete controller design.

We first identify the authorities involved and the
types of goals they could specify (step 1). The au-
thorities are electricity providers and home owners.
Electricity providers define power goals over their
district grids - Gpower([Pd low,Pd high],districtid).
Home owners define mode goals within their
houses, to prioritise either “comfort” or “sav-
ing” modes - e.g., Gmode(

′′com f ort ′′,houseid)
and Gmode(

′′saving′′,houseid). Mode goals can
also be set on individual devices directly - e.g.
Gmode(

′′saving′′,deviceid). Home owners can also
specify power goals; for simplicity we only allow this
for devices - Gpower([Ph low,Ph high],deviceid). Figure
4 shows how these goals are defined (in simplified
notation) for one district and two houses.

Let us now identify the SA and SI for each one of
these goals (steps 2-3). For simplicty we ignore context
scopes. The district’s power goal - Gpower district in Fig-
ure 4 - has an SA that comprises all electric devices in
the district. Yet, for legal reasons, it can only act di-
rectly at the house level; then each house acts on its own
devices (as discussed later). For a house’s mode goal
- e.g. Gcom f ort house1 - the SA covers all devices in the
house. Each device’s goal (power or mode) has an SA
that includes that device. Finally, all influence scopes SI
include all electric devices since these are all connected
to the same district grid. In addition, the SIs of mode
goals include the atmosphere of targeted rooms and of
neighbouring rooms.

For each goal, we now define the abstract layers and
the corresponding goal-translation process (step 5). The
controller pursuing the district power goal Gpower district
has three abstract layers: district, house and device. Each
layer is composed of one or several CEs: CEdistrict in the
district layer; CEhouse1 and CEhouse2 in the house layer;
and CEheater1, CEheater2 and CElamp in the device layer
[Fig. 4]. The CE in the district layer translates the
district’s power goal (declarative) into individual com-
mands (procedural) for CEs in the house layer; and then
into commands for CEs in the device layer. Commands
are further discussed when defining the exact integration
organisations. Device controllers pursuing mode goals
comprise two abstract layers. Hence, each CE in the de-
vice layer is further split into these two abstract layers
[Fig. 6]. For a heater, these translate mode goals into
temperature intervals (predefined) and then into concrete
power values (via a PID controller). For a lamp, mode
goals are translated to light intensity then to power val-
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ues.
Considering the architectural layout so far we decide

to adopt a hierarchical organisation for integrating
CEs within district, house and device layers (step 6).
For the power goal, this organisation includes two roles:
power managers that pursue power goals by orchestrat-
ing prosumers. In [Fig. 5] CEdistrict plays a power
manager role; device CEs prosumer roles; and CEhouse1
both roles - prosumer (for CEdistrict ) and manager (for
CEheater1, CEheater2 and CElamp).

We now define the power-related commands that are
exchanged among roles in the organisation. When a
manager detects that measures approach the power in-
terval’s high limit it sends a reduce load order to its pro-
sumers; for the lower limit it sends a rise load order;
when well in-between the limits it sends an any load
order to cancel the previous ones. To avoid oscilla-
tions, these orders are sent progressively, in random or-
der, and the effects observed before new orders are sent.
For mode goals, “comfort” or “saving” goals are simply
transmitted from house CEs to device CEs.

Figure 4: Goals and scopes in the smart micro-grid.

Figure 5: Integration organisations in the micro-grid.

To obtain a controller that pursues all presented goals
simultaneously, the corresponding organisations are su-
perposed onto one hierarchy. Here, CEs at each level

combine the architectural layers of all previous organi-
sations. Let’s see some of the conflicts that can occur
(step 7). One conflict is caused by district power goals
and house mode goals intersecting over the house scope
- the conflict zone includes all CEs and resources in the
home, as they belong to the SA of both goals. Since SIs
of all houses also intersect, house power goals are also
conflicting. Yet, this conflict is equivalent to the previ-
ous one since house consumptions will be reflected in
the district’s power evaluation. Another conflict can oc-
cur between mode goals set for the entire house and di-
rectly on each device; here, the conflict zone includes the
concerned device.

Both conflicts are resolved by adding goal manage-
ment layers to CEs in the conflict zones [Fig. 6] (step
8). This control layer receives conflicting goals as inputs
and provides a coherent goal as output for the control
layer below - e.g. a power interval for power managers
in house CEs; and, a temperature interval for PIDs in
heater CEs. Goal managers give priority to mode goals.
If in “comfort” mode, it ignores orders from power man-
agers above; if “saving”, it modifies the interval for the
manager below depending on the orders received ([Fig.
7] and [Fig. 8]). In addition, goal managers of devices
prioritise goals that are set on the device directly over
those that are derived from the house mode goal.

Finally, the prototype does not include self-adaptation
functions or further refinements (steps 9 and 10). From
a design perspective, an adaptation-control layer could
be added for instance to power management CEs, so as
to discover and integrate new prosumers. Also, an adap-
tation layer could be added to the heater’s PID abstract
layer for reconfiguration purposes.

5.2 Scenarios, results and discussion

The scenarios depict the smart micro-grid when the out-
side temperature is dropping, heaters increase consump-
tion thus rising the district load [11]. They focus on the
behaviour of two district houses - h1 and h2. H1 is set
to a “comfort” mode - most heaters ignore load-related
orders and sustain a 23◦C temperature; only a few that
were directly set in “saving” mode respond. Hence, h1’s
power target is crossed [Fig. 8-a]. This conforms to the
user’s “comfort” goal and will impact the bill. The dis-
trict manager detects a consumption increase and starts
sending reduce load orders to house prosumers. Since in
“comfort” mode, h1’s CE ignores them. H2 is initially
set to “saving” and reacts by lowering its power inter-
val [Fig. 8-b]; it then sends reduce load orders to device
prosumers to fit the new range. Heaters react by low-
ering their temperatures to 20◦C which therefore lowers
their consumptions and helps the district manager. To
illustrate a dynamic goal change, let’s assume that h2’s

9



210 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Figure 6: Design detail for the house control.

owners switch its mode to “comfort”, to accommodate an
unexpected guest. H2 self-adapts - its prosumers ignore
orders and consume more [Fig. 8-b].

The scenarios were run on a smart grid simulator
that models physical entities, like houses, rooms, grid,
heaters, lamps or solar panels; with related behaviours
and attributes such as heat transfer, temperature and pro-
sumption (in simulation time [s]). It is based on a
service-oriented component technology - iPOJO/OSGi -
and Akka middleware. These enable devices and CEs to
be deployed, reconfigured and removed at run-time. A
miniature house model was also built to ensure realistic
behaviour. For limited space reasons, the presented re-
sults (based on the simulation) were selected for illustra-
tive purposes; a web version of the simulation is available
online for further explorations2.

6 Related Work

This paper’s contribution intersects several interrelated
works, from various domains, from which we can only
cite a few here. Separating goals from the means of
achieving them has been proposed in autonomic com-
puting [17], system engineering [21] and software agents
[26]. In [17], management objectives can be defined as
procedural policies, declarative goals or utility functions.
In [21], “posed problems” are separated from the “re-
sources” that can solve them, hence delaying resource
selection until runtime. In the AI domain, “intelligent”

Figure 7: Management of a flexible heater.

Figure 8: Power management in h1 (a) and h2 (b).

agents modify the environment to achieve declarative
goals [26]. They can adapt internal strategies when faced
with unpredictable situations. In cybernetics, Ashby pro-
posed an “ultra-stable” architecture that relies on two su-
perposed control loops for adapting the system and its
control strategy [2].

The generic architecture presented is consistent with

10
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these approaches - it generalises goal definitions to in-
clude scope and time (also identified in [18]), separates
goals from control logic and introduces meta-control lay-
ers to self-adapt this logic and negotiate goals. Simi-
lar layered architectures have been proposed in various
domains, including Brook’s subsumption architecture in
robotics [6] or Kramer and Magee’s architecture [19] for
autonomic systems. We drew inspiration from these pro-
posals and identified the different natures of concerns
that lead to system layering. The model thus proposes
abstract, control and integration layers, which address
orthogonal concerns and can be combined in recursive
ways. The organisation paradigm is common in the
Multi-Agent Systems domain [14][29] and was adopted
in the model to enable internal adaptation and integration
of plug and play resources while conserving important
invariants. We are exploring this idea further in a parallel
project [9]. In [10] we have presented an initial catalogue
of organisations focused on conflict resolution. Splitting
controllers into CEs of various types - such as control
tasks and feedback loops - relies on previous projects
[23]. The feedback loop appears as a first-class entity
in all autonomic systems [7][15].

The generic architecture presented is complementary
with many contributions that address particular issues of
autonomic computing and IoT. These include numerous
application-specific solutions that propose ad-hoc ways
of constructing or integrating control-loops - e.g. mono-
lithic control in DigiHome [25]; hierarchical managers in
fANFARE [22], AutoHome [5], or using a single coor-
dination manager [12]; or agent-oriented managers [16].
These fit the generic architecture, representing particular
instantiations. Another category of complementary con-
tributions focus on specific communication protocols and
integration middleware for heterogeneous plug-and-play
devices, like DigiHome [25] or RoSe [22] home automa-
tion platforms. Finally, [8] presents a generic integra-
tion model focused on categorising control loops based
on their reciprocal interference (via shared knowledge)
and proposing coordination and synchronisation proto-
cols to integrate them.

Self-management requirements for the smart micro-
grid have been identified in several works [3][4][13][27].
Notably, [3] proposes a distributed load management al-
gorithm, where “colour” statuses solve management con-
flicts between load balancers and appliances. These fit
the arhitectural model and can be adopted to implement
corresponding CE layers. The smart grid domain was
targeted here as a rich use case for illustrating the archi-
tecture and highlighting its main contributions.

7 Conclusions and Future Work

This paper proposed a generic architecture and method-
ology to help analyse and design multi-goal, multi-scale,
adaptive autonomic control systems operating in dis-
tributed open environments, such as the IoT. It relies on
the assumption that autonomic systems of this kind will
be built by integrating control elements (CEs) of diverse
types. Taking a SE-oriented approach, it aims to identify
the reusable artefacts that can help instantiate this type of
solution.

The contribution includes a conceptual model; a
generic architecture adopting these concepts; and a de-
velopment methology indicating how control applica-
tions can be designed guided by these concepts and ar-
chitecture. The conceptual model considers goals as key
elements that should be separated from the control logic
necessary to pursue them. It provides a goal definition
that can be translated, split and propagated across vari-
ous CE types in the system, down to concrete actions on
resources. The main difficulty factors are identified - in-
cluding conceptual abstraction gaps, logistical complex-
ity, adaptability and scalability issues - and suitable SE
techniques identified for addressing them - including or-
thogonal types of layering and flexible modular architec-
tures. The conceptual model also identifies conflicts as
stand-alone elements that must be clearly defined, iden-
tified and addressed. The generic architecture relies on
this conceptual base to define more concrete artefacts for
system design. It includes several types of CEs - con-
trol tasks, integration tasks and control composites - fea-
turing different behaviours and hence requiring different
facilities - base, adaptive and agent-like functions. To in-
tegrate artefacts into flexible systems while ensuring core
properties the model adopts an organisation-oriented ap-
proach inspired from the multi-agents. It indicates how
this can be extended with reusable artefacts specific to
conflict-resolution to handle multi-goal scenarios.

To illustrate its applicability and benefits the paper
showed how a sample smart micro-grid was designed
and implemented based on the generic architecture and
methodology. Several runtime scenarios were selected
to show how to define goals in business-specific terms,
translate and split them among several abstraction lev-
els, deal with multiple authorities and heterogeneous re-
sources, handle multi-goal conflicts, adapt to dynamic
context changes and goal reconfigurations, and integrate
new resources. The paper did not address issues related
to security concerns and the possible incompatibility of
integrated CEs. System robustness and scalability were
considered in the general architecture model but not yet
tested or shown here.

Future work will concentrate on analysing autonomic
systems in other domains to further test the architecture’s

11
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applicability and extend it if necessary. This will include
time-related concerns, which are critical to decision-
making, decentralised coordination and system stability.
The authors intent is to bring forward the understanding
of autonomic systems operating in the IoT context and
the associated support for developing them.
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Abstract

The Internet of Things (IoT) is the next big wave in com-
puting characterized by large scale open ended heteroge-
neous network of things, with varying sensing, actuating,
computing and communication capabilities. Compared
to the traditional field of autonomic computing, the IoT
is characterized by an open ended and highly dynamic
ecosystem with variable workload and resource avail-
ability. These characteristics make it difficult to imple-
ment self-awareness capabilities for IoT to manage and
optimize itself. In this work, we introduce a methodol-
ogy to explore and learn the trade-offs of different de-
ployment configurations to autonomously optimize the
QoS and other quality attributes of IoT applications. Our
experiments demonstrate that our proposed methodology
can automate the efficient deployment of IoT applica-
tions in the presence of multiple optimization objectives
and variable operational circumstances.

1 Introduction

No doubt, recent advances in ICT have changed our
verve enormously. Out of many emerging technologies
there is a continuous rise of highly distributed ambient
computing environments such as the Internet of Things
(IoT) and the Machine-to-Machine (M2M) communica-
tion paradigm. IoT is an open ended network infrastruc-
ture with self-configuring capabilities fueled by low cost
wireless communication and efficient network perfor-
mance. It is a dynamic network of uniquely identifiable
fixed or mobile communicating objects. These objects
collect data, relay information to one another, process the
information collaboratively, and take actions in an auto-
nomic way without human intervention. Smart homes
and offices, smart health, assisted living, smart cities
and transportation are only a few examples of possible
application scenarios where IoT is playing a vital role.
Also in this domain many significant self-* challenges

exist. For example, one challenge on self-optimization
is how to change the behavior of a system to achieve a
desired functionality, while maintaining a balance with
Quality of Service (QoS) and resource usage [21]. Self-
optimization in the Internet of Things shifts the focus
from design and deployment of a single or a few elements
operating autonomously to a large complex ecosystem of
a network of autonomous elements [16].

Most of the existing software platforms for IoT are
highly domain-specific prohibiting seamless interoper-
ability of objects across multiple vertical domains. The
FP7 BUTLER project1 aims to address this concern by
achieving a secure, context-aware horizontal architecture
for IoT by offering common functionality on three plat-
forms - Smart Object, Smart Mobile and Smart Server. In
this work we aim to predict and control the global system
behavior resulting from self-optimization of the compo-
nents deployed among these three different platforms.
The dynamic deployment of software components in an
IoT system has to take into account the resource char-
acteristics of the application components and the plat-
forms used for deployment in terms of processing power,
bandwidth, battery life and connectivity [1]. Each plat-
form has its own capabilities and limitations to achieve
Quality of Service (QoS) requirements. The heterogene-
ity makes it more complex and challenging to cope with
QoS requirements.

The main objective of our work is to find optimal
distributed deployments and configurations of applica-
tion components. We use annotated component graphs
to model application compositions and Pareto-curves to
represent the optimization options for each (type of) plat-
form, i.e. the Smart Object, Smart Mobile and Smart
Server. The resource optimization objectives are cho-
sen with respect to the QoS requirements and the trade-
offs on the computation vs. communication cost-benefits.
For the runtime (re)configuration and (re)deployment,

1http://www.iot-butler.eu/
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we use Markov Decision Processes to achieve the self-
optimization capabilities of the system.

After discussing related work in section 2, we present
some motivating use cases in the healthcare and wellbe-
ing domain in section 3 from which we elicit relevant
functional and non-functional requirements. We briefly
outline our self-optimization approach in section 4. It is
based on an offline exploration phase to collect relevant
profiling information for optimization before actual de-
ployment, and a runtime phase to autonomously adapt
the deployment and configuration towards changing op-
erational circumstances. In section 5 we evaluate the de-
ployment and optimization trade-offs in our work, and
finally conclude this paper with possible directions for
future work in section 6.

2 Related work

The autonomic computing paradigm has been around for
almost a decade with a primary vision of computing sys-
tems that can manage themselves [10, 8]. This vision
is now gaining inroads into the Internet of Things (IoT),
with many typical optimization criteria:

• increase the performance by deploying heavyweight
application components on faster hardware.

• reduce the amount of communication and network
latencies between distributed components.

• optimize the overall energy consumption of the ap-
plication components on the different platforms.

Utility functions are often used to achieve self-
optimization in distributed autonomic computing sys-
tems, both for the initial deployment of an application
and its dynamic reconfiguration. Tesauro et al. [19]
explored utility functions as a way to enable a collec-
tion of autonomic elements to continually optimize the
use of computational resources in a dynamic, heteroge-
neous environment. Later work by Deb et al. [5] in-
vestigated how utility functions can be used to achieve
self-optimized deployment of computationally intensive
scientific and engineering applications in highly dy-
namic and large-scale distributed computing environ-
ments. Utility functions have also found their way into
the cloud computing space [7, 11] where they are used to
manage virtualized computational and storage resources
that can scale on demand.

The problem with utility functions is that their defini-
tions require a fair amount of domain-specific knowledge
to be effective. To address this challenge, reinforcement
learning is often considered to automatically infer op-
timal deployment strategies. Tesauro [17, 18] explored
reinforcement learning for an online resource allocation

task in a distributed multi-application computing envi-
ronment with independent time-varying load in each ap-
plication. Similar work was proposed by Vengerov [20]
using reinforcement learning in conjunction with fuzzy
rulebases to achieve the desired objective. However, long
training times is a reoccurring concern that often out-
weighs the potential benefits of reinforcement learning.

Organic Computing is another paradigm that focuses
on distributed systems that exhibit self-* properties.
In [3], a generic observer/controller architecture is pro-
posed to introduce self-organization in complex systems
such as traffic light controllers. The observer collects rel-
evant data, pre-processes and analyzes it to discover pat-
terns which might affect the performance of the system.
The controller explores the parameter space to discover
settings that would suit the future states of the system,
but also matches the appropriate parameter settings to the
current state of the system. For the traffic controller use-
case, an evolutionary algorithm-based approach is used
to explore and optimize the solution space and discover
appropriate parameter settings. The controller then com-
pares the performance of the discovered parameter set-
tings in a simulation environment and deploys the most
appropriate setting at runtime.

Similarly, in [15] the authors propose a new frame-
work for self-organizing systems, albeit for improving
the efficiency in terms of functional requirements of the
system. In line with the observer/controller architecture
proposed in [3], an advisor (a high-level agent) monitors
the performance of other agents in a distributed environ-
ment and provides suggestions to improve their perfor-
mance. The main focus of the paper is to improve the
overall efficiency of the system considering the openness
and autonomy of the system along with low observability
and controllability of the agents (such as in the domain of
pick-up and delivery). The advisor gathers data, analyzes
and extracts recurring tasks and optimizes the solutions
for those recurring tasks. In the aforementioned use case,
exception rules are generated based on the current envi-
ronmental conditions in order to improve the efficiency
of the pick-up/delivery systems.

The focus of both the papers [3, 15] is on optimizing
the functionality of the system while considering scala-
bility and robustness requirements of the system. Con-
trary to our approach, the optimal system configuration
for the architecture in [3] is completely determined on-
line. Such an approach may require considerable re-
sources at runtime and hamper the feasibility on resource
constrained devices. Although [15] relaxes the need of
continuous monitoring by providing some autonomy to
the application for a limited amount of time, it does not
address the performance/efficiency trade-offs which is of
utmost importance in resource constrained IoT systems.
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Figure 1: Component-based composition of the activity recognition application

Given the aforementioned optimization criteria, ef-
ficient deployment of application components in an
IoT environment is often a multi-objective optimization
problem [6, 13]. Note that these optimization objectives
may conflict with one another (e.g. performance vs. en-
ergy consumption). In such cases, there does not exist
a single solution that simultaneously optimizes each ob-
jective and resource trade-offs are to be made [9]. Pareto
optimization [4, 22] is a technique that identities a set of
Pareto-optimal solutions involving more than one objec-
tive function to be optimized simultaneously. We say that
a solution − i.e. an allocation of resources − is Pareto-
optimal if there exists no other alternative that would im-
prove upon one objective function without deteriorating
in at least one of the other objective functions.

On the one hand, the problem with utility functions (or
optimization objectives) and Pareto-optimal solutions is
that the Internet of Things is an open ended ecosystem
of heterogeneous resources, making the crisp definition
of Pareto-optimal solutions difficult due to an incomplete
view on the external factors and uncertain circumstances
that might influence the optimality. On the other hand,
the applicability of the above learning approaches in an
Internet of Things environment is usually hampered by
the time and computational resources required to find a
feasible or better solution. To address this concern, we
aim to explore the feasibility of finding reasonable results
in a reasonable amount of time by combining Pareto-
optimization with reinforcement learning.

3 Scenarios and requirements for wellness
and independent living

In this section, we will use some motivating scenarios
from the healthcare and wellness domain as prototypical
examples of IoT applications, and derive functional and
non-functional requirements.

3.1 Use cases and components
Analysis of physical fitness and several health monitor-
ing techniques revolve around the inference and pre-
diction of human behavior. Accelerometer sensor data
helps to analyze the human behavior in an effective
way [14, 12]. We have implemented a variety of process-
ing components in a modular fashion to enable a flexible
deployment composition on the following platforms:

• Smart Object: Small appliances, sensors or ac-
tuators with limited computational power, storage
capacity, communication capability, energy supply
and primitive user interface are categorized as smart
objects (e.g. RFID tagged objects, motion detectors,
heating regulators).

• Smart Mobile: Devices with multi-modal user in-
terfaces to enable user mobility through remote ser-
vices are categorized as smart mobiles (e.g. smart
phones, smart TVs). They usually have better re-
source provisions than smart objects.

• Smart Server: The aggregation and complex anal-
ysis of data from smart objects and smart mobiles
are realized as services on smart servers (e.g. a lo-
cal server or remote cloud computing set-up).

3.1.1 Use case 1 - motion activity recognition

In our first use case, we monitor the physical activity of
the user by learning and classifying the activity of the
user (e.g. standing, walking, running). We track the num-
ber of steps taken each day as a measure for wellbeing,
and use it as input to classify higher levels of activity
(e.g. cooking, watching TV, presenting at a meeting).

3.1.2 Use case 2 - fall detection for elderly

Another important parameter that characterizes the qual-
ity of independent life is the safety of the users in their
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own homes. Ageing can affect all domains of life leading
to physical infirmity and loss of mental or cognitive abil-
ities necessitating safety monitoring applications. Our
second use case specifically focuses on fall detection as
a common safety monitoring application within an Am-
bient Assisted Living (AAL) environment.

3.1.3 Application components

Both use cases leverage a tri-axial accelerometer, a com-
mon mobile embedded inertial sensor found in most
smartphones, but rely on different sampling rates and
processing algorithms. A conceptual overview of the
software components is provided in Figure 1, with an ex-
planation of some of them below.

• Accelerometer: It produces a continuous stream of
X,Y,Z acceleration data by sampling the sensor at a
certain rate (see Figure 2).

• Low-pass filter: For mobility tracking we are inter-
ested in acceleration peaks that arrive at a frequency
of maximum 5Hz (i.e. max 5 steps per second). We
use the ’moving average’ as a simple low-pass filter
to remove high-frequency noise (see Figure 2).

Figure 2: Accelerometer data and magnitude of signal
after low-pass filter

Figure 3: Peaks in magnitude signal and detected steps

• Magnitude filter: The orientation of the sensor is
subject to change while moving around. Therefore,
we carry out the signal analysis on the overall mag-
nitude of the acceleration signal (see Figure 2).

• Peak filter: A single step is characterized by a pat-
tern of several maxima and minima in the time do-
main of the acceleration signal. This component ex-
tracts these features in the signal for further analysis
(see Figure 3).

• Step detector: It identifies the correct maxima/min-
ima to correctly count the number of steps and
to differentiate between standing still, walking and
running (i.e. the peak rate) (see Figure 3).

Although this application is still fairly small in size and
number of components, it manifests some interesting
properties in the sense that the computational demands
of certain components (e.g. the peak filter and step de-
tector components) vary depending on the actual motion
behavior of the user.

3.2 Requirements

The major (high-level) functional and non-functional re-
quirements can be summarized as follows:

1. The system should be able to capture and store rele-
vant sensor data and context information of the user
to model, learn, classify and predict the physical
activity of the users.

2. The system should have modular building blocks
for data processing and activity recognition on all
three platforms for flexible distributed deployment.

3. The deployment and configuration of the applica-
tion components must be adaptive at runtime to op-
timize for performance, latency, network communi-
cation (or QoS in general).

For example, delaying or offloading the accelerometer
data processing will help to optimize the autonomy of
battery powered sensors or mobiles.

Many opportunities for optimization may exist,
i.e. different distributed deployments of the application
components and different configurations per component.
The challenge is to find and analyze the different op-
timization trade-offs in an open ended and dynamic
IoT ecosystem of Smart Objects, Smart Mobiles and
Smart Servers, each with varying sensing, communica-
tion, computation and storage capabilities.
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Figure 4: Overview of the self-optimization approach il-
lustrating the offline and runtime phases

4 Conceptual overview of the deployment
and optimization methodology

It is impossible to determine in advance where every
component will run due to the dynamic interaction of
these devices with the environment and the user. The
multitude of parameters associated with the various pos-
sible configurations under varying workload and re-
source availability makes it almost impossible to manu-
ally finetune the components for best overall system per-
formance, necessitating the introduction of self-* prop-
erties in IoT applications. Performing detailed cost ben-
efit analysis for self-management decisions from scratch
at runtime causes a large overhead. We reduce this over-
head by balancing the offline and runtime efforts of mak-
ing these decisions.

Our overall approach is based on an offline exploration
phase to collect relevant profiling information for opti-
mization before actual deployment, and a runtime phase
to autonomously adapt the deployment and configura-
tion towards changing operational circumstances. An
overview of the approach is given in Figure 4.

4.1 Offline exploration of deployment and
configuration options

Figure 5 gives an overview of the offline exploration for
the preprocessing of deployment and configuration de-
cisions. The component-based application is first pro-
filed to obtain an annotated component graph. This anno-
tated component graph is used for the exploration of the
Pareto-optimal deployments and configurations and a re-
configuration cost matrix is constructed only for Pareto-
optimal configurations. The runtime system uses the ex-
plored Pareto-optimal configurations and the reconfigu-
ration matrices in order to make self-optimization deci-
sions at runtime.

4.1.1 Deriving the annotated component graph

We use annotated component graphs as a high level
model of computation to represent the application in or-
der to explore the trade-offs between the different de-
ployment configurations of the application. An anno-
tated component graph is a directed graph where the
nodes represent the components of an application, and
the edges represent the data flow between the compo-
nents. These nodes and edges are annotated with meta-
data representing the hard constraints, costs and resource
requirements of the components.

Let us again consider the step counting application as
an example. Some components of the application may
be deployed on different platforms, i.e. a Smart Object,
Smart Mobile and Smart Server. In order to generate
an annotated component graph for this application the
following steps are carried out:

1. Use the component model of the application and
identity the data flows (similar to the one shown in
Figure 1). The data flow graph acts as skeleton for
the annotated component graph.

2. Instrument the communication interfaces of compo-
nents to measure the amount of data transferred be-
tween components.

3. Run every component of the application on all the
different platforms possible, profiling its execution
time, energy consumption and data transferred be-
tween components, each time.

4. Calculate the memory requirements of every com-
ponent by monitoring the changes in stack and heap
sizes, as components are added and removed from
the platform.

5. Repeat steps 3 and 4 over a range of component
configurations (e.g. a different sampling rate) and/or
simulated inputs (e.g. accelerometer traces of differ-
ent activities and individuals).



218 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

P
ro

fi
li

n
g

 

E
x

p
lo

ra
ti

o
n

 o
f 

d
e
p

lo
y
m

e
n

t 
&

 

c
o

n
fi

g
u

ra
ti

o
n

s
 

C
o

n
f.

 1
 

Conf. 1 

C
o

n
f.

 2
 

Conf. 2 

y 

x 

Reconfiguration cost matrix 

P
ro

fi
li

n
g

 

re
c
o

n
fi

g
u

ra
ti

o
n

 c
o

s
ts

 

A set of Pareto-optimal 

configurations per application 

mode 

Annotated component 

composition 

9.31ms 

10.5mJ 

8.22ms 

9.5mJ 

15.5ms 

17.1mJ 

9.31ms 

10.5mJ 

Component based multi-

modal application 

Figure 5: Overview of the offline exploration phase

The only hard constraint for this application is that the
accelerometer component can only execute on devices
with such a sensor. Adding all this meta-data to the data
flow graph generates the annotated component graph of
the application and we use it as an intermediate model
for exploring deployment trade-offs at design time.

Reconfigurable components: Some components have
configuration options that affect their resource costs and
requirements. For example, lowering the accelerome-
ter sampling rate from 50Hz to 15Hz decreases the CPU
time, communication and energy consumption of the ac-
tivity recognition components, but increases the recog-
nition error rate. For such components we annotate the
component graph with metadata for a discretized range
of parameter options, i.e. the CPU time and energy con-
sumption values for the supported sampling rates.

Variability: Some components have stochastic non-
functional performance properties (see Figure 6). For ex-
ample, the communication throughput of a wireless node
could be affected by external factors (e.g. interference).
To define the Pareto-fronts (or Pareto-curves) one usu-
ally takes the worst case execution values after profiling
to define the Pareto-points. Given that the IoT ecosystem
is quite heterogeneous and open ended in nature, pursu-
ing such a pessimistic approach will easily lead to unde-
sirable solutions. Therefore, we define the Pareto-points
based on the most likely execution values. However, to
still be able to assess the impact of a worst case execution
scenario for a particular deployment and configuration
(i.e. a specific Pareto-point), we incorporate the likeli-
hood distribution of the profiled execution values in each
Pareto-point leading to a Pareto-front (i.e. a set of Pareto-
optimal solutions) with some degree of variability.

4.1.2 Exploring the Pareto-optimal trade-offs

We model the problem of deploying an application to a
heterogeneous network of self-managing Smart Objects,
Smart Mobiles and Smart Servers as a constraint-based
optimization problem and use a CPLEX based solver to
explore the Pareto-optimal set of solutions. The details of
expressing software deployment on hardware resources
are described in our previous work [2].

In a Pareto-optimal set of solutions, every solution is
better than all other solutions according to at least one
functional or non-functional criterion. For example, Ta-
ble 1 refers to a scenario of fancy and cheap hotels close
to the beach. Hotels A, E and F can be eliminated be-
cause they are not Pareto-optimal. Also note that Hotel
D is not the best in any optimization objective (stars, dis-
tance to beach and price), but it is Pareto-optimal. Al-
though we are mainly interested in activity recognition
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Hotel Stars Distance to beach Price
A ** 0.7 80
B * 0.2 40
C *** 1.3 100
D ** 0.3 70
E ** 0.5 90
F ** 1.5 120

Table 1: Maximization problem with multiple optimiza-
tion criteria

as a motivating scenario, we use this example to offer a
better understanding of Pareto-curves with multiple op-
timization criteria.

In our approach, eliminating deployment and config-
uration options that are not Pareto-optimal reduces the
search space for the runtime reconfiguration decision
from all possible configurations to the set of Pareto-
optimal configurations. For example, consider the step
counting application which consists of 5 components
(see Figure 1) with a fairly simple pipe-and-filter archi-
tectural style. Assume we aim to deploy this applica-
tion composition in a distributed setting on a simple sen-
sor platform with limited processing capabilities (i.e. a
Smart Object) and on a resource rich platform (i.e. a
Smart Server). The deployment decision then boils down
to figuring out which components are deployed on the
sensor and which ones are deployed on the server. The
only hard constraint for the deployment of this applica-
tion is that the Accelerometer component must be de-
ployed on the sensor platform. The other components
can be deployed on either side, theoretically leading to
16 different deployment configurations of which a sub-
set are Pareto-optimal. Obviously, extreme deployment
configurations where components 1, 3 and 5 are on the
sensor and components 2 and 4 are on the server will
never be optimal due to the high communication cost.

In order to explore multi-dimensional Pareto-optimal
surfaces, the problem is modeled using of parameteriz-
able constraints. These parameters are then iteratively
varied over a discretized range, invoking the solver each
time to find a point on a Pareto surface. For example,
an energy consumption versus Quality of Service Pareto
curve is explored for the step counting algorithm by it-
eratively finding minimum energy solutions for different
QoS constraints. It is important to note that there are
no dependencies among the different invocations of the
CPLEX solver. While finding solutions for this applica-
tion takes several minutes on a single machine (depend-
ing on how many simulations are carried out), we can
speed up this process by initiating parallel invocations of
the CPLEX solver on a cluster of machines. This guaran-
tees the feasibility of the approach for larger applications
with many more configuration alternatives.

4.1.3 Reconfiguration cost matrix

A reconfiguration cost matrix is constructed by profiling
the costs of reconfigurations and redeployments of com-
ponents. For example, the cost of activation/deactivation
of a component, establishing a local/remote component
-to-component communication channel and transferring
the state of an active component over a communication
network. The size of this matrix is O(N2) where N is the
number of possible configurations. As N can be become
large, only the Pareto-optimal configurations are consid-
ered for reconfigurations.

4.2 Managing variability with runtime re-
deployment and reconfiguration

Traditionally, profiling of the application components is
done with the assumption that each component will cor-
respond to just one point in the Pareto search space. The
openness in IoT can potentially create a lot of variabil-
ity in the operational conditions of smart applications
which in turn causes inconsistency in resource consump-
tions w.r.t. the Pareto-optimal solutions. For example,
external environmental parameters such as network con-
nectivity and communication bandwidth availability can
vary depending on the living environment of the user.
This operational variability makes it difficult to profile
components in general. Similarly, the performance of an
application component can vary depending on the user
behavior. For example, the computational load of the
Step Detector component (see Figure 1) will be different
when the user is standing still (little processing due to no
significant peaks in the accelerometer data) or walking
(several peaks per second).

Rather than profiling application components as sin-
gle points in the Pareto search space, we represent each
application component with value distributions (through
multiple profiling iterations) for systems where this vari-
ability in operational conditions is highly anticipated (as
is the case for IoT systems). Each component is rep-
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Figure 6: Variability in the profiled configurations
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resented by statistical properties (e.g. min, max, median,
average, standard deviation) discovered through multiple
profiling iterations of the component under varying con-
ditions. The example in Table 1 augmented with variable
pricing (depending on season or room type) would re-
quire a similar Pareto-front representation.

We extended traditional Pareto-optimization methods
to find a set of Pareto-optimal points taking into consider-
ation this variability (see Figure 6). This basically means
that the Pareto-optimal set not only considers configura-
tions that are Pareto-optimal in the most likely scenar-
ios (e.g. using the mean value of the optimization ob-
jectives), but also configurations that might be Pareto-
optimal in less likely scenarios (e.g. min or max value of
the optimization objectives). Assume in Figure 6 we aim
to minimize for both objectives A and B. Configuration
C3 would be Pareto-optimal w.r.t. C2 when considering
the mean value of objective A (and the equal mean value
for objective B). However, due to the difference in vari-
ability there might be a profiled configuration x of C3 that
has a lower value for objective A than any profiled con-
figuration of C2. Depending on which statistical prop-
erty is chosen, we find different Pareto-optimal sets. In
our approach, we take the union of these sets and refer to
it as the relaxed set of Pareto-optimal solutions for any
given statistical property. At runtime, we start off with
a default statistical property to define the Pareto-optimal
solutions, and propose using online reinforcement learn-
ing to discover whether the given context gives rise to
other Pareto-optimal solutions that emerge in less likely
situations. The major benefits of our approach are:

• Reduction of the (re)configuration search space
by limiting the relevant working configurations to
Pareto-optimal solutions.

• A modified Pareto-optimization method defin-
ing a relaxed set of Pareto-optimal solutions to
handle the variability in the IoT working conditions.

• Finetuning the configuration at runtime by nar-
rowing down the operational variability through
reinforcement learning.

4.3 Analyzing cost/benefit trade-offs with
Markov Decision Processes

With the relaxed set of Pareto-optimal solutions, we can
find configurations that are optimal in a particular con-
text. Whether these configurations remain beneficial
over a certain time period is something we cannot infer
from the Pareto-fronts.

Let us consider the 5 components in the step counting
application in Figure 1 and the different deployment con-
figurations. Whether any of these configurations remains
optimal over time is unpredictable, and cannot be derived

just from the offline generated Pareto-fronts. For exam-
ple, the default sampling frequency for counting steps is
set to 50Hz. However, if the system knows the person is
not moving (e.g. sitting down in a meeting), it can reduce
resource consumption by changing the configuration of
the Accelerometer component and setting the sampling
frequency to 15Hz. In this mode, it can detect a change
in movement, and if so, set the sampling frequency back
to 50Hz to start counting steps again.

We therefore model the relaxed Pareto-optimal config-
urations as states of a Markov Decision Process (MDP)
along with the associated set of actions and rewards and
find out the best possible (re)configuration policy over
a finite time period. This uncertainty in potential ben-
efits over time is introduced by a changing context in
the operating environment of the system. Also note that
these reconfigurations have associated reconfiguration
costs which in turn would require the system to maintain
the new configuration for a certain time Tbe (break-even
time) before it is actually able to benefit from deploying
the new configuration.

As typical user activities are characterized by certain
events that happen over certain period of time, the states
are not expected to change at each time step. State tran-
sitions will be guided by transition rates, i.e. how quickly
a transition takes place instead of how likely transitions
are at each time step. Accordingly, a continuous time
Markov process is ideal to model this problem but in or-
der to reduce the complexity of the proposed system we
have decided to utilize a discrete finite horizon MDP in-
stead of a continuous MDP.

A classic discrete MDP is represented by a 4-tuple
S,A,P(s,s′),R(s,s′) where S is the set of states, A is a
super-set of sets of actions possible in each state, P(s,s′)
is the transition probability between states s and s′, and
R(s,s′) is the reward for moving from state s to s′. The
goal here is to discover and learn the expected rewards
and best possible policy considering the transitions be-
tween configurations due to a changing context. The dif-
ferent parameters of our proposed MDP model are:

• States: a set of Pareto-optimal configurations for
each application that can be possibly deployed in
the system. It is represented as an n-tuple where
n represents the number of platforms. If there are
m possible configurations for each of the platforms,
then the number of possible states is (mn). Also,
note that the momentarily Pareto-optimal global
configurations are a small subset of these states.

• Actions: a set of possible state transitions that are
allowed for optimal resource consumption are mod-
eled as actions for each state, i.e. a(s). We assume
that all the application components have to be run
on one of the available platforms.



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 221

• Transition probability: the probability with which
state changes are anticipated in the system is called
the transition probability. User activities or chang-
ing living conditions introduce randomness and
cause deviations in the desired state transitions for
the most likely Pareto-optimal solution.

• Reward function: the reward value is defined in
terms of the resource consumption of the current
and optimal configuration, and the time the optimal
configuration will be active:

resource consumptionopt. con f .

resource consumptioncurr. con f .
∗ T

The resource consumption of a configuration on a
particular platform is a weighted average of the m
resources ρi involved:

resource consumption = ∑wi ∗ρi 0 < i < m

We also assume that T > Tbe, meaning that the cost
incurred by the reconfiguration to the optimal one
will be accounted for by running this new optimal
configuration longer than the break even time Tbe.

The optimal configuration is the one which maxi-
mizes the value η defined as follows:

η =
δ

∑wi, j ∗ρi, j
0 < i < m,0 < j < n

where,

δ = accuracy of the step detector
ρi, j = resources consumed (in %)
i = type of resource (memory, CPU, etc.)
j = type of platform (smart object, mobile or server)
w = weight to prioritize importance of resource

The above parameters can be explored offline to iden-
tify an optimal configuration for a given set of resources
whose importance can be balanced by the user (e.g. bat-
tery and performance). However, the variability in
the execution makes it impossible to guarantee that the
aforementioned optimal solution will remain the same
under all circumstances. We therefore use learning tech-
niques to better identify the optimal deployment for the
given operational circumstances of the application. The
learning we propose is guided by an ε-greedy algorithm:

Q(st+1,at+1) = ε.mean(Q(s,a))+(1− ε).max(Q(s,a))

where the first term helps the system to explore the re-
laxed Pareto-optimal configuration space and the second
term exploits the learned best policy available at the time.

4.4 Discussion

Despite pre-optimizing the deployment decision of the
IoT application components and implementing applica-
tion specific optimization logic, the global optimal con-
figuration cannot be determined during the offline explo-
ration phase as it is dependent on multiple time-varying
variables such as, user profile (e.g., age and other fac-
tors can influence how active a person is) preference of
the user (e.g., to minimize computational load or com-
munication bandwidth) and the operating environment
(e.g., signal strength of the WiFi network). Hence in
this paper, a smart adapter meta-component is proposed
which implements a global runtime learner to drive the
IoT application towards optimal configuration over time
for any given user or operating conditions. The local ap-
plication specific optimization logic (e.g., lowering the
sampling frequency when the user is not active) takes
the current (or aggregated) prediction of the application
(e.g., the user is idle or active) as input and output the
optimal configuration for the system. A simple version
can be implemented by a look-up table with pre-defined
output events and corresponding optimal configurations.
Whereas the smart adapter is more generic, it takes cur-
rent configuration of the IoT application and correspond-
ing resource consumption in multiple platforms as input
and recomputes the throughput of the predefined con-
figurations which in turn is used by the reinforcement
learning algorithm to learn the best policy for the user
and associated operating environment. Given that the
learned optimal configuration policy is tailored for the
user, it will overrule the policies determined by the of-
fline exploration phase. As the resource needs of the
smart adapter is pre-determinable (due to its fixed intro-
spection frequency), it is modeled by the reconfiguration
matrix and the associated cost is considered in the overall
efficiency of the application.

5 Experimental evaluation

We will demonstrate the feasibility of our approach with
use case 1 (the step counting application as shown in
Figure 1), and evaluate the proposed methodologies us-
ing the 5 components. This simple deployment scenario
allows different deployment compositions on three dif-
ferent platforms Smart Object, Smart Mobile or Smart
Server. For the sake of simplicity, we will only use two
platforms in our experiments (see Figure 7):

Smart Object: We use a SunSPOT development board2

with a 400MHz ARM 926ej-S processor with 1MB
RAM and 8MB flash memories. The processor runs ap-
plications on top of a Java “Squawk” virtual machine.

2http://www.sunspotworld.com/docs/Yellow/eSPOT8ds.pdf
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Figure 7: Experimental setup

Component CPU load Communication

Accelerometer 8.09 ± 1.3 ms 5.5 ± 0.0 kB/sec
Low-pass filter 57.9 ± 2.1 ms 5.5 ± 0.0 kB/sec
Magnitude filter 18.2 ± 1.5 ms 1.8 ± 0.0 kB/sec
Peak detector 14.9 ± 9.7 ms 0.5 ± 0.4 kB/sec
Step detector 5.12 ± 4.8 ms 0.1 ± 0.1 kB/sec

Table 2: Performance benchmark of the individual com-
ponents on the sensor

The board has an integrated IEEE 802.15.4 compliant
Radio Transceiver CC2420 from Texas Instruments.

Smart Server: Our Smart Server infrastructure runs
VMware’s open source Platform-as-a-Service (PaaS) of-
fering known as Cloud Foundry on a server with 8GB of
memory and an Intel i5-2400 3.1GHz running a 64-bit
edition of Ubuntu Linux 12.04. Cloud Foundry provides
messaging and database servers as built-in services. We
deployed its open source distribution, i.e. VCAP3. VCAP
supports the AMQP-based RabbitMQ4 server for mes-
saging and MySQL for storage and persistence. All of
the configuration is done in Spring, an application de-
velopment framework. Finally, we exposed our loosely
coupled application components as services, integrating
Apache CXF with the Spring framework.

We profile the step counting components under differ-
ent deployment and configuration scenarios with an ob-
jective to optimize the CPU load and the network com-
munication costs. The results of the profiling on the sen-
sor are shown in Table 2. Note that for the Accelerom-
eter, Low-pass filter and Magnitude filter components
there is little to no communication variability because the

3https://github.com/cloudfoundry/vcap
4http://www.rabbitmq.com
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Figure 8: CPU load and network communication deploy-
ment trade-offs on the sensor

amount of data output is fixed and depending on the sam-
pling rate of the accelerometer.

Given the fact that the deployment of the Accelerome-
ter component is fixed, we have 16 different deployment
options for the 4 remaining components. Some of the
Pareto-optimal deployment options are (see Figure 8):

• D1: Minimal computation on the sensor by having
the Accelerometer component on the sensor and
the 4 remaining sensor data processing components
deployed on the server.

• D2: The Accelerometer and Low-pass filter com-
ponents deployed on the sensor and the other
components on the server.

• D3: The Accelerometer, Low-pass filter and Magni-
tude filter components deployed on the sensor and
the other components on the server.

• D4: All components except the Step Detector
component deployed on the sensor.

• D5: Highest CPU load on the sensor by having all
the components deployed on the sensor and no com-
munication cost between the sensor and the server.

Note that each deployment Dx represents the joint re-
source consumption and variability of the components
deployed on the sensor. Examples of non-Pareto-optimal
solutions include a.o. a deployment with the Low-Pass
Filter and Peak Detector components on the server and
the Accelerometer, Magnitude Filter and Step Detec-
tor components on the sensor. This mixed deployment
causes a high communication cost.

We have also Pareto-fronts specifically for component
reconfigurations. For example, the Accelerometer com-
ponent can sample data at different rates, causing differ-
ent CPU loads and communication throughput. Figure 8
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shows the results of sampling at 50Hz, whereas a profil-
ing at 15Hz produces a similar deployment trade-off but
with an overall lower CPU load and network communi-
cation. The fall detection use case requires a 100Hz sam-
pling rate, but involves different components with corre-
sponding Pareto-fronts.

5.1 Resource-driven deployment trade-offs

In a first experiment, we tested the automatic deploy-
ment of our application components with an initial de-
ployment D1. The optimization policy was set to reduce
the energy consumption, which automatically triggered
the deployment of all the components except the Step De-
tector component on the sensor (configuration D4). We
then changed the optimization policy to minimize net-
work communication (cfr. a GPRS communication sce-
nario that incurs a real financial cost). At this point, the
deployment of the latter component was also moved to
the sensor (configuration D5).

5.2 Contextual configuration trade-offs

In a second experiment with periods without motion ac-
tivity, the system learned that the stationary state of the
individual would last for at least 10 minutes. In this state,
there were no more peaks detected leaving the Step De-
tector component idle. This exceptional circumstance
(i.e. no communication to this component) triggered the
component to be deployed again on the server (config-
uration D4), lowering the sampling frequency to 15Hz,
and switching to the corresponding Pareto-front.

5.3 Learning self-optimization trade-offs

The effect of the Peak Detector in the Pareto-search
space is more fuzzy compared to the three previous com-
ponents in the processing chain (whose CPU load and
communication variability is low). The variability in the
resource consumption of the Peak Detector component
is due to external factors. For example, for elderly peo-
ple the number of peaks would be smaller as they are
less mobile. For more active young people, there are
much more peaks to process. Hence, it is not clear-cut
anymore to decide where to run this component as the
decision is tied to individual users and their life-style.
Furthermore, this contextual dependency cannot be cap-
tured in the Pareto-fronts through profiling. In a third
experiment, we tested the self-optimizing capabilities of
the MDP on an individual with a sedentary lifestyle. The
MDP picked up this behavior after on average 110 iter-
ations, and finetuned the Pareto-curve with lower com-
putation and network communication variability for de-

ployment solutions D4 and D5, leading to an overall pref-
erence for the latter deployment.

6 Conclusions

In this paper, we presented our self-optimization ap-
proach for deploying IoT application components. The
goal is to autonomously find the trade-offs between dif-
ferent component deployment configurations and their
resource impact for distributed deployments on Smart
Objects, Smart Mobiles and Smart Servers. Our ap-
proach is based on an offline exploration phase to collect
relevant profiling information for optimization before ac-
tual deployment, and a runtime phase to autonomously
adapt the deployment and configuration towards chang-
ing operational circumstances.

Our experiments have shown that the deployment and
configuration decision (which part of the application is
run on a sensor, mobile or a server in the cloud) is
not always clear-cut, and that trade-offs are to be made
w.r.t. application and QoS requirements. Our modular
design philosophy for developing IoT applications helps
to dynamically configure, compose and deploy these
components depending on the QoS requirements of the
applications. We have profiled and benchmarked these
components on different deployment ends. This helped
us to automatically find trade-offs for a distributed de-
ployment of these components considering both the per-
formance impact as well as the cost/benefit of any recon-
figuration or change in component deployment.

As future work, we will explore the effects of more
advanced learning and classification techniques and
broaden our methodology to validate more complex de-
ployment scenarios.
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Abstract

The ITRI container computer is a modular computer de-
signed to be a building block for constructing cloud-
scale data centers. Rather than using a traditional enter-
prise data center network architecture, which is typically
based on a combination of Layer 2 switches and Layer
3 routers, the ITRI container computer’s internal inter-
connection fabric, called Peregrine, is a software-defined
network specially architected to meet the scalability, fast
fail-over and multi-tenancy requirements of these data
centers. Peregrine uses as the underlying physical in-
terconnect a mesh of commodity off-the-shelf Ethernet
switches, and adopts a centralized network control archi-
tecture that operates these Ethernet switches as a coor-
dinated distributed data plane. Compared with vanilla
enterprise networks, Peregrine features a fast fail-over
capability not only for network switch/link failures, but
also for failures of its own control servers. This paper
describes the design and implementation of Peregrine’s
fault tolerance mechanisms, and shows their effective-
ness using empirical performance measurements taken
from a fully working Peregrine prototype under various
failure scenarios.

1 Introduction

The ITRI container computer is designed to be a mod-
ular building block for constructing a cloud data cen-
ter computer, which, in the most general form, is com-
posed of multiple container computers that are connected
by a data center network, is interfaced with the public
Internet through one or multiple IP routers, and is de-
signed as an integrated system whose hardware compo-
nents such as servers and switches are stripped off unnec-
essary functionalities, whose resources are centrally con-
figured, monitored and managed, and which encourages
system-wide optimizations to make the best end-to-end
tradeoffs. One key design decision of the ITRI container

computer is using only commodity hardware, including
compute servers, network switches, and storage servers,
and leaving high availability and performance optimiza-
tion to the system’s software. Another key decision is to
design a new data center network architecture from the
grounds up to meet the unique requirements imposed by
a cloud data center computer. We named this data center
network architecture Peregrine [5]. This paper focuses
on the design, implementation and evaluation of the fault
tolerance mechanisms in Peregrine.

Although Peregrine uses commodity off-the-shelf Eth-
ernet switches as basic building blocks, it follows a
software-defined network (SDN) [4, 8] design philoso-
phy by doing away with most of the control plane func-
tionalities in these switches and using a centralized net-
work control server to operate these switches, and even-
tually turning them into a coordinated distributed data
plane. Peregrine chooses this centralized control plane
architecture because it offers two important advantages.
First, it enables Peregrine to make more efficient use of
all physical links in the underlying network. Second, it
significantly reduces the fail-over latency associated with
any single network switch/link failure.

Despite various optimizations, standard Ethernet-
based networks take at least a few seconds to recover
from a network switch/link failure, especially for large
networks, because their normal operation assumes a
spanning tree overlaid on top of the physical network,
and re-building this spanning tree after a failure takes
time. A fail-over latency of several seconds is not ac-
ceptable in large-scale data centers that are built out of
commodity hardware components, because in these data
centers HW failures are not uncommon and they need to
be effectively masked so as to be completely hidden from
applications and their users.

The fail-over latency goal of the ITRI container com-
puter is set to 100 ms, which is set so as to mask each net-
work failure event as a transient congestion. To achieve
this goal, Peregrine does away with the concept of span-
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ning tree completely, and therefore does not need to re-
build anything after a failure; moreover, it pre-computes
and pre-installs a contingent plan for all nodes that are
affected by every possible network switch/link failure to
route around the failure, thus greatly reduces the fail-over
latency to the minimum. This fast fail-over strategy is
made possible by the centralized control plane architec-
ture, because it is equipped with a global knowledge of
the physical network topology, its up-to-date health sta-
tus, and the network flows provisioned on them.

However, a centralized control plane is in theory more
brittle because it is a single point of failure, that is, any
control plane failure could potentially bring down the en-
tire network. To overcome this issue, Peregrine’s con-
trol servers are designed to be fully redundant and thus
highly available. The interaction of the high availabil-
ity (HA) mechanism of Peregrine’s control servers with
Peregrine’s fail-over mechanism is complex and subtle,
and requires careful considerations to every low-level de-
tail.

Finally, because the servers used in the ITRI container
computer are also of commodity grade, the failure rate of
these servers is not negligibly low. To enable seamless
fail-over of application VMs running on these servers,
Peregrine informs clients that interact with failed VMs
and redirects them to their backup VMs that take over.

2 Related Work

There has been extensive studies on the resiliency of con-
ventional Internet [10,13]. These works compute a num-
ber of node or link disjoint paths between pairs of end
points and switch over to its corresponding backup path
upon link or switch failures. Provider Backbone Bridge
Traffic Engineering (PBB-TE) swaps the B-VID value to
redirect the traffic onto the pre-configured path within 50
ms under a path failure [3] . MPLS-TE [11,17] offers fast
reroute functionality by redirecting encapsulated traffic
to a backup path when the primary one fails. Mech-
anisms for monitoring and discriminating against inter-
mittent link failures to achieve network stability are also
addressed in [1, 16].

Numerous data center network architectures propose
the fault tolerant data plane by introducing a centralized
controller. PortLand [15] employs a centralized fabric
manager and relies on switches to detect and inform its
centralized fabric manager when a link or switch fails.
The fabric manager maintains a fault matrix with per-
link connectivity and informs affected switches to re-
route packets. VL2 [9] depends on OSPF to re-converge
quickly and allows applications to fully use a link sev-
eral seconds after it is restored, due to the conservative
defaults for OSPF timers. VL2’s directory server also in-
corporates the asynchronous replicated state machine to

offer a strongly consistence based on the Paxos consen-
sus algorithm.

SDN proposes separation and centralization of the
control plane from the data plane. Most of the existing
OpenFlow-based SDN proposals address resiliency at ei-
ther the controller [12, 20] or the data plane. Onix [12],
a distributed control platform, provides coordination fa-
cilities for detecting and reacting to Onix instance fail-
ures. FlowVisor [18] partitions the underlying network
and allows multiple controllers to manage their own
slice of network. The data plane reliability relies on
either the controller proactively pre-computes and pre-
installs the backup paths on an OpenFlow switch [14]
or reactively takes action upon receiving failure notifica-
tions [19]. For example, NOX [20] depends on exist-
ing switch mechanisms to determine link failures, no-
tify NOX, and flushes the flow entries at that switch
which use the failed link. However, the proactive mech-
anism requires installing additional flow entries into the
OpenFlow switches, which has very limited TCAM en-
tries, whereas the reactive mechanism incurs high la-
tency. Moreover, one of the major concerns about SDN’s
split architecture design is the resiliency between the
centralized controller and switches [19]. That is, any
failure that disconnects the data plane form the control
plane may bring down the entire network [2, 21]. Ex-
isting SDN proposals depends on an out-of-band control
network to guarantee reachability between switches and
the controller. However, the fail-over latency between
controller and switches is usually at the timescale of sec-
onds, due to the fact that the control network is running
conventional distributed protocols such as spanning tree
protocol (STP), IS-IS, or OSPF.

We argue that a well-architected SDN should have its
fast fail-over mechanism among the data plane, the con-
troller, and the control plane. Peregrine takes the first
step in addressing all these three aspects using standard
Ethernet switches and in-band control design.

3 Fault Tolerance Support in Peregrine

3.1 ITRI Container Computer
The ITRI container computer is physically housed in an
ISO-standard 20-foot (6.096 meter) shipping container,
and consists of 12 server racks lined up on both sides of
the container with an access aisle in the middle, where
each server rack holds up to 96 current-generation X86
CPUs and 3TB of DRAM. Twelve JBOD (Just a Bunch
Of Disks) storage servers, each packed with 40 disks, are
installed in the container computer. Together with the
local disks directly attached to compute server nodes, the
container boasts of more than 1 petabyte worth of usable
disk space.
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The ITRI container computer’s network is a modified
Clos network. Every rack contains 48 server nodes, each
having 4 1GE NICs, and includes 4 top-of-rack (TOR)
switches, each having 48 1GE ports and 4 10GE ports.
There is a virtual switch inside every server node that
is connected to the server node’s four NICs, which in
turn are connected to the four TOR switches in the same
rack. The four 10GE unlinks on each TOR switch are
connected to four different regional switches, each of
which has 48 10GE ports. To improve the performance
of storage accesses, each storage server has four 10GE
NICs and is directly connected to four different regional
switches. In total, five regional switches per rack are
used in the ITRI container computer.

Peregrine [5] is the internal network for the ITRI con-
tainer computer, and is built on commercially off-the-
shelf Ethernet switches with most of their built-in con-
trol plane functionalities such as spanning tree protocol,
source learning, flooding if unknown destinations, etc.,
turned off. Instead, Peregrine uses a centralized control
plan that manages the forwarding tables of the underly-
ing Ethernet switches. The software architecture of Pere-
grine is shown in Figure 1, and consists of a kernel agent
that performs ARP query packet interception and trans-
formation and is installed in the Dom0 VM of every Xen-
based physical server, a centralized directory server (DS)
that performs generalized IP to MAC address look-up,
and a centralized route algorithm server (RAS) that con-
stantly collects the network’s traffic matrix, runs a load-
based routing algorithm based on the traffic matrix, and
populates the switches’ forwarding tables with the com-
puted routes. After the RAS computes routes for physical
server pairs, it builds up an inverse map that associates
every network link with all the computed routes that go
through the link.

All packets from a DomU VM pass through the Pere-
grine agent in Dom0 of the corresponding physical ma-
chine. For each packet going by, the Peregrine agent con-
sults with its local ARP cache with the packet’s destina-
tion IP address, submits a lookup request to the DS if the
cache lookup is a miss, and rewrites the packet’s destina-
tion MAC address field based on the ARP look-up result
from the local cache or the DS.

3.2 Centralized IP Address Resolution

Because Peregrine is designed to scale to a large num-
ber of physical servers using only L2 connectivity, it dis-
courages broadcast-based protocols such as ARP (Ad-
dress Resolution Protocol) and DHCP (Dynamic Host
Configuration Protocol). Instead, it replaces them with
a client-server architecture, where queries are directed to
a dedicated server, which answers these queries by look-
ing up its internal data structures. This design change
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Figure 1: The software architecture of the current Pere-
grine prototype, which consists of a kernel agent in-
stalled in the Dom0 VM of every physical machine, a
centralized directory server (DS) for IP to MAC address
look-up, and a centralized route algorithm server (RAS)
for route computation and forwarding table population.

is similar in spirit to how cache coherence protocols
in shared-memory multiprocessor systems progressed
from broadcast-based to directory-based as their scale in-
creases.

When a user VM sends out a broadcast-based ARP
query, a Peregrine agent running at the same physical
server intercepts it, converts the query into a unicast
packet and sends it to a central directory server, which
maintains an address resolution map between VMs’ IP
addresses and their MAC addresses, and answers these
transformed ARP queries. After receiving answers from
the directory server, the Peregrine agent converts it into
a legitimate ARP response packet, sends it to the orig-
inal querying user VM, and caches the answers for fu-
ture reuse. Therefore, not every ARP query needs to be
sent to the directory server; in fact, most ARP queries
are expected to be answered by the caches maintained by
Peregrine agents.

To ensure the consistency of ARP caches, Peregrine’s
directory server adopts a lease-based stateful cache co-
herence protocol. That is, every cached ARP query re-
sponse is given a fixed lifetime, say 2 minutes, and the
directory server keeps a record of which physical server
caches which ARP query responses, each of which con-
sists of an IP address and its corresponding MAC ad-
dresses (it would become clear later why multiple MAC
addresses are associated with an IP address). When an
ARP query response resides in a physical server longer
than the fixed lifetime, it becomes invalid and cannot be
used to answer ARP queries. The key design challenge in
this stateful cache consistency maintenance mechanism
is how to reduce the amount of state required. Suppose
the maximum number of VMs in a cloud data center is
100,000 VMs, and every VM could communicate with at
most N VMs, then the address resolution map in the di-
rectory server has 100,000 entries, each of which in turn
contains up to N VM IDs and N timestamps of when the
entry is cached in each of the N VMs. Whenever the di-
rectory server modifies an entry in its address resolution

3
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Figure 2: An example network to illustrate the difference
between a disjoint tree design (above) and a disjoint path
design (below). In the disjoint path design, the primary
path of one server pair (X-Z) could overlap with the sec-
ondary path of another server pair (X-Y) as long as it
does not overlap with the first server pair’s correspond-
ing secondary path.

map, it goes through the physical servers recorded in the
entry, checks their timestamps to see if they expire, and
sends a unicast-based invalidation notification to each of
those that still hold a valid cached copy. If the number of
physical servers caching an address resolution map entry
exceeds N, the entry is flagged, and the directory server
sends a broadcast-based invalidation notification instead
when the entry is modified.

The additional level of indirection introduced by the
address resolution map and the directory server’s ability
to invalidate cached ARP query responses plays a criti-
cal role in Peregrine, and serves multiple purposes, in-
cluding scaling up the network size, redirection in VM
migration, and fail-over in network switch/link failure,
which we will describe in the next subsection.

3.3 Proactive Primary/Secondary Routing
When a network switch/link fails, the design goal of
Peregrine is to route all affected network flows around
the failure so that the end-to-end disruption to the com-
municating parties of these network flows is no more
than 100 ms. To achieve this aggressive goal, for a given
physical server X, Peregrine proactively pre-computes a
primary and a secondary route from every other physi-
cal server to X, where the primary route and secondary
route are node-disjoint and link-disjoint excluding the
two end points, assuming the underlying physical net-
work connectivity offers enough redundancy for such
disjoint paths. Whenever a network link or switch fails,
the primary routes provisioned on the failed device or
link are identified, and the physical servers that are using
these primary routes are notified to switch to their corre-
sponding secondary routes. In this design, the fail-over

delay of a network device/link failure thus consists of (a)
the time to detect the device/link failure, (b) the time to
identify affected primary routes and their source physical
servers, and (c) the time to inform these affected source
servers to switch from primary to secondary routes.

The first design issue is how to switch from primary
to secondary routes when failures occur. Because Pere-
grine uses conventional Ethernet switches and Ethernet
switches forward packets based on their destination ad-
dress, the only way to send packets to a given physical
server X using multiple routes is to assign multiple MAC
addresses to X, each representing a distinct route to reach
X. At start-up time, Peregrine installs pre-computed pri-
mary/secondary routes to every physical server in the
switches’ forwarding tables. At run time, switching from
the primary to the secondary route of a given server is
a matter of using the server’s secondary MAC address
rather than primary MAC address. Modern operating
systems, including both Linux and Windows, allow mul-
tiple NICs to be bound to the same IP address, through
DHCP or through user-entered commands.

Given a physical server X, all other servers that send
packets to it form a spanning tree. When computing pri-
mary and secondary routes for X, there are two possi-
ble designs: disjoint tree and disjoint path. In the dis-
joint tree design, the system computes a primary span-
ning tree and a secondary spanning tree that are node-
disjoint and link-disjoint from each other. In the disjoint
path design, the system computes a primary route and a
secondary route between X and every other server, and
they are node-disjoint and link-disjoint. In the first de-
sign, all other servers that send packets to X either use
the first or second spanning trees, but not both simulta-
neously. However, in the second design, some servers
that send packets to X may use the first spanning tree,
while the others may use the second spanning tree at the
same time. Figure 2 shows an example that illustrates the
difference between these two designs. In the disjoint tree
design, the primary spanning tree rooted at node X is dis-
joint from X’s secondary spanning tree. However, in the
disjoint path design, the primary path for X-Z could over-
lap with the secondary path for X-Y , and the secondary
path for X-W could overlap with the primary path for
X-Y. Obviously the disjoint path design is more flexible
than the disjoint tree design, but also requires more state
to be maintained on the directory server.

The trade-off between these two designs is the amount
of directory server state required and the routing flexi-
bility. In general, the larger-granularity the unit of dis-
jointness, the more difficult it is to successfully overlay
two such units on a given physical network. Because the
granularity of disjointness in the disjoint tree design is
larger than that in the disjoint path design, it is more dif-
ficult to successfully compute routes for the disjoint tree
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design than for the disjoint path design on the same phys-
ical network. That is, for a given physical server X, it is
less likely to find two disjoining spanning trees rooted
at X, than to find two disjoint paths between X and any
other server. In addition to routing flexibility, the disjoint
tree design also incurs higher collateral damage when a
network switch/link failure. In other words, any failure
that affects (even a slight portion of) a given server’s pri-
mary spanning tree renders the entire spanning tree un-
usable.

Given a lookup request for a physical server X, the
directory server’s response to it is independent of the
source issuing the lookup request in the disjoint tree de-
sign, but is dependent on the source in the disjoint path
design. The additional flexibility enables the disjoint
path design to use both spanning trees associated with
a physical server simultaneously, but also requires more
state to be maintained on the directory server in the sec-
ond design. For the disjoint tree design, the directory
server only needs to maintain two bits for each physi-
cal server to indicate the health status of its two disjoint
spanning trees. For the disjoint path design, the direc-
tory server needs to maintain two bits for every other
server that sends packets to every given server to indicate
the health status of the two disjoint paths between them.
Therefore, the amount of availability-related state on the
directory server is O(M) for the disjoint tree design and
O(M2) for the disjoint path design, where M is the num-
ber of physical servers on the network. As shown in
Figure 2, in the disjoint tree design, the directory server
maintains two bits for X’s primary tree and backup tree
and a failure of any link in the primary tree triggers all
other servers to switch to the backup tree, whereas in the
disjoint path design, the directory server maintains two-
bit health status for paths between Y to X, Z to X, and W
to X. If a link between X and s1 fails, only the primary
path between X and Y and the secondary paths between
X and Z and between X and W are affected.

The current Peregrine prototype adopts the disjoint
path design to successfully fail over as many communi-
cating node pairs affected by a given network switch/link
failure as possible. To reduce the amount of availability-
related state on the directory server, Peregrine uses a list
structure that can dynamically grow and shrink its size
to record the set of physical servers with which a given
physical server is currently communicating. From the
analysis of several data center traffic traces [9], we as-
sume the majority of physical servers communicate with
at most N other servers, and the total amount of avail-
ability state that needs to be maintained is proportional
to MN rather than M2.

The availability bits associated with a physical server
are stored in the server’s address resolution map entry
in the directory server, together with its timestamps as-

sociated with stateful caching. In summary, a physical
server’s address resolution map entry consists of the fol-
lowing:

• An IP address,
• Two MAC addresses, and
• A communication list of entries, each of which con-

tains a caching timestamp, two availability bits and
a primary/secondary flag for each physical server
that it currently communicates with.

Every physical server, say S1, is assigned an address
resolution map entry, and every other physical server that
communicated with S1, say S2, is assigned an entry in
S1’s communication list, which indicates which of S1’s
two MAC addresses is the primary MAC address and
whether the two paths between S1 and S2 are available
or not. When another server, say S3, just starts to com-
municate with S1, Peregrine inserts an entry <011> 1

to S1’s communication list, meaning that the currently
used MAC address is primary and both routes from S3 to
S1 are available. As soon as a link on the primary route
from S3 to S1 fails, S3’s entry becomes <101>, indicat-
ing that S3 should use S1’s second MAC address to reach
S1, and the old primary route is now unavailable.

Conventional Ethernet switches use a source learning
mechanism to populate their forwarding table, and thus
do not support dynamic routing that could accommodate
fluctuating traffic workloads. Only Layer-3 routers pro-
vide such support. Most commodity Ethernet switches
provide the flexibility to statically and programmatically
populate their forwarding table. Peregrine leverages this
capability to support a centralized routing architecture,
in which a route server computes the routes according to
a number of optimization criteria, and populates the re-
sulting routes on the switches’ forwarding tables. Pere-
grine uses a load-based routing algorithm [7] that dy-
namically computes routes based on link loads. To sup-
port fast fail-over, Peregrine extends this algorithm to
pre-compute two disjoint routes for each pair of phys-
ical servers. To support network QoS, Peregrine gives
different weights to physical server pairs so that routes
computed for higher-priority physical server pairs should
travel on less congested network links than lower-priority
physical server pairs.

3.4 Fast Fail-Over for Network Failure
The RAS detects a link failure by receiving an SNMP
trap about it. Because a switch failure is effectively the
same as multiple link failures, when a switch fails, the
RAS receives one or multiple SNMP traps indicating

1Bit [1:0] indicates the health status of the primary and secondary
path. Bit [2] indicates the selected path (0: Primary, 1: Secondary).
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failures of links associated with the switch. To ascer-
tain whether such a switch indeed fails, the RAS contin-
uously pings the switch for a period of time (currently
set to 1 second) before arriving at a verdict. Therefore,
the switch failure detection time is longer than the link
failure detection time.

When the RAS detects a link or switch failure, it in-
vokes Peregrine’s failure recovery processing algorithm
as follows:

1. Given a failed link/switch, RAS consults with the
inverse map to identify all physical server pairs
whose primary or secondary route traverses through
the failed link/switch, and passes these physical
server pairs to the DS.

2. For each physical server pair whose primary route is
affected, the DS looks up the pair’s destination in its
address resolution map, turns off the primary route
between them in the corresponding address resolu-
tion map entry, and notifies the pair’s source server
to this effect if the pair of servers are actively com-
municating.

3. For each affected physical server pair, the RAS re-
moves the forwarding table entries associated with
its affected primary or secondary route, and com-
putes a new route for it.

Suppose a physical server S1 is affected by a link fail-
ure, and there are N1 other servers that could send pack-
ets to S1 over the failed link, but only N2 of them are
actively communicating with S1 at the time of the link
failure. So S1’s address resolution map entry originally
contained a list of N2 entries to indicate S1’s availability
status to the N2 servers before the link failure, but the list
will grow to N1 entries after the link failure. It is neces-
sary to expand an affected physical server’s communica-
tion list in its address resolution map entry to correctly
instruct those physical servers that are not communicat-
ing with the affected server which MAC address to use
when they start communicating with the affected server
in the future.

Figure 3 illustrates how Peregrine’s fast fail-over
mechanism works. Initially, VM6’s primary and sec-
ondary MAC addresses, mac1 and mac2, are pre-
populated on the switches along the two disjoint routes
by the RAS (step 1). The primary route to VM6 goes
through SW2 and SW3 while the secondary route goes
through SW1 and SW4. Whenever a link along the pri-
mary path from VM3 to VM6 is down, an SNMP trap
is sent from the link’s adjacent switch to the RAS (step
2), which determines the physical server pairs that are af-
fected by the link failure and passes these affected server
pair information to the DS (step 3), which then informs
the source of each physical server pair that its associ-
ated destination server is reachable only via its secondary
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Figure 3: When a link (e.g. PM1-SW2) fails, Peregrine
switches every affected server pair (e.g. PM1-PM2) from
its primary path (PM1-SW2-SW3-PM2) to its secondary
path (PM1-SW1-SW4-PM2).

MAC address, in this case, sending an ARP entry update
to PM1 (step 4) indicating that to send packets from VM3
to VM6 should use mac2 as the destination MAC ad-
dress, the secondary MAC address for VM6. After that,
all packets destined to VM6 from VM3 will go through
VM6’s secondary route from this point on (step 5).

3.5 Fast Fail-over for DS/RAS Failure

Because the DS and RAS play a critical role in Pere-
grine’s architecture, it is essential that both of them in-
clude a high availability (HA) mechanism to ensure their
continued operation despite any single failure of their un-
derlying hardware. First of all, all data structures in the
DS and RAS that are required to restart must be kept on
disk, and make up their persistent state. We adopt an ac-
tive master and passive slave architecture, in which the
master and slave each have their own local disk. Every
update to the master’s persistent state is first logged to a
memory-resident log, which is synchronously replicated
to the slave, and then asynchronously written to the on-
disk data structure, which is synchronously replicated to
the slave.

The data structures in the RAS that need to be persis-
tent are an in-memory log of pending SNMP traps and
the computed routes for every physical server pair and
the inverse map that associates network links/switches
with routes that traverse them. The route-related infor-
mation is largely static. The data structure in the DS
that needs to be persistent is the address resolution map.
Peregrine puts RAS’s and DS’s persistent state in a sep-
arate disk volume, and uses DRBD (Distributed Repli-
cated Block Device) [6] to synchronously replicate every
write to the master’s on-disk persistent state to the slave,
and re-synchronize a new slave candidate’s on-disk per-
sistent state to the current master’s. In addition, Pere-
grine uses Pacemaker to monitor the health of the RAS
and DS processes and the servers they run on.

The slave takes over as the new master when it detects

6
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SNMP Trap 

(Master) (Master) (Master) 
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 Failure Detection 

Figure 4: Because Peregrine does not have an out-of-
band control network, Peregrine must guarantee that
SNMP traps be delivered to the RAS despite the failure
that triggers the SNMP traps.

the master dies. When the slave takes over, it recovers the
persistent state, performs necessary undoing and redo-
ing, and announces to the world that it is the new master.
Specifically, when the slave RAS takes over, it aborts the
on-going recovery processing transaction triggered by an
SNMP trap if there is one pending, and redoes it from
scratch. When the slave DS takes over, it rebuilds the
address resolution map from the in-memory log and on-
disk copy.

3.6 Resilient Messaging During Fail-over
Because Peregrine’s fail-over processing involves
failure-detecting switches, the RAS, the DS and the
affected physical servers, it is possible that a network
failure prevents the communications in its associated
fail-over processing and thus inhibits its own recov-
ery. A standard solution to this problem is to install
a separate control network for out-of-band fail-over
processing. However, such a design is still problematic
because there is no guarantee that the out-of-band
control network itself won’t fail. Instead, Peregrine uses
in-band signaling to simplify the network infrastructure,
but ensures the resiliency of message delivery during
fail-over processing by transferring fail-over messages
over paths unaffected by the triggering link/switch fail-
ures. Fail-over messages include SNMP traps, affected
physical server pairs, and notifications to invalidate ARP
cache entries.

The HA version of RAS consists of a master node and
a slave node, and the HA version of DS also consists of a
master node and a slave node. Each RAS/DS node is as-
signed two MAC addresses and one IP address. Because
each RAS/DS node has two MAC addresses, Peregrine
sets up two disjoint paths between it and every other node
that communicates with it, and the DS decides which
path should be used between each pair of communicating
nodes, including the communications between the two

RAS nodes and those between two DS nodes.
Every network switch is configured to send each of its

SNMP traps twice, once to the master RAS and the sec-
ond time to the slave RAS. Figure 4 (a) shows that if the
link that fails is between two switches, both switches de-
tect it, and at least one of them is able to send its SNMP
traps to the RAS nodes in spite of the failure. If the link
that fails is between a switch and a physical server, as in
the case of Figure 4 (b), there is only one switch detect-
ing the failure, and this switch definitely is able to send
out the SNMP traps associated with this link failure to
the RAS. If the link that fails is between a switch and a
RAS node, as in Figure 4 (c), this RAS node detects this
link failure itself without relying on SNMP traps. Upon
receiving an SNMP trap, the master (slave) RAS syn-
chronously replicates it to the slave (master) RAS. This
replication serves two purposes: enhancing the reliabil-
ity of SNMP trap delivery even when the network drops
SNMP packets from time to time, and duplicating the in-
memory log for RAS fail-over.

The kernel agent on every physical server constantly
keeps track of the IP address and the two MAC addresses
of the current master DS so that it could submit its ARP
queries to the right DS node over a healthy path. In case
an ARP query times out, the kernel agent retries the same
query with an alternative MAC address. When a new
master DS comes along, it broadcasts multiple times to
announce to all physical servers its IP address and MAC
addresses.

When the master RAS starts up, it establishes a UDP
connection with each of the two DS nodes. Through
these two UDP connections, the master RAS is able to
tell which DS node is the current master DS. When a
link/switch failure occurs, the DS is the one that tells ev-
ery other node whether to switch paths when commu-
nicating with specific nodes, except the communication
between the RAS and the DS, because this communica-
tion takes place before the DS is notified of the failure.
Therefore, when the master RAS receives an SNMP trap
associated with a link/switch failure, it first determines
whether it should reach the master DS via its secondary
MAC address, and informs the master DS of this fail-
ure using the pre-built UDP connection over a path unaf-
fected by the failure. It is crucial that a UDP connection
rather than a TCP connection be used here, because the
return traffic (e.g. ACK packets) of a TCP connection
from the master DS may be blocked by the failure. Once
the master DS is informed of a failure, it adjusts its path
to the master RAS to bypass the failure if necessary, and
then establishes a TCP connection with the master RAS
to retrieve the affected physical server pairs.

The master RAS sends the physical server pairs af-
fected by a failure in two batches, the first batch con-
taining those physical server pairs in which the master

7
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DS is the source, and the second batch everything else.
The master DS uses the first batch to adjust its paths to
physical servers in this batch, and then sends out notifi-
cations in the second batch using the adjusted paths. To
reduce the messaging overhead of notifications, the mas-
ter DS further sorts the notifications according to desti-
nation nodes, and batches all notifications destined to the
same node into as few packets as possible. When the
per-server kernel agent receives notifications, it updates
its ARP cache and its DS data structure accordingly.

3.7 Broadcast Support
Although Peregrine is designed to minimize broadcast
traffic, it cannot completely does away with broadcast
traffic. For example, ARP requests from network de-
vices on which no Peregrine agent is installed, e.g. com-
mercial routers and switches, are broadcast packets. As
another example, some applications, e.g. Microsoft Ex-
change cluster, may use application-level broadcast mes-
sages to maintain cluster membership. To accommodate
broadcast traffic and prevent Ethernet storms, the RAS
sets up a tree that spans all nodes in the entire physical
network without using the spanning tree protocol, and
allows broadcast packets to flow only on this tree by dis-
abling the broadcast option on all ports that are not on
this tree. When a link/switch failure occurs, the RAS
amends this tree accordingly to ensure the resulting tree
continues to span the entire network.

4 Performance Evaluation

4.1 Evaluation Methodology
We used two racks in the ITRI container computer as
the evaluation testbed for the Peregrine prototype. The
testbed consists of eight 48-port TOR switches each with
two 10GE uplink, two 48-port 10GE regional switches,
and 88 physical machines. Each physical machine is
equipped with eight 2.53GHz Intel Xeon CPU cores,
40GB DRAM, and 4 GE NICs, and is installed with Cen-
tOS 5.5, which is equipped with the Linux kernel 2.6.18.
Four physical machines are used to deploy the RAS, DS,
and their master and slave. The Peregrine kernel agent is
installed on all other physical machines. Each physical
machine is connected to four TOR switches via a sepa-
rate 1GE NIC, and each TOR switch in turn is connected
to four regional switches via a separate 10GE link. No
firmware modifications are required on these regional or
TOR switches.

To quantify the fail-over latency, we measured the ser-
vice disruption time for an UDP connection running on
two physical machines of the evaluation testbed under
various single-failure scenarios. More concretely, the

sender of this UDP connection sent one packet every mil-
lisecond to the receiver; we then counted the number of
lost packets when a failure occurs and Peregrine’s fail-
over mechanism kicks in, and the resulting number cor-
responds to the service disruption time.

To assess the efficiency of different fail-over steps, we
broke the service disruption time into the following four
components:

1. Failure detection time: the time between when a
failure occurs and when the RAS detects the failure,

2. Damage assessment time: the time for the RAS to
identify the set of primary and secondary routes af-
fected by a given failure and pass the associated in-
formation to the DS,

3. ARP Update time: the time for the DS to update
its own ARP database entries corresponding to the
source nodes of affected physical server pairs and
to send out ARP cache updates to the destination
nodes of these pairs, and

4. Switch-over time: The kernel agent on a physical
server updates its ARP cache upon receiving such
an ARP cache update message.

To accurately measure the failure detection without in-
stalling an agent on the switches, we set up another UDP
connection from a source server through the failed link
or switch to the RAS, in which the source server also
sends a UDP packet to the RAS every millisecond. The
RAS measures the time between when it stops receiving
packets through this UDP connection (a failure occurs)
and when it receives the SNMP associated trap (a failure
is detected). Because the switch-over time is negligible,
we focus on the first three components in the following
subsections. Each reported time measurement below is
an average of 5 runs.

4.2 Link Failure

Table 1 shows the average service disruption time and its
detailed breakdown for four different types of link fail-
ures: failure of a link between a server and a 1-GE switch
(Server-Switch), failure of a link between a 1-GE switch
and a 10-GE switch (Switch-Switch), failure of the link
between the DS and a 1-GE switch (DS-Switch), and
failure of the link between the RAS and a 1-GE switch
(RAS-Switch). The time taken to detect a link failure
and send out its associated SNMP trap is much smaller
for the 10-GE switches in our testbed, between 60 ms
to 80 ms, than for the 1-GE switches, between 200 ms
and 1000 ms. We suspect that 10-GE switches detect
the link status using event triggering scheme whereas 1-
GE switches employ polling-based scheme. In the case
of Switch-Switch link failures, it is a 10-GE switch that

8
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Failed Link No . of Affected Pairs No. of Notifications Failure Detection Damage Assessment ARP Update Service Disruption
Server-Switch 158 8 787 13 6 810
Switch-Switch 1383 101 59 88 39 190

DS-Switch 153 73 242 34 30 300
RAS-Switch 156 134 359 29 25 420

Table 1: The average service disruption times of four different types of link failure and their detailed breakdowns. All
time measurements are in terms of ms.

Failed Switch No. of Affected Pairs No. of Notifications Failure Detection Damage Assessment ARP Update Service Disruption
Regional Switch 6684 203 1881 326 234 1180
Server-Switch 3786 95 1129 156 88 1280

DS/RAS-Switch 6496 343 1407 316 223 1480

Table 2: The average service disruption times of three different types of switch failures and their detailed breakdowns.
All time measurements are in terms of ms.

sends out the associated SNMP traps, whereas Server-
Switch and DS-Switch link failures are detected by 1-GE
switches. As for RAS-switch link failures, it is a kernel
module in the RAS that detects them directly. As a result,
in all cases except Switch-Switch, the failure detection
time dominates and accounts for more than 80% of the
service disruption time. Unfortunately, the failure detec-
tion time is completely determined by the switches and
beyond the control of Peregrine.

If the failure detection time is excluded, the combined
DS and RAS fail-over processing time, which is dictated
by Peregrine, is below 120 ms for all link failures and be-
low 70 ms if Switch-Switch link failures are ignored. The
Switch-Switch link failure entails a much larger number
of affected server pairs and notifications than other types
of link failures. The damage assessment time is gener-
ally proportional to the number of affected server pairs
(second column), and the ARP update time is generally
proportional to the number of notifications that the DS
sends to affected servers (third column). When the RAS
sends out the list of server pairs affected by a link fail-
ure to the DS, the DS only needs to send ARP updates
to destination nodes of a subset of those server pairs that
are actively communicating with each other at that in-
stant. That is why the number of notifications is smaller
than the number of affected server pairs.

4.3 Switch Failure

Table 2 shows the average service disruption time and
its detailed breakdown of three different types of switch
failures: failure of a 10-GE regional switch (Regional
Switch), failure of a 1-GE switch connected to a physi-
cal server (Server-Switch), and failure of the switch con-
nected to both RAS and DS (DS/RAS-Switch). The
switch failure detection time is generally higher than the
link failure detection time because the RAS needs to re-
ceive multiple SNMP traps associated with link failures
of a suspect switch and ping the suspect switch for 1 sec-
ond without getting any response before concluding that

the switch fails. The failure detection time for Regional
Switch is higher than that for Server-Switch because the
former is detected by 1-GE switches whereas the latter is
detected by 10-GE switches. The switch failure detection
time for the DS/RAS-Switch failure is about 1-second
ping delay plus the link failure detection time for the RS-
Switch failure, because both are detected by RAS.

For the Server-Switch and DS/RAS-Switch failure, the
service disruption time for a switch failure is smaller than
the sum of failure detection time, damage assessment
time and ARP update time because a portion of fail-over
processing is triggered by link failure SNMP traps and is
thus overlapped with the switch failure detection time.
The fail-over processing for those link failures whose
SNMP traps cannot be successfully delivered to the RAS
is triggered only after the RAS concludes that a switch
failure occurs. The extent of overlap for the DS/RAS-
Switch failure is higher than that for the Server-Switch
failure because a significant portion of a DS/RAS-Switch
failure’s fail-over processing is due to the fail-over pro-
cessing of the DS-Switch and RAS-Switch link failures
and they are completed before the DS/RAS-Switch fail-
ure is detected. In the case of the Regional Switch fail-
ure, the service disruption time is actually smaller than
the failure detection time because the fail-over process-
ing for all the constituent link failures of a switch failure
is completed before the RAS concludes that the switch
failure indeed takes place.

4.4 RAS and DS Failure

When the master RAS fails, it takes on average 1038
ms for the RAS slave to notice because the RAS slave
probes the RAS master for 1000 ms before declaring
a take-over, and another 0.45 ms to restart itself. The
restart processing of the RAS slave is fast because the
only RAS persistent state is the pending SNMP trap log,
which is mostly empty in this test. Because the RAS per-
forms fail-over processing for link/switch failures, fail-
ure of the RAS master potentially increases the fail-over

9
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Address Resolution Map Size Service Disruption Time Failure Detection Time DRBD Switch Time DS Recovery Time
6556 Entries 2811 1871 704 269
32469 Entries 3282 1882 706 736

Table 3: The service disruption time of the DS because of a DS failure and its breakdown under two testbed sizes. All
time measurements are in terms of ms.

latency of link/switch failures. To test this, we turned off
the RAS master, then immediately turned off the switch
to which the RAS is connected, and measured the service
disruption time of a UDP connection going through the
switch. The service disruption time is increased to 1580
ms, which, as expected, is about 1000 ms higher than the
average fail-over latency for link failures shown in the
last subsection.

Table 3 shows the service disruption time of the DS;
a DS failure is about 2811 ms and 3282 ms when the
address resolution map contains 6556 entries and 32469
entries. We used a special test program that continu-
ously submits ARP queries every 50 ms to the master
DS and slave DS, and the service disruption time corre-
sponds to the time interval between when the master DS
stops responding and when the slave DS starts respond-
ing. The DRBD switch time corresponds to the time the
slave DRBD needs to mount the replicated disk parti-
tion before becoming the new master DRBD. The failure
detection time is bound by the Pacemaker library used
in the current Peregrine prototype. Both the DS failure
detection time and the DRBD switch time remain un-
changed as the testbed size is increased. In contrast, the
DS recovery time is proportional to the size of the ad-
dress resolution map, because larger address resolution
maps require longer reload time during recovery.

5 Conclusion

Peregrine is a software-defined network that uses com-
mercial off-the-shelf Ethernet switches as basic building
blocks and was originally designed for the ITRI con-
tainer computer. It uses a centralized control plane to
program the forwarding tables and configure the options
of the switches in the network. Compared with con-
ventional Ethernet architecture, Peregrine is more scal-
able because it supports dynamic load-based routing, and
is more available because it provides self-adaptive fault
tolerance against any single failure. More concretely,
through proactive primary/secondary routing, Peregrine
is able to significantly cut down the service disruption
time due to link failures, switch failures and control plane
failures. The specific research contributions of this work
include

• A proactive disjoint path-based primary/secondary
routing scheme that is able to quickly switch com-
munications between server pairs affected by a

link/switch failure to their pre-arranged alternative
routes,

• A highly available control plane that is capable
of continued operation despite any single control
server failure,

• A resilient communication design that achieves re-
liable message transfer in fail-over processing of a
link/switch failure without using any out-of-band
control network, and

• A fully operational prototype that is able to cut
down the service disruption time associated with
any single link failure to under 120 ms, if the failure
detection time is excluded.
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Abstract—Map-Reduce frameworks such as Hadoop have
built-in fault-tolerance mechanisms that allow jobs to run to
completion even in the presence of certain faults. However, these
jobs can experience severe performance penalties under faulty
conditions. In this paper, we present Fault-Managed Map-Reduce
(FMR) which augments Hadoop with the functionality to mitigate
job execution time penalties. FMR uses an anomaly detection
algorithm based on sparse coding to anticipate a faulty slave
node. This proposed technique has the following key advantages:
(1) model training uses only normal-class data, (2) time taken for
prediction is less than a second, and (3) confidence estimates are
produced along with the anomaly prediction. FMR uses the result
of anomaly detection to invoke a closed-loop recovery action,
namely dynamic resource scaling. A scaling heuristic is proposed
to determine the extent of scaling necessary to reduce impending
performance penalty. FMR facilitates practical adoption by being
implemented as a set of libraries and scripts that require no
changes to the underlying source code of Hadoop. A set of
realistic Map-Reduce applications were studied through a few
thousand job executions on a 72-node Hadoop testbed. Detailed
empirical evaluation shows that FMR successfully mitigates
performance penalties from 119% down to 14%, averaged across
experiments.

I. INTRODUCTION

Innovations in infrastructure, middleware and applications
have made “big data” analytics possible and economically
viable in a wide range of fields such as bioinformatics, data
mining, web indexing, document classification, recommen-
dation systems, etc. The Map-Reduce (MR) programming
paradigm [17] along with the free and widely supported open-
source implementation, Hadoop [1], has become a popular
choice for incorporating data analytics in industry, government
as well as academic domains. One of the important benefits
of this choice is that job parallelization, data distribution and
fault-tolerance are facilitated and provided by the framework
itself.

Enterprise data centers, in-house clusters and cloud com-
puting environments (that host Map-Reduce platforms) expe-
rience many faults and failures as shown in recent studies by
[31], [33], [32] and [3]. The causes for these faults include
scale, heterogeneity, geographical distribution, configuration
management over a large set of inter-dependent services and
human error as illustrated in [9]. These faults adversely affect
applications running in these environments resulting in job
performance degradations, failed jobs, increased costs for users
and loss of revenue for the provider when Service Level
Objectives are violated. Wang et al. in [38], show through
simulation studies that a single node fault can result in up to

139% performance slowdown in Map-Reduce. Dinu et al. in
[18] record penalties of up to 350% in job run time due to
TaskTracker failures. Ananthanarayanan et al. in [7], show that
job completion times in Dryad (an implementation of the Map-
Reduce paradigm) can be inflated by 34% because of outliers
and that faster completion times (by reducing the effect of
outliers) provide a competitive advantage to service providers.

These performance variabilities and penalties make it chal-
lenging to use Map-Reduce where response time is impor-
tant, such as in user-facing social networking applications at
Facebook [10], user-customization applications at LinkedIn [6]
and user click-stream processing, web-index generation and
advertisement selection applications at Microsoft [22].

Fault-managed Map-Reduce (FMR), presented in this paper,
aims at mitigating these performance penalties experienced by
Map-Reduce jobs. FMR uses a Monitor-Analyse-Plan-Execute
(MAPE) control loop to provide an online, on-demand and
closed-loop solution to fault management. In FMR, faults are
anticipated through the detection of anomalous conditions that
are indicative of an impending fault [31] [23].

For anomaly detection in this context, we propose the use of
a simple machine-learning technique based on sparse coding.
This technique satisfies the following two requirements: (1)
model training using only normal-class data (as opposed to the
use of both normal-class and anomaly-class data) and (2) fast
prediction time. Normal class data captures run time behavior
of a job that has not experienced a performance fault. The need
for training using only normal-class data is necessary because
anomaly-class data that is representative of all (or most)
possible types of faults, is difficult to obtain in a production
environment. Prediction computation time using the proposed
sparse-coding technique is less than a second. This allows the
anomaly detection module to be incorporated in an online
fashion within the MAPE loop for handling faults during
job execution. In addition to these essential requirements,
sparse coding based anomaly detection has two other benefits.
The sparse coding model is deployed locally on each slave
node and does not need to communicate or synchronize with
models on other nodes to make a prediction. This makes
FMR applicable to both homogeneous and heterogeneous
Map-Reduce environments. The time taken to train a sparse
coding model is in the order of a few seconds. This makes
it possible to quickly create models for a new Map-Reduce
application and also to quickly re-train models when system
characteristics change. Map-Reduce applications need to be
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instrumented to emit heart beats, which are further processed
to construct feature vectors that then serve as input to the
anomaly detection module.

After an anomaly is detected, FMR uses dynamic resource
scaling to reduce the performance penalty due to an impending
fault. A scaling heuristic is used to determine the extent of
scaling necessary. This heuristic uses performance prediction
models derived from our previous work [27] to estimate
Map-Reduce job execution times both in fault-free and fault-
present conditions. The cost due to increased execution time
is compared with the cost for additional resources and then a
suitable scaling decision is taken.

FMR leverages built-in features of Hadoop in order to
implement its control loop. This includes features such as (1)
the provision for seamless dynamic addition of slave nodes
to an executing job, (2) blacklisting of slave nodes to stop
assignment of new tasks to a slave node, and (3) the node
health script feature to periodically monitor a user-defined set
of conditions on the slave. FMR has been designed to require
no changes to the underlying Hadoop code base, thereby
facilitating practical adoption.

The increasing prevalence of Map-Reduce applications
along with increasingly fault-prone, large-scale computing
environments, makes FMR a timely and critical component to
improve Map-Reduce performance in the presence of faults.
The main contributions of this paper in the context of the
proposed FMR are as follows:

(1) Fault anticipation and early detection through a sparse-
coding based anomaly detection method. The proposed tech-
nique has a high true positive rate of 0.95 and a high true
negative rate of 0.93 averaged across experiments. Addition-
ally, it provides the benefits of short training and testing times,
requiring only normal-class data for training.

(2) A closed-loop, online dynamic resource scaling ap-
proach to reduce fault-induced performance penalties. Ob-
served performance penalties (without FMR) range between
18% up to 210%. Using FMR, penalties were brought down to
values ranging between 5% to 46%. FMR has been thoroughly
evaluated using a few thousand experiments on a 72-node in-
house cluster. Injected faults include CPU, memory and disk
hog processes as well as node crashes. Benchmark applications
from the domains of text mining and machine-learning were
used for the evaluation of FMR.

Other building blocks that enable FMR were proposed in
our prior works: (1) a comparative evaluation of regression
based machine-learning techniques for predicting the perfor-
mance of Map-Reduce jobs [27] and (2) a study of the effect
of various types of faults on a MapReduce job (motivating
the need for FMR) and the feasibility of resource scaling to
improve performance of an executing Map-Reduce job [26].

In Section II, background to the problem and related work
are discussed. In Section III, the Fault-managed Map-Reduce
approach is introduced. In Section IV, implementation details
of FMR are described. Section V consists of experimental
validation of FMR and a discussion of the results. Conclusions
are presented in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we summarize Map-Reduce research related
to fault management and bring out the need for FMR.

Effect of faults in Hadoop: Dinu et. al [18] evaluate the
behavior of Hadoop in the presence of fail-stop faults of an
entire compute node as well as Hadoop components such as
the TaskTracker and DataNode daemons. The authors show
that TaskTracker failures can result in up to 350% penalty
while DataNode failures can lead to 218% penalty. Wang et.
al [38] present a Map-Reduce simulator, MRPerf and show that
it can capture fault effects. Their simulation experiments show
penalties up to 186% for various injected faults. Our work [26]
illustrates the effect of various factors on performance penalty
such as number of slave nodes, time of fault injection and
fault-detection timeout interval.These research results along
with the increasing importance of Map-Reduce motivates our
goal for improving fault management in Hadoop.

Fault diagnosis: The Fingerpointing project, that includes
works such as [30], [34], and [8] focuses on fault diagnosis
in Map-Reduce environments. Our approach focuses on fault
detection and fault recovery through an online, closed-loop
approach. However, diagnosis is important and our choice of
sparse coding for anomaly detection is motivated by the need
to extend detection to diagnosis in order to facilitate more
targeted recovery actions.

Fault handling: In Mantri [7], outliers in an executing
Dryad Map-Reduce job are identified through the use of
static thresholds determined from application history. The
determination of the correct threshold to use is challenging
and a pre-set threshold can often drift to become incorrect
in dynamic environments. Hadoop provides a built-in feature
called speculative execution in which slow tasks are chosen to
be executed through duplicate task instances. The deficiency
of speculative execution in heterogeneous environments has
been addressed by the LATE algorithm proposed by Zaharia
et. al [39]. FMR applies to both performance faults as well
as performance faults that lead to crash faults. However, the
latter condition cannot be handled by speculative execution
and LATE and this is empirically illustrated in Section V.
Speculative execution also uses resources inefficiently through
the execution of many duplicate tasks (for e.g. in [39] it was
observed that as many as 80% of tasks were speculatively
executed). In contrast to speculative execution and LATE,
which use progress-based analytical models for detecting a
slow task, FMR uses decentralized and local machine-learning
models on each node for detecting anomalies.

Performance prediction: Predicting the completion time of
a MapReduce job is done through analytical models in [37]
and through simulation models in [24]. In [11], the authors
predict map and reduce task slowdown using the gradient
boosted decision tree model. However, prediction is based on
offline analysis. The anomaly detection method proposed in
this paper can be used in an online fashion and hence enables
incorporation into the MAPE control loop.

Anomaly detection: Tan et. al [35] propose anomaly pre-



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 237

MASTER

SCHEDULING 
COMMANDS

JOB 
TRACKER

NAME
NODE

META DATA 
REQUEST

ALIVE MSGS

META DATA
RESPONSE

SLAVE
TASK 

TRACKER
& DATA 
NODE 

DAEMONS

LOCAL 
STORAGE

SLAVE
TASK 

TRACKER
& DATA 
NODE 

DAEMONS

LOCAL 
STORAGE

SLAVE
TASK 

TRACKER
& DATA 
NODE 

DAEMONS

LOCAL 
STORAGE

SLAVE
TASK 

TRACKER
& DATA 
NODE 

DAEMONS

LOCAL 
STORAGE

SLAVE
TASK 

TRACKER
& DATA 
NODE 

DAEMONS

LOCAL 
STORAGE

SLAVE
TASK 

TRACKER
& DATA 
NODE 

DAEMONS

LOCAL 
STORAGE

Fig. 1. Overview of Hadoop showing interactions between the JobTracker,
NameNode, TaskTracker, DataNode hosted on the master and slave nodes.

vention schemes through the use of Markov chain models for
general virtualized cloud computing. systems. However, it is a
supervised learning technique which means that representative
normal and anomaly class data is needed. [16] and [23] pro-
pose unsupervised techniques for anomaly detection. FMR’s
anomaly detection technique is similar in goal to these works.

Performance management: Starfish [24] and ARIA [37]
propose the use of dynamic resource scaling for performance
management of Hadoop jobs. The Starfish project does not
handle faults and the ARIA project handles fail-stop faults.
FMR’s focus is on performance faults that result in de-
graded job execution times. AROMA [29] uses machine-
learning techniques for resource allocation and configuration
in Hadoop, however it does not handle performance deviations
introduced by faults.

Our work is most similar to Jockey [22], in which resource
allocation is used to guarantee job latencies for data parallel
jobs. Jockey depends on an offline job profile simulator
for completion time prediction; while FMR uses an online,
machine-learning based model for prediction.

III. DESIGN OF FAULT-MANAGED MAP-REDUCE

This paper focuses on the open-source Map-Reduce im-
plementation, Hadoop [1]. Hadoop consists of the following
main components: (1) JobTracker and TaskTracker daemons
that manage scheduling and coordination of map and reduce
tasks, and (2) NameNode and DataNode daemons that manage
the Hadoop Distributed File Systems (HDFS). The JobTracker
and NameNode daemons run on the Hadoop master node,
while the TaskTracker and DataNode daemons run on the slave
nodes. Figure 1 shows a simplified overview of Hadoop.

In a Map-Reduce job, when a node fails, all map tasks that
were executed on this node (for this job) have to be re-executed
on other healthy nodes. This is because map outputs are stored
locally at each slave node (rather than being stored on the
replicated HDFS). Map tasks whose outputs have already been
read by corresponding reduce tasks need not be re-executed.
The master node detects a slave node fault after a static
timeout interval (as shown in Figure 2(a)) and then initiates
re-execution. The performance penalty due to a single node
fault is illustrated for Hadoop clusters of different sizes in
Figure 3(a) and for the case when node faults occur at different
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(b) Improved fault detection in Hadoop with FMR

Fig. 2. The shaded (blue) region represents map and reduce tasks running
on a slave. After the fault shown by a cross tasks stop running on this slave.
Hadoop master detects the fault after a static timeout value. The lightly shaded
(green) region introduced into the node timeline in (b) corresponds to the
period leveraged by FMR for early fault detection
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Fig. 3. Execution time increase for Hadoop wordcount jobs of (a) different
cluster sizes and (2) for node crash faults injected at different points in job
progress.

points during a job’s runtime in Figure 3(b). These penalties
(ranging up to 155%) motivate the need for FMR.

One of the main contributors to the performance penalty
experienced in the presence of faults is the timeout interval
between fault occurrence and detection by the master. And
therefore, in order to detect faults sooner, the key idea in
FMR is the anticipation of a fault through anomaly detection.
Figure 2(b) shows the period during which FMR attempts to
detect faults. An anomaly refers to a condition that is indicative
of an impending performance fault. In the context of this paper,
a performance fault refers a Map-Reduce job’s execution time
exceeding a pre-specified Service Level Objective (SLO). By
default, this SLO is the fault-free execution time. Several
studies have shown that node crash faults are preceded by
anomalous conditions [23] [31].

We use a machine-learning technique to identify whether
a node is behaving in a manner that is unusual based on
its own history for a specific type of application. After the
detection of a node anomaly, recovery is initiated through
dynamic resource scaling. Anomaly detection and dynamic
resource scaling are described in the following subsections.

A. Anomaly Detection

Current anomaly detection techniques used in systems man-
agement depend on identifying various static thresholds as
part of the control policy. When system metrics exceed these
pre-determined thresholds, either alarms or suitable recovery
actions are invoked. Although this simplifies the process of
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anomaly detection, these thresholds are difficult to determine
and need to be customized as system conditions change.

In the context of machine-learning, anomaly detection can
be viewed as a classification problem. Given a feature vector
describing recent conditions on a compute node, we want
to be able to predict whether or not this corresponds to an
anomalous condition. In our work, an anomalous condition
on a node could lead to a performance fault of the executing
Map-Reduce job. Training data from compute nodes that are
operating normally will be referred to as normal-class data;
while those from a potentially faulty node will be referred to
as anomaly-class data.

Application heart beats: The Map-Reduce application is
instrumented to emit heart beats to indicate the rate of progress
in processing input data. Heart beat timestamps are recorded
locally on each slave node in a heart beat file. A sliding
window of timestamps are processed to determine the heart
beat rate. A sequence of heart beat rate values (referred to
as a heart beat wave) captures application behavior and is
used as the input feature vector to the anomaly detection
module. Application heart beats have been used for autonomic
management goals in [12] and [25].

An implicit requirement for the binary or multi-class formu-
lation is the need for balanced and representative training data
from each of the classes. In a production computational in-
frastructure, it is easy to obtain representative normal training
data. However, requiring a system designer or administrator to
provide sufficient and representative examples of anomalous
data (such as from all possible performance anomalies) would
strongly restrict the applicability of our approach. In order to
overcome this limitation, we propose an anomaly detection
method that can be trained using only normal-class data.

Sparse representation has received a great amount of atten-
tion in the signal processing community recently e.g., [20],
[13], [21], and it readily provides a principled and flexible
framework for feature-based anomaly detection needed in
FMR. We note that there are several recent works in image
processing and computer vision applying similar ideas to
anomalous event detection (e.g., [15] [40]). Although origi-
nating from different application domains, these problems can
all be considered as anomaly detection given only normal
features. That is, anomalies are not explicitly defined based on
input features but only relative to the training normal features,
and this apparent asymmetry in training features is the main
source of difficulty. Therefore, an algorithmic solution would
require a suitable generative model for the normal features
that can be used for identifying anomalies, and the sparse
representation [20] offers such a model that is known for
its simplicity, generalizability, and computational efficiency.
Formally, in sparse representation, a feature (considered as a
vector) x is represented as a linear combination of a small
number of basis features chosen from a dictionary D (of basis
features). In the following discussion, we will assume that x is
a column vector of dimension d and the dictionary D is given
as a d × l matrix such that l > d (D has more columns than
rows). The columns of the dictionary D are the basis features,

NORMAL TRAINING 
INSTANCES

NORMAL TEST 
INSTANCE

ANOMALY TEST 
INSTANCE

Fig. 4. A simplified diagram to illustrate the anomaly detection approach.
Normal training instances (or feature vectors) are similar because they are
produced by the same underlying process and hence with a high probability,
lie within a confined subspace. A normal test instance is also produced by the
same process and hence can be reconstructed well by other normal training
instances (i.e. dictionary atoms) and as a result its sparse representation has
low error values. On the other hand, an anomaly test instance is generated by
a different underlying process and lies in a different subspace. Hence, when
reconstructed using normal training instances, the sparse representation has
larger errors.

and the main assumption in sparse signal representation is that
a relevant feature x can be reconstructed by a small number
k of columns. Mathematically, this can be written as

fx = D cx,

where cx is the sparse coefficient for x with respect to the
dictionary D, and all but k components of cx are zero. The
integer k is the sparsity level of the feature x and it tells
us that the feature x can be reconstructed by taking a linear
combination of k columns of D. In other words, x is in
the linear span of these k columns. Given the dictionary
D, the sparsity level k is the parameter that controls the
generalizability (or expressiveness) of the model. For example,
when the sparsity level is set to k = 1, each feature vector
x is just a column of D with a scaling since we are working
with x such that cx only has one nonzero component in the
equation above. For other values of k, the features are assumed
to be those in the subspaces spanned by no more than k

columns of D. For this generative model, which is linear in
nature, the dictionary and the sparsity level are the only two
parameters used for specifying the normal features, and in
particular, training of the model is exceptionally easy: simply
take the normal training features as the dictionary columns. For
anomaly detection, the main assumption we make in regard
to the essential difference between feature vectors originating
from normal operating states and anomalous states is that
normal features can be sparsely approximated well using only
a small number of normal features while anomaly features
are expected to not enjoy this property. Therefore, given a
dictionary D and a sparsity level k, we will consider any
feature vector as a normal feature if it belongs to a subspace
spanned by k columns of D; otherwise, it will be considered
as an anomaly. Figure 4 illustrates this through a simplified
diagram.
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More precisely, given a dictionary D of normal features and
a sparsity level k, we expect that for a normal feature vector
x, its sparse-coding error, e

e = x− D cx,

should be a vector with small components and its magnitude
follows some multivariate normal distribution (and the squared
error norm e = �e�22 can be modeled by a χ-distribution
φ

χ

(e)). On the other hand, for an anomaly feature vector, its
sparse-coding error e is expected to be large and its squared
error norm does not follow the distribution φ

χ

. Therefore, by
estimating the background distribution φ

χ

(e) during training,
the squared error norm e for an unknown feature vector x can
be compared against φ

χ

to determine its classification and
the associated confidence level. We remark that the validity
of using a sparse model for anomaly detection can only be
supported empirically, and Figure 4 displays the results of sev-
eral experiments that confirm our expectation that anomalous
features incur large errors when sparsely coded with respect to
the dictionary whose columns are normal features, providing
a strong support for the sparse model. Furthermore, these
results also suggest that the error e can be a useful feature
for identifying the anomalies.
More specifically, the training component of our method
consists of two steps: forming the dictionary D and estimating
the distribution φ

χ

. We randomly divide the training (normal)
feature vectors into two groups. Feature vectors in the first
group form the dictionary D and those in the second group are
used to empirically estimate φ

χ

and its cumulative distribu-
tion function CDF

φχ
(e). The user specifies two parameters,

0 < β < fnr < α < 1, which are used to bound the false
negative rate fnr as follows: Let e

n

= CDF−1
φχ

(1 − α) and
e

a

= CDF−1
φχ

(1− β). For any feature vector x with squared
sparse-coding error norm e, it would be classified as normal
if e ≤ e

n

or as an anomaly if e ≥ e

a

. For the “gray area”
between e

n

and e

a

, we define the confidence level ρ(e) of
declaring x as an anomaly according to the formula,

ρ(e) =
CDF

φχ(e)− (1− α)

α− β

.

Note that 0 ≤ ρ(e) ≤ 1 and for ρ(e) to provide the confidence
level, ρ(e) simply scales the probability mass of φ

χ

between
e

n

and e

a

linearly to zero and one so that ρ(e
n

) = 0, ρ(e
a

) =
1. We also note that because we are declaring any feature
vector x with error e > e

a

to be an anomaly, this gives β as
a lower bound on fnr, the false negative rate (the proportion
of (training) normal feature vectors classified as anomalies).
Similarly, we also have α as an upper bound for fnr.

We remark that the key point in our method described above
is the sparsity requirement, since without it, any anomaly
feature vector can be approximated well using sufficiently
many normal feature vectors in the dictionary D. Only by
imposing sparsity, it is then possible to use the error e

as a meaningful value for classifying the feature vector x.
The sparsity requirement can further be justified using our
qualitative understanding of the normal states and anomalies.

In most applications, the normal features are comparatively
more homogeneous than the anomalies, which due to their
diverse origin and sporadic nature, are difficult to model con-
sistently. Computationally, this homogeneity can be modeled
by a dictionary D that captures (most of) the variability of
the normal features such that each normal feature can be
represented as a linear combination of only a small number (k)
of basis features in D. Therefore, this expected regularity of
normal features provides the motivation and rationale for using
sparse representation for their modeling. On the other hand,
the heterogeneity of the anomalies precludes such modeling,
and in general, an anomaly feature is not expected to be well
approximated by a few basis features in D. Therefore, using
φ

χ

(e) as the background distribution, the sparse-coding error
e provides a discriminative and useful quantity for classifying
the feature vectors. In Figure 4, we plot these errors for three
different Map-Reduce application datasets. We can observe
the significant difference between errors for the normal and
anomaly class instances.

The proposed anomaly detection framework is conceptually
simple and its implementation is straightforward. An important
computational issue is to determine the sparse coefficients
cx given a test feature x. Fortunately, there are efficient
algorithms such as orthogonal matching pursuit (MOD) [19]
and LASSO [36] that compute sparse signal decomposition,
given the signal x and dictionary D. Using these efficient
sparse coding algorithms, the running time of our method,
both in training and testing, is fast and makes real-time
anomaly detection feasible. Furthermore, the simplicity of our
method allows various generalizations and extensions such
as incorporating incremental updates of the dictionary D and
background distribution φ

χ

for anomaly detection in dynamic
and complex environments, a topic we will pursue in the
future.

B. Remediation through Dynamic Resource Scaling

Dynamic resource scaling refers to the addition of Map-
Reduce slave nodes to an executing job. This is a feasible
solution to improve execution time in the presence of faults
because of two reasons: (1) Hadoop allows for seamless addi-
tion of slave nodes (without restart of the master node daemons
or changes to configuration files) and (2) Horizontal scaling
is provided through a programming API in most virtualized
and cloud environments. For a new node to be included in
an executing job, TaskTracker and DataNode daemons must
be started on it and the master node IP address must be
provided to it. These newly started daemons will make a
request for work to the master node and are then assigned
data blocks to process. We note that the master node need
not be aware of a slave node that may potentially be added
in the future. This provides necessary flexibility to add as
many nodes as needed for handling different faulty conditions.
Additionally, an important design goal in our work has been
to keep the underlying Hadoop framework unmodified in
order to ensure that our solution can be easily adopted in
practice. Dynamic resource scaling chosen as the remediation
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Fig. 5. Errors in the sparse representation of training and test feature vectors for three Map-Reduce application datasets. Illustrates a significant difference
in the magnitudes between normal class and anomaly class instances.

technique, facilitates this design goal.
The number of nodes to be added depends on the time at

which the fault is detected, expected completion time of the
job, the number of chunks yet to be processed and the number
of nodes involved in the job. When the number of map tasks to
be executed is more than the number of slave nodes available,
then multiple map waves are executed. Dynamic resource
scaling can help as a recovery technique for an executing job,
only if at least one or more map and reduce waves are yet to
be started.

The scaling heuristic that is a part of FMR needs to add
sufficient number of nodes to reduce execution time penalty.
Both tasks that have already completed on the faulty node and
future tasks that would have executed on that node need to be
executed on newly added nodes. This condition is expressed
in Equation (1) where mapProgressPercentage is retrieved
from the Hadoop runtime using a built-in API.

N

nodes added

= ceil

�
1

1−MapProgPercentage

+ 1

�
(1)

After determining the optimal number of nodes to be used
for scaling (using Eq. 1), we determine the associated cost
of these resources (costOfScaling). In order to determine
whether the cost of scaling would be justified, we use Map-
Reduce execution time prediction models to estimate job
duration in the presence of a node fault (execT ime

fault

).
In our previous work [27], we have shown that Map-Reduce

execution times can be estimated using machine-learning
based regression models (PerfModel). We showed that 4
techniques, namely gaussian process regression, regression by
discretization, multilayer perceptron and model trees, achieved
best performance for predicting Map-reduce job execution
time. Average prediction errors obtained were less than 12%.
Out of these models, model trees were chosen for use in the
experiments in this paper.

Using this execution time, we calculate the potential cost
(delayPenalty) associated with exceeding the job deadline.
Any user-defined cost function (CostModel) can be used
here. The cost for the execution time penalty is compared
with the cost for resource scaling, and scaling is invoked if it
provides a cost benefit. This functionality of FMR is described
as pseudocode in Figure 6.

1: execT ime

nofault

= PerfModel(NumFaults = 0)
2: execT ime

fault

= PerfModel(NumFaults = 1)
3: delayPenalty = CostModel(execT ime

nofault

, execT ime

fault

)

4: N

nodes added

= ceil

�
1

1−MapProgPercentage

+ 1
�

5: costOfScaling = nodesToScale ∗ costPerNode

6: if costOfScaling < delayPenalty then
7: Invoke scaling operation
8: end if

Fig. 6. Pseudocode of the scaling heuristic in FMR

IV. IMPLEMENTATION OF FAULT-MANAGED MAP-REDUCE

The various components of FMR that together constitute the
MAPE control loop are illustrated in Figure 7 and described
in this section.
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Fig. 7. Autonomic control loop of Fault-managed Map-Reduce showing
a high-level overview of the monitoring, analysis, planning and execution
modules. Contributions described in this paper are shown within solid-outline
blocks. Contributions from prior work that are used in FMR are shown within
dashed-outline blocks.

Monitoring using Ganglia: Ganglia is an open-source
project [2] that provides a flexible monitoring framework for
distributed systems. In FMR, customized metrics are added to
Ganglia for calculating the heart beat rate and for performing
anomaly detection.

Node Health Script: The node health script is a feature
provided in Hadoop that allows for a pre-defined health script
to be periodically executed on each slave node. As soon as
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a node anomaly is conveyed to the master through Ganglia,
the node is black-listed by FMR. Black-listing immediately
prevents any more tasks from being scheduled on that node.
Typically, slave node faults are detected by the master only
after a timeout interval. The advantage of blacklisting is that
the master is made to become aware of a slave’s degrading
health status immediately. This is beneficial since a recovery
action can be invoked without any delay. We also configure the
node health script to check for other fault precursors such as
task and daemon crash faults. This precursor detection func-
tionality helps detect some crash faults that are not preceded
by anomalous conditions (that could be detected by the sparse
coding technique).

Anomaly Detection: The anomaly detection module is in-
voked at the end of each task. The input feature vector
to the anomaly detection module is a heart beat wave that
corresponds to the last-completed task. The sparse coding
technique is implemented in Matlab and converted to a stand-
alone executable which is then executed on the slaves using
the Matlab Compiler Runtime (MCR) environment.

Recovery through Dynamic Resource Scaling: Once an
anomaly is detected, the anomalous node is forcefully black-
listed. Then the scaling heuristic is executed to determine
the number of nodes to be added. We use a cost model in
which dollar costs are associated with different penalty ranges.
Virtual machine images for the new slaves are pre-set with the
master IP address. TaskTracker and DataNode daemons are
started up on the new nodes, which then become a part of the
executing Map-Reduce job.

V. EXPERIMENTAL EVALUATION

Experimental Testbed: The test bed used to evaluate the
FMR approach consists of 16 IBM blade servers (HS22)
mounted on two different racks. Each physical node has a
8-Core Xeon 2.4 GHz CPU and 24 GB of RAM and runs
CentOS 5.5 with Xen 3.4.3. The two racks are linked together
by a Gigabit Ethernet network. Each physical node hosts five
guest virtual machines. This guest VM (which forms a Hadoop
slave node) runs Ubuntu 10.04.2 and is configured with a
single core and 2Gb of RAM. Hadoop version 0.20.203 is
used.

Map-Reduce applications: Applications from the Hadoop
distribution and the PUMA benchmark suite [4] were used
and are described below:

1) Wordcount (WC): Map outputs a (word, 1) key-value
pair for each word in a document. Reduce combines the
count for each word producing a (word, wordcount) pair.

2) Grep (GR): Map searches for a pattern in the input doc-
uments and produces (pattern,1). Reduce combines the
count for each pattern producing (pattern, patterncount).

3) Pi estimation (PI): Estimates the value of Pi using quasi-
Monte Carlo method.

4) Inverted index (II): Map generates the document index
for each word as (word, document index). Reduce com-
bines all occurrences of a word to produce (word, list
of document indices).

5) Term vector per host (TV): Determines frequently oc-
curring words in a document. Map produces (host,
termvector) for each host. Reduce combines term vectors
for each host and outputs (host, list(termvector)).

6) Histogram ratings (HR): Generates a histogram of movie
ratings from a dataset of user reviews. Map produces
(rating, 1) for each user review. Reduce combines the
count to produce (rating, count).

Input dataset: Dataset used for WC, GR, II and TV consists
of books from Gutenberg [5] with size varying between 5GB
to 20GB. PI does not require any input data. Input for HR is
generated using scripts from PUMA.

Job duration: Performance penalties are low for long-
running jobs that execute on a large number of nodes. How-
ever, long running jobs are not the common case for Hadoop
as seen from two production traces that were analyzed in
[14], [28]. In these studies, the average length of a job varies
between few tens of seconds to few tens of minutes. The
average Map-Reduce job size at Google [17] varied between
395 to 874 seconds over a period of three years between
2004 and 2007. FMR and its evaluation experiments thus
focus on short jobs with runtimes ranging between 300 to
600 seconds which correspond to the majority workload in
production environments.

Faultload: The following fault conditions were injected into
slave nodes:

1) CPU hog: A CPU-intensive sequence of matrix multi-
plication operations.

2) Memory hog: A sequence of memory leaks programmed
into an executing matrix multiplication process.

3) Disk hog: The linux dd command used to copy large
chunks of data between two disk partitions.

4) Node crash fault: The linux kill command used to termi-
nate the TaskTracker and DataNode daemon processes
running on the node.

Each fault experiment consists of loading HDFS with the
input, starting FMR scripts and the Map-Reduce job and then
injecting faults at pre-specified time instances. Node crash
faults are preceded by performance faults. After each fault
experiment, HDFS is reformatted and reloaded with input data.
This ensures that any non-uniformity in data distribution and
replication is eliminated for each new experiment. A set of
3000 job executions were performed for validating anomaly
detection, performance prediction and resource scaling compo-
nents of FMR and are described in the following subsections.

A. Anomaly Detection

The experiment shown in Figure 8 is used to illustrate
the operation of the anomaly detection module. A Wordcount
Map-Reduce job is executed with a CPU hog injected into
one node. We note that the anomalous slave node ‘Dom-13’
(in the fourth plot from the top) was correctly identified. In
accordance to the goal of early fault detection, the fault was
detected at the end of the first application heart beat wave and
is marked in using an arrowhead.
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(c) Different virtual machine instances

Fig. 9. Evaluation of sparse coding based anomaly detection for (1) different Map-Reduce applications, (b) different faulty conditions, and (c) different VM
instance sizes in a heterogeneous environment.
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Fig. 8. Application heart beat waves for a 6-node Hadoop job in which a
CPU hog process was injected into one slave node ‘Dom 13’. The anomalous
node is shown in the fourth plot (from the top). An arrow head marks the
time of detection of the anomaly on this node.

Figure 9(a) shows the fraction of correct predictions for the
normal and anomaly test data for six datasets corresponding to
six different Map-Reduce applications. The fraction of correct
predictions in the anomaly dataset is the the True Positive
Rate (TPR) = TP

FN+TP

; while the fraction of correction
predictions in the normal dataset is the True Negative Rate
(TNR) = TN

TN+TP

. Here TP , TN , FP , FN stand for True
Positives, True Negatives, False Positives and False Negatives
respectively. In this context correctly detecting an anomaly is
termed a True Positive. We see that for all the datasets the TNR
is greater than the theoretical bound of 0.8 that was chosen
for the percentile parameter. This corresponds to a maximum
False Positive Rate of 0.2.

In Figure 9(b), we plot the TPR and TNR for the inverted
index application for different injected faults. In order to
identify the cause for variation in performance, we compare
the intensity of the effect (performance penalty) of each these
faults. A CPU hog, memory hog and disk hog causes 22%,
13% and 11% increase in average execution time. The CPU
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Fig. 10. Sensitivity analysis: Variation of the fraction of correct predictions
for normal test data (true negative rate) and anomaly test data (true positive
rate) using the sparse coding anomaly detection technique for different
values of the (a) ‘Percentile’ parameter and (a) ‘Sparsity Level’ parameter.
Application: Term vector per host. Injected fault: CPU hog.

hog with maximum penalty is a more severe fault and hence
can be detected with better performance. The memory hog and
disk hog effects are more subtle and hence appear to result in
slightly lesser performance.

The time taken for prediction computation and model train-
ing is shown in Table I for 3 application datasets. We see
that for the largest dataset of 1400 instances, training takes 1
sec and testing takes only 0.008 secs. This ensures minimal
overhead when our anomaly detection model is used within
FMR.

TABLE I
TRAINING AND TEST DURATIONS FOR ANOMALY DETECTION

Dataset Application Total
Instances

Training
Duration

Testing
Duration

1 Pi Estimation 1497 1.06 secs 0.008 secs
2 Grep 202 0.13 secs 0.008 secs
3 Wordcount 400 0.22 secs 0.008 secs

Heterogeneity: The use of decentralized, local models for
anomaly detection enables us to extend FMR to work in a
heterogenous environment. A heterogeneous testbed was con-
figured consisting of three different virtual machine instance
types: ‘small’ VMs with 1 CPU and 2GB of RAM, ‘medium’
VMs with 2 CPUs and 4GB RAM and ‘large’ VMs with
4CPUs and 6GB of RAM. Performance of anomaly detection
for each VM instance type in this environment is shown in
Figure 9(c).

Sensitivity Analysis: In order to determine the effect of
choosing different parameters, we perform a sensitivity analy-
sis of two parameters, namely the sparsity level in Figure 10(a)
and percentile value in Figure 10(b). Sparsity level is varied
between 1 and 6 and the percentile parameter (which is related
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to 1 − β) is varied between 0.8 and 0.96. The effect of
these variations on TPR and TNR is plotted. We see that
anomaly detection performance is quite stable within these
ranges, thereby providing sufficient leeway in choosing good
parameter values. We note that although anomaly data is not
needed for training, it can be leveraged when available for
parameter tuning.

Receiver Operating Characteristic curves: We plot ROC
curves for 6 applications in Figure V-A by varying the
confidence threshold between 0 and 1. All curves are close
to the upper-left corner, where TPR is high and FPR is low.
In addition, most of the curves provide a number of possible
values of confidence threshold (i.e. points on the curve with
markers) in the upper left corner region indicating that good
performance is possible for many confidence threshold values.

TABLE II
COMPARISON OF ANOMALY DETECTION TECHNIQUES

Application Multilayer
Perceptron

K-means
clustering

Support
Vector
Machines

Sparse-
coding

True positive rate / True negative rate
PI 1.0/0.96 0.99/0.88 0.76/0.3 1.0/0.93
GR 1.0/0.94 0.7/0.31 1.0/0.65 1.0/1.0
WC 0.98/0.88 0.96/1 1.0/0.69 1.0/0.92
II 0.99/0.95 0.8/0.66 1.0/0.49 0.92/0.95
TV 0.95/0.76 0.93/0.69 0.89/0.49 0.82/0.82
HR 0.99/0.98 0.975/0.99 1.0/0.51 0.99/0.96

Comparison of anomaly detection techniques: We compare
sparse coding with 3 classification techniques in Table II.
Multilayer perceptron provides best performance. However, it
needs anomaly data for training and takes ten to a hundred
seconds for training, thus making in unsuitable for FMR. K-
means clustering also needs anomaly data for training and
does not achieve very good TPR and TNR values. Single-
class SVM does not need anomaly data for training, making
it a viable candidate. However, sparse coding models achieve
much better performance for all 6 benchmark applications.
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Fig. 11. ROC curves showing performance of anomaly detection as the
confidence threshold is varied. Six benchmark applications are shown in 2
separate plots (a) and (b) for clarity.

B. Dynamic Resource Scaling

We first evaluate the accuracy of model tree prediction,
which is a critical component of the FMR control loop.
Prediction accuracy for 6 test jobs is shown in Figure 12 and
was an average of 11.1%. Features used include number of
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Fig. 12. Prediction accuracy of the model tree algorithm used for Map-
Reduce job execution time prediction. Application: Wordcount. Jobs 1, 2, 3
have one fault injected, while jobs 4, 5 and 6 are fault-free.
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Fig. 13. Evaluation of FMR scaling heuristic. Application: Pi estimation.
Fault: Node crash fault at 520 seconds. FMR scaling heuristic scales by 7
nodes (marked with an arrow in the plot)

slaves, dataset size, time of fault, number of faults, timeout and
Hadoop framework configuration parameters. The model tree
implementation in the Weka tool suite was used for training
and testing.

Next we evaluate the scaling heuristic in Figure 13 to
determine whether sufficient number of nodes are chosen for
scaling. For the job shown, the heuristic scales by 7 nodes
based on the map progress percentage of 0.83 in Eq (1). We
manually scale by 1 to 6 nodes and 8 to 10 nodes, to determine
if 7 is the right choice. We see that for N

nodes added

< 7,
penalty is > 5% and for N

nodes added

> 7 there is no
additional benefit.

The penalty reduction through dynamic resource scaling is
illustrated using a swimlane plot in Figure 14. In this plot, each
y-axis coordinate corresponds to the execution of a map task
in a single map-slot. Our experiments use Hadoop’s default
setting of two slots per node. So a pair of consecutive lines
(parallel to the x-axis) correspond to two map tasks running
simultaneously on a node.

Figure 14 (a) shows a Map-Reduce job that consists of
four map waves. The job did not experience any faults. In
Figure 14 (b), the same job is rerun with a CPU performance
fault injected into one of the nodes. The presence of a fault
results in an execution time penalty of 18.5%. In the next
execution of the same job, FMR scripts are enabled. Figure 14
(c) shows the addition of two nodes to the running job after
detection of the anomalous node. We note that with the help
of resource scaling, performance penalty is reduced to 4.6%.

In Figure 15, FMR is compared with Hadoop’s built-in
speculative execution. After a job begins execution, a CPU hog
process is injected and is followed by a node crash fault after
30 seconds. We see that with speculative execution, penalty
is not reduced. However using the FMR approach, through
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Fig. 15. Comparison of FMR with speculative execution. (1) Job with no
faults (2) Job with fault and speculative execution turned off. (3) Job with
fault and speculative execution turned on. (4) Job with faults managed using
FMR approach. Application: Inverted Index. Fault: CPU hog process + node
crash fault after 30 seconds.

scaling by 4 nodes, the penalty is decreased to < 5% of the
fault-free execution time.

In the next set of experiments, node crash faults are injected
into a running job executing on different numbers of nodes. As
shown in Figures 16(a) to 16(f), we see that FMR consistently
helps in mitigating performance penalty. FMR helped decrease
performance penalty from an average of 119% to 14% across
these 6 sets of experiments.

C. Discussion

Virtualized environment: FMR has been implemented on
a virtualized environment which easily provides the actua-
tors needed for dynamic resource scaling. However, a non-
virtualized environment can also use FMR by provisioning
extra resources that can be added to the Hadoop cluster on-
demand. These extra resources can be utilized for executing
preempt-able jobs during those periods when they are not uti-
lized as part of recovery. However, a virtualized environment
provides the capability to extend recovery to other actions such
as migration (to handle hardware faults) and scaling up (to
handle resource exhaustion faults).

Application-specific anomaly detection models: The
anomaly detection model developed is specific to a Map-
Reduce application because each application has different
heartbeat characteristics. We believe that it is reasonable to
manage application-specific models because typical Map-
Reduce workloads involve the execution of the same job on
gradually evolving data sets. Recent literature shows that 80%
of jobs in a workload from Yahoo! were repeated at least 50
times [11]. The feature vectors needed for training the sparse
coding model are derived from one application heart beat
wave that corresponds to the processing of one data chunk by
a map task. Hence, even a single MapReduce job can provide
few tens to a few hundred feature vectors for training.

Scalability of FMR: Since anomaly detection is performed
by local, decentralized models at a node, the associated
overheads are local to a node. Therefore, the overhead does not
increase adversely as the number of slaves is increased. The
computation performed at the master (by FMR) for each slave
is limited and only consists of evaluating two binary metrics
for each slave (namely the presence/absence of an anomaly
and the result of the node-health script). The latest version
of Hadoop, called ‘NextGen’ Hadoop uses distributed masters
and will further help reduce time taken for this evaluation.
Furthermore, FMR aims at achieving soft deadlines for Map-
Reduce jobs. In a typical shared Map-Reduce cluster only a
subset of the jobs would have these soft-deadline requirements.
Thus, FMR needs to be enabled only for these jobs, thus
avoiding the need to monitor and manage all jobs.

VI. CONCLUSIONS

Map-Reduce has become an important platform for a va-
riety of data processing applications. Built-in fault-tolerance
mechanisms in Map-Reduce frameworks such as Hadoop,
suffer from performance degradations in the presence of
faults. Fault-managed Map-Reduce, proposed in this paper
provides an online, on-demand and closed-loop solution to
managing these faults. The control loop in FMR mitigates
performance penalties through early detection of anomalous
conditions on slave nodes. Anomaly detection is performed
through a novel sparse-coding based method that achieves
high true positive and true negative rates and can be trained
using only normal class (or anomaly-free) data. The local,
decentralized nature of the sparse-coding models ensures
minimal computational overhead and enables usage in both
homogeneous and heterogenous Map-Reduce environments.
After an anomalous condition is detected, dynamic resource
scaling, through the proposed scaling heuristic, is invoked as
the recovery action. Through extensive evaluation of a variety
of benchmark applications on a 72-node Hadoop cluster, we
show that FMR can effectively mitigate performance penalties.
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(b) 22 node cluster + 10 nodes for scaling
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(c) 32 node cluster + 10 nodes for scaling
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(e) 52 node cluster + 10 nodes for scaling
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Fig. 16. Comparison of job execution times of a Pi Estimation job in the presence of a node crash fault through the use of Hadoop’s built-in fault tolerance
and FMR. x-axis labels ‘Initial’, ‘Early’, ‘Mid’ and ‘Late’ correspond to a node crash fault injected at 1 sec, 120 sec, 220 sec and 320 sec from job start.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/.
[2] Ganglia Monitoring Tool. http://ganglia.sourceforge.net/.
[3] Jeff Dean. http://tinyurl.com/87kgcev.
[4] Purdue MapReduce Benchmark Suite. http://tinyurl.com/bn5gmga.
[5] Gutenberg. http://www.gutenberg.org/, 2009.
[6] Jay Kreps. http://tinyurl.com/cu24pwz, 2009.
[7] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters
using mantri. In Proc. of OSDI, 2010.

[8] K. Bare, S. P. Kavulya, J. Tan, X. Pan, E. Marinelli, M. Kasick,
R. Gandhi, and P. Narasimhan. Asdf: an automated, online framework
for diagnosing performance problems. 2010.

[9] L. A. Barroso and U. Hlzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. 2009.

[10] D. Borthakur and et al. Apache hadoop goes realtime at facebook. In
2011 ACM SIGMOD Intl. Conf. on Management of Data, 2011.

[11] E. Bortnikov, A. Frank, E. Hillel, and S. Rao. Predicting Execution
Bottlenecks in Map-Reduce Clusters. In HotCloud, 2012.

[12] E. S. Buneci and D. A. Reed. Analysis of application heartbeats: learning
structural and temporal features in time series data for identification of
performance problems. In Proc. of Supercomputing, 2008.

[13] E. Candes and T. Tao. Decoding by linear programming, 2004.
[14] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating

mapreduce performance using workload suites. In MASCOTS, 2011.
[15] Y. Cong, J. Yuan, and J. Liu. Sparse reconstruction cost for abnormal

event detection. In Proc. of CVPR, 2011.
[16] X. G. Daniel Dean, Hiep Nguyen. Ubl: Unsupervised behavior learning

for predicting performance anomalies in virtualized cloud systems. In
Proc. of ICAC, 2012.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[18] F. Dinu and T. E. Ng. Understanding the effects and implications of
compute node related failures in hadoop. In Proc. of HPDC, 2012.

[19] D. L. Donoho, Y. Tsaig, I. Drori, and J. luc Starck. Sparse solution
of underdetermined linear equations by stagewise orthogonal matching
pursuit. Technical report, 2006.

[20] M. Elad. Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. Springer, 2010.

[21] Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured
union of subspaces. IEEE Trans. Inf. Theor., 55(11), 2009.

[22] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In EuroSys,
2012.

[23] M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault
detection in large scale services. In Proc. of DSN, 2012.

[24] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics. In SOCC, 2011.

[25] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application Heartbeats. In Proc. of ICAC, 2010.

[26] S. Kadirvel and J. Fortes. Towards self-caring mapreduce: Proactively
reducing fault-induced execution-time penalties. In HPCS, 2011.

[27] S. Kadirvel and J. Fortes. Grey-box approach for performance prediction
in map-reduce based platforms. In Proc. of ICCCN, 2012.

[28] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces
from a production mapreduce cluster. In CCGRID, 2010.

[29] P. Lama and X. Zhou. Aroma: Automated resource allocation and
configuration of mapreduce environment in the cloud. In ICAC, 2012.

[30] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Ganesha:
BlackBox diagnosis of MapReduce systems. SIGMETRICS Perform.
Eval. Rev., 37(3), Jan. 2010.

[31] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of FAST, 2007.

[32] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance comp. systems. Trans. on Dep. and Sec. Comp., 2010.

[33] B. Schroeder and G. A. Gibson. Disk failures in the real world: what
does an mttf of 1,000,000 hours mean to you? In Proc. of FAST, 2007.

[34] J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan.
Kahuna: Problem diagnosis for Mapreduce-based cloud computing en-
vironments. In Proc. of NOMS, 2010.

[35] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan.
Prepare: Predictive performance anomaly prevention for virtualized
cloud systems. In Proc. of ICDCS, 2012.

[36] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B, 58:267–288, 1994.

[37] A. Verma, L. Cherkasova, and R. H. Campbell. Resource provisioning
framework for mapreduce with performance goals. In Middleware, 2011.

[38] G. Wang, A. Butt, P. Pandey, and K. Gupta. A simulation approach to
evaluating design decisions in mapreduce setups. In MASCOTS, 2009.

[39] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
Proc. of OSDI, 2008.

[40] B. Zhao, L. Fei-Fei, and E. P. Xing. Online detection of unusual events
in videos via dynamic sparse coding. In Proc. of CVPR, 2011.





USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 247

Reliability and Timeliness Analysis of Fault-tolerant Distributed Publish /
Subscribe Systems

Thadpong Pongthawornkamol∗
University of Illinois

Urbana, IL
tpongth2@illinoisalumni.org

Klara Nahrstedt
University of Illinois

Urbana, IL
klara@illinois.edu

Guijun Wang
Boeing Research & Technology

Seattle, WA
guijun.wang@boeing.com

Abstract
Distributed publish / subscribe paradigm is a powerful
data dissemination paradigm that offers both scalability
and flexibility for time-sensitive applications. However,
its nature of high expressiveness makes it difficult to an-
alyze or predict the performance of publish / subscribe
systems such as event delivery probability and end-to-
end delivery delay, especially when the publish / sub-
scribe systems are deployed over distributed, large-scale
networks. While several fault tolerance techniques to in-
crease reliability in distributed publish / subscribe sys-
tems have been proposed, event delivery probability and
timeliness of publish / subscribe systems with such re-
liability enhancement techniques have not yet been an-
alyzed. This paper proposes a generic model that ab-
stracts the basic distributed publish / subscribe protocol,
along with several commonly used fault-tolerant tech-
niques, on top of distributed, large-scale networks. The
overall goal of this model is to predict quality of service
(QoS) in terms of event delivery probability and time-
liness based on statistical attributes of each component
in the distributed publish / subscribe systems. The eval-
uation results via extensive simulations with parameters
computed from real-world traces verifies the correctness
of the proposed prediction model. The proposed predic-
tion model can be used as a building block for automatic
QoS control in distributed, time-sensitive publish / sub-
scribe systems such as subscriber admission control, bro-
ker deployment, and reliability optimization.

1 Introduction

Recently, distributed publish / subscribe systems have
emerged as an effective multi-source, multi-sink commu-
nication paradigm for large-scale, time-sensitive applica-
tions such as stock report, live sportcasting, and social
network messaging. The main concept of publish / sub-
scribe paradigm is that senders and receivers of informa-

∗The author is currently employed at Google Inc.

tion are connected loosely based on the content of the
information. Specifically, in a publish / subscribe sys-
tem, a publisher (i.e., sender) can produce its events (i.e.
messages) without specifying the set of subscribers (i.e.,
receivers). Instead, each subscriber specifies the content
(or topic) of event it is interested to receive. All events
produced from publishers containing content (or topic)
that match a subscriber’s interest are then delivered to that
subscriber via a network of intermediary servers called
brokers. Since the information flows based on the con-
tent of the information, publishers and subscribers are de-
coupled in space, time, and synchronization [16]. Such
transparency allows the system to scale and adapt well
under dynamic environments, resulting in wide adoption
of publish / subscribe paradigm in many contexts such as
cloud computing [26], mobile computing [9], and peer-
to-peer services [36].

While distributed publish / subscribe systems achieve
scalability and fault tolerance, failures at brokers or links
between brokers can still cause time-sensitive events to
be lost or expired before being delivered to the sub-
scribers [19, 28]. Several reports have shown that while
high-end commercial servers with high maintenance gen-
erally achieve at least 99.9% availability (i.e., available
99.9% of the time) [4], most standard, off-the-shelf com-
modity servers with low to moderate maintenance may
have less than 90% availability [3]. To cope with such
component failures in the context of publish / subscribe
systems, several fault-tolerant / fault-recovery techniques
have been proposed to increase service availability in dis-
tributed publish / subscribe systems [13,14]. However, to
the best of our knowledge, the effect of such commonly-
used fault-tolerant techniques to a publish / subscribe sys-
tem’s reliability and timeliness has not been analyzed yet.

In this paper, we propose a quantitative, analytical
model to predict the effect of failures and commonly used
recovery techniques to the quality of service (QoS) each
subscriber receives in distributed, time-sensitive publish
/ subscribe systems. The primary goal of such analyti-
cal model is to estimate each subscriber’s real-time re-

1
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liability, which is the percentage of events that are suc-
cessfully delivered to each subscriber on time (i.e., be-
fore the event is expired). The analytical model covers
common component failures and recovery mechanisms,
resulting in the model’s high applicability. The evalu-
ation results via simulations with parameters computed
from real-world traces yield correctness of the proposed
analytical model. The proposed model can be used as a
building block for automatic QoS control in distributed,
time-sensitive publish / subscribe systems such as sub-
scriber admission control, broker deployment, and relia-
bility optimization.

The organization of this paper is as follows. In Sec-
tion 2, we first describe the basic publish / subscribe
model, failure model, and commonly used fault toler-
ance / recovery techniques. In Section 3, we then formu-
late the subscriber real-time reliability estimation prob-
lem and propose a generic, protocol-independent analyt-
ical framework to solve such problem. In Section 4, we
propose a set of protocol-dependent, publisher-subscriber
pairwise reliability estimation models for each fault tol-
erance / recovery mechanism from Section 2. Section 5
then presents the evaluation results to validate the pro-
posed analytical model via simulations. Related work is
summarized in Section 6. Conclusions and future work
are then discussed in Section 7.

2 Model and Assumptions

In this section, we describe the details of the distributed
publish / subscribe architecture model, quality of service
(QoS) model, failure model, and commonly used fault-
tolerant techniques used in this paper. In the next sec-
tion, we will then present the mathematical framework
that realizes the model described in this section in order
to predict QoS level each subscriber receives.

2.1 Distributed Publish / Subscribe Model

We model the publish / subscribe network as a network of
brokers. Brokers can be placed inside the same domain
(e.g, brokers within cloud), across different private do-
mains (e.g., federated clouds), or across different public
domains (e.g., peer-to-peer systems). Each subscriber /
publisher is connected to only one of the brokers. The
broker that is connected to a subscriber / publisher is
called the home broker with respect to that subscriber /
publisher. Figure 1 shows an example of a publish / sub-
scribe network with 4 brokers , where the home brokers
of subscriber s1, subscriber s2, and publisher p1 are bro-
ker b3, b4, and b1 respectively.

When a subscriber joins the system, it chooses a bro-
ker in the system as its home broker and sends its sub-
scription message to the home broker. The subscription

message specifies a topic1 value, which describes the cat-
egory of event that the subscriber wants to receive. Upon
receiving the subscription from the subscriber, the home
broker stores the subscription and the subscriber into its
routing table before propagating the subscription mes-
sage to other brokers. Each published event has topic and
deadline associated with it. When a publisher publishes
a new event, the publisher sends the published event to
its home broker, who then routes the event via the broker
network to all subscribers whose subscriptions have the
same topic as the published event. If the event arrives at
a subscriber before the event’s deadline, we say that the
event is delivered to that subscriber on time. Otherwise,
we consider that event to be expired with respect to that
subscriber.

For genericity, this paper does not make any assump-
tion about subscription propagation / event routing pro-
cesses within broker network. The only assumptions are
that the broker network must be stable (i.e., neighbor-
hood relationships between brokers do not change fre-
quently over time) and the event routing path must be
consistent (i.e., for each publisher-subscriber pair, bro-
kers will always use the same path to route all events
from the publisher to the subscriber). For demonstration,
this paper focuses on tree-based forwarding (e.g., Fig-
ure 1), which is a publish / subscribe routing scheme that
satisfies path consistency assumption. In tree-based for-
warding scheme, a broker tree overlay is arbitrarily but
consistently formed for each topic. When a broker re-
ceives a new subscription, the broker stores the subscrip-
tion and its source to the broker’s routing table before
forwarding the subscription to its neighbors in the sub-
scription’s topic broker tree. Figure 1(a) shows an exam-
ple when subscriber s1 subscribes to topic “Stock”, which
forms the broker tree rooted at broker b2. Note that sub-
scriptions with different topics can have different corre-
sponding broker trees. For example in Figure 1(b), sub-
scriber s2 subscribes to topic “Temp”, which forms the
broker tree rooted at broker b3. Upon receiving a pub-
lished event from a publisher, the publisher’s home bro-
ker checks the event with each subscription stored in its
routing table. For each subscription whose topic matches
the event, the broker forwards the event to the link which
it receives that subscription from. Note that an event is
forwarded once per link even though there are multiple
matching subscriptions from that link. The event for-
warding process then continues, and the event is prop-
agated hop-by-hop along the topic tree in the reverse di-
rection of the subscription until it reaches the designated
subscribers. Figure 1(c) shows an example of publisher
p1 publishing an event with topic “Stock”.

While Figure 1 describes topic-based, tree-based pub-

1While this paper focuses on topic-based publish / subscribe, our
approach can be extended to support content-based publish / subscribe
as well [29].
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(a) s1 subscribes with topic ’Stock’ (b) s2 subscribes with topic ’Temp’ (c) p1 publishes an event with topic ’Stock’

Figure 1: Example of subscription propagation and event routing in a tree-based publish / subscribe network

lish / subscribe model, our analytical model can be ap-
plied to content-based publish / subscribe systems with
any routing scheme that satisfies the path consistency as-
sumption [29].

2.2 QoS Model
In our previous work, we proposed the subscriber-level
QoS metric called subscriber real-time reliability [30].
Subscriber real-time reliability can be defined as follows:
A subscriber s is said to receive the service with real-time
reliability rs ∈ [0,1], where rs is defined as the fraction of
all events of s’s interest that arrives at s before its deadline
(i.e., delivery delay less than the message lifetime). This
metric both standard reliability and timeliness properties,
making it a suitable indicator of QoS in time-sensitive
publish / subscribe applications.

2.3 Failure Model
In this paper, we discuss two types of failures that could
affect subscriber real-time reliability : link failures and
broker failures. We assume crash-recovery failure model
for both broker failures and link failures, which means
each broker / link is assumed to be either on or off at
any point of time. When a broker fails (i.e., is in off
state), it stops its activity until it recovers (i.e., is repaired
back to on state). When a failed broker recovers, it loses
all of its soft-state information (e.g., subscription routing
table and queued events) that it had before the failure.
However, we assume that the failed broker does not lose
the broker graph information (i.e., the list of all brokers
and their neighborhood relationship), which is stored in
each broker’s persistent, non-volatile storage. When a
link fails, any event that is sent to the link will be lost.

In this paper, we assume that link failures and broker
failures are independent and exponentially distributed for
analysis feasibility. Previous studies also have shown that
the assumption of exponential time between failures is
true in many distributed systems [3, 35].

2.4 Fault-Tolerant Mechanisms
In order to cope with broker and link failures, several
fault tolerance / recovery schemes for publish / subscribe
systems have been proposed [7, 8, 13, 19, 22]. This sec-
tion summarizes and discusses such techniques. Note
that some of these techniques are generic and not lim-
ited to publish / subscribe systems. However, this paper
focuses on the analysis of such techniques in the publish
/ subscribe context.

2.4.1 Periodic Subscription

In periodic subscription scheme [33], each subscriber pe-
riodically re-issues its subscription message to its home
broker, which then propagates the subscription to other
brokers in the network. Each broker also maintains a
timestamp for each subscription entry in its routing table.
The timestamp is refreshed every time the broker receives
the corresponding subscription. The broker discards any
subscription from its routing table if the subscription is
not refreshed within a period of time (i.e., timeout). The
periodic subscription scheme can help prevent subscrip-
tion loss, but it cannot prevent event loss. More details
about periodic subscription can be found by several pre-
vious works [19, 20].

2.4.2 Event Buffering / Retransmission

In event buffering scheme [8, 13], each broker ensures
event delivery to its next hop neighbor as follows. When
a broker receives an event from one of its immediate
neighbors, it performs the event matching and calcu-
lates the event’s forwarding set (i.e., the set of immedi-
ate neighbors to forward the event to). The broker then
stores the event and its forwarding set into the broker’s
non-volatile storage and sends the acknowledgment mes-
sage (ACK) containing the event sequence number back
to its upstream neighbor. The broker then forwards the
event to the event’s forwarding set. The broker then waits

3
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(a) Publisher publishes an event (b) Home broker stores and forwards event (c) Broker receives ACK and discards event

Figure 2: Example of event buffering / retransmission scheme

for the ACK message from each next-hop neighbor in
the event’s forwarding set. The broker discards the event
from its non-volatile storage once it collects all the ACK
messages from all brokers in the forward set, as now it
is certain that the event has been received by all of the
next-hop brokers. If, due to failures, the broker does not
receive ACK messages from some next-hop neighbors,
it retransmits the event to each of such neighbors until
all ACK messages are collected or the buffered event be-
comes expired. Figure 2 illustrates an example of event
buffering / retransmission scheme.

The event buffering / retransmission guarantees that
the events will not be lost due to broker / link failures.
However, if the routing path is disconnected for too long,
the event may be expired before it is delivered to the sub-
scribers.

2.4.3 Redundant Path Bypassing

Redundant path bypassing scheme relies on the fact that
even when the routing path between a publisher to a sub-
scriber is disconnected due to broker / link failures, it
might be possible to find another publisher-subscriber
path that excludes the failed brokers / links [8,19,22,23].

The detail of the redundant path bypassing in the con-
text of tree-based publish / subscribe is as follows2.
Whenever a broker detects a change of its neighbor’s
state (e.g., neighbor fails, neighbor recovers), it uses a
link state protocol to broadcast the update message to
all other reachable brokers. Each broker can update the
global view of the entire broker network. With the up-to-
date global view of the network, each broker can identify
the set of immediately reachable children of a failed bro-
ker along the tree. The immediately reachable children
of a broker b is the set of b’s next-hop brokers that are
available and reachable. For example in Figure 3, the im-
mediately reachable children set of failed broker b2 are
b3 and b4. Hence, each event that is supposed to be sent
to the failed broker will be forwarded to the failed bro-
ker’s immediately reachable children instead (i.e., detour

2The path bypassing technique can be used with other routing
schemes as well.

Figure 3: Example of path bypassing scheme where bro-
ker b1 bypasses failed broker b2

routing). The same approach applies to subscription for-
warding as well.

The goal of this paper is to estimate each subscriber’s
real-time reliability when each of such fault-tolerant tech-
niques is employed in the publish / subscribe system.
Section 3 will present the generic estimation framework
while Section 4 will present the estimation algorithm for
each specific fault-tolerant technique.

3 Subscriber Real-time Reliability Estima-
tion Framework

In this section, we propose a mathematical model of the
publish / subscribe system and use the proposed model to
formulate the subscriber real-time reliability estimation
problem. We then present the generic estimation algo-
rithm to solve the problem.

3.1 Problem Formulation
We present the mathematical model of each component
in the publish / subscribe system as follows.

3.1.1 Real-time Event Model

Let E be the set of all events ever published in the sys-
tem. Each event e ∈ E contains topic τe and lifetime de,
which is the duration since the time the event was pub-
lished until the time the event is expired. Without loss of

4
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generality, we assume that all events in the system have
the same lifetime D (i.e., ∀e ∈ E : de = D), which is a
known constant. Our scheme can be modified to work
when events have different lifetime values as well.

3.1.2 Publisher / Subscriber Model

Let P and S be the set of all publishers / subscribers in
the system. Each publisher p ∈ P publishes events with
topic τp with rate λp. Each subscriber s ∈ S is interested
in events with topic τs. A subscriber s is said to be a
recipient of a publisher p if they share the same topic of
interest (i.e., τs = τp). We assume that λp, τp, and τs are
known for all publishers and subscribers.

3.1.3 Broker / Link Model

Let B be the set of all brokers in the system. We model
each broker b ∈ B as a tuple (γb,σb), where γb and σb
are exponentially distributed failure rate and repair rate,
respectively. That is, the broker b has exponentially dis-
tributed time between failures and time to repair with
mean 1

γb
and 1

σb
, respectively.

Hence, broker b’s availability, denoted by ab, is the
fraction of time the broker b is on, which can be com-

puted as ab =
1

γb
1
γb
+ 1

σb
.

Likewise, let L be the set of all links in the system.
Each link l ∈ L has exponentially distributed time
between failure and time to repair with rate γl and
σl respectively3. Link l’s availability value al is also

calculated as al =
1
γl

1
γl
+ 1

σl

We assume that each broker’s failure / repair rates
(γb,σb) and each link’s failure / repair rates (γl ,σl) are
known via statistical history data collection [1, 17, 21].

With the described mathematical model, we formulate
the subscriber real-time reliability estimation as follows.

Subscriber Real-time Reliability Estimation Problem :
Given a publish / subscribe overlay network G = (N,L)
where N = B∪ P∪ S, estimate the value of subscriber
real-time reliability rs for each subscriber s ∈ S.

We use the term r′s to denote the estimated value of
subscriber real-time reliability rs. The goal of our analyt-
ical model is to calculate r′s that estimates rs as accurately
as possible (i.e., min|r′s − rs|).

3Without loss of generality, we assume that the local link connected
between publish / subscriber to its home broker does not fail. Our
scheme can be simply modified for non-reliable local link scenarios.

3.2 Generic Estimation Framework
This section describes a generic framework to estimate
subscriber real-time reliability. The subscriber real-
time reliability estimation problem can be generally bro-
ken down into two sub-problems, which are estimating
publisher-subscriber pairwise flow rate and estimating
publisher-subscriber pairwise flow reliability.

3.2.1 Pairwise Flow Rate

The publisher-subscriber pairwise flow rate is the average
event traffic flow rate from a publisher to a subscriber
when no failure occurs. The publisher-subscriber pair-
wise flow rate λps between a publisher p ∈ P and a sub-
scriber s ∈ S can be calculated as follows.

λps =

{
λp if τp = τs

0 otherwise (1)

That is, the pairwise traffic flow rate from publisher p
to subscriber s is equal to publisher p’s publishing rate if
they share the same topic, and equal to zero otherwise.
Since λp, τp, and τs are known for each publisher p ∈ P

and subscriber s ∈ S in the system, we can calculate pair-
wise traffic flow rate λps for each publisher-subscriber
pair in the system.

3.2.2 Pairwise Reliability

The publisher-subscriber pairwise reliability is the prob-
ability that a publisher’s event of a subscriber’s interest
will be delivered to that subscriber before it is expired.
We use the notation r′ps ∈ [0,1] to denote the pairwise re-
liability between publisher p∈P and subscriber s∈ S. As
mentioned, the pairwise reliability depends on the fault-
tolerant technique used in the publish / subscribe system.
Section 4 presents the calculation of pairwise reliability
for each technique discussed in Section 2.4.

3.2.3 Generic Estimation Algorithm

Subscriber s’s real-time reliability rs is the probability
that s will receive an event of its interest successfully be-
fore the deadline D. Hence, the estimated value of rs,
denoted by rs can be calculated as the weighted average
of publisher-subscriber pairwise reliability between each
publisher to that subscriber, with the weight equal to the
pairwise event flow rate from the corresponding publisher
to that subscriber. That is,

r′s =
E[rate of events delivered on time to s ]

E[total rate of events of s’s interest]

=
∑p∈P(r′ps·λps)

∑p∈Pλps
(2)

Equation (2) is a generic equation that can be used with
any fault-tolerant mechanism discussed in Section 2.4.

5
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Figure 4: Example of a publisher-subscriber path with
length 3

However, different mechanisms require different equa-
tions to estimate pairwise reliability r′ps, which will be
demonstrated in the next Section.

4 Pairwise Reliability Estimation

This section proposes an analytical model to calculate
the estimated publisher-subscriber pairwise reliability r′ps
for each different fault tolerance/recovery protocols pre-
sented in Section 2.4.

4.1 Static Path
Without any reliable mechanism, the subscription infor-
mation stored at each broker about the subscriber will be
eventually lost when that broker fails. If a subscriber does
not have reliable subscription or periodic subscription
mechanisms, its subscription along the routing path will
be eventually lost, preventing any subsequently published
event to be delivered to the subscriber. Hence, the steady-
state pairwise reliability each publisher-subscriber pair
(p,s) will be zero (i.e., r′ps = 0).

4.2 Static Path + Periodic Subscription
With the use of periodic subscription (Section 2.4.1),
each failed broker can recover its routing information
once it recovers from its failure. However, event loss is
still possible as there is no reliable acknowledgement.

We analyze the pairwise reliability of each publisher-
subscriber pair with static path as follows. Let δps de-
note the event routing path between a publisher p and a
subscriber s. Since we assume our publish / subscribe
routing scheme to be consistent, δps is static and known
for each publisher-subscriber pair (p,s). We define path
length, denoted by |δps|, as the number of brokers in
the path. Hence, a path δps can be expressed as the
sequence (p, l0,b0, l1,b1, ..., l|δps|−1,b|δps|−1, l|δps|,s). Fig-
ure 4 shows an example of a path of length 3.

Since the static path scheme always uses only one path
δps to forward events between publisher-subscriber pair
(p,s), the pairwise real-time reliablity r′ps is equal to the
fraction of time that the path δps is connected. That is,

r′ps = P[path δps is connected]

= ab0Π|δps|−1
i=1 (ali ·abi) (3)

where ax is the availability of component (broker or
link) x.

4.3 Static Path + Event Buffering
With the reliable acknowledgment protocol (i.e., Section
2.4.2) in static path, an event of a subscriber s’s interest
that is published by a publisher p will be eventually deliv-
ered to s, given that p’s home broker is available when p
publishes the event (since we assume that p does not have
retransmission capability). This is because the event will
always be buffered at some broker along the path between
p and s, even when the path is disconnected4. The event
will then be forwarded when the next-hop broker and link
are available, and eventually delivered to the subscriber.
However, the delay the event spends in the buffer may
be longer than its lifetime, which causes the event to be
expired.

To analyze the pairwise reliability r′ps between a pub-
lisher p and a subscriber s under static path with event
buffering scheme, consider the single, unique path δps
connecting p and s. Assuming the event arrival time to
be independent from the path δps’s state, we estimate the
path real-time reliability as follows.

r′ps = P[an event from p arrives at s on time]
= P[p’s home broker is on].

P[end-to-end delay less than event lifetime]
= ab0 ·P[dps < D] (4)

where dps is the end-to-end delivery delay and D is
the event lifetime. Thus, it is necessary to calculate the
end-to-end delivery delay distribution dps first in order to
estimate path reliability r′ps.

To calculate delay distribution dps for path δps, we
need to calculate per-hop buffering delay at each broker
bi(0 ≤ i < |δps|) in the path (we assume that link trans-
mission delay and broker processing delay are negligible
compared to buffering delay). Consider when the event is
received successfully at broker bi and hence broker bi will
try to forward the event to broker bi+1. If both link li+1
and broker bi+1 are up at the moment, the event will be
transmitted successfully to broker bi+1 immediately, thus
incurring zero buffering delay at broker bi. However, if
either link li+1 or broker bi+1 is down at the moment, the
event will be buffered at the broker bi, which will keep
retransmitting the event until the event gets through to
broker bi+1. The broker bi discards the event if the event
expires. Note that the event will get through only when
all bi, li+1, and bi+1 are up at the same time.

Let dbi be the buffering delay at each broker bi (0≤ i<
|δps|). We first calculate the probability that dbi = 0 (i.e.,
the probability that the event is successfully delivered to
bi+1 immediately), which can be calculated as

4In the analysis, we assume each broker to have unbounded buffer
such that it can always store any incoming event.
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P[dbi = 0] = P[bi, li+1,bi+1 are on|bi is on]
= P[li+1,bi+1 are on]
= ali+1 ·abi+1 (5)

Given that delay is always non-negative, we have

P[dbi > 0] = 1−P[dbi = 0]
= 1− ali+1·abi+1 (6)

Now, in the case that the buffering delay at each broker
bi is not zero (with probability 1− ali+1 .abi+1), we need
to find the delay distribution in such case. Let d+

bi
be the

conditional buffering delay at broker bi under the condi-
tion that dbi > 0. Assuming the event arrives at arbitrary
time at broker bi, the conditional buffering delay d+

bi
is

equal to the time it takes for the next-hop path to be re-
paired (i.e., time until li+1 and bi+1 are both in on state).
Assuming each component’s time between failure and
time to repair to be exponentially distributed, we can cal-
culate such delay distribution by using continuous-time
Markov process diagram that represents the state of bro-
ker bi, link li+1, and bi+1. The diagram is shown in Figure
5. Each of 8 states depicts each possible state of sub-path
(bi,li+1,bi+1), with each bit representing each individual
component’s state (0 = off, 1 = on). The first bit (least
significant bit) represents bi’s state. The second bit repre-
sents li+1’s state. The third bit (most significant bit) rep-
resent bi+1’s state. For example, state “011” represents
the state where broker bi is on, link li+1 is on, and broker
bi+1 is off. Note that in the scenario where an event ar-
rives at broker bi and needs to be buffered at bi, an event
will find the system state in either state “001”, “011“,
or “101” with probability

(1−ali+1)(1−abi+1)

1−ali+1 .abi+1
,

ali+1 (1−abi+1)

1−ali+1 .abi+1
,

and
(1−ali+1)abi+1
1−ali+1 .abi+1

respectively. The event will continue
to be buffered at broker bi (note that bi can also fail but
the event is kept in its non-volatile storage) until the state
becomes “111”, which the event will be transmitted to
broker bi+1 successfully. Hence, the diagram depicts the
absorbing Markov process with three start states = “001”,
“011“, “101” and one absorbing state “111”with the cor-
responding transition rate matrix Q̇ as

Q̇ =




−q̇0 σbi σli+1 0 σbi+1 0 0 0
γbi −q̇1 0 σli+1 0 σbi+1 0 0

γli+1 0 −q̇2 σbi 0 0 σbi+1 0
0 γli+1 γbi −q̇3 0 0 0 σbi+1

γbi+1 0 0 0 −q̇4 σbi σli+1 0
0 γbi+1 0 0 γbi −q̇5 0 σli+1
0 0 γbi+1 0 γli+1 0 −q̇6 σbi
0 0 0 0 0 0 0 0




(7)

where γx and σx are component x’s exponential fail-
ure rate and exponential repair rate described in Section
3.1, and q̇i is state i’s total outgoing rate. For example,
q̇0 = (σbi + σli + σbi+1 ). Thus, the conditional buffer-
ing delay at broker bi is equal to the time to absorption
of the absorbing matrix Q̇, which is a phase-type distri-

Figure 5: 8-state continuous, absorbing Markov process
diagram for per-hop buffering delay analysis

bution [25] and can be calculated by breaking down the
matrix Q̇ in to the form of

Q̇ =

�
Ṡ Ṡ0

0 0

�
(8)

Where Ṡ and Ṡ0 are the 7x7 top-left sub-matrix and
the 7x1 top-right sub-vector of Q̇ defined in Equation (7)
respectively. Hence, the cumulative distribution of d+

bi
can be calculated as

P[d+
bi
< t] = 1−α·exp(Ṡt)·1 (9)

where exp(Ṡ) is the matrix exponential [27] of Ṡ, α is
the 1x7 starting state vector

α = [0,
(1−ali+1)(1−abi+1)

1−ali+1.abi+1

,0,
ali+1(1−abi+1)

1−ali+1.abi+1

,0,

(1−ali+1)abi+1

1−ali+1.abi+1

,0]

and 1 is an 7x1 vector with every element being 1.
With Equation (9), we can compute the conditional

buffering delay distribution d+
bi

at broker bi. Hence, we
can estimate buffering delay dbi at broker bi as

dbi =

�
d+

bi
with probability 1−ali+1·abi+1

0 with probability ali+1 ·abi+1
(10)

Once we calculate per-hop buffering delay
dbi with Equation (10), we then can calcu-
late the end-to-end buffering delay dps for path

7
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δps = (p, l0,b0, l1,b1, ..., l|δps|−1,b|δps|−1, l|δps|,s) as

dps =
|δps|−1

∑
i=0

dbi (11)

Hence, Equation (11) completes the calculation of
pairwise reliability for static path with event buffering
scheme in Equation (4).

4.4 Path Bypassing + Periodic Subscription
With the path bypassing scheme discussed in Section
2.4.3, a new routing path between p and s will be used if
the old path fails. Hence, an event of a subscriber s’s in-
terest that is published by a publisher p will be delivered
to s as long as the broker graph G is not partitioned be-
tween p and s. Thus, pairwise reliability r′ps is then equal
to the graph G’s connection probability between p and s.
However, the calculation of such connection probability
for any generic graph is considered to be a #P-complete
problem [34], which has higher complexity that a NP-
complete problem.

Due to such computational complexity, we propose an
algorithm to approximate the lower bound of graph G’s
connection probability between any publisher-subscriber
pair (p,s) by constructing a subgraph G′ ⊆ G that con-
sists only parallel, broker-disjoint paths between p’s
home broker and s’s home broker.

That is, the multi-path subgraph G′ contains multi-
ple, broker-disjoint path between p’s home broker and
s’s home broker, assuming there are m of such paths in
subgraph G′, namely δ (0)

ps ,δ (1)
ps , ...,δ (m−1)

ps where
δ (i)

ps = (p, l(i)0 ,b(i)0 , l(i)1 ,b(i)1 , ..., l(i)
|δ (i)

ps |−1
,b(i)

|δ (i)
ps |−1

, l(i)
|δ (i)

ps |
,s)

Note that b(i)0 refers to the same broker for all 0 ≤
i < m, which is publisher p’s home broker. Likewise,
b(i)
|δ (i)

ps |−1
refers to the same broker, which is the subscriber

s’s home broker. Let b0 and b|δps|−1 denote publisher p’s
home broker and subscriber s’s home broker respectively.
Hence, the pairwise reliability r′ps between publisher p
and subscriber s in dynamic tree scheme is estimated as

r′ps = P[G is connected between p and s]
≥ P[G′ is connected between p and s]
≥ P[p’s home broker is on]·

P[s’s home broker is on]·
P[at least one path is connected]

≥ ab0 ·ab|δps|−1 ·

(1−Πm−1
i=0 (1−

r(i)ps

ab0 ·ab|δps|−1

)) (12)

where r(i)ps is the pairwise reliability of each path δ (i)
ps in

subgraph G′, which can be calculated by Equation (3).

4.5 Path Bypassing + Event Buffering
We can combine the path bypassing scheme with the
event buffering scheme in order to exploit path diver-
sity as well as guarantee eventual delivery as follows.
Each broker uses the event acknowledgement / buffering
scheme as mentioned in Section 4.3. When a broker b1
detects its neighbor b2’s failure, it uses the bypass rout-
ing without acknowledgement to forward the event to the
failed broker b2’s immediately reachable children. The
broker b1 also keeps the event in its buffer and keeps
retransmitting the event to the failed broker b2 until b2
recovers, receives the event, and sends the acknowledge-
ment back to b1. b1 then discards the event. This scheme
combines eventual delivery guarantee of the retransmis-
sion scheme with path diversity of the path bypassing
scheme. The drawback of this approach is the addi-
tional overhead and potential event duplication at the sub-
scribers. Event duplication, however, can be filtered out
at the last-hop broker.

We can calculate the publisher-subscriber pairwise
reliability for the path bypassing with event buffering
scheme as follows. Let r′Aps be the estimated publisher-
subscriber pairwise reliability for the path bypassing
scheme (i.e., Equation (12) and dps be the end-to-end
buffering delay for the event buffering scheme (i.e.,
Equation (11)). We can calculate the estimated pairwise
reliability for the combined scheme as

r′ps = P[event delivered immediately]+
P[partition]·P[event delivered on time]

= r′Aps +(1− r′Aps)·
P[dps ≤ D]

P[dps > 0]
(13)

where D is event lifetime. That is the total reliability is
the probability that either the event can be delivered im-
mediately via path bypassing scheme, or the event suffers
network partition but the delay caused by the buffering
scheme is still less than the event lifetime.

Note that estimated pairwise reliability r′ps can be ei-
ther calculated by Equation (3), Equation (4), Equation
(12), or Equation (13), depending on which fault-tolerant
technique is used. Once the estimated reliability r′ps val-
ues of all publisher-subscriber pairs are calculated, they
can be used to calculate the estimated subscriber reliabil-
ity r′s using Equation (2).

5 Evaluation

We evaluate the proposed analytical model via simula-
tions with NS-2 network simulator [2]. In the simulator,
we implement a topic-based, tree-based publish / sub-
scribe protocol with four different reliability mechanisms
described in Section 2.4 and analyzed in Section 4. In the
experiment, we assume each publisher publishes its own
unique topic. We assign a topic to each subscriber such

8
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that each topic’s popularity follows Power law model.

5.1 Parameter Settings
We investigated several host availability traces and re-
ports, ranging from commercial server log to distributed
testbed log [3, 4, 18, 35]. In most cases, server’s time be-
tween failures tends to range from several days to weeks,
while time to repair usually range within hours.

Motivated by such finding, we describe a component5
from availability perspective by two metrics, period and
availability. We define the term period of a component
as the summation of the component’s mean time between
failure and mean time to repair (i.e., mean failure-repair
cycle length) and the term availability as the fraction of
time the component is on. Thus, given a component x’s
period PRx and availability ax, we can calculate x’s mean
time between failures MT BFx = ax.PRx and mean time to
repair MT TRx = (1− ax).PRx respectively.

In the simulation, a component x will be on for the
time period which is drawn from the exponential distri-
bution with mean MT BFx before going to off state. Like-
wise, the component x will then be off for the time pe-
riod drawn from the exponential distribution with mean
MT T Rx before going to on state again. Thus, such com-
ponent x will have exponential failure rate γx = 1

MT BFx

and exponential repair rate σx =
1

MT T Rx
.

Based on the previous work [11], we set each over-
lay link’s availability set to 0.99 and period to 60,000
seconds. Each publisher has default publishing interval
equal to 1 minute. Each event has default lifetime equal
to 3,600 seconds (1 hours). Each simulation is run for
14 days of simulation time. The evaluation result of each
simulation parameter set is averaged from 10 runs.

5.2 Evaluation Results
We conduct the experiment with two sets of broker net-
work topology. The first set is tree-based broker topology
in order to study the performance of static path schemes
(Section 4.2 and 4.3) without the effect of path diver-
sity. The second set is random broker topology in or-
der to study both static path schemes and path bypassing
schemes (Section 4.4 and 4.5) with the effect of path di-
versity.

5.2.1 Tree-based Broker Network Topology

To study the performance of static-path reliability
schemes (Section 4.2 and 4.3), we generate a random
broker tree consisting of 10 brokers, 10 publishers, and
500 subscribers. We randomly assign a home broker to
each publisher and each subscriber. We divide all gen-
erated trees into four sets. The first set of trees has

5A component means a link or a broker
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Figure 6: Subscriber reliability in static random tree with
10 brokers and 60K s period

each broker availability falling into [0.9, 0.95] range and
use periodic subscription scheme. The second set of
trees has each broker availability falling into [0.9, 0.95]
range and use event buffering scheme. The third set
of trees has each broker availability falling into [0.99,
0.999] range and use periodic subscription scheme. The
fourth set of trees has each broker availability falling into
[0.99, 0.999] range and use event buffering scheme. The
[0.9, 0.95] availability range represents standard, off-the-
shelf servers with low-to-moderate maintenance [3]. The
[0.99, 0.999] availability range represents high-end, com-
mercial servers with high maintenance [4].

Figure 6 shows the predicted subscriber reliability on x
axis and the actual subscriber reliability on y axis. Each
point in the graph represents one subscriber. The color
of the point represents the broker configuration and fault-
tolerant scheme used. As shown in the graph, our pro-
posed analytical model can accurately predict the sub-
scriber reliability for each subscriber (i.e., all the points
are clustered around x=y diagonal line). Also, there is
a clear distinction of reliability value between different
groups of broker configuration. The group with low-
est reliability is the low-end servers with periodic sub-
scription scheme, followed by the low-end servers with
event buffering scheme. Notice that the event buffering
scheme could achieve high reliability than the periodic
subscription scheme, although the performance gain ef-
fect may be less, compared to the performance gain from
the server’s quality.

5.2.2 Random Broker Network Topology

We generate a random graph consisting of 10 brokers,
10 publishers, and 500 subscribers. Publishers and sub-
scribers are randomly assigned to each broker. Again, we
run the simulations with two broker availability specifi-
cations named low-end (0.9 - 0.95 availability) and high-
end (0.99 - 0.999 availability). We compare the perfor-
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Figure 7: Subscriber reliability in 10-broker overlay
graph with average degree 4 and 60K s period

mance in terms of subscriber reliability among four fault-
tolerant techniques (i.e., from Section 4.2 - 4.5).

Figure 7 shows the performance comparison between
the four protocols in 10-broker overlay graph. Again, our
analytical model accurately predicts the real-time relia-
bility of each subscriber. For the low-end broker config-
uration, the path bypassing scheme with event buffering
has the best performance, followed by the path bypassing
scheme with periodic subscription, the static path scheme
with event buffering, and the static path scheme with peri-
odic subscription respectively. However, for the high-end
broker configuration, the static path scheme with event
buffering performs best and as well as the path bypass-
ing scheme with event buffering. This finding suggests
that one should prefer to use the static path scheme with
event buffering in high-end broker configuration, as it
has lower overhead than the path bypassing scheme with
event buffering.

6 Related Work

Improving reliability, timeliness, and other QoS metrics
in wide-area overlay networks have been a significant
topic of researchs for many years [5, 6, 12]. However,

the approaches in this category are designed for point-
to-point routing and do not specifically address decou-
pling nature between publishers and subscribers in pub-
lish/subscribe systems.

Several fault-tolerant mechanisms have been proposed
specially for publish/subscribe systems under failures
without considering timeliness property [8, 10, 13, 23].
On the other hand, several works have proposed per-
formance analytical model to predict timeliness in pub-
lish/subscribe systems in perfect scenarios (i.e., without
broker/link failures) [24,31,32]. This paper bridges such
two approaches by quantitatively analyzing commonly
used fault-tolerant techniques and their effect to both
reliability and timeliness of publish/subscribe systems.
There have been a few works that discuss timeliness of
event delivery in publish/subscribe systems under com-
ponent failures [14, 20]. However, they did not provide
analytical model of their proposed systems. Recently, Es-
posito et al proposed and analyzed the use of network
coding and gossiping to provide reliability and timeli-
ness in tree-based publish / subscribe systems [15]. In
contrast, our model discusses more commonly used fault-
tolerant techniques such as path diversity and buffering.
Also, our work does not assume tree-based publish / sub-
scribe, but also works for any generic broker topology.

7 Conclusions

In this paper, we proposed an analytical model to esti-
mate the subscriber real-time reliability for publish / sub-
scribe systems with faulty brokers and links. We first de-
scribed broker failure and link failure model before dis-
cussing several existing fault-tolerant techniques for dis-
tributed publish / subscribe systems. We then proposed
the generic analytical model to estimate subscriber relia-
bility. The evaluation via simulation has proved the cor-
rectness of our predictive model. Our proposed model
can then be used as a building block for optimization
problems such as subscriber assignment problem or bro-
ker network planning problem.

There are a few possible directions for future works.
The first direction is to use the proposed analytical model
to optimize performance of the publish / subscribe sys-
tems. Second, the analytical model could be extended to
the case where component failure time is not exponen-
tially distributed. Finally, another possible direction is
to validate the proposed analytical model using data col-
lected from real systems.
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Abstract

Modern software often provides automated testing and
bug reporting facilities that enable developers to improve
the software after release. Alas, this comes at the cost of
user anonymity: reported execution traces may identify
users. We present a way to mitigate this inherent tension
between developer utility and user anonymity: automati-
cally transform execution traces in a way that preserves
their utility for testing and debugging while, at the same
time, providing k-anonymity to users, i.e., a guarantee
that the trace can at most identify the user as being part
of a group of k indistinguishable users. We evaluate this
approach in the context of an automated testing and bug
reporting system for smartphone applications.

1 Introduction

To debug a software failure, one must understand its
root cause; unfortunately this can be quite challenging,
with many bugs taking weeks to diagnose [1]. There-
fore, modern software often ships with built-in features
for automatically collecting program execution informa-
tion that enables developers to more quickly debug the
software (e.g., Windows Error Reporting collected bil-
lions of traces that helped developers fix 5,000 bugs [2]).

Current error reporting systems sacrifice developer
productivity to preserve user anonymity: they report
some execution information (e.g., backtraces, some
memory contents) but forgo other useful information,
such as the data the program was processing and the exe-
cution path it was following when it crashed, due to user
privacy and anonymity concerns. In this paper, we seek
to strike a better balance between user anonymity and
productivity-enhancing execution information.

We describe this technique in the context of ReMoTe,
an automated testing and debugging system that helps
programs to collaborate on doing some of the debugging
work that developers do: ReMoTe records program ex-
ecutions, modifies them to generate tests, runs the tests,
and validates discovered bugs. For each part of this pro-
cess, ReMoTe provides a so-called pod (Figure 1); pods
from different program instances collaborate via a hive.

Figure 1: Overview of ReMoTe’s architecture.

The Record pod logs a program’s execution to an inter-

action trace that contains the program’s interaction with
the user and with the program’s environment. Traces are
added to local storage, but never removed.

ReMoTe is a distributed system: pods running on dif-
ferent machines can collaborate to generate tests, execute
tests, and validate uncovered bugs by exchanging inter-
action traces. However, these traces contain information
that may identify users. Thus, before a trace is shared
with other pods, the Trace Anonymizing pod automati-
cally transforms it to preserve the user’s anonymity 1 .
Next, the pod informs the user about the amount of infor-
mation the transformed trace contains that can identify
her, and enables the user to veto the sharing.

There are two reasons why a ReMoTe user shares a
trace with other pods: either the user experienced a bug,
and the trace is put in the Bug Repository 2 , or the user
wishes to contribute the trace as a usage scenario, and the
trace is put in the User Trace Repository 3 . Developers
can inspect the Bug Repository and use the Replay pod
to replay bugs and understand how they occur 9 .

The Test Generation pods modify traces from the User

Trace Repository 4 to generate tests that populate the
Tests Repository 5 . Test Execution pods run these tests
6 and categorize them into bugs 7 and/or tests for the

regression suite 8 . These pods run inside the program
that generated a trace or inside other program instances.

This paper presents the Trace Anonymizing pod. We
describe means to quantify the degree of user anonymity
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and the utility of a trace, and devise algorithms to im-
prove anonymity without harming utility.

First, we quantify the anonymity of a user sharing a
trace as the size k of the set of distinct users reporting
an equivalent trace. Second, we define a trace to have
debugging utility if replaying it triggers the root cause of
the bug and the failure [3], and to have test-generation
utility if it describes an execution generated by an actual
user. Third, our system improves user anonymity by ex-
punging personally identifiable information and ensuring
the user behavior encoded in a trace is not unique to that
user, while still maintaining replayability of the trace.

The contributions of this paper are: 1) two techniques
that provide users with k-anonymity, one using dynamic
program analysis, and another leveraging crowdsourc-
ing; and 2) a new metric that quantifies the amount of
personally identifiable information contained in a trace.
We built a ReMoTe prototype for Android applications
and showed that ReMoTe protects users’ anonymity (k >
100) and is more efficient than similar techniques.

In the rest of the paper, we define k-anonymity (§2),
describe the two algorithms (§3–§4), evaluate our proto-
type (§5), review related work (§6), and conclude (§7).

2 Anonymity of Interaction Traces

This section defines interaction traces, describes the con-
cept of k-anonymity that underlies our work, and defines
a metric to quantify the amount of user-identifying infor-
mation contained in a trace.

2.1 Interaction Traces and Event Types

We define an interaction trace T as a sequence of events,
T =< e1, . . . ,en >. Each event ei records one of four
sources of “non-determinism” that influence a program’s
execution: 1) user interaction with the program’s GUI,
2) network communication, 3) input read from the ma-
chine the program runs on, and 4) decisions made by the
runtime system. Replaying a trace T should consistently
drive the program along the same execution path.

An event plays one of two roles during replay: proac-

tive events cause a feature of the program to execute (e.g.,
click on the “Send SMS” button), while reactive events

provide the feature with the input it needs (e.g., the phone
number and SMS text). Events of both types may contain
information that identifies users. Table 1 shows events
for each source of non-determinism for interactive An-
droid applications, and maps them to a role.

ReMoTe targets interactive programs, which gener-
ate these events at a rate bounded by the speed with
which users interact with programs. Thus, compared to
recording solutions that target events at a lower software

User Network Device Runtime

P
ro

a
ct

iv
e Tap, Tilt, Receive Trigger Fire

Scroll, push geofence timer
Drag, notifi-
Press key cation

R
ea

ct
iv

e

Textbox Server Date, GPS Async
value, response location, tasks
Selector Camera & schedu-
value, Mic output, ling
Slider Shared data,
value Device

settings

Table 1: Trace events for Android applications, classified
by covered non-determinism source and proactivity role.

layer (e.g., [4]), which are generated more frequently, the
Record pod is more scalable, since it runs less frequently.

We say a trace contains personally identifiable infor-
mation (PII) if it can be used to determine a user’s iden-
tity, either alone or when combined with other informa-
tion that is linkable to a specific user [5].

2.2 K-Anonymity

A data set satisfies k-anonymity if and only if each set of
values that can be used to identify the source of a data
element appears at least k times in the set [6], i.e., the
source of an element cannot be narrowed down to fewer
than k candidates. We say that each element of a data set
satisfying k-anonymity is k-anonymous.

In [6], the data set is represented as a table PT , and
each row contains information about a single subject.
Some table columns contain private information (e.g., re-
ceived medication), others provide identification details
about the subject (e.g., birth date and zip code), but none
contain information that explicitly identifies the subject
(e.g., the name of the patient). Thus, one may naïvely
conclude that table PT is anonymous.

K-anonymity quantifies the possibility of linking en-
tries from the PT table with external information to infer
the identities of the sources of the data in the PT table.

Consider there exists a set QI of columns in PT , called
a quasi-identifier, (e.g., QI = {birth date,zipcode},PT =
QI

⋃
{medication}) that also appears in a publicly avail-

able table PAT . If the PAT table contains additional
columns that explicitly identify its sources (e.g., PAT =
Voters list = {name}

⋃
QI), then an attacker can use the

quasi-identifier values to join the two tables and learn pri-
vate information about a subject (e.g., the medication a
person receives). The attack is similar to executing an
SQL join operation on the PT and PAT tables that uses
the quasi-identifier as the join condition.
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This attack relies on the value of the quasi-identifier
being unique for each subject in the PT and PAT tables.
To achieve k-anonymity, one must modify the PT table
to break this assumption [7]. This is not necessary if, in
the PT table, each quasi-identifier value already appears
k times. If not, one can suppress the entries that prevent
achieving k-anonymity, or repeatedly use generalization
strategies to make the values of the quasi-identifier less
precise (e.g., replace the birth date with the year of birth)
until k-anonymity is reached, or add new entries to the
table to make it satisfy k-anonymity (not covered in [7]).

We seek to prevent ill-intentioned developers and pro-
gram users from abusing interaction traces to learn the
identity of the user whose program recorded a trace.

A trace identifies its source through reactive events,
which may contain explicit PII (e.g., usernames), or
through proactive events, which detail user behavior. We
aim to provide users with k-anonymity, which in our case
represents the guarantee that a trace identifies its source
as the member of a set of k indistinguishable users.

We say an interaction trace is k-anonymous if it is
k-proactive-anonymous and k-reactive-anonymous. A
trace is k-reactive-anonymous if, for each reactive event
in the trace, there exist at least k alternatives (§3). A trace
is k-proactive-anonymous if at least k users observed it
(§4). Thus, a k-anonymous trace contains behavior ex-
hibited by k users, and there are k alternatives for each
program input contained in a reactive event.

We now describe the differences between the original
k-anonymity technique [6] and ours:

First, ReMoTe computes the maximal k it can achieve
for a trace’s anonymity, it does not enforce a particular k.

Second, ReMoTe cannot detect a minimum, complete
quasi-identifier, as is assumed in [6], because the struc-
ture of a trace is unconstrained and its length is un-
bounded. ReMoTe takes a conservative approach, by
choosing completeness over minimality, and defines the
quasi-identifier to span all the events in a trace.

Third, the equivalent of the PT table is distributed
among users. While the ReMoTe hive could store all the
observed, non-anonymized traces, doing so posses the
risk of an attacker subverting the hive, gaining access to
the raw traces, and thus being able to identify users.

Finally, the pods share a trace with the hive only once
it has achieved k-anonymity. K-anonymity increases, for
example, when adding a newly recorded trace to the set
causes existing ones to become k-proactive-anonymous.

2.3 Amount of Disclosed Information

We define the k-disclosure metric to quantify the amount
of PII in a trace T . We start from two observations:
First, its value should be inversely proportional to how
k-anonymous an observed trace T is, because the higher

the k, the less specific to a user the trace is. Second, the
amount of PII contained in a trace is emergent: while
each event in the trace may be encountered by multiple
users, the order of events in the trace may be unique.

We define the value of the k-disclosure metric for
an observed trace T , k-disclosure(T ), to be the sum of
the inverses of the values quantifying how k-anonymous
is each of T ’s subsequences, k(trace). That is,
k-disclosure(T ) = ∑1≤i≤ j≤|T |

1
k(Ti j=<ei,...,e j>) .

We expect k-disclosure(T ) to decrease over time be-
cause, once a program observes a trace, it is permanently
added to local storage; as more users encounter T or its
subsequences, the trace’s k-anonymity increases.

3 Anonymity of Reactive Events

Reactive events contain program inputs that can directly
identify users, such as usernames. A reactive event is
useful for replaying a trace T if it causes the program
to make the same decisions during replay as it did dur-
ing recording [3]. If one can replace a reactive event
e

orig
R with k−1 reactive events esub

R without affecting the
trace’s ability to replay the program execution, then we
say the trace T is k-reactive-anonymous with respect to
event e

orig
R . More simply, we say e

orig
R is k-anonymous.

Consider the example of an Android application for
sending SMS messages. The user fills in the destination
phone number (reactive event eR) and the message body.
When the user presses the “Send” button, the application
converts the phone number to a long. Say that the user
entered a number starting with a ’+’ character, and the
program crashes, but any string that does not start with a
digit can reproduce this crash—ReMoTe can replace eR

with k alternatives, where k is the number of such strings.
To compute the number k of alternatives for a reactive

event eR, ReMoTe must know how the program makes
decisions based on the program input associated with eR.
ReMoTe uses concolic execution [8] to collect the con-
ditions, called path constraints, corresponding to the ex-
ecuted branch statements that depend on reactive events.
The technique uses “symbolic” variables that encode con-
straints on values, instead of concrete values.

Next, for each reactive event, ReMoTe uses a con-
straint solver to compute the solutions that satisfy the
path constraints referring to it. The number of solutions
determines how anonymous trace T is w.r.t. that event.

ReMoTe uses the following algorithm. It replays each
event ei in a trace T . When replaying a reactive event, the
algorithm copies ei.input (the program input contained
in ei) to ei.concrete, marks ei.input symbolic, and adds
an entry for ei in the map tracking path constraints (PC).
When the program branches on a condition involving the
symbolic variable ej.input, and both branch targets may
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be followed, the algorithm forces the program to take the
target that ej.concrete satisfies. The algorithm uses static
analysis to decide whether to add the path constraint cor-
responding to the taken branch to the PC map and main-
tain e j.input symbolic, or to replace it with e j.concrete.
When replay finishes, the algorithm computes the num-
ber of solutions for each reactive event eR.

ReMoTe iteratively computes the number of solutions
for a set of path constraints PC by generating a solu-
tion, adding its negation to PC, and asking the solver
for another solution. This process is time consuming, so
ReMoTe bounds the number of solutions, establishing a
lower bound for how k-reactive-anonymous is a trace.

ReMoTe modifies the trace to replace each program in-
put contained in a reactive event with one of its computed
alternatives, thus removing the PII from the trace.

The algorithm is similar to the one described in [9].
The difference is our use of static analysis to make con-
colic execution more efficient by avoiding the concolic
execution of runtime-system code. This code affects only
the execution of the runtime system, not the execution of
the program and, thus, needlessly slows down concolic
execution. The static analysis examines the stack trace
of a program when it branches on a symbolic variable,
and checks if the branch is in the program’s code or if its
result is used by the program—only in these two cases is
the associated path constraint added to the PC map.

A technical report [10] presents a detailed description
of the algorithm, the benefits of using the generated alter-
natives, their drawbacks, and mitigation solutions.

4 Anonymity of Proactive Events

Proactive events reveal a program’s usage, and this usage
could uniquely identify the user. For example, an em-
ployee may access a company application’s features that
are only accessible to executive management, and then
a feature only accessible to financial department employ-
ees. By analyzing the corresponding proactive events,
one could infer that the user is the company’s CFO.

A related example is one where the two features are
accessed in different traces, and each trace contains the
same sequence of events that acts as a quasi-identifier
and allows identifying the user.

To prevent user behavior details contained in a trace
from identifying users, ReMoTe ensures that the en-
tire trace (including reactive events) is k-proactive-
anonymous before it is passed to the hive. Therefore, ev-
ery trace seen by the hive corresponds to the executions
of ≥ k distinct users, and it does not contain behavior spe-
cific to any one of them, so the trace’s source cannot be
identified more narrowly than that set of ≥ k users.

To check if a trace T is k-proactive-anonymous, Re-
MoTe can just query every program instance whether it

experienced execution trace T in the past, and tally up
the results. Alas, providing trace T to other program in-
stances could compromise the user’s anonymity.

The challenge is to design an algorithm that counts
how many users observed the trace T without explicitly
revealing T to them. Our solution is to hide T among a
set S of traces, ask program instances whether they ob-
served any of the traces in S, and probabilistically com-
pute the number k of instances that indeed observed T .

The algorithm runs as follows: Program instance A,
run by user U who wishes to share the trace T , constructs
the query set S. The set S contains the hashes of trace T

and of other traces that act as noise. Next, instance A

sends the set S to the ReMoTe hive, which forwards the
set S to each program instance Ai run by users Ui.

After the Record pod records an interaction trace, it
saves the hashes of the trace and of its sub-traces to a his-
tory set H. When receiving a query set S, each instance
Ai replies positively if its history set Hi contains any of
the hashes in the set S, i.e, if Hi

⋂
S �= /0.

The ReMoTe hive counts the number K of positive
replies and sends it to instance A, which computes the
probability that k of the K instances recorded T —this de-
termines how k-proactive-anonymous trace T is.

This algorithm protects the anonymity of the U and Ui

users, because instances Ai cannot learn T , and instance
A cannot learn the trace that caused Ai to reply positively.

ReMoTe runs the same algorithm for each of trace
T ’s sub-traces and computes the amount of person-
ally identifiable information contained in trace T , i.e.,
k-disclosure(T ). Finally, instance A reports the k and
k-disclosure(T ) values to the user U . If the user agrees,
instance A shares the trace T with the ReMoTe hive.

There are four challenges associated with this algo-
rithm. First, instance A may be tricked into revealing the
trace T by a sequence of carefully crafted queries. Sec-
ond, instance A needs to generate feasible traces as noise
for the set S. Third, to compute the number k of instances
that recorded T , instance A must approximate the likeli-
hood of instances Ai recording each trace from the set S.
Finally, instance A may be tricked into revealing T by an
attacker compromising the result of the voting process.
[10] details these challenges and presents their solutions.

5 Empirical Evaluation

We built a ReMoTe prototype that can be used by An-
droid applications. In this section, we evaluate it on Pock-
etCampus [11], a client-server Android application that
we modified to use ReMoTe.

We evaluate the anonymity ReMoTe can provide for
reactive events by quantifying how k-anonymous each
field of a server response is after PocketCampus pro-
cesses it. We focus on two functionalities provided by
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the application: check the balance of a student card ac-
count, and display the time of the next departure from
a public transport station. In both cases, PocketCampus
makes a request to a server, processes the response, and
displays some information. Each server response con-
tains multiple fields, and we computed how many alter-
natives ReMoTe can generate for each field.

Figure 2 contains the results, and shows that Pocket-
Campus places few constraints on server responses, en-
abling ReMoTe to provide high k-anonymity for users.

Figure 2a shows that the server’s response to inquires
about the account balance contains seven fields: one is
not processed by PocketCampus (the white box), three
for which ReMoTe generates more than 100 alternatives
(the gray boxes), and three for which ReMoTe cannot
generate alternatives (the black boxes), because they con-
tain floating point values (not supported by our con-
straint solver) or because PocketCampus checks their
value against constant values (e.g., the server’s status).

Figure 2b shows the server’s response when queried
about the name of a public transport station.

Figures 2c and 2d show the same server response, but
in different interaction traces. Figure 2c corresponds to
PocketCampus showing the departure time, while Fig-
ure 2d corresponds to additionally displaying trip details,
which causes PocketCampus to further process the re-
sponse and place additional constraints.

(a) Account overview (b) Train station name

(c) Next departure time (d) Details of next departure

Figure 2: k-anonymity for server response fields. White
boxes show unprocessed fields, gray boxes show fields
with k ≥ 100, black boxes show fields with k = 1.

We report the percentage of bits identical in the orig-
inal server response fields and the ones ReMoTe gener-
ated, considering only those processed by PocketCam-
pus. Figure 3 shows that the alternative responses reveal,
on average, 72% of the original bits, thus being more sim-
ilar to the original ones than randomly-generated ones.

We evaluate the speedup in the concolic execution
completion time brought by using the static analysis de-
scribed in Section 3. Figure 4 shows that, when using
the analysis’ results, PocketCampus finishes processing
a server response within 10 minutes, as opposed to more
than one hour when the analysis is not used.

The technical report [10] evaluates additional aspects
of ReMoTe, such as how k-proactive-anonymous is a
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Figure 4: Concolic execution speedup obtained by using
the static analysis described in Section 3. The figure can
be read as a comparison, in terms of efficiency, between
our algorithm and the one described in [9].

trace and what is its storage space overhead.

6 Related Work

Our work on generating alternatives for reactive events is
most similar to [9], which also relies on collecting path
constraints that describe decisions made by a program.
The differences are that we use static analysis to discard
path constraints that do not affect a program’s execution,
and we consider the anonymity threats related to a user
interacting with a program. Camouflage [12] builds on
[9] and introduces two techniques to enlarge the set of
bug-triggering inputs, which ReMoTe can leverage.

Our crowdsourced k-anonymity technique is similar to
the query restriction techniques pertaining to statistical
databases [13], since one can view the crowd of program
instances as a distributed database.

7 Conclusions

This paper describes two techniques to transform pro-
gram execution traces to maximize users’ anonymity, yet
maintain the traces’ utility for testing and debugging.
One technique uses dynamic program analysis to ex-
punge explicit personally identifiable information from
traces, while the other leverages the crowd of users to
verify that the user behavior encoded in a trace is not
unique. We prototyped the techniques, and preliminary
results suggest that they are effective and efficient.
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Abstract

Internet services access networked storage many times
while processing a request. Just a few slow storage ac-
cesses per request can raise response times a lot, making
the whole service less usable and hurting profits. This
paper presents Zoolander, a key value store that meets
strict, low latency service level objectives (SLOs). Zo-
olander scales out using replication for predictability, an
old but seldom-used approach that uses redundant ac-
cesses to mask outlier response times. Zoolander also
scales out using traditional replication and partitioning.
It uses an analytic model to efficiently combine these
competing approaches based on systems data and work-
load conditions. For example, when workloads under
utilize system resources, Zoolander’s model often sug-
gests replication for predictability, strengthening service
levels by reducing outlier response times. When work-
loads use system resources heavily, causing large queu-
ing delays, Zoolander’s model suggests scaling out via
traditional approaches. We used a diurnal trace to test
Zoolander at scale (up to 40M accesses per hour). Zo-
olander reduced SLO violations by 32%.

1 Introduction

Internet services built on top of networked storage expect
data accesses to complete quickly all of the time. Many
companies now include latency clauses in the service
level objectives (SLOs) given to storage managers. Such
SLOs may read, “98% of all storage accesses should
complete within 300ms provided the arrival rate is be-
low 500 accesses per second [12, 35, 39].” When these
SLOs are violated, Internet services become less usable
and earn less revenue. Consider e-commerce services.
SLO violations delay web page loading times. As a rule
of thumb, delays exceeding 100ms decrease total rev-
enue by 1% [30]. Such delays are costly because rev-
enue, which covers salaries, marketing, etc., far exceeds
the cost of networked storage. A 1% drop in revenue can
cost more than an 11% increase in compute costs [38].

Many networked storage systems meet their SLOs by
scaling out, i.e., when access rates increase, they add new
nodes. The most widely used scale-out approaches par-
tition or replicate data from old nodes to new nodes and
divide storage accesses across the old and new nodes,

reducing resource contention and increasing through-
put [12, 15, 24]. However, background jobs, e.g., write-
buffer dumps, garbage collection, and DNS timeouts,
also contend for resources. These periodic events can
increase access times by several orders of magnitude.

Our key-value store, called Zoolander, masks slow
storage accesses via replication for predictability, a his-
torically dumb idea whose time has come [29]. Repli-
cation for predictability scales out by copying the exact
same data across multiple nodes (each node is called a
duplicate), sending all read/write accesses to each dupli-
cate, and using the first result received. Historically, this
approach has been dismissed because adding a duplicate
does not increase throughput. But duplicates can reduce
the chances for a storage access to be delayed by a back-
ground job, shrinking heavy tails1 Very recent work has
used replication for predictability but only sparingly with
ad-hoc goals [2, 9, 39]. Zoolander fully supports replica-
tion for predictability at scale.

Zoolander can also scale out by reducing the accesses
per node using partitioning and traditional replication.
Its policy is to selectively use replication for predictabil-
ity only when it is the most efficient way to scale out
(i.e., it can meet SLO using fewer nodes than the tra-
ditional approaches). Zoolander implements this policy
via a biased analytic model that predicts service levels
for 1) the traditional approaches under ideal conditions
and 2) replication for predictability under actual condi-
tions. Specifically, the model assumes that accesses will
be evenly divided across nodes (i.e., no hot spots). As
a result, the model overestimates performance for tradi-
tional approaches. In contrast, our model predicts the
performance of replication for predictability precisely,
using first principles and measured systems data. Despite
its bias, our model provided key insights. First, replica-
tion for predictability allows us to support very strict, low
latency SLOs that traditional approaches cannot attain.
Second, traditional approaches provide efficient scale out
when system resources are heavily loaded, but replica-
tion for predictability can be the more efficient approach
when resources are well provisioned.

We implemented Zoolander as a middleware for exist-
ing key-value stores, building on prior designs for high

1In this paper, we use the term heavy tailed to describe probability
distributions that are skewed relative to normal distributions. Some-
times these distributions are called fat tailed.

1
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throughput [16,18,39]. Zoolander extends these systems
with the following features:
1. High throughput and strong SLO for read and write
accesses when clients do not share keys. Zoolander also
supports shared keys but with lower throughput.

2. Low latency along the shared path to duplicates via
reduced TCP handshakes and client-side callbacks.

3. Reuse of existing replicas to reduce bandwidth needs.

4. A framework for fault tolerance and online adaptation.
We used write- and read-only benchmarks to vali-

date Zoolander’s analytic model for replication for pre-
dictability under scale out. The model predicted ac-
tual service levels, i.e., the percentage of access times
within SLO latency bounds, within 0.03 percentage
points.Replication for predictability increased service
levels significantly. On the write-only workload using
4 nodes, Zoolander achieved access times within 15ms
with a 4-nines service level (99.991%). Using the same
number of nodes, traditional approaches achieved a ser-
vice level of only 99%—Zoolander increased service
levels by 2 orders of magnitude.

We set up Zoolander on 144 EC2 units and issued up
to 40M accesses per hour, nearly matching access rates
seen by popular e-commerce services [4, 7, 17]. We also
varied the access rate in a diurnal pattern [34]. By us-
ing both replication for predictability and traditional ap-
proaches, Zoolander provided new, cost effective ways
to scale. At night time, when arrival rates drop, Zoolan-
der decided not to turn off under used nodes. Instead,
it used them to reduce costly SLO violations. Zoolan-
der’s approach reduced nightly operating costs by 21%,
given cost data from [17,38]. With better data migration,
Zoolander could have reduced costs by 32%.

This paper is arranged as follows: Section 2 presents
Zoolander’s analytic model on SLO under replication for
predictability. Section 3 describes Zoolander itself and
compares achieved SLOs to model predictions. Section 4
offers model-driven insights on when to use replication
for predictability. Section 5 studies Zoolander at scale on
EC2. Section 7 concludes.

2 Replication for Predictability

Traditional approaches to scale out networked storage
share a common goal: They try to reduce accesses per
node by adding nodes. While such approaches improve
throughput, there is a downside. By sending each access
to only 1 node, there is a chance that accessess will be
delayed by background jobs on the node [9]. Normally,
background jobs do not affect access times, but when
they do interfere, they can cause large slowdowns. Con-
sider write buffer flushing in Cassandra [16]. By default,

replica 1

Traditional Replication

1. Get(A)

replica 2

2. Get(B)
3. Get(C)Fin. (1)

Fin. (2)
Fin. (3)

processing

write-buffer flush processing

processing

duplicate 1

Replication for Predictability

1. Get(A)

duplicate 2

2. Get(B)

3. Get(C)Fin. (1) Fin. (2) Fin. (3)

processing

write-buffer flushprocessing

processing

processing

ignored

processing

{speedup

Figure 1: Replication for predictability versus traditional
replication. Horizontal lines reflect each node’s local time.
Numbered commands reflect storage accesses. Get #3 depends
on #1 and #2. Star reflects the client’s perceived access time.

writes are committed to disk every 10 seconds by flush-
ing an in-memory cache. The cache ensures that most
writes proceed at full speed without incurring delay due
to a disk access. However, if writes arrive randomly and
buffer flushes take 50ms, we would expect buffer flushes
to slow down 0.5% of write accesses ( 50ms

10s ).
Figure 1 compares replication for predictability

against traditional, divide-the-work replication. The lat-
ter processes each request on one node. When a buffer
flush occurs, pending accesses must wait, possibly for a
long time. However, by sending all accesses to N nodes
and taking the result from the fastest, replication for pre-
dictability can mask N −1 slow accesses, albeit without
scaling throughput. In this section, we generalize this
example by modelling replication for predictability. Our
analytic model outputs the expected number of storage
accesses that complete within a latency bound. It allows
us to compare replication for predictability to traditional
approaches in terms of SLO achieved and cost.

2.1 First Principles
Our model is based on the following first principles:
1. Outlier access times are heavy tailed. Background
jobs can cause long delays, producing outliers that are
slower and more frequent than Normal tails.

2. Outliers are non-deterministic with respect to dupli-
cates. To mask outliers, slow accesses on 1 duplicate can
not spread to others. Replication for predictability does
not mask outliers caused by deterministic factors, e.g.,
hot spots, convoy effects, and poor workload locality.

To validate our first principles, we studied storage ac-
cess times in our own local, private cloud. We use a
112 node cluster, where each node is a core with at least
2.4 GHz, 3MB L2 cache, 2GB of DRAM memory, and
100GB of secondary storage. Our virtualization software

2
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Figure 2: Validation of our first principles. (A) Access times
for Zookeeper under read- and write-only workloads exhibit
heavy tails. (B) Outlier accesses on one duplicate are not al-
ways outliers on the other.

is User-Mode Linux (UML) [13], a port of the Linux op-
erating system that runs in user space of any X86 Linux
system. Thus, RedHat Linux (kernel 2.6.18) serves as
our VMM. Custom PERL scripts designed in the mold
of Usher [26] allow us to 1) run preset virtual machines
on server hardware, 2) stop virtual machines, 3) create
private networks, and 4) expose public IPs. Our cloud
infrastructure is compatible with any public cloud that
hosts X86 Linux instances. Later in this paper, we will
scale out on Amazon EC2.

We set up Zookeeper [18] and performed 100,000 data
accesses one after another. Zookeeper is a key-value
store that is widely used to synchronize distributed sys-
tems. It is deployed as a cluster with ZK nodes. Writes
are seen by ZK

2 +1 nodes. Reads are processed by only 1
node. Figure 2(a) plots the cumulative distribution func-
tion (CDF) for Zookeeper under read-only and write-
only workloads. The coefficient of variation ( σ

|µ| ), or
COV, shows the normalized variation in a distribution.
Generally, COV equal or below 1 is considered low vari-
ance. We compared the plots in Figure 2(a) by 1) com-
puting COV before the tail, i.e., up to the 70th percentile
and 2) computing COV across the whole CDF. Before
the tail, COV was below 1. Across the entire distribu-
tion, COV was much higher, ranging from 1.5–8.

To visually highlight the heaviness of the tails, Fig-
ure 2(a) also plots a normal distribution with standard
deviation and mean that were 25% larger than 90% of
write times in ZK=1. Note, COV in an normal distribu-
tion is 1. The tails for both reads and writes under ZK=1
overtake the normal distribution, even though the nor-
mal distribution has a larger mean. We also found that
tails became heavier as complexity increased. Writes in
a single-node Zookeeper led to local disk accesses that
didn’t happen under reads. Writes in 3-node Zookeeper
groups send network messages for consistency.

We can also interpret each (x,y) point in Figure 2(a) as
a latency bound and an achieved service level. If access
times followed a normal distribution, a latency bound
that was 3 times the mean would provide a service level

of 99.8%. Figure 2(a) shows that Zookeeper’s service
levels were only 98.8% of reads,96.0% of 1-node writes,
and 91.5% of 3-node writes under that latency bound. To
support a strict SLO that could cover 99.99% of data ac-
cesses, the latency bound would have risen to 16X, 26X,
and 99X relative to the means.

Heavy tails affect many key value stores, not just
Zookeeper. Internal data from Google shows that a ser-
vice level of 99.9% in a default, read-only BigTable setup
would require a latency bound that is 31X larger than the
mean [9]. Others have noticed similar results on produc-
tion systems [6,17]. We also measured read access times
in a single Memcached node, a key-value widely used
in practice and in emerging sustainable systems [4, 31].
We saw a coefficient of variation of 1.9, and, under a lax
latency bound, only a 98.3% service level was achieved.
Finally, we ran the same test with Cassandra [16], an-
other widely used key-value store, deployed on large
EC2 instances. The coefficient of variation was 6.4.

Figure 2(b) highlights principle #2. Across two
Zookeeper runs that receive the same requests under no
concurrency, we show the percentile of each storage ac-
cess. If slow service times were workload dependent,
either the bottom right or upper left quartiles of this plot
would have been empty, i.e., slow accesses on the first
run would be slow again on the second. Instead, every
quartile was touched.

2.2 Analytic Model

This subsection references the symbols defined in Ta-
ble 1. Our model characterizes the service level pro-
vided by N independent duplicates running the exact
same workload. The latency bound (τ) for the SLO is
given as input. Written in plain english, our model pre-
dicts that ŝ percent of requests will complete within τ ms.

ŝ Expected service level
N Number of duplicates used to mask anomalies
τ Target latency bound

Φn(k) Percentage of service times from duplicate n
with latency below k

λ Mean interarrival rate for storage accesses
µnet Mean of network latency between duplicates

and storage clients
µrep Mean delay to duplicate a message one time

plus the delay to prune a tardy reply
µn Mean service time for duplicate n (derived)

Table 1: Zoolander inputs.

Using principles #1 and 2, we first model the proba-
bility that the fastest duplicate will meet an SLO latency
bound. Recall, writes are sent to all duplicates, so any
duplicate can process any request. Handling failures is
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treated as an implementation issue, not a modelling is-
sue. The probability that the fastest duplicate responds
within latency bound is computed as follows:

ŝ =
N−1

∑
n=0

[Φn(τ)∗
n−1

∏
i=0

(1−Φi(τ))]

To provide intuition into this result, consider Φi(τ) is the
probability that duplicate i meets the τ ms latency bound.
If N = 2, Φ1(τ)∗(1−Φ0(τ)) is the probability that dupli-
cate 1 masks a SLO violation for duplicate 0. Intuitively,
as we scale out in N, each term in the sum is the probabil-
ity that the nth duplicate is the firewall for meeting SLO,
i.e., duplicates 0..(n − 1) take too long to respond but
n meets the bound. When all duplicates have the same
service time distribution, we can reduce the above equa-
tion to a geometric series, shown below. (Note, as N
approaches infinity, ŝ converges to 1.)

ŝ = ∑
n=0

Φn(τ)∗ (1−Φn(τ))n = 1− (1−Φn(τ))N

Queuing and Network Delay: SLOs reflect a client’s
perceived latency which may include processing time,
queuing delay, and network latency. Since duplicates ex-
ecute the same workload, they share access arrival pat-
terns and their respective queuing delays are correlated.
Similarly, networking problems can affect all duplicates.
Here, we lean on prior work on queuing theory to answer
two questions. First, does the expected queuing level
completely inhibit replication for predictability? And
second, how many duplicates are needed to overcome the
effects of queuing? The key idea is to deduct the queuing
delay from τ in the base model. Intuitively, requiring all
duplicates to reduce their expected service time in pro-
portion to the expected queuing delay.

τn = τ − (
1+C2

v
2

∗ ρ
1−ρ

∗µn)−µnet

ŝ =
N−1

∑
n=0

[Φn(τn)∗
n−1

∏
i=0

(1−Φi(τi))]

We used an M/G/1 queuing model to derive the expected
queuing delay, reflecting the heavy-tail service times ob-
served in Figure 2(a). To briefly explain the first equation
above, an M/G/1 models the expected queuing delay as
a function of system utilization (ρ), distribution variance
(C2

v ), and mean service time. Utilization is the mean ar-
rival rate divided by the mean service time. Note, that
the new τ may be different for each node (parameteriz-
ing it by n). An M/G/1 assumes that inter-arrivals are
exponentially distributed. This may not be the case in all
data-intensive services. A G/G/1 with some constraints
on inter-arrival may be more accurate. Alternatively, an
M/M/1 would have simplified our model, eliminating the
need for the squared coefficient of variance (C2

v ). Prior

work has shown that multi-class M/M/1 can sometimes
capture the first-order effects of M/G/1.

We deduct the mean time lost to network latency.
Here, network latency is the average delay to send a TCP
message between any two nodes.
Multi-cast and Pruning Overhead: Replication for
predictability incurs overhead when messages are re-
peated to all duplicates and when unused messages are
pruned. These activities become more costly as the num-
ber of duplicates increase. We use a linear model to cap-
ture this. Note, we expect emerging routers to provide
multi-cast support that reduces this overhead a lot. How-
ever, storage systems that use software multi-cast, like
Zoolander, should consider this overhead.

τn = τ − (
1+C2

v
2

∗ ρ
1−ρ

∗µn)−µnet −N ∗µrep

Discussion: With a nod toward systems builders, we
kept the model simple and easy to understand. Most in-
puts come from CDF or arrival-rate data that can be col-
lected using standard tools. The model does not capture
non-linear correlations between outliers, resource depen-
dencies, or the root causes of SLO violations.

3 Zoolander

Zoolander is middleware for existing key-value stores.
It adds full read and write support for replication for
predictability. Figure 3 highlights the key components
of Zoolander. In the center of the figure, we show that
keys are stored in duplicates and partitions. A duplicate
abstracts an existing key-value store, e.g., Zookeeper or
Cassandra. As such, a duplicate may span many nodes
but it does not share resources with other duplicates.

A partition comprises 1 or more duplicates. Storage
accesses are sent to all duplicates within a partition—
i.e., duplicates implement replication for predictability.
Storage accesses are sent to only 1 partition. There is no
cross-partition communication. A global hash function
maps keys to partitions. All of the keys mapped to a
partition comprise a shard.

Zoolander can scale out by reducing storage accesses
per node via partitioning. It can also scale out by adding
duplicates. At the top of Figure 3, we highlight the Zo-
olander manager which uses our analytic model to scale
out efficiently. The manager takes as input a target ser-
vice level and latency bound. It also collects CDF data
on service times, networking delays, and arrival rates per
shard. The manager then uses our model from Section 2
to find a replication policy that meets the target SLO. It
finds a policy by iteratively 1) moving a shard from one
partition to another, 2) placing a shard on a new partition,
and 3) adding/removing duplicates from a partition. The
first and second options change the arrival rate for each
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Figure 3: The Zoolander key value store. SLA details include
a service level and target latency bound. Systems data samples
the rate at which requests arrive for each partition, CPU usage
at each node, and network delays. We use the term replica-
tion policy as a catch all term for shard mapping, number of
partitions, and the number of duplicates in each partition.

partition and are captured by our queuing model. The
third option is captured by our geometric series.

3.1 Consistency Issues

A read after write to the same key in Zoolander returns
either a value that is at least as up to date as most recent
write by the client (read my own write) or the value of an
earlier, valid write (eventual). We can also support strong
consistency funneling all accesses through a single mul-
ticast node. However, we rarely use strong consistency in
any Zoolander deployments. As many prior works have
noted [12, 18, 24, 39], read-my-own writes and eventual
consistency normally suffice.

To support read-my-own-write consistency, each du-
plicate processes puts in FIFO order. Gets (reads) may be
processed out of order. Clients accept reads only if the
version number exceeds the version produced by their
last write. For eventual consistency, Zoolander clients
ignore version numbers. Figure 4 clearly depicts the sup-
ported consistency. Read my own write avoids stale data
but gives up redundancy.
Propagating Writes: To ensure correct results, writes
must propogate to every duplicate and every duplicate
must see writes in the same order. Zoolander achieves
this by using multicast. Zoolander’s client side library
keeps IP addresses for the head node of each duplicate.
When client’s issue a put request, the library issues D
identical messages to each duplicate in a globally fixed
order. In the future, we hope to replace this library with
networking devices with hardware support for multicast.

Software multicast ensures that writes from a single
client arrive in order, but writes from different clients can
arrive out of order. We assume that multiple clients rac-
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Figure 4: Version based support for read-my-own-write and
eventual consistency in Zoolander. Clients funnel puts through
a common multicast library to ensure write order. The star
shows which duplicate satisfies a get. Gets can bypass puts.

ing to update the same key is not the common case. As
such, Zoolander provides a simple but costly solution. To
share keys, clients funnel writes through a master multi-
cast client. This approach sacrifices throughput but en-
sures correct results (see Figure 4).
Choosing the Right Store: By extending existing key
value stores, Zoolander inherits prior work on achiev-
ing high availability and throughput. The downside is
that there are many key value stores; each tailored for
high throughput under a certain workload. Zoolander
leaves this choice to the storage manager. In our tests,
the default store is Zookeeper [18] because of its wait-
free features. However, for online services that need high
throughput and rich data models [7, 8, 14], we extend
Cassandra [16]. We have also run tests with in-memory
stores Redis and Memcached.

3.2 Implementation Issues
Overhead: Our software multicast is on the datapath of
every write; It must be fast. Our multicast library avoids
TCP handshakes by maintaining long-standing TCP con-
nections between clients and duplicates. Also, Zoolander
eschews costly RPC in favor of callbacks. Clients append
a writeback port and IP to every access that goes through
our multicast library. Duplicates respond to clients di-
rectly, bypassing multicast. We measured the maximum
number of writes, read-my-own reads, and eventual reads
supported per second in Zoolander with Zookeeper as
the underlying store. Table 2 compares the results to the
throughput of Zookeeper by itself [18]. These tests were
conducted on our private cloud.
Bandwidth: Each duplicate receives the same workload
and uses the same network bandwidth. At scale, du-
plicates could congest datacenter networks. Zoolander
takes 2 steps to use less bandwidth. First, writes return
only “OK” or “FAIL”, not a copy of data. Second, for

5



270 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Relative Throughput & Processing Overhead
Writes Read-my-own-write Reads Eventual Reads

95%(48us) 94%(52us) 99%(<1us)

Table 2: Zoolander’s maximum throughput at different con-
sistency levels relative to Zookeeper’s [18]. In parenthesis, av-
erage latency for multicast and callback.

reads, Zoolander re-purposes replicas set up for fault tol-
erance as duplicates. Such replicas are common in pro-
duction [12, 39]. Figure 5(A) compares the bandwidth
used by naive support for replication for predictability
against Zoolander’s approach. The baseline is the band-
width consumed by a 3-node quorum system [12, 39].
Our approach lowers bandwidth usage by 2X.
Dyanamic Systems Data: Zoolander continuously col-
lects data using sliding windows. To keep overhead low,
we collect data for only a random sample of storage ac-
cesses. For each sampled access, we collect response
time, service time, accessed shard number, and network
latency. A window is a fixed number of samples.

We compute the mean network latency and arrival rate
for each window. We use the information gain metric
to determine if our CDF data has diverged. If we de-
tect that the CDF may have diverged, we collect samples
more frequently, waiting for the information gain metric
to converge on new CDF data. Figure 5 demonstrates
the benefits of service time windows. First, we ran our
e-science workload (Gridlab-D), then we injected an ad-
ditional write-only workload on the same machine, and
finally we added a read-only workload also. Our sliding
windows allow us to capture accurate service time distri-
butions shortly after each injection, as shown by conver-
gence on information gain.
Fault Tolerance: Zoolander can tolerate duplicate, par-
tition, software multicast, and client failures. Duplicate
failures are detected via TCP Keep Alive by the software
multicast. Every duplicate receives every write, so be-
tween storage accesses, software multicast can simply
remove any failed duplicate from the multicast list.

A partition fails when its only working duplicates fails.
When this happens, Zoolander manager uses transaction
logs from the last surviving duplicate to restart the parti-
tion. This takes minutes but is automated. Software mul-
ticast is a process in the client-side library. On restart, it
updates its multicast list with Zoolander manager. This
process takes only milliseconds. However, when soft-
ware multicast is down, the entire partition is unavail-
able.

3.3 Model Validation & System Results
Thus far, we have developed an analytic model for repli-
cation for predictability. We have also described the sys-
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Figure 5: (A) Zoolander lowers bandwidth needs by re-
purposing replicas used for fault tolerance. (B) Zoolander
tracks changes in the service time CDF relative to internal sys-
tems data. Relative change is measured using information gain.

tem design for Zoolander, a key value store that fully
supports replication for predictability at scale. Here, we
show that Zoolander achieves performance expected by
our model and that the model has low prediction error.

We deployed Zoolander on the private cloud described
in Section 2. We used Zookeeper as the underlying key-
value store. We focus on data sets that fit within memory
(i.e., in-memory key-value stores backed up with local
disk). We used 1 partition for these tests. We issued
1M write accesses in sequence without any concurrency.
We used the 90th percentile of the collected service time
distribution as the default latency bound (τ=5ms). The
average response time in this setup was 3ms, so our la-
tency bound allowed only 2ms for outliers. The SLO for
Zookeeper without Zoolander was: 90% of accesses will
complete within 5ms.

We added duplicates to Zoolander one at a time, is-
suing the same write workload each time we scaled
out. Figure 6(a) shows Zoolander’s performance, i.e.,
achieved service level, as duplicates increase. Specifi-
cally, the achieved service level grew as duplicates were
added. For example, under 8 instances, Zoolander could
support the following SLO: 99.96% of write accesses
will complete within 5ms. The graph also shows that Zo-
olander had absolute error (i.e., actual service level mi-
nus predicted) below 0.002 in all cases. This is a key
result: Scaling out via replication for predictability
strengthens SLOs without raising latency bounds.

In our next test, we set the number of duplicates to
8. We used the same service time distribution from
above. We then changed the latency bound (τ) to dif-
ferent percentiles in the single-node distribution, from
the 75th to 99.5th. High percentiles led to several-nine
service levels in Zoolander, forcing our model to be ac-
curate with high precision. Low percentiles required Zo-
olander to accurately model more accesses. Figure 6(b)
shows our model’s accuracy as the latency bound in-
creased. Absolute error was within 0.0001 for high and
low percentiles. In Figure 2(a), we observed that write
access times had a heavy-tail distribution that started
around the 96th percentile. Figure 6(b) shows a steeper
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Figure 6: Validation Experiments

slope (strong gains) for latency bounds after the 96th per-
centile. For instance, setting the latency bound to the
99th percentile of single-node distribution (τ=15ms), RP
Zookeeper achieved 99.991% service level using only 4
duplicates. In other words, adding duplicates scaled the
service level by two orders of magnitude.
Diverse Workloads: Figures 6(c) and 6(d) shows the
number of nines achieved under read accesses and under
larger Zookeeper cluster size. On our cloud platform,
reads completed in microseconds [18]. Sometimes our

1 node Base Geom. w/ Sliding Full model
CDF Series window w/ µnet & µrep

60.0000 0.0835 0.0494 0.0103

Table 3: Percentage-point error of different versions of Zo-
olander’s model (x100). Results for 16-node, shared L2 test.

software repeater had not finished broadcasting accesses
before a duplicate finished the job. Figure 6(c) shows the
results with just 2 duplicates. As we varied the latency
bound, Zoolander accurately estimated service level. We
focus on the number of nines because it is a common
metric in practice for SLAs. Zoolander and our model
agreed on the number of nines.

Figure 6(d) shows results where we set the cluster size
to 3 under a write workload. Zookeeper uses an atomic
broadcast to issue cluster writes. Communication within
duplicate clusters increases anomalies. Despite this in-
crease, Zoolander met our model’s expectations across
all tested latency bounds.
Heterogeneous Platforms: In our toughest test for Zo-
olander, we made a fundamental, runtime change to our
cloud platform: We allowed instances to share the L2
cache. We started Zoolander with a CDF based on pri-
vate L2 caches and used our continuous monitoring to
discover the new CDF (window size was 10,000). We
ran a total of 1M accesses. Our input latency bound (τ)
was set to the 60th percentile of single-node, private-L2
service time distribution (just 3ms). A 16-instance Zo-
olander achieved a service level of 99.916% under this
latency bound. Our full model predicted 99.927%. Ta-
ble 3 shows the absolute percentage point error of differ-
ent versions of the Zoolander model. The geometric se-
ries and continuous monitoring improve accuracy most.

4 Model-Driven SLO Analysis

Zoolander can scale out via replication for predictabil-
ity or via partitioning. The analytic model, presented
in Section 2, helps Zoolander manager choose the most
efficient replication policy. The analytic model can also
provide marginal analysis on the SLO achieved as key in-
put parameters vary. Specifically, we varied the request
arrival rate and used our model to predict SLO achieved.
We fixed the number of nodes (4) and we fixed the sys-
tems data. We compared 3 replication policies: 1) using
only replication for predictability (i.e., 1 partition with 4
duplicates), 2) using only traditional approaches (i.e., 4
partitions with 1 duplicate each), and 3) using a mixed
approach (i.e., 2 partitions and 2 duplicates each). Note,
our model predicts the same service levels under a k-
duplicate partition with arrival rate λ as it does under
N k-duplicate partitions with arrival rate N ∗ λ , making
our results relevant to larger systems.

7
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Recall, our model is biased toward partitioning. We
naively assume that each partition divides workload
evenly with no internal hot spots or convoy effects. Thus,
we are really comparing accurate predictions on replica-
tion for predictability to best-case predictions for parti-
tioning. More generally, our model makes best-case pre-
dictions for any approach that reduces accesses per node
by dividing work, including replication for throughput.

The results of our marginal analysis are shown in Fig-
ures 7(a–b). The y-axis in these figures is “goodput”, i.e.,
the fraction of requests returned within SLO. The x-axis
for these figures is the normalized arrival rate, i.e., the
arrival rate over the maximum service rate. In queuing
theory terminology, the normalized arrival rate is called
system utilization. The latency bound changes across the
figures. The results show arrival rates under which the
studied replication heuristics excel. Specifically:
1. Zoolander’s mixed approach, using both replication
for predictability and partitioning, offers the best of both
worlds. Replication for predictability alone increased
service levels but only under low arrival rates. Partition-
ing alone supported high arrival rates but with low ser-
vice levels. The mixed approach supported high arrival
rates (>40% utilization) and achieved high SLO.

2. As the latency bound increased, replication for pre-
dictability supported higher arrival rates, and similarly,
partitioning provided higher service levels.

3. Replication for predictability performs horribly un-
der high arrival rates. Recall, all duplicates have the
same queuing delay, once this delay exceeds the latency
bound, replication for predictability offers no benefit. It’s
performance falls of a cliff.

4. Divide-the-work approaches simply can’t achieve
high service levels under tight latency bounds. When we
set τ = 3.5ms, goodput under traditional only fell below
94%. A mixed approach achieved 99% goodput.

Cost Effectiveness: SLO violations can be costly. For
online e-commerce services, violations reduce sales and
ad clicks. For data processing services, violations de-
prive business leaders of data needed to make good, prof-
itable choices. All else being equal, reducing SLO viola-
tions means reducing costs. Replication for predictabil-
ity reduces SLO violations but it uses more nodes. Nodes
also cost; They use energy, their components (memory
and disk) wear out, and they have management over-
heads. We used our model to study the cost effectiveness
of using more nodes to reduce SLO violations.

We set a latency bound (τ) of 7ms and used systems
data taken from our private cloud. We computed the
number of SLO violations as the arrival rate changed. To
provide intuition, the number of SLO violations is essen-
tially the product of x and (1− y) for (x,y) pairs in Fig-
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ure 7b. The rate of violations (λ vio) is shown below. Fzk
represents our model with systems data from Zookeeper.

λ vio = λ ∗ (1−Fzk(τ,λ ))

We used a linear model to assess cost effectiveness.
Total cost was the sum of 1) SLO violations (λ vio) mul-
tiplied by cost per violation (cpv) and 2) nodes used (N)
multiplied by the cost per node per unit time (cpn). The
model is shown below.

cost = N ∗ cpn+λ vio ∗ cpv

The cost per violation and cost per node vary from ser-
vice to service. We studied the relative cost between
these parameters. Specifically, we set cpn = 1 and varied
cpv, as shown in Figures 8(a-b).

We compared three replication policies. The default
approach, or “do nothing”, did not scale out. It used
1 1-duplicate partition (N = 1) and allowed SLO vi-
olations to increase with the arrival rate. The replica-
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tion for predictability approach used 1 2-duplicate parti-
tion (N = 2) and reduced SLO violations under low ar-
rival rates. The traditional approach used 2 1-duplicate
partitions (N = 2). Note, N refers to the number of
duplicates—each duplicate could comprise many nodes.
We found the following insights:
1. When 100 SLO violations cost more than a node,
replication for predictability is cost effective, until queu-
ing delay exceeds the latency bound and service levels
fall of the cliff.

2. If SLO violations are cheap, e.g., a node costs more
than 10,000 violations, replication for predictability is
never cost effective, even under low arrival rates.

3. If arrival rates change, the most cost effective ap-
proach will also change. When SLO violations are nei-
ther cheap nor expensive, all three approaches can be cost
effective under certain rates.

The exact cost of an SLO violation depends on the ser-
vice. Online services have found ways to compute cpv
for their workloads. It is harder to compute cpv in emerg-
ing services, e.g., Twitter trend analysis or smart-grid
power management. In these services, violations map
only indirectly to revenue. However, if such violations
lead to stale results that lead to poor decisions, the real
cost of such violations can be very high.

5 Zoolander in Action

For this section, we studied Zoolander under intense ar-
rival rates, e.g., workloads produced by online services.
These tests used up to 144 Amazon EC2 units. EC2 is
widely used by e-commerce sites and web portals. It’s
prices are well known. Our goal was to compare Zoolan-
der scaling strategies and to highlight real world settings
where replication for predictability is cost effective.

Many online services see diurnal patterns in the ar-
rival rates of user requests [4, 34]. Request arrival rates
can fall by 50% between 12am–4am compared to daily
peaks between 9am–7pm. As a result, fewer nodes are
needed in the night than in the day time. Nonetheless,
services must buy enough nodes to provide low response
times under peak arrival rates. Some services save en-
ergy by using only a fraction of their nodes during the
night, turning off unused nodes. However, in datacenters,
energy costs are low at night (because demand for elec-
tricity is low). Nighttime energy prices below $0.03 are
common. The typical service would save only $0.12 per
night by turning off a 1KW server during this period. Zo-
olander can exploit underused nodes in a different way;
Turning them into duplicates to reduce SLO violations.

We compared the opportunity costs of reducing SLO
violations against turning off machines. Figure 9 shows

the competing replication policies. During the daytime,
each node is needed for high throughput and operates un-
der its max arrival rate. However, at nighttime, the arrival
rate drops by 50%, allowing us to place 2 shards on 1
node or to use replication for predictability. To save en-
ergy at night, our replication policy consolidates shards,
using as few nodes as possible without exceeding the
peak per-node arrival rate. Our workload accesses all
shards evenly, i.e., no hot spots.

Replication for predictability can be applied naively
on top the energy saving approach by using idle nodes as
duplicates. SCADS manager adopted this approach [39].
However, our findings in Section 4 suggest that arrival
rates on nodes that use replication for predictability
should be low. We decided to use replication for pre-
dictability more sparingly, keeping arrival rates low for
the duplicates. For every 6 nodes, we placed 4 shards
on 2 nodes (like in the energy saving approach). The re-
maining 4 nodes hosted 2 shards via 2 2-duplicate parti-
tions. Our approach had 9.7% fewer violations compared
to the naive approach described above.

To make the test realistic, we setup Zoolander on EC2
and tried to mimic the scale of TripAdvisor’s workload.
Public data [14] shows that TripAdvisor receives 200M
user requests per day. On average, each user request ac-
cesses the back-end Memcached store 7 times, translat-
ing to 1.4B storage accesses per day. Learning from re-
cent studies, we assumed the arrival rate would drop by
50% [4]. Our goal was to support 29M accesses per hour.

We used 48 clients that issued a mix of 15% Gets
and 85% Puts across 96 shards. Gets/Puts were issued
in batches of 20, reflecting correlated storage accesses
within user requests. Each batch arrived independently,
leading to exponentially distributed inter-arrival times.
Note, our clients followed a realistic, open-loop work-
load model. Duplicates in these tests were 1-node Cas-
sandra [16]. In a 4 hour test, our clients issued over 160M
key-value lookups (40M per hour).

During our tests, Zoolander achieved high throughput
and fault tolerance. While these metrics do not reflect
Zoolander’s contribution, they are not weak spots either!
To support 40M lookups per hour, Zoolander used 48
EC2 compute units with Cassandra as the underlying
key-value store. Peak throughput was 431 lookups per
second per EC2 unit, about 20% higher than the aver-
age achieved by Netflix operators [7]. We encountered
546 whole partition failures across the 144 nodes where
either Cassandra or the software multicast crashed. Dur-
ing those failures, 2,929 lookups failed. Multicast, dupli-
cates or callbacks caused 1,200 of those failed lookups.

SLO violations also occur when Zoolander migrated
data to its nighttime setup. Migrations periods are shown
in Figure 10(a). The figure is based on a trace from [34].
Moving to from the daytime setup to Zoolander’s night-
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node
id daytime setup

night time
energy saver

night time
Zoolander

0

1

2

3

4

5

accesses/hr = 1.6M
hosted shard(s) = A

NOT USED

NOT USED

NOT USED

accesses/hr = 0.8M
hosted shard(s) = E

accesses/hr = 0.8M
hosted shard(s) = E

accesses/hr = 1.6M
hosted shard(s) = B

accesses/hr = 1.6M
hosted shard(s) = C

accesses/hr = 1.6M
hosted shard(s) = D

accesses/hr = 1.6M
hosted shard(s) = E

accesses/hr = 1.6M
hosted shard(s) = F

accesses/hr = 1.6M
hosted shard(s) = A,B

accesses/hr = 1.6M
hosted shard(s) = C,D

accesses/hr = 1.6M
hosted shard(s) = E,F

accesses/hr = 1.6M
hosted shard(s) = A,B

accesses/hr = 1.6M
hosted shard(s) = C,D

accesses/hr = 0.8M
hosted shard(s) = F

accesses/hr = 0.8M
hosted shard(s) = F

Figure 9: Replication strategies during the nighttime workload
for an e-commerce service.

time setup needed 4 shard migrations(see Figure 9).
Moving back to daytime setup needed 2 more migra-
tions. Zoolander used existing techniques for shard mi-
gration. We measured migration-induced violations un-
der load and added these to Zoolander’s costs.

We used the cost model in Section 4 to compare the
nighttime replication policies in Figure 9. We studied
two different cost per node settings. In the private cloud
setting, the cost of a node is a function of its energy us-
age only. We assumed a cost of $0.03KWh and that each
node (an EC2 unit) used 100W, thus cpn = $0.003. In the
public cloud setting, the cost of a node includes every-
thing provided by EC2 (i.e., high availability, EBS, etc).
As of this writing, cpn of a small EC2 unit was $0.085
(20X more than energy only costs). The energy saving
approach used 3 nodes, whereas the Zoolander approach
used 6. We set the SLO latency bound (τ) for a batch of
lookups to 150ms. Out of 160M requests the Zoolander
approach incurred only 57K SLO violations compared to
85K in the energy saving approach—a reduction of 32%.

Figure 10(b) plots relative cost as a function of cost
per 1000 violations (cpv). Lower numbers are better for
Zoolander. The x-axis is log scale base 10. As SLO costs
increase, the Zoolander approach becomes more cost ef-
fective. Without considering migration costs, the relative
cost converges to 68% quickly in the private cloud setting
where cpn is very low. Migration costs increase relative
cost by 16%, but Zoolander remains highly cost effec-
tive in private clouds. Figure 10(b) shows that Zoolander
spends $0.79 to every dollar spent by energy saver ap-
proach, saving 21%. The public cloud setting requires
higher cpv to be cost effective.

In their fiscal statement for the 4th quarter of 2011, Tri-
pAdvisor earned $122M from click- and display-based
advertising. We divided this number by 200M daily user
requests to get revenue per 1,000 page views of $6.81.
Using prior research, we estimated that each SLO viola-
tion ( a 100ms delay) would lead to a 1% loss in prof-

10 11 12 13 14 15 16

30%

40%

50%

60%

70%

80%

90%

0

2

4

6

8

10

12

Arrival Rate

Energy Saving

Zoolander

    Nighttime 
      Hours 
(light  load)

      11pm 1am  3am   5am 0.0001 0.0010 0.0100 0.1000 1.0000

0%

50%

100%

150%

200%

Private Cloud w/o Migration

Private Cloud, Zoolander

Public Cloud, Zoolander

R
e
la

ti
v
e
 C

o
s
t 

Cost of SLO Violations (x1000)

Estimated cost
for TripAdvisor 

S
L
O

 V
io

la
ti
o

n
s
 (

x
1
0
0

0
)

R
e

la
ti
v
e
 A

rr
iv

a
l 
R

a
te

(A) (B)

Figure 10: (A) Zoolander reduced violations at night. From
12am-1am and 4am-5am, Zoolander migrated data. We mea-
sured SLO violations incurred during migration. (B) Zoolan-
der’s approach was cost effective for private and public clouds.
Relative cost is ( zoolander

energy saver )

its [30], meaning cpv = $0.068. Under this setting, the
Zoolander approach was cost effective for private set-
tings and broke even with the energy savings approach
under public cloud settings. When we consider migra-
tion costs for the energy savings approach, Zoolander is
cost effective even for public clouds.
Model-Driven Management The nighttime policy for
the EC2 tests was a heuristic based on insights from Sec-
tion 4. Heuristics derived from principled models under-
lie many real world systems. Alternatively, Zoolander’s
model can be queried directly to find good policies.

We used systems data from Zookeeper and set τ to
3.5ms, a very low latency bound. We studied the hourly
arrival rates (λ ) shown in Table 4. For each rate, our
model computed the expected SLO under 8 policies: 8
partitions(p) each with 1 duplicate(d), 4p with 2d, 2p
with 4d, 6p with 1d, 3p with 2d, 2p with 3d, 4p with
1d, and 2p with 2d. Table 4 shows the policy that met
SLO using the fewest nodes. The 5 policies shown all
differ, including policies with more than 2 duplicates.

Target SLO: 98% of accesses complete in 3.5ms
Accesses/Hour: 2K 850K 1M 1.5M 1.9M

Best Policy: 4p/1d 2p/2d 2p/3d 3p/2d 4p/2d

Table 4: Best replication policy by arrival rate

6 Related Work

Zoolander improves response times for key value stores
by masking outlier access times. Contributions include:
1) a model of replication for predictability that is blended
with queuing theory, 2) full, read-and-write support for
replication for predictability, and 3) experimental results
that show the model’s accuracy and cost effective appli-
cation of replication for predictability. Related work falls
into the categories outlined below.
Replication for predictability and cloning: Google’s
BigTable re-issues storage accesses whenever an initial

10



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 275

access times out (e.g., over 10ms) [9, 10]. Outliers will
rarely incur more than 2 timeouts. This approach applies
replication for predictability only on known outliers, re-
ducing its overhead compared to Zoolander. Writes
present a challenge for BigTable’s approach. If writes
that are not outliers are sent to only 1 node, duplicates
diverge. If instead, they are sent to all nodes re-issued
accesses would not mask delays because they would de-
pend on slow nodes. Zoolander avoids these problems
by sending all writes to all replicas.

SCADS revived replication for predictability, not-
ing its benefits for social computing workloads [3].
SCADS sent every read to 2 duplicates [39] and sup-
ported read-only or inconsistent workloads. Replica-
tion for predictability strengthened service levels by 3–
18%. Zoolander extends SCADS by scaling replication
for predictability, modelling it, and supporting consistent
writes. Section 5 showed that, as arrival rates increase,
our model can find replication policies that outperform
the fixed 2-duplicate approach.

Data-intensive processing uses cloning to mask out-
lier tasks. Early Map-Reduce systems cloned tasks when
processors idled at the end of a job [11]. Mantri et al. [2]
used cloning throughout the life of a job to guard against
failures. In both cases, the number of duplicates were
limited. Also, map tasks issue only read accesses. Re-
cent work used cloning to mask delays caused by out-
lier map tasks [1], providing a topology-aware adaptive
approach to save network bandwidth. Like Zoolander,
this work focused on cost effective cloning. Zoolander’s
model advances this work, allowing managers to under-
stand the effect of budget policies in advance. Another
recent work [21] sped up data-intensive computing via
replication for predictability. This work defines budgets
in terms of reserve capacity and uses recent models on
map-reduce performance [41].
Adaptive partitioning and load balancing: Heavy tail
access frequencies also degrade SLOs. Hot Spots are
shards that are accessed much more often than typical
(median) shards. Queuing delays caused by hot spots
can cause SLO violations. Further, hot spots may shift
between shards over time. SCADS [39] threw hardware
at the problem by migrating the hottest keys within a
shard via partitioning and replication. Other works have
extended this approach to handled differentiated levels
of service [33] and also for disk based systems [27].
Consistent hashing provides probabilistic guarantees on
avoiding hot spots [36,42]. [19] extends consistent hash-
ing by wisely placing data for low cost migration in the
event that a hot spot arises. Locality aware placement
can also reduce the impact of hot spots [23].

Both replication for predictability and power-of-two
load balancing [28] involve sending redundant messages
to nodes. However, in load balancing, the nodes do not

share a consistent view of data. Just-idle-queue load bal-
ancing includes a related sub problem where an idle node
must update exactly 1 of many queues [25]. Here, taking
the smallest queue is like taking the fastest response in
replication for predictability and reduces heavy tails.
Removing performance anomalies: Background jobs
are not the only root cause of heavy tails, performance
bugs that manifest under rare runtime conditions also
degrade response times. Removing performance bugs
requires tedious and persistent effort. Recent research
has tried to automate the process. Shen et al. use “ref-
erence executions” to find low level metrics affected
by bug manifestations, e.g., system call frequency or
pthread events [32]. These metrics uncovered bugs in
the Linux kernel. Attariyan et al. used dynamic instru-
mentation to find bugs whose manifestation depended on
configuration files [5]. Recent works have found bugs
at the application level [22,40]. Debugging performance
bugs and masking their effects, as Zoolander does, are
both valuable approaches to make systems more pre-
dictable, but neither is sufficient. Some root causes, like
cache misses [4], should be debugged. Whereas, other
root causes manifest sporadically but, if they were fixed,
could unmask bigger problems [35].

The operating system and its scheduler are a major
reason for heavy tails. Two recent studies reworked
memcached, removing the operating system from the
datapath via RDMA [20, 37]. While many companies
can not run applications like memcached outside of ker-
nel protection, these studies suggest that the OS should
be redesigned to reduce access-time tails.

7 Conclusion

This paper presented Zoolander, middleware that fully
supports replication for predictability on existing key
value stores. Replication for predictability redundantly
sends each storage access to multiple nodes. By do-
ing so, it sacrifices throughput to make response times
more predictable. Our analytic model explained the
conditions where replication for predictability outper-
forms traditional, divide-the-work approaches. It also
provided accurate predictions that could be queried to
find good replication policies. We tested Zoolander with
Zookeeper and Cassandra. Its overhead was low. Our
largest test (spanning 144 EC2 compute units) showed
that Zoolander achieved high throughput and strength-
ened SLOs. By wisely mixing scale-out approaches, Zo-
olander reduced operating costs by 21%.
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Abstract
Hadoop MapReduce adopts a two-phase (map and re-
duce) scheme to schedule tasks among data-intensive ap-
plications. However, under this scheme, Hadoop sched-
ulers do not work effectively for both phases. We reveal
that there exists a serious fairness issue among jobs of
different sizes, leading to prolonged execution for small
jobs, which are starving for reduce slots held by large
jobs. To solve this fairness issue and ensure fast com-
pletion for all jobs, we propose the Preemptive Reduc-
eTask mechanism and the Fair Completion scheduler.
Preemptive ReduceTask is a mechanism that corrects the
monopolizing behavior of long reduce tasks from large
jobs. The Fair Completion Scheduler dynamically bal-
ances the execution of different jobs for fair and fast
completion. Experimental results with a diverse collec-
tion of benchmarks and tests demonstrate that these tech-
niques together speed up the average job execution by as
much as 39.7%, and improve fairness by up to 66.7%.

1 Introduction
MapReduce [10] is a simple yet powerful program-

ming model that is increasingly deployed at many data
centers for the analysis of large volumes of unstructured
data. Hadoop [1] is an open-source implementation of
MapReduce. It divides a MapReduce job into two types
of tasks, map tasks (MapTasks) and reduce tasks (Re-
duceTasks), and assigns tasks to multiple workers called
TaskTrackers for parallel data processing.

To support many users and jobs (large batch jobs and
small interactive queries), Hadoop MapReduce adopts a
two-phase (map and reduce) scheme to schedule tasks for
data-intensive applications. The Hadoop Fair Scheduler
(HFS) [4] and Hadoop Capacity Scheduler (HCS) [3]
have focused on fairness among MapTasks. These sched-
ulers strive to maximize the use of system capacity and
ensure fairness among different jobs. However, they do
not work effectively for both phases. What complicates
the matter is the distinct execution behaviors of Map-

Figure 1: Unfair Execution among Different Size Jobs

Tasks and ReduceTasks. Unlike MapTasks which are
launched one group after the other to process data splits,
ReduceTasks have a different execution pattern. Once a
ReduceTask is launched, it occupies the reduce slot until
completion or failure.

We have examined the performance of Hadoop sched-
ulers using a synthetic workload of jobs submitted to
a shared MapReduce cluster. Jobs are divided into 7
groups based on their increasing data sizes; jobs in the
same group are identical. They arrive according to a
Poisson random process. Figure 1 shows the comparison
of the normalized execution time, which is defined as the
ratio between a job’s actual execution time and its stand-
alone execution time (the time when a job is running in
the system alone). As shown in the figure, the stand-
alone execution time of jobs in each group increases in
proportion to their input data size. However, the com-
pletion of these jobs varies dramatically with HFS. Jobs
in the smaller groups have much worse normalized ex-
ecution times, indicating that they must wait very long
(as much as 52× longer than the stand-alone execution
time). Such scheduling behavior contradicts users’ intu-
itive expectation that smaller jobs should be completed
faster and turned around more quickly.

To address this fairness issue and ensure fast com-
pletion for jobs of various sizes, we design a combi-
nation of two techniques: the Preemptive ReduceTask
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mechanism and the Fair Completion Scheduler. Pre-
emptive ReduceTask is a solution to correct the monop-
olizing behavior of long ReduceTasks. By enabling a
lightweight working-conserving option to preempt Re-
duceTasks, Preemptive ReduceTask offers a mechanism
to dynamically change the allocation of reduce slots. On
top of this preemptive mechanism, the Fair Completion
Scheduler is designed to allocate and balance the reduce
slots among jobs of different sizes. In summary, we make
the following contributions on the scheduling of jobs in
data centers for fair and fast job completion.

• We examine the unfairness issue of MapReduce
jobs execution in detail and identify the key short-
comings of existing schedulers in balancing the al-
location of reduce slots among jobs.

• We introduce the Preemptive ReduceTask mecha-
nism for lightweight, work-conserving preemption,
on top of which we design the Fair Completion
Scheduler that improves both the fairness and ex-
ecution of MapReduce jobs.

• We have conducted a systematic evaluation of Fair
Completion Scheduler. Our results demonstrate that
it can reduce the average execution time of work-
loads by up to 39.7% and improves the fairness by
as much as 66.7%, when compared to HFS.

2 Background and Motivation
In this section, we first provide a brief overview of

Hadoop job scheduling, then discuss the issues within
existing schedulers.

2.1 Job Scheduling in Hadoop
In Hadoop, the JobTracker assigns available map and re-
duce slots separately to jobs in the queue, one slot per
task. Figure 2 shows an example of scheduling three
jobs (represented by shaped blocks in three colors) on
a system with three reduce slots and five map slots. The
scheduling policy is based on the Hadoop Fair Scheduler.
A job when running alone can satisfy its needs with all
reduce slots, but it has to share the slots when other jobs
arrive. Once granted a slot, a ReduceTask has to fetch
data produced by all MapTasks before it completes. In
the figure, Job 1 first arrives by itself. It grabs 3 map
slots and 2 reduce slots for itself and completes execu-
tion. Job 2 then takes the rest of map and reduce slots.
When Job 2 needs more map or reduce slots, it has to
share, because Job 3 has arrived.

Each map output file has a partition for every Reduc-
eTask, the current Hadoop scheduler greedily launches
as many ReduceTasks as permitted for each job to max-
imize the chance of overlapping the shuffling of avail-
able intermediate data with the execution of future Map-
Tasks. Hadoop also allows a configuration parameter

Figure 2: An Example of Scheduling Slots among Jobs

(slowstart.completed.maps) to delay the launch of Re-
duceTasks so that small jobs after large jobs can have
chances to share the reduce slots.

2.2 Profiling of Unfair Slot Allocation
To closely examine the fairness issue between different
jobs, we conduct an experiment on a cluster of 20 nodes.
40 map slots are created on 10 nodes, and 20 reduce slots
on the other 10 nodes. 8 jobs are sequentially submitted
into the cluster every 60 seconds. Job 3 is a large job
that requires 20 ReduceTasks. Figure 3 shows the usage
of map and reduce slots by 8 jobs. Map slots are shared
among jobs over time as jobs arrive and leave, but re-
duce slots are all occupied by Job 3. As a result, Jobs
4-8 cannot get a share until Job 3 completes, even if they
have successfully finished all their MapTasks. On aver-
age, Jobs 4-8 are significantly delayed compared to their
stand-alone execution times. This reveals that Hadoop
Fair Scheduler is not able to achieve fair normalized ex-
ecution times for all jobs. A similar behavior was also
reported by an IBM study [15]. Note that there exists a
dramatic variance among the normalized execution time
for different jobs in the same pool and in different tests
(c.f. Figure 1 and Figure 3). More importantly, when the
generation rate of intermediate data is low, even if long
running ReduceTasks are occupying the slots, they do not
efficiently utilize the resources, and ReduceTasks peri-
odically enter into the idle state, causing severe resource
underutilization. In this experiment, on average, during
87.6% of Job 3’s ReduceTasks execution time, CPUs and
disks are idle and waiting for the intermediate data, and
network is highly underutilized.

2.3 Proposed Solutions
The monopolizing behavior of ReduceTasks has been
documented earlier as a reason to cause small jobs starve
for reduce slots [17, 15, 18]. Hadoop provides a slowstart
configuration option that can delay the launch of Reduc-
eTasks and mitigate this situation, but at the cost of slow-
ing down the shuffle phase, thus it can significantly pro-
long the execution times of small jobs. Zaharia et al. [18]
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Figure 3: Run-Time Allocation Profile of Map and Re-
duce Slots.

proposed a copy-compute splitting mechanism, but it
does not fully resolve this issue. Tan et al. [15] pro-
posed a coupling scheduler to launch reducers gradually
by coupling the progresses of map and reduce tasks in
the same job. With this scheduler, a large job can spare
reduce slots for other jobs when its map phase has not
progressed much. But when a large job finishes its map
phase, it still takes all available reduce slots and causes
the starvation of small jobs. Like the slowstart option, the
coupling scheduler delays and mitigates the monopoliza-
tion of reduce slots by large jobs. But it does not solve
the monopolization, instead let it progressively happen.

In this study, we examine the job fairness and effi-
ciency issues in data centers and investigate the feasi-
bility of lightweight task preemption and automated pre-
emptive scheduling policy for fair and fast job comple-
tion under MapReduce context. Two techniques are de-
signed accordingly to tackle these issues: the Preemptive
ReduceTask mechanism and the Fair Completion Sched-
uler. Preemptive ReduceTask allows ReduceTasks to be
preempted in a work-conserving manner (without losing
previous I/O or computation work, or causing high over-
head) during shuffle or reduce phases. The Fair Comple-
tion Scheduler builds on top of preemptive ReduceTask
to automatically monitor job progresses and dynamically
balance the usage of reduce slots, thereby speeding up
the execution of small jobs and ensuring fairness among
a large number of jobs on a shared Hadoop cluster.

3 Preemptive ReduceTask
A preemptive mechanism needs to be efficient and

lightweight so that it can react fast enough to dynamic
system workloads. But a ReduceTask often consumes
the bulk of processing time due to its main responsibil-
ities of fetching and merging intermediate data from all
MapTasks and performing user-defined reduce computa-
tion on the merged data. In this section, we introduce our
Preemptive ReduceTask mechanism that can preempt a
ReduceTask at any time during its execution, with low
overhead and negligible delay to the job progress.

3.1 Work-Conserving Self Preemption
Preemption is usually an OS utility to threads and pro-
cesses running on a system. Operating systems such as
Linux are equipped with a sophisticated thread/process
table along with virtual memory to record the progresses
of threads/processes and support lightweight preemp-
tion. However, there is no such utility in Hadoop to keep
the ReduceTask around as a process after its preemption.
Although Hadoop currently provides a killing based pre-
emption mechanism, our results show that killing is a
poor preemption option that can significantly delay the
progress of entire job. A naive checkpoint/start mecha-
nism is also not suitable because it dumps all memory of
a ReduceTask (it can be several GB) to persistent stor-
age and incurs very high costs. Instead we introduce a
work-conserving self preemption mechanism. When re-
quested, a ReduceTask will conserve its work and then
preempt itself, i.e., exit and release reduce slot. Note
that our preemptive ReduceTask keeps current APIs of
Hadoop and HDFS [14] intact, all existing Hadoop ap-
plications can still function without any modification.

During the shuffle phase, a ReduceTask fetches all the
segments that belong to it from all intermediate map out-
puts. According to the sizes of the segments, Reduc-
eTask stores them either to local disks or in memory.
Meanwhile, multiple merging threads merge fetched seg-
ments into larger segments and store them to the persis-
tent storage. During the reduce phase, a ReduceTask or-
ganizes all the segments in a Minimum Priority Queue
(MPQ, which has a heap structure), in which the seg-
ment that has the minimum first <key,value> pair is po-
sitioned at the head of MPQ. As the reduce phase pro-
gresses, <key,value> pairs are continually popped out
from the MPQ and supplied to the reduce function.

3.1.1 Preemption during Shuffle Phase

Figure 4: Preemption during Shuffle Phase

Figure 4 shows our design of work-conserving pre-
emption when a ReduceTask is in the shuffle phase. Be-
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fore preemption, a ReduceTask has a mixture of one on-
disk segment and two in-memory segments, organized in
a heap. Preserving the state of shuffle phase is to keep
track of the shuffling status of all segments. Upon re-
ceiving a preemption request, this ReduceTask merges
the in-memory segments and flushes the results to the
disks (Step 1) while leaves on-disk segments untouched.
The parent TaskTracker maintains an index record on the
locations of fetched segments, one per preempted Reduc-
eTask. Then the ReduceTask preempts itself and releases
the slot. When the ReduceTask is later resumed (Step 2),
it retrieves the index record from the parent TaskTracker,
then restores the heap structure before the preemption.
After that, this ReduceTask continues to fetch the rest
segments from remaining map outputs (Step 3).

3.1.2 Preemption during Reduce Phase

Figure 5: Preemption during Shuffle Phase

To conserve the work before preemption in the reduce
phase, a ReduceTask needs to store the current results
to HDFS besides recording the positions of input seg-
ments in the MPQ. In other words, ReduceTask needs
to preserve the state of reduce computation at the end of
each intermediate <key,val> pair, and remember the in-
dex of the last intermediate <key,val> pair at the time
of preemption. Figure 5 shows our strategy for work-
conserving preemption during the reduce phase. A Re-
duceTask is drawing <key,val> pairs from the MPQ
that consists of three segments. When it receives a pre-
emption request, it stops the reduce computation at the
boundaries of <key,val> pairs (Step 1). Available re-
sults for previous <key,val> pairs are stored to HDFS.
The parent TaskTracker again helps in this process by
storing an index record for a preempted ReduceTask,
and later provides it for preempted ReduceTask to re-
sume its execution (Step 2). After resumption, the Re-
duceTask restores the MPQ again and proceeds further
from the next <key,val> pair without any loss or rep-
etition of reduce computation and intermediate data re-

shuffling (Step 3). During this process, to allow multi-
ple preempted/resumed ReduceTasks to write to HDFS,
we let the TaskTracker maintain the output streams to
HDFS, therefore they can be shared by many Reduc-
eTasks. Only the last ReduceTask closes the stream. In
addition, Task migration is also possible for a preempted
ReduceTask but it requires data to be re-fetched over the
network.

4 Fair Completion Scheduler

Algorithm 1 FCS: Selecting ReduceTask to Preempt

1: Lrunning: {a list of running jobs of decreasing remain-
ing work.}

2: Ji: {a job requesting new reduce slots.}
3: Demand(Ji) ← {Ji’s demand for reduce slots.}
4: if Available reduce slots < Demand(Ji) then
5: m ← Demand(Ji) - Available reduce slots
6: for all j ∈ Lrunning ∧ IsPreemptable(Jj) ∧(m > 0)

do
7: if (Jj.Trs > Ji.Trs) ∨ ((Jj.Trs == Ji.Trs) ∧

(Jj.Rle f t > Ji.Rle f t ) then
8: RLn ← {Jj’s list of running ReduceTasks}
9: for all r ∈ RLn ∧(m > 0) do

10: preempt r
11: m ← m−1
12: end for
13: end if
14: end for
15: end if

To efficiently balance the reduce slots among a large
number of jobs of different sizes, we introduce a novel
preemptive ReduceTask scheduling policy based on the
remaining ReduceTasks workload of all the jobs. Map-
Tasks are scheduled under independent scheduling poli-
cies, such as max-min fair sharing, or FLEX [17]. Be-
cause of its benefits in achieving fairness for jobs of dif-
ferent sizes (c.f. Section 5), we refer to it as Fair Com-
pletion Scheduler (FCS).

As a preemptive scheduler, FCS must be equipped
with two algorithms: one to automatically select a Re-
duceTask to preempt and the other to select a Reduc-
eTask to launch. We first describe the selection policy for
preemption. To select a suitable ReduceTask and achieve
fair execution, we need to evaluate the run-time progress
of jobs. However, the relative progress and the remaining
processing time of ReduceTasks are not available before
they start. We choose the following approximations to
estimate the progress.

Remaining shuffle time: This is estimated as Trs

through the function: Trs = (
Mle f t
Mrate

)×Tmavg, where Mle f t
stands for the number of remaining MapTasks, Mrate is
the average rate in completing MapTasks, and Tmavg is
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the average execution time of MapTasks that have com-
pleted or in progress. As a job makes progress in its exe-
cution, we dynamically update Mrate accordingly.

Remaining reduce data: This is estimated as Rle f t
through the function: Rle f t = Rtotal −Rdone, where Rtotal
stands for the total intermediate data to reduce, and Rdone
the data that has been reduced. The latter is available
during the progress of reduce phase, and the former is
available when the reduce phase starts.

Execution Slackness: This is estimated as Eslack
through the function: Eslack =

Ttotal
Test

, where Ttotal is a Re-
duceTask’s total execution time since its beginning and
Test is its estimated execution time based on its progress
without preemption. We calculate it as Test =

Tsvc
Cpctg

, where
Tsvc is the actual execution time excluding preemption
and Cpctg is the percentage of completed work.

FCS is designed with policies to balance reduce slots
between small jobs and large jobs. It compares a job j
that has the largest amount of remaining work to a job
i requesting reduce slots, as shown in Line 7 of Algo-
rithm 1. Job j’s ReduceTasks are preempted if it has
more work than Job i (Line 10). Essentially, this allows
small jobs to preempt large jobs, solving the monopoliz-
ing behavior of long-running jobs and reducing the delay
of small jobs. On the other hand, we monitor the exe-
cution slackness of a ReduceTask since its beginning. If
its execution slackness has reached a configurable upper-
bound (5 by default), a ReduceTask will not be preempt-
able, i.e. IsPreemptable returns false. This enables large
jobs with an option to escape preemption–keeping their
reduce slots–and avoid starvation. Note that the execu-
tion slackness is a calculated number at run-time, which
offers a better choice than a static parameter, for exam-
ple, the number of times a ReduceTask can be preempted.
Its sole purpose is to guarantee that a long job would not
get seriously delayed because of frequent preemptions
by other jobs. Besides taking into account of execution
slackness, we avoid preempting a newly launched Re-
duceTask or a ReduceTask whose progress has gone over
70% to avoid overhead.

Then we describe briefly the policy for selecting a Re-
duceTask to launch, which is shown as Algorithm 2. In
making this selection, FCS favors the jobs with the least
amount of remaining work as shown in Line 2 of Al-
gorithm 2. Jobs are firstly sorted according to their Trs
values, when two Trs values are equal, they are sorted
according to Rle f t . In addition, it takes the data locality
into account, trying to launch a preempted ReduceTask
on the same node that it has executed before (Line 4).
A preempted ReduceTask that cannot achieve data local-
ity will be delayed (Line 16). However, if a preempted
ReduceTask has been delayed for too long because it is
not able to resume on its previous node (Line 11), then
FCS migrates it to another node that has available reduce

Algorithm 2 FCS: Selecting ReduceTask to Launch

1: {Receiving a heartbeat from node n with an empty
slot.}

2: Lrem: {a sorted list of jobs of increasing remaining
work.}

3: for all j ∈ Lrem do
4: if (Task r is j’s reduce task either preempted from

n or never launched) then
5: r.migration = 0
6: launch r on n
7: return
8: end if
9: Tprt ← {j’s preempted ReduceTasks (oldest first)}

10: for all r ∈ Tprt do
11: if r.migration >D then
12: migrate r to n
13: r.migration = 0
14: return
15: end if
16: r.migration += 1
17: end for
18: end for

slots (Line 12). In this algorithm, D is an approxima-
tion of −M× ln( 1−L

1+(1−L) ), a similar parameter employed
in the delay scheduling [19], where M is the number of
nodes in the cluster and L is the expected data locality.
For example, on a cluster of 20 nodes, with the expected
data locality L = 0.95, then D ≈ 61. With this algorithm,
we fit the same delay scheduling policy (and its param-
eter D) nicely into FCS, and delay the launching of a
ReduceTask for a future possibility to resume it on the
node it was preempted, i.e., better locality. This param-
eter allows us to consider the tradeoff between the need
of resuming ReduceTask for data locality and the need of
migrating ReduceTasks for free slot utilization. In Sec-
tion 5.2.1, we show that careful tunning of D can indeed
lead to a good tradeoff between these two factors.

5 Evaluation Results
This section presents a systematic performance eval-

uation of Fair Completion scheduler (FCS) using a di-
verse sets of workloads, including Map-heavy workload,
Reduce-heavy workload. Furthermore, we conduct stress
tests through Gridmix2 [2]. We compare the perfor-
mance of FCS to the Hadoop Fair Scheduler (HFS) and
Hadoop Capacity Scheduler (HCS). Several versions of
Hadoop are available. Particularly, YARN as a successor
of Hadoop provides a new framework for task manage-
ment. However, through code examination and perform
evaluation, we have found that YARN adopts the same
task schedulers, thus facing the same fairness issues as
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Hadoop. In addition, YARN is still not yet ready for
large-scale stable execution. Therefore, our evaluation
is based on the stable version Hadoop 1.0.4.

5.1 Experimental Environment
Cluster Setup: Experiments are conducted in a cluster
of 46 nodes. One node is dedicated as both the NameN-
ode of HDFS and the JobTracker of the Hadoop. Each
node is equipped with four 2.67GHz hex-core Intel Xeon
X5650 CPUs, 24GB memory, and two 500GB Western
Digital SATA hard drives.

Hadoop Setup: We configure 8 map slots and 4 re-
duce slots per node, based on the number of cores and
memory available on each node. We assign 1024MB
heap memory to each map and reduce task, respectively.
The HDFS block size is set to suggested 128MB [19] to
balance the parallelism and performance for MapTasks.

Benchmarks: We employ the well-known GridMix2
and Tarazu benchmarks [6] to demonstrate that FCS is
suitable for various types of workloads.

Tarazu benchmarks represent typical jobs in produc-
tion clusters. Meanwhile, Different benchmarks empha-
size different workload characteristics. Map-heavy jobs
generate a small amount of intermediate data, thus re-
sulting in lighter ReduceTasks compared to the relatively
heavier MapTasks. This group includes Wordcount, Ter-
mVector, InvertedIndex and Kmeans. On the other hand,
Reduce-heavy jobs generate a large amount of interme-
diate data, thus causing heavy network shuffling and re-
duce computation at the ReduceTasks. This group in-
cludes TeraSort, SelfJoin, SequenceCount, and Ranked-
InvertedIndex. it is worth mentioning that we configure
the submission of GridMix2 jobs as a Poisson random
process with a configurable arriving interval.

Evaluation Metrics: A number of performance met-
rics used in our presentation are listed as follows.
• Average execution time: This is the plain average

of execution time among a group of jobs, reflecting
the efficiency of schedulers to a system.

• Maximum slowdown: We refer to slowdown as the
normalized execution time, which is defined earlier.
Maximum slowdown is then the biggest slowdown
among a group of jobs. This reflects the fairness to
jobs of different characteristics.

• ReduceTask wait time: It is defined as the time
spent by a ReduceTask in waiting for reduce slots
after the same job’s MapTasks (i.e. the entire map
phase) have all completed. If the ReduceTask gets
a slot before that, then the wait time is 0. This aims
to reflect the delay experienced by ReduceTasks.

• Average preemption times: This is the average
number of preemptions experienced by a group of
jobs with similar job sizes. This quantifies the dis-
tribution and frequency of preemptions to jobs of

different groups that differ in job sizes.

5.2 Evaluating Design Choices of FCS
The design of FCS includes a couple of important design
choices such as the threshold parameter that allows task
migration to resume a preempted ReduceTask, and the
choice of Preemptive ReduceTask instead of killing as
the preemption mechanism. In this section, we conduct
tests to evaluate these design choices and elaborate their
importance.

5.2.1 Opportunistic ReduceTask Migration

Figure 6: Effectiveness of ReduceTask Migration

As mentioned in section 4, FCS is designed with an
opportunistic parameter D that controls the tradeoff be-
tween keeping ReduceTasks on their original node for
data locality and migration ReduceTasks to other avail-
able slots for resource utilization. A very large D allows a
ReduceTask to be delayed many times and become sticky
to their original nodes, achieving better data locality for
the resumed ReduceTask but at the cost of underutiliza-
tion of other reduce slots. In contrast, a very small D
leads to better resource utilization but also incurs more
data movement. In this section, we assess the impact of
D by executing a pool of Gridmix2 jobs. Also, job sub-
mission is configured to follow a Poisson random process
with an average inter-arrival time of 30 seconds.

In the experiment, we increase D from 20 to 140, and
compare the performance results of FCS with migration
to that of FCS without migration. As shown in Fig-
ure 6, FCS with migration can lead to the best average
execution time when D equals 60, with an improvement
of 9.6%. Neither a small D of 20 or a large D of 140
can achieve a good balance between data locality and
resource utilization. This experiment confirms that op-
portunistic task migration as controlled by D can lead to
good system performance. In the rest of the section, we
use 60 as the value for D.

5.2.2 Benefits of Preemptive ReduceTask

We investigate the efficiency of FCS when preemption
is enabled with either the Preemptive ReduceTask or the
killing-based approach. We use three GridMix2 work-
loads of different numbers of jobs (80 for Workload-
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Figure 7: Benefit of Preemptive ReduceTask

1, 130 for Workload-2 and 180 for Workload-3). Fig-
ure 7 shows the results. Compared to FCS with killing-
based preemption, FCS with Preemptive ReduceTask ef-
fectively reduces the average execution time by 11.3%,
21.8% and 25.7% for three workloads, respectively. This
demonstrates that FCS performs more efficiently with
Preemptive ReduceTask than with the killing approach.
In the rest of this paper, we focus on further evaluation
of FCS with the Preemptive ReduceTask mechanism.

5.3 Results for Map-heavy Workload

Table 1: Job Composition of Map-heavy Workload

Group Benchmark Maps Reduces Jobs
1 WordCount 10 1 50
2 TermVector 20 2 40
3 InvertedIndex 50 4 30
4 TermVector 100 8 20
5 Kmeans 500 10 10
6 TermVector 1000 20 8
7 Kmeans 5000 20 6
8 InvertedIndex 10000 60 4
9 TermVector 15000 120 2

10 InvertedIndex 20000 180 1
Total Jobs 171

Table 2: Performance of Map-heavy Workload

In Seconds FCS HFS HCS
Average Execution Time 247 359 1061

We now present the evaluation results on Map-heavy
workload. The workload composition is shown in Ta-
ble 1, featuring two basic characteristics. First, as shown
in empirical trace studies [9, 12], realistic workloads ex-
hibit a heavy-tailed distribution for job sizes, accordingly
the number of MapTasks among jobs. Second, to cap-
ture the effect that jobs arrive to the MapReduce cluster
according to a random process, i.e., their arrival inter-
val follows a Poisson random process with an average
inter-arrival time of 30 seconds. For ease of presenta-
tion, we sort the jobs according to their input sizes and
the requested number of tasks, then divide them into 10

Figure 8: Average Execution Times of Jobs in Different
Groups of Map-heavy Workload

different groups of increasing sizes. This categorization
helps the interpretation of scheduling effects on jobs of
different sizes.

Table 2 shows the average execution time for all
jobs in Map-heavy workload with different schedulers.
Both FCS and HFS significantly outperform HCS, which
groups jobs into a small number of job queues, within
each queue, HCS adopts FIFO scheduling policy that is
known to bias against small jobs and cause long aver-
age execution times. Thus we focus on the comparisons
between FCS with HFS in the rest performance tests on
Map-heavy workload. Overall, FCS speeds up the aver-
age execution time by 31% compared to HFS.

Figure 9: Average ReduceTask Wait Times of Jobs in
Different Groups of Map-heavy Workload.

To shed light on how FCS treats jobs of different sizes,
we examine the average execution times for the 10 dif-
ferent job groups inside workload. Figure 8 shows that
FCS effectively reduces the average execution time for
the first 8 groups compared to HFS, achieving up to 2.4×
speedup for jobs in group 2. Only jobs in Group 9 are
negatively affected by FCS, at an average ratio of 0.79.
Such performance results match the design goal of FCS,
i.e., trading long running large jobs for fast completion
of small jobs.

FCS improves system performance by mitigating the
starvation of small jobs. It prioritizes jobs whose shuffle
phases are about to complete, thus reducing the Reduc-
eTask wait times. Figure 9 shows the average Reduc-
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eTask wait time for all jobs in 10 groups. As we can
see, the average wait time is dramatically cut down for
the first eight groups by as much as 32.2× for group 5.
Only for the last two groups, the wait times are stretched
slightly, indicating that FCS yields reduce slots for the
small jobs.

To further obtain insights on how FCS has triggered
preemptions to different jobs, we record the preemptions
experienced by all ReduceTasks. Figure 10 shows the
distribution of preemptions to different groups of jobs in
the workload. As shown in the figure, no preemptions
have happened to Groups 1-4. Groups 5-10 have experi-
enced a small number of preemptions. This demonstrates
that FCS can be effective in delivering fair and fast com-
pletion without imposing excessive preemptions.

Figure 10: Preemption Frequency

Figure 11: Fairness of Map-heavy Workload

We have measured the maximum slowdown of all jobs
to evaluate the fairness of schedulers to different jobs. As
shown in Figure 11, FCS efficiently improves the fairness
by up to 66.7%, compared to HFS, and achieves nearly
uniform maximum slowdown across 10 groups. In con-
trast, HFS causes serious unfairness to small jobs. In the
worse case, a job in Group 3 is slowed down by as much
as 16 times.

Taken together, these results confirm the benefits we
expect from the design of FCS. They adequately demon-
strate the strengths of FCS for Map-heavy workload.

5.4 Results for Reduce-heavy Workload
Map-heavy workload represents jobs that generate small
amount of intermediate data. In this section, we continue
our evaluation with Reduce-heavy workload, in which

Table 3: Job Composition of Reduce-heavy Workload

Group Benchmark Maps Reduces Jobs
1 TeraSort 10 2 50
2 SelfJoin 20 4 40
3 SequenceCount 50 8 30
4 TeraSort 100 16 20
5 SelfJoin 500 32 10
6 RankInvertedIdx 1000 64 8
7 TeraSort 5000 128 6
8 SequenceCount 10000 256 4
9 TeraSort 15000 512 2

10 SequenceCount 20000 1024 1
Total Jobs 171

Table 4: Performance of Reduce-heavy Workload

In Seconds FCS HFS HCS
Average Execution Time 978 1364 8829

Figure 12: Average Execution Times of Jobs in Different
Groups of Reduce-heavy Workload

jobs generate a large amount of intermediate data, result-
ing in long running ReduceTasks. The ratio of interme-
diate data size to input size of those jobs is from 1 : 1 to
3 : 1. The job composition in the workload is listed in
Table 3. We adopt the same distributions for job sizes
and their arrival times as described in section 5.3.

We conduct the same set of experiments for Reduce-
heavy workload as done for the Map-heavy workload to
demonstrate that FCS can schedule different workloads
effectively. Many results exhibit similar performance to
those in Map-heavy workload. Thus, for succinctness,
we avoid redundant description, omit some figures, and
only highlight the differences. Table 4 shows the overall
performance under three schedulers. FCS speeds up the
average execution time of the workload by 28% when
compared to the HFS, and HCS still performs worse than
the other two.

Figure 12 illustrates that FCS speeds up the average
execution times of 10 different groups in the workload.
This differs from the Map-heavy workload, in which 8
out of 10 groups achieves obvious acceleration. In ad-
dition, we observe that FCS improves the completion
rate not only for small and medium jobs, but effectively

8



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 287

for the large jobs in the last three groups as well. This
is because in Reduce-heavy workload, map phases of
large jobs run much longer to generate intermediate data
than their counterparts in Map-heavy workload. When
small jobs arrive, they preempt long running Reduc-
eTasks from jobs that have not progressed much in the
reduce phase. As a result, such preemptions impose lit-
tle performance impact on the execution of these Reduc-
eTasks in large jobs, because those long running Reduc-
eTasks periodically enter into the idle mode to wait for
the availability of intermediate data. On the contrary,
these preemptions are greatly beneficial to small jobs
that can efficiently utilize the reduce slots to accelerate
their execution. Moreover, as small jobs quickly leave
the cluster, resource contention is gradually ameliorated.
Therefore, long running large jobs obtain resources dur-
ing the reduce phases and achieve faster job completion.

Similar to the Map-heavy workload, significantly
shortened ReduceTask wait time contributes to the fast
job completion of Reduce-heavy workload. Figure 13
compares the average ReduceTask wait times between
FCS and HFS. For Groups 9 and 10, FCS leads to a
slightly longer delay, up to 15%. For Groups 3 and 8,
FCS and HFS are comparable. Group 1 has zero wait
time in both cases. FCS drastically reduces the wait
time down to 0 for Groups 2 and 4, and effectively cuts
down the average ReduceTask wait time for Groups 5,6
and 7, ranging from 9.8× to 84.5×. Interestingly, even
FCS delays the launch of long running ReduceTasks in
Group 9 and 10, their job execution is not affected. In
such scenario, more intermediate data is buffered. Once
launched, ReduceTasks spend more of their execution on
data fetching. Faster completion of all jobs in all groups
directly leads to better fairness. Figure 14 shows that
FCS efficiently improves the fairness by 35.2% on av-
erage when compared to the HFS for the Reduce-heavy
workload. Note that FCS still maintains low preemption
frequency for different groups of jobs, in particular for
large jobs. Because it bears strong resemblance to that of
Map-heavy workload, we omit the preemption frequency
result here.

Figure 13: Average ReduceTask Wait Times of Jobs in
Different Groups of Reduce-heavy Workload

Figure 14: Fairness of Reduce-heavy Workload

5.5 Scalability

The workloads submitted to a production cluster vary
substantially over different periods of time. Thus, the ca-
pability of efficiently scheduling a large number of ran-
domly arriving jobs is critical for Hadoop schedulers, es-
pecially when the system is heavily loaded. To investi-
gate the scalability of FCS, we employ Gridmix to as-
sess the performance of Hadoop when the system is un-
der stress. We vary the number of GridMix jobs from
60 to 300 and maintain the same distribution of job size
throughout different tests.

The experimental results are shown in Figure 15.
Compared to HFS, FCS consistently reduces the average
execution times across different experiments. On aver-
age, FCS reduces the average execution time by 39.7%.
More importantly, FCS shows stable performance im-
provement when the number of jobs in the workload in-
creases. The improvement ratio rises from 10% to 28%
when the number of jobs increases from 60 to 300. In the
workload with 60 jobs, small jobs are dominant with very
few large jobs arriving very late. In such a scenario, the
demands for reduce slots from small small jobs can be
satisfied in time, leading to shortened ReduceTasks wait-
ing time. As a result, it leaves less optimization spaces
for FCS to improve. Furthermore, during the tests, when
the number of jobs increases, no noticeable scheduling
overhead in terms of CPU utilization is observed in the
JobTracker.

Figure 15: Scalability Evaluation with GridMix2

9
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6 Related Work
Many MapReduce schedulers have been proposed

over the past few years trying to maximize the re-
source utilization in the shared MapReduce clusters.
Zaharia et al. introduced delay scheduling [19] that
speculatively postpones the scheduling of the head-of-
line tasks and ameliorate the locality degradation in the
default Hadoop Fair scheduler [4]. In addition, Za-
haria also proposed Longest Approximate Time to End
(LATE) [20] scheduling policy to mitigate the deficiency
of Hadoop scheduler in coping with the heterogeneity
across virtual machines in a cloud environment. But nei-
ther of these two scheduling policies supports task pre-
emption for jobs in the same pool, thus unable to cor-
rect the monopolizing behavior of long-running Reduc-
eTasks.

Mantri [7] was designed to mitigate the impact of out-
liers in MapReduce cluster, it monitors task execution
with real-time remaining work estimation, and accord-
ingly take measures such as restarting outliers, placing
tasks with network awareness and conserving valuable
work from the tasks. But Mantri does not identify the re-
source monopolizing issue among large number of con-
current jobs caused by long-running ReduceTasks and
does not provide lightweight preemption solution. Ah-
mad [6] proposed communication-aware placement and
scheduling of MapTasks and predictive load-balancing
for ReduceTasks as part of Tarazu to reduce the network
traffic of Hadoop on heterogeneous clusters. But it also
does not address the fairness and monopolization issues.
Isard et al. [11] introduced the Quincy scheduler, which
adopts min-cost flow algorithm to achieve a balance be-
tween fairness and data locality for the Dryad. But their
use of killing as preemption mechanism can cause sig-
nificant resource waste.

Verma [16] introduced ARIA to allocate appropriate
amount of resources to MapReduce job so that it can
meet SLO. Based on ARIA, Zhang et al. [21] further
studied the estimation of required resources for complet-
ing a Pig program to meet SLO. Lama [13] proposed
AROMA to automatically determine the system configu-
ration for Hadoop jobs to achieve quality of service goal.
FLEX [17] aims to optimize different given scheduling
metrics based on a performance model between slots
and job execution time. However, none of above four
work considers the resource contention issue (reduce slot
contention) among continuously incoming jobs in shared
MapReduce clusters.

In [8], Ananthanarayanan proposed Amoeba which
supports lightweight elastic tasks that can release the
slots without losing previous I/O and computation. This
bears strong similarity to our preemptive ReduceTask.
However, it imposes many constraints such as safe points

on task processing so that tasks can be interfered without
losing previous work. However no overhead measure-
ment is reported in the article. In addition, no corre-
sponding scheduling policy is designed to leverage the
benefits provided by elastic task.

Recently, YARN [5] has been proposed by Yahoo!
as the next generation MapReduce. It separates the
JobTracker into ResourceManager and ApplicationMan-
ager, and removes task slot concept. Instead, it adopts
resource container concept that encapsulates the gen-
eral resources, such as memory, CPU and disk I/O into
the schedulable unit (current YARN only supports mem-
ory). But our initial evaluation discovers that monopo-
lization behavior of long-running ReduceTasks still exist
in such framework as long as schedulers greedily allocate
as many resources as permitted to one job. Therefore, our
Preemptive ReduceTasks and Fair Completion Scheduler
can be very beneficial in the new framework. In future,
we plan to incorporate our techniques into the YARN.

7 Conclusion
In this paper, we have revealed that there exists a se-

rious fairness issue for the current MapReduce sched-
ulers due to the lack of a lightweight preemption mech-
anism for ReduceTasks. Accordingly, we have designed
and implemented the Preemptive ReduceTask as a work-
conserving preemption mechanism, on top of which we
have designed the Fair Completion Scheduler. The intro-
duction of the new preemption mechanism and the novel
ReduceTask scheduling policy have solved the fairness
issue to small jobs, resulting in improved resource uti-
lization and fast average job completion for all jobs. Our
design of Fair Completion Scheduler, compared to the
Hadoop Fair Scheduler and Capacity Scheduler, can re-
duce the average job execution time by up to 39.7% and
88.9%, respectively. Furthermore, the Fair Completion
Scheduler improves the fairness among different jobs by
up to 66.7%, compared to the Hadoop Fair Scheduler.
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Abstract
Large-scale datacenters (DCs) host tens of thousands

of diverse applications each day. Apart from determining
where to schedule workloads, the cluster manager should
also decide when to constrain application admission to
prevent system oversubscription. At the same time dat-
acenter users care not only for fast execution time but
for low waiting time (fast scheduling) as well. Recent
work has addressed the first challenge in the presence of
unknown workloads, but not the second one.

We present ARQ, a multi-class admission control
protocol that leverages Paragon, a heterogeneity and
interference-aware DC scheduler. ARQ divides applica-
tions in classes based on the quality of resources they need
and queues them separately. This improves utilization
and system throughput, while maintaining per-application
QoS. To enforce timely scheduling, ARQ diverges work-
loads to a queue of lower resource quality, if no suit-
able server becomes available within the time window
specified by its QoS. In an oversubscribed scenario with
8,500 applications on 1,000 EC2 servers, ARQ bounds
performance degradation to less than 10% for 99% of
workloads, while significantly improving utilization.

1. Introduction
An increasing amount of computing is performed in the
cloud, primarily due to cost benefits for both the end-
users and the operators of datacenters (DC) that host
cloud services [3]. The operator of a cloud service must
schedule the stream of incoming applications on avail-
able servers in a resource-efficient manner, i.e., achieving
fast execution (user’s goal) at high resource utilization
(operator’s goal). This scheduling problem is particularly
difficult for several reasons, including diverse application
characteristics [3, 19], insufficient workload knowledge,
co-scheduled application interference and platform het-
erogeneity. An additional challenge occurs during periods
of adversarial traffic, i.e., intervals with very high load,
when the system can become oversubscribed, resulting
in poor performance. Most DCs employ some admission
control to minimize such effects.

DC users are interested in two performance metrics;
how fast the application starts running (waiting time) and
how fast it completes thereafter (execution time). While
recent work has shown how to improve execution time in
the presence of unknown workloads, varying interference

sensitivities and heterogeneous servers [14], it does not
solve the “head of line blocking” problem [27]. Addition-
ally, some applications have strict scheduling deadlines,
while others can tolerate delays in order to be assigned
to preferred servers. In all cases, resource requirements
should be taken into account at admission point [8].

We propose ARQ (Admission control with Resource
Quality-awareness), a QoS-aware admission control pro-
tocol that builds on Paragon and accounts for the resource
quality an application needs to preserve its QoS. Resource
quality reflects the additional load a server can support
without violating application QoS, given its configura-
tion and the applications it currently hosts. ARQ divides
workloads to multiple classes and directs them to differ-
ent queues. This way demanding workloads do not block
easy-to-satisfy applications, as they wait for an appropri-
ate server to become available. On the other hand, since
DC applications have strict QoS guarantees, they can only
be queued for limited amounts of time, while waiting
for an appropriate server. ARQ detects when an appli-
cation is about to violate its performance requirements
and re-directs it to a different queue before the QoS vio-
lation occurs. We explore the trade-off between waiting
time and quality of resources and solve the corresponding
optimization problem to find the optimal switching point.

We evaluate ARQ both in small and large-scale exper-
iments. First, we compare the system without and with
ARQ in a local cluster with 40 machines and show the
benefits in performance and efficiency. We also evaluate
ARQ on a 1000-server cluster on Amazon EC2. For an
oversubscribed scenario with 8500 applications, Paragon
with ARQ guarantees that 99% of workloads have less
than 10% performance degradation, while improving uti-
lization by 46%.

2. Background

2.1. Paragon Overview

Paragon is a heterogeneity and interference-aware DC
scheduler [14]. It assigns applications to heterogeneous
servers based on the platform they benefit from and the
co-scheduled applications that minimize destructive inter-
ference to preserve QoS. Paragon has two components, a
classification engine and a greedy scheduler. We briefly
describe their operation in the following paragraph.

The first component of Paragon performs fast classi-
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fication of incoming applications, in terms of the server
configuration (SC) they perform better on and the interfer-
ence they cause and tolerate in various shared resources,
such as the processor, cache hierarchy, memory, storage
and networking subsystems. The interference profile is
obtained through targeted microbenchmarks of tunable in-
tensity that create contention in specific shared resources.
These microbenchmarks are called sources of interference
(SoIs). The classification engine is built as a recommenda-
tion system, similar to Netflix [5] or e-commerce systems
and leverages the knowledge the system already has about
previously-scheduled applications, keeping profiling over-
heads low. Then, the greedy scheduler searches for a
machine of desired SC, that minimizes destructive inter-
ference between existing and new load. Paragon scales to
tens of thousands of applications and improves utilization,
while maintaining per-application QoS.

2.2. Current Limitations

While Paragon shows that accounting for heterogeneity
and interference improves resource efficiency without
QoS losses, it does not decide when applications should
be admitted and scheduled. Paragon accounts for work-
load characteristics to decide where to assign a workload,
but it does not solve the “head of line blocking” problem
that can cause high waiting times. By default, applica-
tions are scheduled in a simple FIFO order. This has
two shortcomings; first, easy-to-satisfy workloads can get
trapped behind demanding applications, e.g., workloads
that require exclusive instances of high-end, multi-socket
servers to preserve their QoS. Second, in the event of an
oversubscribed scenario, i.e., when the required resources
are more than the total resources available in the system,
Paragon implements an application-agnostic admission
control protocol. It queues applications in a single queue
until the first server becomes available, and then resumes
FIFO-ordered scheduling. This ignores the fact that appli-
cations need resources of a certain quality to meet their
QoS, and can result in performance degradation.

3. Admission Control

3.1. Overview

Large cloud providers such as Amazon EC2 and Windows
Azure, typically deploy some admission control protocol.
This prevents machine oversubscription, i.e., the same
core servicing more than one applications, resulting in
high interference and QoS violations.

We design ARQ, a QoS-aware admission control pro-
tocol that queues and schedules applications based on
the quality of resources they need. This solves two prob-
lems; first, applications that demand few, easy-to-satisfy
resources are not blocked behind demanding workloads.
Second, if no suitable servers are available for a given
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Figure 1: ARQ design. Each queue corresponds to appli-
cations with different resource quality requirements.

application, the workload waits for a server of appropriate
quality to be freed. Alternatively, the application would
be directed to the first free server to avoid queueing delays,
with the risk of performance losses.
Resource quality: The resource demands of a workload
reflect the load a server should support for the application
to meet its QoS. This is a function of the interference the
server can tolerate from the new application, and the inter-
ference the new workload can tolerate from applications
already running on the machine. We use the classification
engine in Paragon to derive the per-server tolerated (ti)
and caused (ci) interference over a set of shared resources.
Shared resources include the cache and memory hierar-
chy, CPU modules, and storage and networking devices.
Details on how ci’s and ti’s are obtained can be found
in [14]. The interference profile of a server is updated
upon initiation or completion of an application’s execu-
tion. Similarly, upon application arrival, an interference
profile is obtained for each new workload. This infor-
mation guides scheduling decisions by assigning applica-
tions to suitable servers. Given the interference profile of
a server or application, we define resource quality as:

Qi = avg(∑
i

ci +∑
i
(100− ti)) (1)

where ci and ti are summed over all shared resources for
which interference is measured. Conceptually, higher Qi
reflects applications with high demands (high caused and
low tolerated interference) that need high-quality system
resources. Low Qi on the other hand, corresponds to
workloads that are insensitive to interference, and can
satisfy their QoS even when assigned to servers with
poor resource quality, e.g., highly-loaded machines, or
machines with few cores.
Multi-class admission control: We design ARQ as an
admission control protocol with multiple classes of “cus-
tomers” [1, 6, 17, 20, 21], where customers in this case
correspond to applications. The class an application be-
longs to is determined by its Qi value. Applications with
Qi values that fall in the same range are assigned to the

2
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Figure 2: CDF of server busy times and CDF of the prob-
ability that there will be at least one free server within a
specific time window from an application’s arrival.

same class. Qis range from 0 to 100%. We assume ten
classes of applications for now, and justify this selection
in the evaluation section (see sensitivity study in Section
5). Fig. 1 shows an overview of ARQ. Each queue cor-
responds to applications of a specific class. From top to
bottom we move from more to less demanding applica-
tions. Upon arrival, the cluster manager determines the
class an application belongs to and queues it appropriately.
Each class has a corresponding server pool of appropriate
resource quality. Separating applications based on their
resource quality requirements helps ARQ resolve bottle-
necks where applications that are sensitive to interference
block workloads that are not. On the other hand, applica-
tions cannot be queued indefinitely waiting for the perfect
server. We address this issue by diverging workloads to
queues with better or worse resource qualities.

3.2. Waiting Time versus Resource Quality

Diverging an application to a different queue creates a
trade-off between the time an application is waiting in
a queue, and the quality of resources it is allocated. We
approach this trade-off as an optimization problem.
Queue bypassing: When there is no available server in
the pool of a class, queued workloads should be diverged
to another queue. There are two possible options for
where a workload can be redirected. First, it can be di-
verged to a higher queue. If the queue directly above the
queue the workload was originally placed in is empty, the
workload is assigned to one of its servers. This hurts uti-
lization, since resources of higher quality than necessary
are allocated, but preserves the workload’s QoS require-
ments. In the opposite case the workload is diverged to a
lower queue. In that case, performance may be degraded,
since the application receives resources of lower quality
than required. However, the scheme guarantees that in all
cases the application will be assigned to a server within
the time window dictated by its QoS constraints.
Free-server probability distributions: ARQ needs to
know the likelihood that a server of a specific class will
become available within the time an application can be
queued for, to decide when the workload should be di-

verged to the next queue. We statistically analyze the
server busy time periods for each server pool to obtain
these probability distributions. Busy periods are defined
as the per-server time intervals from the moment a server
is assigned a workload, until that workload completes.

We first use distribution fitting to represent the per-pool
server busy time in a closed form using known distribu-
tions. Fig. 2a shows the CDF of server busy time for
the first server pool (highest quality servers) in a 1,000
server experiment. More details on the methodology can
be found in Section 4. We show the experimental data
(dots) and the closed form representation, derived from
distribution fitting. In this case, the data is fitted to a curve
resembling a normal distribution. The CDF reflects the
fraction of servers that are freed within some time after
they have been allocated to an application. For example,
60% of servers in this server pool are freed within 2700
sec from the time an application is scheduled to them.

Using this closed form CDF we easily derive the free-
server CDF, which reflects the probability that within a
time interval from an application’s arrival, at least one
server of the corresponding pool will be available. Fig. 2b
shows the free-server probability CDF for the first server
pool. The highlighted point shows that there is a 60%
probability that within 56 sec from an application’s arrival
to that queue, there will be at least one free server in the
pool. Free-server CDFs are updated during workload
execution to capture changes in application behavior.
Switching between queues: ARQ determines the switch-
ing point between queues with the objective to maximize
the probability that a server becomes available within a
certain window from an application’s arrival. For simplic-
ity of explanation we assume that an application’s QoS
is defined at 0.95x of the application’s optimal perfor-
mance. This means that the workload can tolerate at most
a 5% performance degradation. Scheduling deadlines
or queries-per-second (QPS) can also serve as queueing
constraints. Given the free-server CDFs for each server
pool, ARQ solves the following optimization problem for
application a, switching between queues i and j:

max{(Sa −wti(t)) ·Qi ·Pri[t],(Sa −wt j(t)) ·Q j ·Pr j[t]}
s.t. (wti(t)+wt j(t)+Pa)< 0.05 ·CTa

where Pri[t] is the probability that there is a free server
in queue i, Qi is the resource quality of queue i, CTa is
the optimal execution time for application a, Pa is the
classification overhead of Paragon, and Sa = 1.05 ·CTa −
Pa is the available “slack” that can be used for queueing,
before the application violates its QoS constraints. ARQ
finds the switching time that maximizes the probability
that a server of either queue i or j will become available
such that the application preserves its QoS guarantees. It
also promotes waiting longer for a server of the same class
rather than eagerly switching to the next queue (Qi > Q j).
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Server Type GHz, cores, L1(KB), LLC(MB), mem(GB) #
Xeon L5609 1.87 2x8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2x12 32/32 12 24 DDR3 2
Xeon X5670 2.93 2x12 32/32 12 48 DDR3 2
Xeon L5640 2.27 2x12 32/32 12 48 DDR3 1

Xeon MP 3.16 4x4 16/16 1 8 DDR2 5
Xeon E5345 2.33 1x4 32/32 8 32 FB-DIMM 8
Xeon E5335 2.00 1x4 32/32 8 16 FB-DIMM 8
Opteron 240 1.80 2x2 64/64 2 4 DDR2 7

Atom 330 1.60 1x2 32/24 1 4 DDR2 5
Atom D510 1.66 1x2 32/24 1 8 DDR2 1

Table 1: Server characteristics of the local cluster. The
total core count is 178 for 40 servers of 10 different SCs.

In our analysis we assume batch, single-node appli-
cations. In the case of interactive or transactional work-
loads additional care must be taken to accommodate load
changes, e.g., through VM migration. The scheduler de-
tects such changes and adjusts workload placement to
preserve QoS. Detection is based on SoI injection and
application reclassification.

4. Methodology
Server systems: We evaluated Paragon on a 40-machine
local cluster (Table 1) and a 1000-machine cluster with
14 server types on EC2. We used exclusive (reserved)
server instances, i.e., there is no interference from external
workloads. We also verified that no external scheduling
decisions or actions such as auto-scaling or migration are
performed during the course of the experiments.
Schedulers: We compared Paragon with ARQ to four
schedulers. First, Paragon without admission control,
second, a heterogeneity-oblivious scheme that only ac-
counts for interference but not heterogeneity. Third, an
interference-oblivious scheme and finally, a scheduler
that is both heterogeneity and interference-agnostic, and
assigns applications to least-loaded machines.
Workloads: We used 29 single-threaded, 22 multi-
threaded, 350 multi-programmed and 12 I/O-bound work-
loads. We use the full SPEC CPU2006 suite and work-
loads from PARSEC [7], SPLASH-2 [32], BioParal-
lel [18], Minebench [22] and SPECjbb. For multipro-
grammed workloads, we use 350 mixes of 4 applications
each [26]. The I/O-bound workloads are data mining
applications in Hadoop and Matlab. For scenarios with
more than 413 applications we replicated these workloads
with equal likelihood and randomized their interleaving.
Workload scenarios: For the small-scale experiments
we examine three workload scenarios. First, we exam-
ine a low-load scenario with 178 applications, selected
randomly from the workload pool, and submitted with
10 sec inter-arrival times. Second, a high-load scenario
where 178 applications arrive following a Gaussian distri-
bution (µ=10, σ2=1) that experience significant phases
during their execution. Finally, we examine a scenario,

Figure 3: Performance comparison of Paragon and
ARQ, across two workload scenarios, against Paragon
without admission control, a heterogeneity-oblivious, an
interference-oblivious and a least-loaded scheduler.

where 178 applications arrive with 1 sec intervals. This
is an oversubscribed scenario, since after a few seconds
there are not enough resources to execute all applications
concurrently. For the large-scale experiments on EC2 we
examine an oversubscribed scenario where 7,500 work-
loads arrive with 1 sec intervals and an additional 1,000
applications arrive in burst after the first 3,750 workloads.

5. Evaluation
5.1. Small-scale Experiments

Performance: Fig. 3 shows the performance compari-
son between the different schedulers for the second and
third scenarios in the small-scale cluster. The differences
for the low-load scenario where resources are plentiful
are small. We focus on the differences between Paragon
without and with the use of ARQ. Applications are or-
dered from worst to best performing. For the scenario
with workload phases the applications that preserve their
QoS increase from 66% to 91%, and the average perfor-
mance improves to 99.3%. For the oversubscribed system,
while without ARQ only 64% of applications maintain
their QoS, with ARQ 88% of workloads preserve their
performance requirements. This shows that accounting
for resource quality at admission point drains the backlog
of queued workloads much faster.
Overheads: ARQ limits waiting time to preserve QoS.
Fig. 4 shows the breakdown of execution time for se-
lected applications in the oversubscribed scenario. Time
is divided in useful execution time, overheads from train-
ing and classification, overheads from the greedy server
selection [14] and overheads from queueing. mcf and
blackscholes do not have a bar for the least-loaded (LL)
scheduler because they did not complete successfully due
to memory exhaustion in the server. In all cases overheads
are very low and execution time for most workloads is
very close to one (optimal). The overheads from queueing
are less than 5% at all times. The cases where queueing
is high correspond to workloads that had to be diverged

4
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Figure 4: Overheads from classification, queueing and scheduling compared to useful execution time. Overall, the
overheads in Paragon with ARQ are less than 5% for most applications.

Figure 5: Required versus allocated core count for the
oversubscribed scenario in the small-scale system and
sensitivity of ARQ to the number of queues. Performance
and utilization are normalized to the values for 10 queues.

to queues of lower resource quality, in which case useful
execution time is also suboptimal.
Resource allocation: Fig. 5a shows the required versus
allocated core count for Paragon with and without ARQ
for the oversubscribed scenario. Once the system en-
ters the oversubscribed phase ([9000-17000]sec), Paragon
without ARQ allocates all available cores and then queues
applications, while Paragon with ARQ will only dispatch
applications if an appropriate server is freed. This drains
the backlog faster since, even though applications are
queued for longer, they run in higher quality platforms.
Server utilization: We also measure server utilization
before and after the use of ARQ. We focus on the over-
subscribed scenario where ARQ has the highest impact.
Paragon without ARQ improves utilization by 47% com-
pared to a LL scheduler. Adding ARQ slightly reduces
this improvement since applications are queued instead
of being dispatched immediately. Despite this, utilization
still improves by 45.5%. This means that the performance
benefits of ARQ do not incur an efficiency penalty.
Sensitivity to design parameters: Fig. 5b shows the
performance - utilization tradeoff for different numbers of
queues. Both metrics are normalized to the values for 10
queues. More queues result in fewer cases of workloads
being blocked behind demanding applications, therefore
they improve performance, but reduce the number of
servers in the corresponding pools, hurting utilization.
In contrast, few queues revert to the default scheduler
where many applications are scheduled in FIFO order,
increasing utilization and hurting performance. 10 queues
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Figure 6: Performance for the different schedulers in the
oversubscribed scenario on 1,000 EC2 machines.

achieve both high performance and efficiency.
Large-scale experiments: Fig. 6 compares the perfor-
mance of the different schedulers for the large-scale sce-
nario. While Paragon without ARQ only preserves QoS
for 61% of workloads, introducing admission control in-
creases that fraction to 83%. Additionally, it bounds
degradation to less than 10% for 99% of workloads. This
shows that the protocol scales well with the number of
servers and applications, while maintaining overheads
similar to the ones for the small-scale experiments.

6. Conclusions

We have presented ARQ, a QoS-aware admission con-
trol protocol for heterogeneous datacenters. ARQ divides
applications to classes based on their resource quality re-
quirements and queues them separately in a multi-class
network. ARQ is derived from validated queueing models,
and it improves system throughput by reducing applica-
tion waiting time, and diverging workloads to different
queues when necessary. In an oversubscribed scenario
with 8,500 applications on 1,000 servers, 99% of work-
loads experience less than 10% degradation compared to
79% of workloads without ARQ.
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Abstract

A large shared computing platform is usually divided in-
to several virtual clusters of fixed sizes, and each virtual
cluster is used by a team. A cluster scheduler dynami-
cally allocates physical servers to the virtual clusters de-
pending on their sizes and current job demands. In this
paper, we show that current cluster schedulers, which op-
timize for instantaneous fairness, cause performance in-
consistency among the virtual clusters: Virtual clusters
with similar loads see very different performance char-
acteristics.

We identify this problem by studying a production
trace obtained from a large cluster and performing a sim-
ulation study. Our results demonstrate that when using
an instantaneous-fairness scheduler, a large VC that con-
tributes more resources during underload periods can not
be properly rewarded during its overload periods. These
results suggest that not using resource sharing history is
the root cause for the performance inconsistency.

1 Introduction

Data-intensive computing is important for a large num-
ber of applications, including large-scale data mining,
data analytics, and bioinformatics. At the same time,
clusters of commodity servers are a major computing
platform, powering these large-scale data-intensive ap-
plications. Driven by this trend, researchers and prac-
titioners have been developing various cluster comput-
ing frameworks to simplify the programming of clusters
and to use cluster resources efficiently. Prominent ex-
amples include MapReduce [7], Hadoop [4], Dryad [10],
and Cosmos [6], among others [19, 15, 17].

A large cluster is normally shared among several team-
s within an organization, rather than being dedicated to
a single team. The benefits of sharing are compelling:
First, sharing allows teams to exploit a large number of
servers that would be infeasible without sharing. Sec-

ond, from the system point of view, sharing improves
resource utilization by multiplexing the resources among
several teams. For example, the web document ranking
team in large commercial search engine runs its ranking
algorithm (e.g., PageRank) daily for a massive number
of crawled documents, running on thousands of servers
and lasting for a few hours. Without sharing, the ranking
team would need to provision a large dedicated cluster,
which will be underutilized.

As a concrete example we consider Cosmos [6], which
is a production system that executes jobs similar to those
in MapReduce and Hadoop and is used extensively in-
side Microsoft. A Cosmos cluster can span over 100,000
servers. Organizational units within Microsoft pay for
a portion of the cluster, and in return receive a “virtual
cluster” (VC). For example, a cluster user (i.e., an organi-
zational unit) pays the cost of 1,000 servers and in return
receives a VC of 1,000 servers to run its jobs. Servers
in a VC are not dedicated, but are allocated dynamical-
ly whenever the VC has jobs. Furthermore, additional
idle servers (if available) can be allocated to a busy clus-
ter temporarily. Therefore, although the size of a user
VC is only 1,000 servers, its VC can use many more idle
servers from other idle VCs.

Sharing brings a key challenge: long term fairness.
We want to ensure fairness within a large enough time
window among VCs when they compete for resources.
Figure 1 shows the performance of 115 VCs in a large
Cosmos cluster during one month. Each point represents
one VC. The X-axis shows the load, which is equal to the
total work (server hours) of the VC in the month divided
by its total capacity (number of servers). In other words,
load factor = 1 is equivalent to having 100% utilization
for the VC during the month. The Y-axis shows the av-
erage stretch of jobs in the VC. Stretch is response time
normalized to job size and VC capacity (as defined lat-
er). The figure shows both the merits and challenges of
sharing. On the positive side, sharing allows some VC-
s to use more than their capacity. VCs with load factor
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Figure 1: The performance of 115 virtual clusters (VCs) mon-
itored from a large Cosmos system during one month (Sep.
2011).

> 1 benefit from sharing: In particular 10 VCs have load
factor > 3, which is equivalent to 300% utilization. Fur-
thermore, overall system utilization is increased; without
sharing many clusters would be underutilized. On the
negative side, the figure shows a major problem: Some
VCs with less than 50% utilization have long stretches
(with response times over a few hours), and in contrast
some VCs with very high load have short stretches (with
very short response times in minutes).

The figure shows long-term unfairness: Two VCs with
similar load can have dramatically different responsive-
ness, and a much more heavily loaded VC may even have
much better performance (smaller stretch) than a lightly-
loaded VC. This causes several problems to the system
operator. Performance inconsistency is the most promi-
nent problem. Teams may even double the size of their
VCs with little or no performance improvement. This
has direct financial implications since teams are charged
for owning servers, and teams paying the same amount
of money may have very different performance experi-
ences.

To address these challenges, we perform a trace-driven
study based on a production trace of a large Cosmos
cluster to reveal the causes of performance inconsistency
in real systems. A traditional cluster scheduler [6, 18]
uses mainly the current demand and capacity to make
scheduling decisions, which we call an instantaneous-
fairness scheduler. The well-known MaxMin fairness
scheduler [13] and Hadoop fair scheduler [3] are exam-
ples of an instantaneous-fairness scheduler. We find that
such schedulers do not exploit VC usage and sharing his-
tory, and therefore, they do not provide performance con-
sistency among VCs over time (or “long-term fairness”).

The contributions of this work are two-fold: (1) We i-
dentify the performance inconsistency problem in shared
computing clusters. (2) We build a simulator and use
a production trace from a large cluster to show how

instantaneous-fairness schedulers cause performance in-
consistency.

The remainder of the paper is organized as follows:
Section 2 elaborates the scheduling model. Section 3
describes our evaluation methodology including work-
load, simulation design and performance metric. Section
4 uses the simulation results to illustrate performance in-
consistency of instantaneous-fairness schedulers and its
cause. Section 5 discusses related work and Section 6
discusses the design challenge of the solution. Finally,
Section 7 presents our conclusions.

2 Scheduling Model

We explain how users interact with Cosmos and model
the system in terms of resource distribution and alloca-
tion.

Each Cosmos user (a user here is a team) owns a virtu-
al cluster (VC) that has a capacity in terms of the number
of servers purchased by the team. A user submits jobs to
its VC, and the demand of all jobs in a VC constitutes the
VC’s demand. Instead of allocating a fixed number of
servers to VCs, most systems [3, 18] allow VC server al-
location to fluctuate dynamically: When a VC demands
less than its capacity, the VC gets what it demands and
the idle servers are allocated to other VCs as additional
servers. In return, the VC may receive, during overload,
additional servers from under loaded VCs. In our model,
we use ai, ci and di to denote the allocation, capacity and
demand of VCi at time t. We focus on the system sched-
uler that allocates servers to VCs instead of the VC-level
scheduler that schedules jobs within a VC. We assume
that the jobs are malleable: the number of servers allo-
cated to a job can be adjusted during the job’s execution;
Cosmos and MapReduce jobs belong to this category.

3 Experimental Methodology

We evaluate performance consistency using trace-driven
simulations with workload from a commercial data cen-
ter. We use the well-known MaxMin scheduler [13] for
instantaneous fairness. Notice that the widely adopt-
ed Hadoop Fair scheduler [3] is also an example of a
MaxMin scheduler.

3.1 Workload
Cosmos [6] is a large production data-intensive compu-
tation platform system similar to MapReduce systems.
Cosmos clusters contain tens of thousands of servers for
hundreds of users (VCs). We collect a one-month trace
(Sep 2011) of a commercial cluster containing about
50,000 servers shared by 115 users. We observe that job
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distribution does not follow the usual diurnal cycle, as the
system serves teams from all over the world. This fac-
t brings more challenges because the workload behavior
and size of jobs are more diverse.

To reproduce the diversity of workload behavior, we
choose six VCs (two under-utilized, three fully-utilized
and one over-utilized) with different load characteristics
to assess the performance inconsistency. Figure 2 de-
picts the daily aggregated load of the six VCs as well
as the daily load of each VCs. The figure shows that it is
common that one VC is over-demanding while another is
under-demanding. Under such circumstances, sharing is
a major factor that affects VC performance. Scheduling
resources to achieve performance consistency is critical
in such a sharing system.
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Figure 2: The load fluctuation of six VCs in the one-month
trace. The Y-axis is the amount of work of the day. One ma-
chine hour denotes the work done by one machine in one hour.

3.2 Simulation design
Trace-driven simulator. We build a trace-driven simu-
lator using desmoj [1], which is a discrete-event library.
Our simulator replays a trace from a trace file containing
job information, including the submission time, job size,
and parallelism. The output of the simulator includes de-
tailed execution information for each job as well as gen-
eral statistical information such as mean response time.

The total number of machines simulated is 4,000,
which is a sum of the capacity of the six VCs plus ad-
ditional 1,250 machines owned by Cosmos system. Cos-
mos has additional machines for providing fault toler-
ance and for running system maintenance jobs; these ma-
chines are available to the VCs when they are not running
system jobs.

3.3 Performance metric
We measure the performance of each job using the
stretch metric, which indicates normalized responsive-
ness of the job. Stretch is defined as the execution time
divided by the ideal execution time of the job. To com-
pute the ideal execution time, we divide the job size (in
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Figure 3: VC stretch with different loads under produc-
tion workload.

terms of server hours) by its ideal resource allocation —
when the job takes the entire VC capacity. We choose
ideal resource allocation as the capacity of its VC based
on two considerations. On one hand, if idea resource
allocation is smaller than the VC capacity, then the VC
may require at least two concurrently running jobs to ful-
ly use its resources. On the other hand, if it is higher than
the VC capacity, the VC will always over-demand its ca-
pacity (even with only one running job), which obviates
sharing opportunities. Therefore, the definition of job
stretch is as follows:

job stretch=
real execution time
ideal execution time

=
real execution time

job size/VC capacity
.

Notice that job stretch is a normalized performance met-
ric and thus overcomes the shortcomings of real-valued
metrics such as response time. As jobs have diverse
sizes, comparing the response time of jobs from two VC-
s may not be meaningful. Stretch eliminates this draw-
back. A larger stretch of a job indicates the job performs
worse. In particular, a job with stretch of 1 means that
the job is performing the same as the case that the job
owns the entire VC by itself. The VC stretch is the mean
stretch of all its containing jobs. In later experiments, we
distinguish between VC stretch and job stretch.

Stretch can be computed once the job has finished, as
job size can be obtained only after job completion.

4 Experimental Results

This section illustrates performance inconsistency and its
cause based on simulation results driven by Cosmos trace
of a commercial data center.

Figure 3 shows the results when simulated with the
MaxMin scheduler. We want VCs with similar load to
have similar performance, and we call this property per-
formance consistency. However, as shown in the results,
three fully-utilized VCs (VCc, VCd and VCe) with dif-
ferent burstiness patterns observe different performance.
In the meantime, the over-utilized VC (VCf ) has a better

3
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performance than two fully-utilized VCs. These results
show that instantaneous-fairness schedulers do not main-
tain performance consistency among VCs with similar
load; They fail to provide long-term fairness for practi-
cal workloads. Furthermore, to reveal the cause of this
performance inconsistency, we choose two fully-utilized
VCs with different performance and examine their load
and performance over time.
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(a) The load fluctuation.
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Figure 4: Daily load and performance of two VCs with similar
overall load.

Figure 4 inspects the daily load fluctuation and perfor-
mance for the two VCs (VCc and VCe). The two VCs
have similar load but different capacities as well as load
characteristics. VCc is a large VC with a capacity of 900
servers while VCe is smaller with a capacity of 350. Al-
though both VCs are fully utilized (load = 1), their loads
fluctuate daily, as shown in Figure 4(a). As for the per-
formance, both VCs perform well (stretch = 1) during
underload days (load < 1). But for overload days, VCe
can still perform well while the performance of VCc is
largely degraded, which demonstrates an unfair situation.

The load-performance behavior seen in Figure 4 is
closely related to the scheduling algorithm. A tradition-
al instantaneous scheduler, such as the MaxMin Sched-
uler [13] and the Hadoop Fair Scheduler [3, 18], typically
maximizes the minimum allocation for all VCs at a given
time point. More specifically, an instantaneous scheduler
has the following four properties:

1) When a VC demands less than its capacity, the in-

stantaneous scheduler always fully satisfies the VC de-
mands. So in Figure 4, as long as the daily load of VCc
or VCe is smaller than 1, its stretch is equal to 1. The
free servers from these underloaded VCs will then be as-
signed to other over-demanding VCs if there are any.

2) When a VC is over-demanding, it competes with
other over-demanding VCs for free servers contributed
by underloaded VCs. So these VCs may not have a
stretch of one. This explains why VCc’s performance de-
grades for overload days.

3) When competing for additional free servers, smaller
VCs have a higher probability to be fully satisfied than
larger ones with similar load. This is because when the
load is the same, the exceeding demand is proportional
to VC capacity. So to maximize the minimum allocation
for all VCs, an instantaneous scheduler has to prioritize
satisfying less demanding VCs, which makes it harder
for large VCs to obtain extra allocation.

4) The scheduling decision is only made at a given
time point. So even if a large VC contributes more re-
sources during underload periods, it has to compete e-
qually with other VCs during overload periods. As a
result, a bursty large VC may fail to receive enough re-
source during busy hours regardless how many resources
it has contributed earlier.

This case study demonstrates how an instantaneous
scheduler casues long-term unfairness. A large VC
that contributes more resources during underload periods
cannot be properly rewarded during its overload periods.
And this situation is caused by the nature of instanta-
neous fairness, where the sharing history is not consid-
ered for scheduling decision.

5 Related Work

The Hadoop Fair Scheduler is widely adopted in multi-
user Hadoop clusters [18, 3]. It divides the Hadoop clus-
ter into pools and assigns a pool to each user. The sched-
uler computes the fair share of each pool according to
instantaneous information such as the weight, minimum
share and demands of pools, without considering the re-
source usage history. Hadoop Fair Scheduler is an exam-
ple of MaxMin Fair Scheduler used in datacenters; other
schedulers in this category, including the Hadoop Capac-
ity Scheduler [2], and Quincy [11], consider fairness at
the moment of allocation rather than cluster usage histo-
ry. The Dominant Resource Fair Scheduler [8, 9] sched-
ules multiple types of resources to improve fairness and
utilization. When there is only one type of resources,
it performs exactly as a MaxMin fair scheduler. Varia-
tions of MaxMin scheduler are also used for scheduling
shared-memory multiprocessor systems [14, 5]. All of
the above prior work do not consider usage history, and

4



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 301

therefore, they cannot guarantee performance consisten-
cy, which is the focus of this work.

6 Discussion

We show in our experiment that not considering usage
history serves as the root cause of performance inconsis-
tency. So here we first present several existing history-
based schedulers that can be potentially useful for our
scenario. Then we explain the particular requirement of
such a scheduler in large-scale data processing systems
such as Cosmos. The discussion focuses on designing a
practical history-based scheduler for similar systems.

Deficit Round-Robin (DRR) scheduler [16] proposes
a technique that allows each flow passing through a net-
work device to have a fair share of network resources. As
packet size may differ, simple round robin algorithm may
not be fair; DRR uses a deficit counter as a representa-
tion of usage history to revise the round robin algorithm
to achieve long-term fairness. The Xen credit scheduler
[12] applies similar mechanisms to allow multiple virtual
machines to fairly share CPU resources.

Both schedulers regulate user’s future resource allo-
cation using a counting scheme that measures the pre-
vious usage. The counting scheme ensures that a user
that overuses its fair share in previous time slot will be
charged evenly (or even more) in the future. This guar-
antees long-term fairness, i.e., over-demanding users will
not hurt other users. However, from the view of system
operators, promoting overall system utilization is as im-
portant as maintaining fairness among users. We argue
that using existing strict history-based schedulers will
harm the overall utilization to a certain extent. For ex-
ample, in order to promote overall utilization, the system
operators should encourage users to use the system when
it is under-loaded. However, by using existing scheduler-
s, over-demanding users will always be penalized in the
future regardless of how under-loaded the overall system
is. As a result, these schedulers fail to provide incentive
for users to use the system during idle periods, which
in turn reduces the overall utilization. Thus balancing
the system utilization and fairness is an important design
challenge for long-term fair schedulers in large-scale da-
ta processing systems.

7 Conclusion

A large computing cluster is normally shared among
users within an organization to have high system utiliza-
tion and to offer more computing resources. However,
sharing comes with an important fairness problem, re-
sulting in performance inconsistency among users. We
identify this problem by conducting a simulation study

using a production trace from a large cluster. The result-
s show that traditional cluster schedulers that optimize
for instantaneous fairness cannot guarantee performance
consistency in the long term. The main reason for this
is that instantaneous-fairness schedulers do not consider
the sharing history of users. As a result, users with large
and bursty workloads do not gain credits for contributing
to the system during idle periods. In contrast, they may
observe bad performance during busy periods. Our study
demonstrates that instantaneous-fairness schedulers may
incur performance inconsistency in long run so sharing
history should be utilized to provide a better scheduling
decision.
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ABSTRACT
For geo-distributed datacenters, lately a workload manage-
ment approach that routes user requests to locations with
cheaper and cleaner electricity has been shown promising in
reducing the energy cost. We consider two key aspects that
have not been explored before. First, the energy-gobbling
cooling systems are often modeled with a location-independent
efficiency factor. Yet, through empirical studies, we find that
their actual energy efficiency depends directly on the ambi-
ent temperature, which exhibits a significant degree of ge-
ographical diversity. Temperature diversity can be used to
reduce the overall cooling energy overhead. Second, dat-
acenters run not only interactive workloads driven by user
requests, but also delay tolerant batch workloads at the back-
end. The elastic nature of batch workloads can be exploited
to further reduce the energy consumption.

In this paper, we propose to make workload management
for geo-distributed datacenters temperature aware. We for-
mulate the problem as a joint optimization of request routing
for interactive workloads and capacity allocation for batch
workloads. We develop a distributed algorithm based on an
m-block alternating direction method of multipliers (ADMM)
algorithm that extends the classical 2-block algorithm. We
prove the convergence of our algorithm under general as-
sumptions. Through trace-driven simulations with real-world
electricity prices, historical temperature data, and an empir-
ical cooling efficiency model, we find that our approach is
consistently capable of delivering a 15%–20% cooling en-
ergy reduction, and a 5%–20% overall cost reduction for
geo-distributed clouds.

1. INTRODUCTION
Geo-distributed datacenters operated by organizations such

as Google and Amazon are the powerhouses behind many
Internet-scale services. They are deployed across the Inter-
net to provide better latency and redundancy. These datacen-
ters run hundreds of thousands of servers, consume megawatts
of power with massive carbon footprint, and incur electricity
bills of millions of dollars [17,34]. Thus, the topic of reduc-
ing their energy consumption and cost has received signifi-
cant attention [7, 11–13, 15, 17, 19, 26–29, 34, 35, 40].

Energy consumption of individual datacenters can be re-

duced with more energy efficient hardware and integrated
thermal management [7, 11, 15, 28, 40]. Recently, important
progress has been made on a new workload management ap-
proach that instead focuses on the overall energy cost of geo-
distributed datacenters. It exploits the geographical diversity
of electricity prices by optimizing the request routing algo-
rithm to route user requests to locations with cheaper and
cleaner electricity [12, 17, 18, 26, 27, 29, 34, 35].

In this paper, we consider two key aspects of geo-distributed
datacenters that have not been explored in the literature.

First, cooling systems, which consume 30% to 50% of
the total energy [33, 40], are often modeled with a constant
and location-independent energy efficiency factor in exist-
ing efforts. This tends to be an over-simplification in reality.
Through our study of a state-of-the-art production cooling
system (Sec. 2), we find that temperature has direct and pro-
found impact on cooling energy efficiency. This is especially
true with outside air cooling technology, which has seen in-
creasing adoption in mission-critical datacenters [1–3]. As
we will show, its partial PUE (power usage effectiveness),
defined as the sum of server power and cooling overhead
divided by server power, varies from 1.30 to 1.05 when tem-
perature drops from 35 ◦C (90 ◦F) to -3.9 ◦C (25 ◦F).

Through an extensive empirical analysis of daily and hourly
climate data for 13 Google datacenters, we further find that
temperature varies significantly across both time and loca-
tion, which is intuitive to understand. These observations
suggest that datacenters at different locations have distinct
and time-varying cooling energy efficiency. This establishes
a strong case for making workload management tempera-
ture aware, where such temperature diversity can be used
along with price diversity in making request routing deci-
sions to reduce the overall cooling energy overhead for geo-
distributed datacenters.

Second, energy consumption comes not only from inter-
active workloads driven by user requests, but also from delay
tolerant batch workloads, such as indexing and data mining
jobs, that run at the back-end. Existing efforts focus mainly
on request routing to minimize the energy cost of interactive
workloads, which is only a part of the entire picture. Such a
mixed nature of datacenter workloads, verified by measure-
ment studies [36], provides more opportunities to utilize the
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cost diversity of energy. The key observation is that batch
workloads are elastic to resource allocations, whereas in-
teractive workloads are highly sensitive to latency and have
more profound impact on revenue [25]. Thus at times when
one location is comparatively cost efficient (in terms of dol-
lar per unit energy), we can increase the capacity for inter-
active workloads by reducing the resources for batch jobs.
More requests can then be routed to and processed at this lo-
cation, and the cost saving can be more substantial. We thus
advocate a holistic workload management approach, where
capacity allocation between interactive and batch workloads
is dynamically optimized with request routing. Dynamic ca-
pacity allocation is also technically feasible because jobs run
on highly scalable systems such as MapReduce.

Towards temperature aware workload management, we
propose a general framework to capture the important trade-
offs involved (Sec. 3). We model both energy cost and utility
loss, which correspond to performance-related revenue re-
duction. We develop an empirical cooling efficiency model
based on a production system. The problem is formulated
as a joint optimization of request routing and capacity al-
location. The technical challenge is then to develop a dis-
tributed algorithm to solve the large-scale optimization with
tens of millions of variables for a production geo-distributed
cloud. Dual decomposition with subgradient methods are
often used to develop distributed optimization algorithms.
However they require delicate adjustments of step sizes that
make convergence difficult to achieve for large-scale prob-
lems. The method of multipliers [22] achieves fast conver-
gence, at the cost of tight coupling among variables.

We rely on the alternating direction method of multipli-
ers (ADMM), a simple yet powerful algorithm that blends
the advantages of the two approaches. ADMM recently has
found practical use in many large-scale distributed convex
optimization problems in machine learning and data min-
ing [10]. It works for problems whose objective and vari-
ables can be divided into two disjoint parts. It alternatively
optimizes part of the objective with one block of variables to
iteratively reach the optimum. Our formulation has three
blocks of variables, yet little is known about the conver-
gence of m-block (m ≥ 3) ADMM algorithms, with two
exceptions [20, 23] very recently. [20] establishes the con-
vergence of m-block ADMM for strongly convex objective
functions, but not linear convergence; [23] shows the linear
convergence of m-block ADMM under the assumption that
the relation matrix is full column rank, which is, however,
not the case in our formation. This motivates us to refine the
framework in [23] so that it can be applied to our setup.

In particular, in Sec. 4 we show that by replacing the full-
rank assumption with some mild assumptions on the objec-
tive functions, we are not only able to obtain the same con-
vergence and rate of convergence result, but also to simplify
the proof of [23]. The m-block ADMM algorithm is general
and can be applied in other problem domains. For our case,
we further develop a distributed algorithm in Sec. 5, which

is amenable to a parallel implementation in datacenters.
We conduct extensive trace-driven simulations with real-

world electricity prices, historical temperature data, and an
empirical cooling efficiency model to realistically assess the
potential of our approach (Sec. 6). We find that tempera-
ture aware workload management is consistently able to de-
liver a 15%–20% cooling energy reduction and a 5%–20%
overall cost reduction for geo-distributed datacenters. The
distributed ADMM algorithm converges quickly within 70
iterations, while a dual decomposition approach with sub-
gradient methods fails to converge within 200 iterations. We
thus believe our algorithm is practical for large-scale real-
world problems.

2. BACKGROUND AND MOTIVATION
Before we make a case for temperature aware workload

management, it is necessary to introduce some background
of datacenter cooling, and empirically assess the geographi-
cal diversity of temperature.

2.1 Datacenter Cooling
Datacenter cooling is provided by the computer room air

conditioners (CRACs) placed on the raised floor of the fa-
cility. Hot air exhausted from server racks travels through a
cooling coil in the CRACs. Heat is often extracted by chilled
water in the cooling coil, and the returned hot water is cooled
through mechanical refrigeration cycles in an outside chiller
plant continuously. The compressor of a chiller consumes
a massive amount of energy, and accounts for the majority
of the overall cooling cost [40]. The result is an energy-
gobbling cooling system that typically consumes a signifi-
cant portion (⇠30%) of the total datacenter power [40].

2.2 Outside Air Cooling
To improve energy efficiency, various so-called free cool-

ing technologies that operate without mechanical chillers have
recently been adopted. In this paper, we focus on a more
economically viable technology called outside air cooling.
It uses an air-side economizer to direct cold outside air into
the datacenter to cool down servers. The hot exhaust air is
simply rejected out instead of being cooled and recirculated.
The advantage of outside air cooling can be significant: In-
tel ran a 10-month experiment using 900 blade servers, and
reported that 67% of the cooling energy can be saved with
only slightly increased hardware failure rates [24]. Compa-
nies like Google [1], Facebook [2], and HP [3] have been
operating their datacenters with up to 100% outside air cool-
ing, which brings million dollars of savings annually.

The energy efficiency of outside air cooling heavily de-
pends on ambient temperature among other factors. When
temperature is lower, less air is needed for heat exchange,
and the air handler fan speed can be reduced to save energy.
Thus, a CRAC with an air-side economizer usually operates
in three modes. When ambient temperature is high, outside
air cooling cannot be used, and the CRAC falls back to me-
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chanical cooling with chillers. When temperature falls be-
low a certain threshold, outside air cooling is utilized to pro-
vide partial or entire cooling capacity. When temperature is
too low, outside air is mixed with exhaust air to maintain a
suitable supply air temperature. In this mode, CRAC energy
efficiency cannot be further improved since fans need to op-
erate at a minimum speed to maintain airflow. Table 1 shows
the empirical COP1 and partial PUE (pPUE)2 data of a state-
of-the-art CRAC with an air-side economizer. Clearly, as the
outdoor temperature drops, the CRAC switches the operat-
ing mode to use more outside air cooling. As a result the
COP improves six-fold from 3.3 to 19.5, and the pPUE de-
creases dramatically from 1.30 to 1.05. Due to the sheer
amount of energy a datacenter draws, the numbers imply
huge monetary savings for the energy bill.

Outdoor ambient Cooling mode COP pPUE
35C(90F) Mechanical 3.3 1.30

21.1C(70F) Mechanical 4.7 1.21
15.6C(60F) Mixed 5.9 1.17
10C(50F) Outside air 10.4 1.1

-3.9C(25F) Outside air 19.5 1.05

Table 1: Efficiency of Emerson’s DSE
TM

cooling system
with an EconoPhase air-side economizer [14]. Return air
is set at 29.4◦C(85◦F).

With the increasing use of outside air cooling, this finding
motivates our proposal to make workload management tem-
perature aware. Intuitively, datacenters at colder and thus
more energy efficient locations should be better utilized to
reduce the overall energy consumption and cost simultane-
ously. Our idea also applies to datacenters using mechan-
ical cooling, because contrary to previous work’s assump-
tion [28], as shown in Table 1, the chiller energy efficiency
also depends on outside temperature, albeit milder.

2.3 An Empirical Climate Study
Our idea hinges upon a key assumption: Temperatures are

diverse and not well correlated at different locations. In this
section, we make our case concrete by supporting it with an
empirical analysis of historical climate data.

We use Google’s datacenter locations for our study, as
they represent a global production infrastructure and the lo-
cation information is publicly available [4]. Google has 6
datacenters in the U.S., 1 in South America, 3 in Europe,
and 3 in Asia. We acquire historical temperature data from
various data repositories of the National Climate Data Cen-
ter [6] for all 13 locations, covering the entire one-year pe-
riod of 2011.

It is useful to first understand the climate profiles at in-
dividual locations. Figure 1 plots the daily average temper-
atures for three select locations in North America, Europe,
1COP, coefficient of performance, is defined for a cooling device
as the ratio between cooling capacity and power.
2pPUE is defined as the sum of cooling capacity and cooling power
divided by cooling capacity. Nearly all the power delivered to
servers translates to heat, which matches the CRAC cooling ca-
pacity.
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Figure 1: Daily average temperature at three Google dat-
acenter locations. Data from the Global Daily Weather
Data of the National Climate Data Center (NCDC) [6].
Time is in UTC.

and South America, respectively. Geographical diversity ex-
ists despite the clear seasonal pattern shared among all lo-
cations. For example, Finland appears to be especially fa-
vorable for cooling during winter months. Diversity is more
salient for locations in different hemispheres (e.g. Chile).
We also observe a significant amount of day-to-day volatil-
ity, suggesting that the availability and capability of outside
air cooling constantly varies across regions, and there is no
single location that is always cooling efficient.

We then examine short-term temperature volatility. As
shown in Figure 2, the hourly variations are more dramatic
and highly correlated with time-of-day, which is intuitive to
understand. Further, the highs and lows do not occur at the
same time for different regions due to time differences.

0

10

20

Te
m

p.
 (C

)

 

 

Council bluffs, IA

0

10

20

Te
m

p.
 (C

)

 

 

Dublin, Ireland

Apr 16 Apr 17 Apr 18 Apr 19 Apr 20 Apr 21 Apr 22
10

20

30

Te
m

p.
 (C

)

 

 

Tseung Kwan, Hong Kong

Figure 2: Hourly temperature variations at three Google
datacenter locations. Data from the Hourly Global Sur-
face Data of NCDC [6]. Time is in UTC.

Our approach would fail if hourly temperatures are well
correlated at different locations. However, we find that this
is not the case for datacenters that are usually far apart from
each other. The pairwise temperature correlation coefficients
for all 13 locations are mostly in between 0.6 and -0.6. Due
to space limit, details are omitted and can be found in Sec. 2.3
of our technical report [39].

The analysis above reveals that for globally deployed dat-
acenters, local temperature at individual locations exhibits
both time and geographical diversity. Therefore, a carefully
designed workload management scheme is critically needed,
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in order to dynamically adjust datacenter operations to the
ambient conditions, and to save the overall energy costs.

3. MODEL
In this section, we introduce our model first and then for-

mulate the temperature aware workload management prob-
lem of joint request routing and capacity allocation.

3.1 System Model
We consider a discrete time model where the length of

a time slot matches the time scale at which request routing
and capacity allocation decisions are made, e.g., hourly. The
joint optimization is periodically solved at each time slot.
We therefore focus only on a single time slot.

We consider a provider that runs a set of datacenters J
in distinct geographical regions. Each datacenter j 2 J
has a fixed capacity C

j

in terms of the number of servers.
To model datacenter operating costs, we consider both the
energy cost and utility loss of request routing and capacity
allocation, which are detailed below.

3.2 Energy Cost and Cooling Efficiency
We focus on servers and cooling system in our energy cost

model. Other energy consumers, such as network switches,
power distribution systems, etc., have constant power draw
independent of workloads [15] and are not relevant.

For servers, we adopt the empirical model from [15] that
calculates the individual server power consumption as an
affine function of CPU utilization, Pidle + (Ppeak − Pidle)u.
Pidle is the server power when idle, Ppeak is the server power
when fully utilized, and u is the CPU load. This model is
especially accurate for calculating the aggregated power of a
large number of servers [15]. Thus, assuming workloads are
perfectly dispatched and servers have a uniform utilization
as a result, the server power of datacenter j can be modeled
as C

j

Pidle + (Ppeak − Pidle)Wj

, where W denotes the total
workload in terms of the number of servers required.

For the cooling system, we take an empirical approach
based on production CRACs to model its energy consump-
tion. We choose not to rely on simplifying models for the in-
dividual components of a CRAC and their interactions [40],
because of the difficulty involved in and the inaccuracy re-
sulted from the process, especially for hybrid CRACs with
both outside air and mechanical cooling. Therefore, we study
CRACs as a black box, with outside temperature as the in-
put, and its overall energy efficiency as the output.

Specifically, we use partial PUE (pPUE) to measure the
CRAC energy efficiency. As in Sec. 2.2, pPUE is defined as

pPUE =
Server power + Cooling power

Server power
.

A smaller value indicates a more energy efficient system. We
apply regression techniques to the empirical pPUE data of
the Emerson CRAC [14] introduced in Table 1. We find that
the best fitting model describes pPUE as a quadratic function
of the outside temperature as plotted below.
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Figure 3: Model fitting of pPUE as a function of the out-
side temperature T for Emerson’s DSE

TM
CRAC [14].

Small circles denote empirical data points.

The model can be calibrated given more data from mea-
surements. For the purpose of this paper, our approach yields
a tractable model that captures the overall CRAC efficiency
for the entire spectrum of its operating modes. Our model is
also useful for future studies on datacenter cooling energy.

Given the outside temperature T

j

, the total datacenter en-
ergy as a function of the workload W

j

can be expressed as

E

j

(W
j

) = (C
j

Pidle + (Ppeak − Pidle)Wj

) · pPUE(T
j

). (1)

Here we implicitly assume that T
j

is known a priori and do
not include it as the function variable. This is valid since
short-term weather forecast is fairly accurate and accessible.

A datacenter’s electricity price is denoted as P
j

. The price
may additionally incorporate the environmental cost of gen-
erating electricity [17], which we do not consider here. In
reality, electricity can be purchased from local day-ahead or
hour-ahead forward markets at a pre-determined price [34].
Thus, we assume that P

j

is known a priori and remains fixed
for the duration of a time slot. The total energy cost, includ-
ing server and cooling power, is simply P

j

E

j

(W
j

).

3.3 Utility Loss
Request routing. The concept of utility loss captures the

lost revenue due to the user-perceived latency for request
routing decisions. Latency is arguably the most important
performance metric for most interactive services. A small
increase in the user-perceived latency can cause substantial
revenue loss for the provider [25]. We focus on the end-to-
end propagation latency, which largely accounts for the user-
perceived latency compared to other factors such as request
processing times at datacenters [31]. The provider obtains
the propagation latency L

ij

between user i and datacenter j
through active measurements [30] or other means.

We use ↵

ij

to denote the volume of requests routed to
datacenter j from user i 2 I, and D

i

to denote the demand of
each user that can be predicted using machine learning [28,
32]. Here, a user is an aggregated group of customers from a
common geographical region, which may be identified by a
unique IP prefix. The lost revenue from user i then depends
on the average propagation latency

P
j

↵

ij

L

ij

/D

i

through
a generic delay utility loss function U

i

. U
i

can take various
forms depending on the interactive service. Our algorithm
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and proof work for general utility loss functions as long as
U

i

is increasing, differentiable, and convex.
As a case study, here we use a quadratic function to model

user’s increased tendency to leave the service with increased
latency.

U

i

(↵
i

) = qD

i

0

@
X

j2J
↵

ij

L

ij

/D

i

1

A
2

, (2)

where q is the delay price that translates latency to monetary
terms, and ↵

i

= (↵
i1, . . . ,↵

i|J |)
T . Utility loss is clearly

zero when latency is zero between user and datacenter.
Capacity allocation. We denote the utility loss of allo-

cating β

j

servers for batch workloads as a differentiable, de-
creasing, and convex function V

j

(β
j

), since allocating more
resources increases the performance of batch jobs. Unlike
interactive services, batch jobs are delay tolerant and re-
source elastic. Utility functions such as the log function are
often used to capture such elasticity. However, utility func-
tions model the benefit of resource allocation. To model the
utility loss of resource allocation, since the loss is zero when
the capacity is fully allocated to batch jobs, an intuitive def-
inition can be of the following form:

V

j

(β
j

) = r(logC
j

− log β
j

), (3)

where r is the utility price that converts the loss to monetary
terms. (3) captures the intuition that increasing resources
results in a decreasing marginal reduction of utility loss.

3.4 Problem Formulation
We now formulate the temperature aware workload man-

agement problem. For a given request routing decision ↵,
the total cost associated with interactive workloads can be
written as

X

j2J
E

j

✓X

i2I
↵

ij

◆
P

j

+
X

i2I
U

i

(↵
i

) . (4)

For a given capacity allocation decision β, the total cost as-
sociated with batch workloads is:

X

j2J
E

j

(β
j

)P
j

+
X

j2J
V

j

(β
j

). (5)

Putting everything together, the optimization can be formu-
lated as:

minimize (4) + (5) (6)

subject to: 8i :
X

j2J
↵

ij

= D

i

, (7)

8j :
X

i2I
↵

ij

 C

j

− β

j

, (8)

↵,β ⌫ 0, (9)

variables: ↵ 2 R|I|⇥|J |
,β 2 R|J |

.

(6) is the objective function that jointly considers the cost of
request routing and capacity allocation. (7) is the workload

conservation constraint to ensure the user demand is satis-
fied. (8) is the datacenter capacity constraint, and (9) is the
nonnegativity constraint.

3.5 Transforming to the ADMM Form
Problem (6) is a large-scale convex optimization prob-

lem. The number of users, i.e., unique IP prefixes, is typ-
ically O(105)–O(106) for production systems. Hence, our
problem can have tens of millions of variables, and millions
of constraints. In such a setting, a distributed algorithm is
preferable to fully utilize the computing resources of data-
centers. Traditionally, dual decomposition with subgradient
methods [9] are often used to develop distributed optimiza-
tion algorithms. However, they suffer from the curse of step
sizes. For the final output to be close to the optimum, we
need to strategically pick the step size at each iteration, lead-
ing to well-known problems of slow convergence and per-
formance oscillation with large-scale problems.

Alternating direction method of multipliers is a simple yet
powerful algorithm that is able to overcome the drawbacks
of dual decomposition methods, and is well suited to large-
scale distributed convex optimization. Though developed in
the 1970s [8], ADMM has recently received renewed inter-
est, and found practical use in many large-scale distributed
convex optimization problems in statistics, machine learn-
ing, etc. [10]. Before illustrating our new convergence proof
and distributed algorithm that extend the classical frame-
work, we first introduce the basics of ADMM, followed by
a transformation of (6) to the ADMM form.

ADMM solves problems in the form

min f1(x1) + f2(x2) (10)
s.t. A1x1 +A2x2 = b,

x1 2 C1, x2 2 C2,

with variables x

`

2 Rn` , where A

`

2 Rp⇥n` , b 2 Rp,
f

`

’s are convex functions, and C

`

’s are non-empty polyhe-
dral sets. Thus, the objective function is separable over two
sets of variables, which are coupled through an equality con-
straint.

We can form the augmented Lagrangian [22] by introduc-
ing an extra L-2 norm term kA1x1 + A2x2 − bk22 to the
objective:

L

⇢

(x1, x2; y) = f1(x1)+f2(x2)+y

T (A1x1+A2x2−b)

+ (⇢/2)kA1x1 +A2x2 − bk22.

Here, ⇢ > 0 is the penalty parameter (L0 is the standard
Lagrangian for the problem). The benefits of introducing
the penalty term are improved numerical stability and faster
convergence in practice [10].

Our formulation (6) has a separable objective function due
to the joint nature of the workload management problem.
However, the request routing decision ↵ and capacity alloca-
tion decision β are coupled by an inequality constraint rather
than an equality constraint as in ADMM problems. Thus we

5
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introduce a slack variable γ 2 R|J |, and transform (6) to the
following

minimize (4) + (5) + IR|J |
+

(γ) (11)

subject to: (7), (9),

8j :
X

i

↵

ij

+ β

j

+ γ

j

= C

j

, (12)

variables: ↵ 2 R|I|⇥|J |
,β 2 R|J |

, γ 2 R|J |
.

Here, IR|J |
+

(γ) is an indicator function defined as

IR|J |
+

(γ) =

⇢
0, γ ⌫ 0,

+1, otherwise. (13)

The new formulation (11) is equivalent to (6), since for
any feasible ↵ and β, γ ⌫ 0 holds, and the indicator func-
tion in the objective values to zero. Clearly, it is in the
ADMM form, with a key difference that it has three sets
of variables in the objective function and equality constraint
(12). The convergence of the generalized m-block ADMM,
where m ≥ 3, has long remained an open question. Though
it seems natural to directly extend the classical 2-block al-
gorithm to the m-block case, such an algorithm may not
converge unless some additional back-substitution step is
taken [21]. Recently, some progresses have been made by
[20, 23] that prove the convergence of m-block ADMM for
strongly convex objective functions and the linear conver-
gence of m-block ADMM under a full-column-rank relation
matrix. However, the relation matrix in our setup is not full
column rank. Thus, we need a new proof for the linear con-
vergence under a general relation matrix, together with a dis-
tributed algorithm inspired by the proof.

4. THEORY
This section first introduces a generalized m-block ADMM

algorithm inspired by [20, 23]. Then a new convergence
proof is presented, which replaces the full column rank as-
sumption with some mild assumptions on the objective func-
tion, and further simplifies the proof in [23]. The notations
and discussions in this section are made intentionally inde-
pendent of the other parts of the paper in order to present the
proof in a mathematically general way.

4.1 Algorithm
We consider a convex optimization problem in the form

min

mX

i=1

f

i

(x
i

) (14)

s.t.
mX

i=1

A

i

x

i

= b

with variables x
i

2 Rni (i = 1, . . . ,m), where f

i

: Rni !
R (i = 1, . . . ,m) are closed proper convex functions; A

i

2
Rl⇥ni (i = 1, . . . ,m) are given matrices; and b 2 Rl is a
given vector.

We form the augmented Lagrangian

L

⇢

(x1, . . . , xm

; y) =

mX

i=1

f

i

(x
i

) + y

T (

mX

i=1

A

i

x

i

− b)

+ (⇢/2)k
mX

i=1

A

i

x

i

− bk22. (15)

As in [23], a generalized ADMM algorithm has the follow-
ing:

x

k+1
i

= argmin
xi

L

⇢

(xk+1
1 , . . . , x

k+1
i−1 , xi

, x

k

i+1, . . . , x
k

m

; yk),

i = 1, . . . ,m,

y

k+1 = y

k + %(

mX

i=1

A

i

x

k+1
i

− b),

where % > 0 is the step size for the dual update. Note that
when m = 2 and the step size % equals to the penalty pa-
rameter ⇢, the above algorithm is reduced to the standard
ADMM algorithm presented in [8].

4.2 Assumptions
We present two assumptions on the objective functions,

based on which we are able to show the convergence of the
generalized m-block ADMM algorithm.

ASSUMPTION 1. The objective functions f
i

(i = 1, . . . ,m)
are strongly convex.

Note that strong convexity is quite reasonable in engineer-
ing practice. This is because a convex function f(x) can
be always well-approximated by a strongly convex function
f̄(x). For instance, if we choose f̄(x) = f(x) + ✏kxk22 for
some sufficiently small ✏ > 0, then f̄(x) is strongly convex.

ASSUMPTION 2. The gradients rf

i

(i = 1, . . . ,m) are
Lipschitz continuous.

Assumption 2 says that, for each i, there exists some con-
stant 

i

> 0 such that for all x1, x2 2 Rni ,

krf

i

(x1)−rf

i

(x2)k2  

i

kx1 − x2k2,

which is again reasonable in practice, since 

i

can be made
sufficiently large.

4.3 Convergence
In this section, we outline the proof for the convergence

of the generalized ADMM algorithm. The detailed proof can
be found in Sec. 4.3 of our technical report [39].

For convenience, we write

x =

0

B@
x1

...
x

m

1

CA , f(x) =
mX

i=1

f

i

(x
i

), and A = [A1 . . . A

m

].

Then the problem (14) can be rewritten as

min f(x)

s.t. Ax = b

6
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with the optimal value p⇤ = inf{f(x) | Ax = b}. Similarly,
the augmented Lagrangian can be rewritten as

L

⇢

(x; y) = f(x) + y

T (Ax− b) + (⇢/2)kAx− bk22,

with the associated dual function defined by

d(y) = inf
x

L

⇢

(x; y)

and the optimal value d

⇤ = sup{d(y)}.
Now define the primal and dual optimality gaps as

k

p

= L

⇢

(xk+1; yk)− d(yk),

k

d

= d

⇤ − d(yk),

respectively. Clearly, we have k

p

≥ 0 and k

d

≥ 0. Define

V

k = k

p

+k

d

.

We will see that V k is a Lyapunov function for the algorithm,
i.e., a nonnegative quantity that decreases in each iteration.

Our proof relies on three technical lemmas.

LEMMA 1. There exists a constant # > 0 such that

V

k  V

k−1 − %kAx̄

k+1 − bk22 − #kxk+1 − x

kk22, (16)

in each iteration, where x̄

k+1 = argmin
x

L

⇢

(x; yk).

PROOF. See Appendix C in the technical report [39].

LEMMA 2. For any given δ > 0, there exists a constant
⌧ > 0 (depending on δ) such that for any (x, y) satisfying
kxk+ kyk  2δ, the following inequality holds

kx− x̄(y)k  ⌧kr
x

L

⇢

(x; y)k, (17)

where x̄(y) = argmin
x

L

⇢

(x; y).

PROOF. See Appendix B in the technical report [39].

LEMMA 3. There exists a constant ⌘ > 0 such that

kr
x

L

⇢

(xk; yk)k2  ⌘kxk − x

k+1k2. (18)

PROOF. See Appendix A in the technical report [39].

By Lemma 1, we have
1X

k=0

�
%kAx̄k+1 − bk22 + #kxk+1 − x

kk22
�
 V

0
.

Hence, kAx̄

k+1 − bk22 ! 0 and kxk+1 − x

kk22 ! 0, as k !
1. Suppose that the level set of

p

+
d

is bounded. Then
by the Bolzano-Weierstrass theorem, the sequence {xk

, y

k}
has a convergent subsequence, i.e.,

lim
k2R,k!1

(xk

, y

k) = (x̃, ỹ),

for some subsequence R, where (x̃, ỹ) denotes the limit point.
By using Lemma 2 and Lemma 3, we can show that the limit
point (x̃, ỹ) is an optimal primal-dual solution. Hence,

lim
k2R,k!1

V

k = lim
k2R,k!1

k

p

+k

d

= 0.

Since V

k decreases in each iteration, the convergence of a
subsequence of V k implies the convergence of V k, and we
have

lim
k!1

k

p

+k

d

= 0.

This further implies that both k

p

and k

d

converge to 0.
To sum up, we have the following convergence theorem

for our generalized ADMM algorithm.

THEOREM 1. Suppose that Assumptions 1 and 2 hold and
that the level set of

p

+
d

is bounded. Then both the pri-
mal gap k

p

and the dual gap k

d

converge to 0.

Due to space limit, the rate of convergence is omitted and
can be found in Sec. 4.3 of [39].

5. A DISTRIBUTED ALGORITHM
We now develop a distributed solution algorithm based on

the generalized ADMM algorithm in Sec. 4.1. Directly ap-
plying the algorithm to our problem (11) will lead to a cen-
tralized algorithm. The reason is that when the augmented
Lagrangian is minimized over ↵, the penalty term

P
j

⇣P
i

↵

ij

+

β

j

+ γ

j

− C

j

⌘2

couples ↵

ij

’s across i, and the utility loss
P

i

U

i

(↵
i

) couples ↵
ij

’s across j. The joint optimization of
utility loss and the quadratic penalty is particularly difficult
to solve, especially when the number of users is large, since
U

i

(↵
i

) can take any general form. If they can be separated,
then we will have a distributed algorithm where each U

i

(↵
i

)
is optimized in parallel, and the quadratic penalty term is
optimized efficiently with existing methods.

Towards this end, we introduce a new set of auxiliary vari-
ables a

ij

= ↵

ij

, and re-formulate the problem (11):

minimize
X

j

E

j

(
X

i

a

ij

)P
j

+
X

i

U

i

(↵
i

) + (5) + IR|J |
+

(γ)

subject to: (7), (9),

8j :
X

i

a

ij

+ β

j

+ γ

j

= C

j

,

8i, j : a
ij

= ↵

ij

,

variables: a,↵ 2 R|I|⇥|J |
,β, γ 2 R|J |

. (19)

This is a 4-block ADMM problem, where a

ij

replaces ↵

ij

in the objective function and constraint (12) when the cou-
pling happens across users i. This is the key step that enables
the decomposition of the ↵-minimization problem. The aug-
mented Lagrangian can then be readily obtained from (15).
By omitting the irrelevant terms, we can see that at each it-
eration k + 1, the ↵-minimization problem is

min
X

i

U

i

(↵
i

)−
X

j

X

i

⇣
'

ij

↵

ij

− ⇢

2
(↵2

ij

− 2↵
ij

a

k

ij

)
⌘

s.t. 8i :
X

j

↵

ij

= D

i

,↵

i

⌫ 0, (20)
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where '

ij

is the dual variable for the equality constraint
a

ij

= ↵

ij

. This is clearly decomposable over i into |I|
per-user sub-problems since the objective function and con-
straint are separable over i. The per-user sub-problem is of a
much smaller scale with only |J | variables and |J |+1 con-
straints, and is easy to solve even though it is a non-linear
problem for a general U

i

.
Some may now wonder if the auxiliary variable a is hard

to solve for. As it turns out, the a-minimization problem is
decomposable over j into |J | per-datacenter sub-problems.
Moreover, each per-datacenter sub-problem is a quadratic
program. Though it is large-scale, it can be transformed into
a second-order cone program and solved efficiently. More
details can be found in Sec. 5 in the technical report [39].
β- and γ-minimization steps are clearly decomposable over

j. The entire procedure is summarized below.
Distributed 4-block ADMM. Initialize a,↵,β, γ,λ,' to

0. For k = 0, 1, . . . , repeat

1. ↵-minimization: Each user solves the following sub-
problem for ↵k+1

i

:

min U

i

(↵
i

)−
X

j

⇣
'

ij

↵

ij

− ⇢

2
(↵2

ij

− 2↵
ij

a

k

ij

)
⌘

s.t.
X

j

↵

ij

= D

i

,↵

i

⌫ 0. (21)

2. a-minimization: Each datacenter solves the following
sub-problem for ak+1

j

= (ak+1
1j , . . . , a

k+1
|I|j )

T :

min E

j

⇣X

i

a

ij

⌘
P

j

+
X

i

a

ij

(λk

j

+ '

k

ij

) +
⇢

2
(
X

i

a

ij

)2

+ ⇢

⇣X

i

a

ij

(βk

j

+ γ

k

j

− C

j

+ 0.5a
ij

− ↵

k+1
ij

)
⌘

s.t. a
j

⌫ 0. (22)

3. β-minimization: Each datacenter solves the following
sub-problem for βk+1

j

:

min E

j

(β
j

)P
j

+ V

j

(β
j

) + λ

k

j

β

j

+
⇢

2

⇣X

i

a

k+1
ij

+ β

j

+ γ

k

j

− C

j

⌘2

s.t. β

j

≥ 0.

4. γ-minimization: Each datacenter solves:

γ

k+1
j

= max

(
0, C

j

− λ

j

⇢

−
X

i

a

k+1
ij

− β

k+1
j

)
, 8j.

5. Dual update: Each datacenter updates λ

j

for the ca-
pacity constraint (8):

λ

k+1
j

= λ

k

j

+ %

⇣X

i

a

k+1
ij

+ β

k+1
j

+ γ

k+1
j

− C

j

⌘
.

Each user updates '
ij

for the equality constraint a
ij

=
↵

ij

:

'

k+1
ij

= '

k

ij

+ %(ak+1
ij

− ↵

k+1
ij

), 8j.

The distributed nature of our algorithm allows for an ef-
ficient parallel implementation in datacenters with a large
number of servers. The per-user sub-problem (21) can be
solved in parallel on each server. Since (21) is a small-scale
convex optimization as discussed above, the complexity is
low. A multi-threaded implementation can further speed up
the algorithm with multi-core hardware. The penalty param-
eter ⇢ and utility loss function U

i

can be configured at each
server before the algorithm runs. Step 2 and 3 involve solv-
ing |J | per-datacenter sub-problems respectively, which can
also be implemented in parallel with only |J | servers.

6. EVALUATION
We perform trace-driven simulations to realistically assess

the potential of temperature aware workload management.

6.1 Setup
We rely on the Wikipedia request traces [38] to represent

the interactive workloads of a cloud service. The dataset we
use contains, among other things, 10% of all user requests is-
sued to Wikipedia from the 24-hour period between January
1, 2008 UTC to January 2, 2008 UTC. The workloads are
normalized to a number of servers, assuming that each re-
quest requires 10% of a server’s CPU. The traces reflect the
diurnal pattern of real-world interactive workloads. The pre-
diction of workloads can be done accurately as demonstrated
by previous work [28, 32], and we do not consider the effect
of prediction error here. The optimization is solved hourly.

We consider Google’s infrastructure [4] to represent a geo-
distributed cloud as discussed in Sec. 2.3. Each datacenter’s
capacity C

j

is uniformly distributed between [1, 2] ⇥ 105

servers. The empirical CRAC efficiency model developed in
Sec. 3.2 is used to derive the total energy consumption of all
13 locations under different temperatures. We use the 2011
annual average day-ahead on peak prices [16] at the local
markets as the power prices P

j

for the 6 U.S. locations3. For
non-U.S. locations, the power price is calculated based on
the retail industrial power price available on the local utility
company websites with a 50% wholesale discount, which is
usually the case in reality [37]. The power prices at each
location are shown in Table 2 in the technical report [39].
The servers have peak power Ppeak = 200 W, and consume
50% power at idle. These numbers represent state-of-the-art
datacenter hardware [15, 34].

To calculate the utility loss of interactive workloads, we
obtain the latency matrix L from iPlane [30], a system that
collects wide-area network statistics from Planetlab vantage
points. Since the Wikipedia traces do not contain client side
information, we emulate the geographical diversity of user
requests by splitting the total interactive workloads among
users following a normal distribution. We set the number of
3The U.S. electricity market is consisted of multiple regional mar-
kets. Each regional market has several hubs with their own pricing.
We thus use the price of the specific hub that each U.S. datacenter
locates in.
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(b) Interactive workloads.
0:00 4:00 8:00 12:00 16:00 20:00

0.2

0.4

0.6

0.8

C
oo

lin
g 

co
st

 ($
10

3 )

 

 

Baseline
Capacity optimized
Cooling optimized
Joint opt

(c) Batch workloads.
Figure 4: Cooling energy cost savings. Time is in UTC.
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(b) Interactive workloads.
0:00 4:00 8:00 12:00 16:00 20:00
5

6

7

8

9

10

U
til

ity
 lo

ss
 ($

10
3 )

 

 
Baseline
Capacity optimized
Cooling optimized
Joint opt

(c) Batch workloads.
Figure 5: Utility loss reductions. Time is in UTC.

users |I| = 105, and choose 105 IP prefixes from a Route-
Views [5] dump. Note that in our context, each user, i.e.
IP prefix, represents many customers accessing the service.
We then extract the corresponding round trip times from
iPlane logs, which contain traceroutes made to IP addresses
from Planetlab nodes. We only use latency measurements
from Planetlab nodes that are close to our datacenter loca-
tions to resemble the user-datacenter latency. We use util-
ity loss functions defined in (2) and (3). The delay price
q = 4 ⇥ 10−6, and the utility loss price for batch jobs
r = 500.

We investigate the performance of temperature aware work-
load management. We benchmark our ADMM algorithm,
referred to as Joint opt, against three baseline strategies, which
use different amounts of information in managing workloads.

The first benchmark, called Baseline, is a temperature ag-
nostic strategy that separately considers capacity allocation
and request routing of the workload management problem. It
first allocates capacity to batch jobs by minimizing the back-
end total cost with (5) as the objective. The remaining ca-
pacity is used to solve the request routing optimization with
(4) as the objective. Only the electricity price diversity is
used, and cooling energy is calculated with a constant pPUE
of 1.2 that corresponds to an ambient temperature of 20◦C
for the two cost minimization problems. Though naive, such
an approach is widely used in current Internet-scale cloud
services. It also allows an implicit comparison with prior
work [17, 27, 29, 34, 35].

The second benchmark, called Capacity Optimized, im-
proves upon Baseline by jointly solving capacity allocation
and request routing, but still ignores the cooling energy ef-
ficiency diversity. This demonstrates the impact of capacity
allocation in datacenter workload management.

The third benchmark, called Cooling Optimized, improves
upon Baseline by exploiting the temperature and cooling ef-
ficiency diversity in minimizing cost, but does not adopt
joint management of the interactive and batch workloads.
This demonstrates the impact of being temperature aware.

We run the four benchmarks above with our 24-hour traces
at each day of January 2011, using the empirical hourly tem-
perature data we collected in Sec. 2.3. The distributed ADMM
algorithm is used to solve them until convergence is achieved.
The figures show the average results over 31 runs.

6.2 Cooling energy savings
The central thesis of this paper is to save datacenter cost

through temperature aware workload management that ex-
ploits the cooling efficiency diversity with capacity alloca-
tion. We examine the effectiveness of our approach by com-
paring the cooling energy consumption first. Figure 4 shows
the results.

In particular, Figure 4a shows that overall, Joint opt saves
15%–20% cooling energy compared to Baseline. A break-
down of the saving shown in the same figure reveals that
dynamic capacity allocation provides 10%–15% saving, and
cooling efficiency diversity provides 5%–10% saving, re-
spectively. Note that the cost saving is achieved with cutting-
edge CRACs whose efficiency is already substantially im-
proved with outside air cooling capability. The results con-
firm that our temperature aware workload management is
able to further optimize the cooling efficiency and cost of
geo-distributed datacenters.

Figure 4b and 4c show a detailed breakdown of cooling
energy cost. Cooling cost attributed to interactive work-
loads, as in Figure 4b, exhibits a diurnal pattern and peaks
between 2:00 and 8:00 UTC (21:00 to 3:00 EST, 18:00 to
0:00 PST), implying that most of the Wikipedia traffic origi-

9
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nates from the U.S. The four strategies perform fairly closely,
while Baseline and Capacity optimized consistently incur
more cooling energy cost due to their cooling agnostic na-
ture that underestimates the overall energy cost.

Cooling cost attributed to batch workloads is shown in
Figure 4c. Baseline incurs the highest cost since it under-
estimates the energy cost, and runs more batch workloads
than necessary. Cooling optimized improves Baseline by
taking into account cooling efficiency diversity and reduc-
ing batch workloads as a result. Both strategies fail to ex-
ploit the trade-off with interactive workloads. Thus their
cooling cost closely follows the daily temperature trend in
that it gradually decreases from 0:00 to 12:00 UTC (19:00
to 7:00 EST) and then slowly increases from 12:00 to 20:00
UTC (7:00 to 15:00 EST). Capacity optimized adjusts capac-
ity allocation with request routing, and further reduces batch
workloads in order to allocate more resources for interactive
workloads. Joint opt combines temperature aware cooling
optimization with holistic workload management, and has
the lowest cooling cost with least batch workloads. Though
this increases the back-end utility loss, the overall effect is a
net reduction of total cost since interactive workloads enjoy
lower latency as will be observed soon.

6.3 Utility loss reductions
The other component of datacenter cost is utility loss. From

Figure 5a, the relative reduction follows the interactive work-
loads and also has a visible diurnal pattern. Joint opt and
Capacity optimized provide the most significant utility loss
reductions from 5% to 25%, while Cooling optimized pro-
vides a modest 5% reduction compared to Baseline. To study
the reasons for the varying degrees of reductions, Figure 5b
and 5c show the respective utility loss of interactive and
batch workloads. We observe that interactive workloads in-
cur most of the utility loss, reflecting its importance com-
pared to batch workloads. Baseline and Cooling optimized
have much larger utility loss from interactive workloads as
shown in Figure 5b, because of the separate management
of two workloads. The average latency performances under
these two strategies are also worse as can be seen in Figure 7
of our technical report [39].

On the other hand, Capacity optimized and Joint opt out-
perform the two by allocating more capacity to interactive
workloads at cost-efficient locations while reducing batch
workloads (recall Figure 4c). This is especially effective dur-
ing peak hours as shown in Figure 5b. Capacity optimized
and Joint opt do have larger utility loss from batch workloads
as seen in Figure 5c. However since interactive workloads
attribute to the majority of the provider’s utility and revenue,
the overall effect of joint workload management is positive.

6.4 Sensitivity to seasonal changes
One natural question is, since the results above are ob-

tained in winter times (January), would the benefits be less
significant during summer times when cooling is more ex-

pensive? In other words, are the benefits sensitive to the
seasonal changes? We thus run our Joint opt with Base-
line at each day of May, which represents typical Spring/Fall
weather, and August, which represents typical Summer weather,
respectively. Figure 6 shows the average overall cost sav-
ings achieved in different seasons. We observe that the cost
savings, ranging from 5% to 20%, are consistent and insen-
sitive to seasonal changes. The reason is that our approach
depends on: 1) the geographical diversity of temperature and
cooling efficiency; 2) the mixed nature of datacenter work-
loads, both of which exist at all times of the year no matter
which cooling method is used. Temperature aware workload
management is thus able to offer consistent cost benefits.

0:00 4:00 8:00 12:00 16:00 20:00
0

0.05

0.1

0.15

0.2

0.25

 

 
January
May
August

Figure 6: Overall cost saving is insensitive to seasonal
changes of the climate.

We also compare the convergence speed of our the dis-
tributed ADMM algorithm with the conventional subgradi-
ent method. We have found that our algorithm converges
within around 60 iterations, while the subgradient method
does not converge even after 200 iterations. Our distributed
ADMM algorithm is thus better suited to large-scale con-
vex optimization problems. More details can be found in
Sec. 6.3 in the technical report [39].

7. CONCLUSION
We propose temperature aware workload management, which

explores two key aspects of geo-distributed datacenters that
have not been well understood in the past. First, as we show
empirically, energy efficiency of cooling systems, especially
outside air cooling, varies widely with outside temperature.
The geographical diversity of temperature is utilized to re-
duce cooling energy consumption. Second, the elastic na-
ture of batch workloads is further capitalized by dynamically
adjusting capacity allocation along with the widely studied
request routing for interactive workloads. We formulate the
joint optimization under a general framework with an empir-
ical cooling efficiency model. To solve large-scale problems
for production systems, we rely on the ADMM algorithm.
We provide a new convergence proof for a generalized m-
block ADMM algorithm. We further develop a novel dis-
tributed ADMM algorithm for our problem. Extensive sim-
ulations highlight that temperature aware workload manage-
ment saves 15%–20% cooling energy and 5%–20% overall
energy cost and the distributed ADMM algorithm is prac-
tical to solve large-scale workload management problems
with only tens of iterations.

10



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 313

8. REFERENCES
[1] http://tinyurl.com/89ros64.
[2] http://tinyurl.com/8ulxfzp.
[3] http://tinyurl.com/bpqv6tl.
[4] https://www.google.com/about/

datacenters/inside/locations/.
[5] http://www.routeviews.org.
[6] National climate data center (NCDC).

http://www.ncdc.noaa.gov.
[7] BASH, C., AND FORMAN, G. Cool job allocation:

Measuring the power savings of placing jobs at
cooling-efficient locations in the data center. In
Proc. USENIX ATC (2007).

[8] BERTSEKAS, D. P., AND TSITSIKLIS, J. N. Parallel
and Distributed Computation: Numerical Methods.
Athena Scientific, 1997.

[9] BOYD, S., AND MUTAPCIC, A. Subgradient methods.
Lecture notes of EE364b, Stanford University, Winter
Quarter 2006-2007. http:
//www.stanford.edu/class/ee364b/
notes/subgrad_method_notes.pdf.

[10] BOYD, S., PARIKH, N., CHU, E., PELEATO, B.,
AND ECKSTEIN, J. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine
Learning 3, 1 (2010), 1–122.

[11] CHEN, Y., GMACH, D., HYSER, C., WANG, Z.,
BASH, C., HOOVER, C., AND SINGHAL, S.
Integrated management of application performance,
power and cooling in datacenters. In Proc. NOMS
(2010).

[12] DENG, N., STEWART, C., GMACH, D., ARLITT, M.,
AND KELLEY, J. Adaptive green hosting. In
Proc. ACM ICAC (2012).

[13] EL-SAYED, N., STEFANOVICI, I., AMVROSIADIS,
G., AND HWANG, A. A. Temperature management in
data centers: Why some (might) like it hot. In
Proc. ACM Sigmetrics (2012).

[14] EMERSON NETWORK POWER. Liebert R© DSE
TM

precision cooling system sales brochure.
http://tinyurl.com/c7e8qxz, 2012.

[15] FAN, X., WEBER, W.-D., AND BARROSO, L. A.
Power provisioning for a warehouse-sized computer.
In Proc. ACM/IEEE Intl. Symp. Computer
Architecture (ISCA) (2007).

[16] FEDERAL ENERGY REGULATORY COMMISSION.
U.S. electric power markets.
http://www.ferc.gov/market-
oversight/mkt-electric/overview.asp,
2011.

[17] GAO, P. X., CURTIS, A. R., WONG, B., AND
KESHAV, S. It’s not easy being green. In Proc. ACM
SIGCOMM (2012).

[18] GOIRI, I. N., BEAUCHEA, R., LE, K., NGUYEN,
T. D., HAQUE, M. E., GUITART, J., TORRES, J.,
AND BIANCHINI, R. Greenslot: Scheduling energy

consumption in green datacenters. In Proc. SC (2011).
[19] GOIRI, I. N., LE, K., NGUYEN, T. D., GUITART, J.,

TORRES, J., AND BIANCHINI, R. GreenHadoop:
Leveraging green energy in data-processing
frameworks. In Proc. ACM EuroSys (2012).

[20] HAN, D., AND YUAN, X. A note on the alternating
direction method of multipliers. J. Optim. Theory
Appl. 155 (2012), 227–238.

[21] HE, B. S., TAO, M., AND YUAN, X. M. Alternating
direction method with Gaussian back substitution for
separable convex programming. SIAM J. Optim. 22
(2012), 313–340.

[22] HESTENES, M. R. Multiplier and gradient methods.
Journal of Optimization Theory and Applications 4, 5
(1969), 303–320.

[23] HONG, M., AND LUO, Z.-Q. On the linear
convergence of the alternating direction method of
multipliers, August 2012.

[24] INTEL INC. Reducing data center cost with an air
economizer, August 2008.

[25] KOHAVI, R., HENNE, R. M., AND SOMMERFIELD,
D. Practical guide to controlled experiments on the
web: Listen to your customers not to the hippo. In
Proc. ACM SIGKDD (2007).

[26] LE, K., BIANCHINI, R., NGUYEN, T. D., BILGIR,
O., AND MARTONOSI, M. Capping the brown energy
consumption of Internet services at low cost. In
Proc. IGCC (2010).

[27] LIN, M., WIERMAN, A., ANDREW, L. L. H., AND
THERESKA, E. Dynamic right-sizing for
power-proportional data centers. In Proc. IEEE
INFOCOM (2011).

[28] LIU, Z., CHEN, Y., BASH, C., WIERMAN, A.,
GMACH, D., WANG, Z., MARWAH, M., AND
HYSER, C. Renewable and cooling aware workload
management for sustainable data centers. In
Proc. ACM Sigmetrics (2012).

[29] LIU, Z., LIN, M., WIERMAN, A., LOW, S. H., AND
ANDREW, L. L. Greening geographical load
balancing. In Proc. ACM Sigmetrics (2011).

[30] MADHYASTHA, H. V., ISDAL, T., PIATEK, M.,
DIXON, C., ANDERSON, T., KRISHNAMURTHY, A.,
AND VENKATARAMANI, A. iPlane: An information
plane for distributed services. In Proc. USENIX OSDI
(2006).

[31] NARAYANA, S., JIANG, J. W., REXFORD, J., AND
CHIANG, M. To coordinate or not to coordinate?
Wide-Area traffic management for data centers. Tech.
rep., Princeton University, 2012.

[32] NIU, D., XU, H., LI, B., AND ZHAO, S.
Quality-assured cloud bandwidth auto-scaling for
video-on-demand applications. In Proc. IEEE
INFOCOM (2012).

[33] PELLEY, S., MEISNER, D., WENISCH, T. F., AND
VANGILDER, J. W. Understanding and abstracting

11



314 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

total data center power. In Proc. Workshop on Energy
Efficient Design (WEED) (2009).

[34] QURESHI, A., WEBER, R., BALAKRISHNAN, H.,
GUTTAG, J., AND MAGGS, B. Cutting the electricity
bill for Internet-scale systems. In Proc. ACM
SIGCOMM (2009).

[35] RAO, L., LIU, X., XIE, L., AND LIU, W. Minimizing
electricity cost: Optimization of distributed Internet
data centers in a multi-electricity-market environment.
In Proc. IEEE INFOCOM (2010).

[36] REISS, C., TUMANOV, A., GANGER, G. R., KATZ,
R. H., AND KOZUCH, M. A. Heterogeneity and
dynamicity of clouds at scale: Google trace analysis.
In Proc. ACM SoCC (2012).

[37] TELEGEOGRAPHY RESEARCH. Global Internet
geography executive summary. http://
bpastudio.csudh.edu/fac/lpress/471/

hout/telegeographygig_execsumm.pdf,
2008.

[38] URDANETA, G., PIERRE, G., AND VAN STEEN, M.
Wikipedia workload analysis for decentralized
hosting. Elsevier Computer Networks 53, 11 (July
2009), 1830–1845.

[39] XU, H., FENG, C., AND LI, B. Temperature aware
workload management in geo-distributed datacenters.
Tech. rep., University of Toronto,
http://iqua.ece.toronto.edu/
~henryxu/share/geodc-preprint.pdf,
2013.

[40] ZHOU, R., WANG, Z., MCREYNOLDS, A., BASH,
C., CHRISTIAN, T., AND SHIH, R. Optimization and
control of cooling microgrids for data centers. In
Proc. IEEE ITherm (2012).

12



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 315

Power-Aware Throughput Control for Database Management Systems

Zichen Xu
The Ohio State University

xuz@ece.osu.edu

Xiaorui Wang
The Ohio State University

xwang@ece.osu.edu

Yi-Cheng Tu
University of South Florida

ytu@cse.usf.edu

Abstract
Performance has been traditionally regarded as the most
important design goal for database management systems
(DBMSs). However, in recent years, the increasing en-
ergy cost gradually rivals the benefit of chasing after per-
formance. Therefore, there are strong financial incen-
tives to minimize power consumption of a database sys-
tem while maintaining its desired performance, so that
the energy cost can be best amortized. Such a goal is
challenging in practice because the power consumption
of a database system varies significantly with the envi-
ronment and workloads. Many modern hardware pro-
vide multiple modes with different power/performance
tradeoffs. However, existing research has not used these
power modes sufficiently to achieve the best tradeoff
for database services due to the lack of the knowledge
on database behavior under different power modes. In
this paper, we present Power-Aware Throughput control
(PAT), an online feedback control framework for energy
conservation at the DBMS level. In contrast to heuristic-
based tuning techniques commonly used in database sys-
tems, the design of PAT is based on rigorous control-
theoretic analysis for guaranteed control accuracy and
system stability. We implement PAT as an integrated
component of the PostgreSQL system and evaluate it
with workloads generated from various database bench-
marks. The results show that PAT achieves up to 51.3%
additional energy savings despite runtime workload dy-
namics and model errors, as compared to other compet-
ing methods.

1 Introduction

The rapid growth of energy-related research in databases
is driven by the fact that data centers are energy starving.
The increasing operating expenses of data centers (e.g.,
the electricity bill) quickly deplete the revenue earned
from database services due to its accumulating demand
of energy [18]. The power-performance tradeoff has now

become a new key challenge in general purpose database
system design [30].
Redesigning DBMS towards high energy efficiency

has been discussed in the database community. Poess
et al. [19] examine the power saving opportunities from
different hardware systems. Lang et al. [11] report large
energy savings by using the dynamic voltage and fre-
quency scaling (DVFS) technique in CPUs. However, it
is not a trivial task to harvest those opportunities in data
processing while maintaining the desired performance .
The DBMS performance could be very sensitive to the
changes in hardware power modes. For example, tun-
ing one step (25%) down in CPU frequency could re-
sult in about 30% performance degradation for CPU in-
tensive queries; in addition, switching low-power modes
in memory is a bad idea due to significant performance
degradation for any DBMS queries, as shown in Fig.1,
Section 2. Therefore, we cannot directly apply existing
hardware power management techniques in DBMSs for
the energy conservation.
It is also difficult to provide performance guarantees

in a DBMS due to workload variations and environment
dynamics. We need an adaptive architecture that could
promptly monitor query statistics from DBMS and de-
termine whether/to what extend adaption should be per-
formed. Attempting to solve the problem, some studies
employ simple hill-climbing strategies to make such im-
portant adaption decision [11, 10]. These ad hoc control
solutions cannot provide desired control performance,
such as zero steady-state error and short settling time
bound [4]. Although there are many control work done
at the OS level, such as [27, 26, 17], they are not feasi-
ble due to the lack of critical database information that is
needed for making adaptation decisions.
To address the aforementioned problems, we first need

to understand the nature of the DBMS’s response to the
changes of different hardware power modes (“knobs”).
Specifically, we need a quantitative system model in the
adaptive framework that describes how the DBMS per-

1
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formance changes in response to knobs tuning. Second,
the adaptive framework needs to be implemented in light
weight without affecting the normal DBMS operation.
Finally, the control algorithm shall be robust such that it
could tolerate errors from estimation in the DBMS opti-
mizer and workload variations.

In this paper, we present Power-Aware Throughput
control (PAT), an online feedback control framework for
energy conservation at the DBMS level, to address the
above challenges. Our solution takes advantage of well-
established techniques from the field of control theory,
to deal with systems that are subject to unpredictable dy-
namics [4]. In this solution, we formulate energy con-
servation with performance control at the DBMS level
into a feedback control problem and tackle it with a
proportional-integral (PI) controller based on the DBMS
system model. Specifically, this paper makes the follow-
ing contributions:

• We explore the relationship among query statistics,
the DBMS throughput, hardware power states, and
the active power consumption1 via empirical stud-
ies. Our results show that 1) there exists great en-
ergy savings when tuning DVFS for processing I/O
intensive queries; 2) The relationship between the
DBMS throughput and the CPU frequency is an ap-
proximated linear model when DBMS workloads
are steady; 3) the ratio of I/O intensive queries in the
workload plays a major role in the workload statis-
tics that affect the performance of the control.

• As one of the first attempts to introduce classic con-
trol theory into the energy management in DBMSs,
we design PAT to control the DBMS throughput
while minimizing the active power consumption.

• We design and implement a query classifier based
on the fuzzy set theory. The classifier provides
important information, such as the ratio of I/O
queries, which plays a key role in achieving effec-
tive throughput control. The fuzzy-logic-based de-
sign also provides new insights to the classic prob-
lem of query clustering.

• We implement PAT within the real DBMS – Post-
greSQL and evaluate it with various baselines. The
results show that, PAT has significantly more energy
saving (51.3%) with the least control errors compar-
ing with other control baselines.

The rest of the paper is organized as follows: we first
discuss our study on characterization of database system

1 we use the active power of the whole system for the measurement
throughout this paper. Any power data, if without specification, is the
active power of the system.

in Section 2. Section 3 introduces the overall control
framework; Sections 4 and 5 present the design and anal-
ysis of the workload classifier and controller in PAT, re-
spectively. Section 6 talks about our empirical evaluation
of the proposed control strategy. Section 7 compares our
work with related work; Section 8 concludes the paper.

2 System Characterization Study

In this section, we report our findings based on empirical
studies of database behavior as a foundation of control
framework design.2

In our study, we focus on the DBMS throughput
(query per second, QPS) as the main performance metric.
The throughput, as the reciprocal of the average response
time, is an important performance metric. For example,
transaction processing performance council (TPC) uses
throughput to define and rank the performance of differ-
ent DBMS products [22]. To keep the DBMS throughput
within a desired level is essential to avoid situations, such
as overloading. We take controlling the response time of
individual queries as a future work for the design of PAT,
which will not be discussed in this paper.

The impact of hardware power modes with different
DBMS workloads: to further understand the impact of
low-power modes in different hardware components on
the power consumption and the performance of database
services, we use five power states of the memory (de-
scribed in [3]), four discrete DVFS levels of the CPU
(described in [27]), and the CPU C-state (described in
[15] and labeled as “DVFS0”). To avoid possible bias
from measurement errors, we repeat experiments using
CPU intensive and I/O intensive workloads in several tri-
als and collect the average result, demonstrated in Fig.1.

Fig.1(a) and Fig.1(b) show the DBMS performance
and the power measurement of different power states in
memory under two types of DBMS workloads. As we
can see, a state transition in memory, such as from the ac-
tive state to the active-standby state, can contribute to at
most a 10% saving in active power. However, the power
saving comes with a severe performance penalty as a
95% performance degradation in CPU workloads and a
98% degradation in I/O workloads after the transition.
The penalty comes from unacceptable low I/O band-
widths from memory low power modes, which make any
processing queries enter infinite cycles of I/O wait. Thus,
although [3] claims energy savings from tuning power
states in the memory, it may not be a feasible solution for
database services. As a result, we find that any hardware
power management techniques which increase per-page
I/O cost may have a severe consequence on the DBMS
throughput, which eventually leads to unacceptable high
energy cost.

2 details of the experiment setup can be found in Section 6.1.
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Figure 1: Performance (throughput) of a 100GB database system under low power states of the memory (Fig.a and
Fig.b) and the CPU (Fig.c and Fig.d). All data are normalized to the normal scenario with active memory and CPU at
100% frequency. Subfigures are labeled by the workload type used in the test. DVFS0 is the CPU C-state, in which
the system is in halt and there is no observed DBMS throughput.

Fig.1(c) and Fig.1(d) illustrate the results of many
DBMS workloads running in different CPU power states.
One observation is that, in both I/O intensive and CPU
intensive queries, the active power cost monotonically
decreases with the CPU frequency. This is in conformity
with results reported in [14, 23]. The DBMS through-
put, on the other hand, shows the same behavior. Such
observations imply that CPU frequency and system per-
formance are positively related and this gives us confi-
dence in building an approximated linear system model
between performance and power consumption. Never-
theless, comparing Fig.1(c) and Fig.1(d), the DBMS sen-
sitivity3 is different in CPU intensive and I/O intensive
workloads. Apparently, one could harvest more power
savings from I/O intensive queries without affecting their
performance much.

Fig.1(c) and Fig.1(d) also demonstrate system reac-
tion to the CPU C-state (DVFS0) in terms of power and
performance. When the CPU is set to the C-state, the
whole system is in the halt state. We did not observe any
DBMS throughput although the active power consump-
tion is low. At the same time, the delay of transiting
in/out of the CPU C-state is so large that it jeopardizes
the normal query execution in the DBMS, and leads to
uncorrect query results. Thus, we do not implement the
CPU C-state in PAT for power saving purposes but eval-
uate it in a simulation in our tech report [29].

The above experimental results show that CPU DVFS
technique is a good candidate for the control actua-
tor. Next we further explore the insight from results of
Fig.1(c) and Fig.1(d).

CPU power states, the DBMS throughput and work-
load statistics: Fig.2(a), again, demonstrates the fact that
the active power consumption is linearly related to the
relative DVFS level. The power and the performance

3 The sensitivity is defined as the change of performance in response

to CPU frequency changes, as
(
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Figure 2: The impact of the CPU frequency (i.e., DVFS
levels) on the power consumption (a) and the DBMS
throughput (b). The five workloads in (b) differ by their
λ – ratios of I/O intensive queries to the overall workload
size. All data in (b) are normalized to the largest through-
put of the workload with λ = 5% at the maximum CPU
frequency.

data in Fig.2(b) are recorded from experiments running
DBMS workloads with different statistics (i.e., the frac-
tion of queries that are I/O intensive λ ). An important
observation from Fig.2(b) is that, there exists a linear re-
lationship (R2 = 0.9633) between throughput and CPU
frequency for all DBMS workloads when λ is fixed.
Therefore, we use the following linear model to describe
the relationship between database throughput and CPU
frequency,

r = Aλ f +B (1)

Where r is the DBMS throughput, f is the CPU fre-
quency, and A,B are model coefficients.

Among all the workload characteristics, we found that
the ratio of I/O-intensive queries λ is the major fac-
tor that affects the sensitivity, as shown in Fig.2(b).
Our explanation is that, in our platform, Linux system
uses Round-Robin as the process scheduling algorithm.
Therefore, the more queries are bounded by I/O, the
larger chance that those processes will skip their CPU
time slices, thus keeping the CPU idle. As a result, a high

3
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Figure 3: The relationship between workload’s
frequency-to-throughput ratio and the percentage of I/O-
intensive queries in the workload (λ ).

λ makes the system less sensitive to the CPU frequency
changes. When λ is larger enough, as the grey line in
Fig.2(b), the database performance has little change with
the CPU frequency, where we could harvest the most en-
ergy savings. This sensitivity of the DBMS performance
to the CPU frequency changes is measured as the slopes
of all the throughput-DVFS lines in Fig.2(b).

Fig.3 shows that the relationship between λ and the
sensitivity is also linear (with a goodness-of-fit R2 =
95%). Since λ is essential in our throughput control, it is
necessary to estimate the value of λ to identify the work-
load at runtime. Note here, when the value of λ increases
from 20% to 30% in Fig.2(b), the DBMS throughput
drops heavily (50%) at the highest DVFS level. There
is a value between 20% to 30%, we called it β , that de-
fines an infection point. When the system crosses this
point (λ > β ), it will enter an I/O busy waiting state.
This state is a “Limbo” that we are trying to avoid in our
experiment. The value of β is a relative static number
for any given systems. It can be found during the sys-
tem identification process. In our experimental database
system, the value of β is found to be 32%.4

3 The Framework of PAT

The control framework PAT is illustrated in Fig.4. The
main components of PAT form a feedback control loop
(indicated by the red arrow in Fig.4), including the PI
controller (Controller), the throughput monitor of the
DBMS (Plant),5 and the CPU power state modulator
(Actuator). The goal of the control loop is to maintain
the DBMS throughput at the set point Rs and mini-
mize the power cost. Specifically, the following steps
are invoked in each control period,

1. The throughput monitor measures system through-
put r(i− 1) in the last period. The control error is
computed as Δr(i) = Rs − r(i− 1);

2. The controller receives the control error Δr and the
4 The value of β needs to be calibrated when PAT is applied to a

different system environment
5 Note that the monitor itself is not the plant, the DBMS is.
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Data Flow

Control Path
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Figure 4: The power-aware throughput control architec-
ture. The names in parentheses are given following con-
trol terminology.

workload statistic factor λ . Based on these values,
it computes the control signal f (i);

3. The CPU power state modulator receives the control
output f , to calculate the new DVFS level and apply
it in the CPU.

4. Exception: when λ > β or the DVFS level is high-
est but the detected throughput still fails to meet the
set point Rs, the CPU modulator will set the DVFS
level to the active lowest state to save power for a
short period of time t.

Note here, the scale-down duration t is shall be smaller
than control period T (introduced in Section 5), and the
transaction time of different power state is at least one
order of magnitude smaller than t.

3.1 Control Components
Before discussing more details about the two major com-
ponents – the fuzzy workload classifier (FWC) and the
PI controller, we briefly introduce the implementation of
other components of PAT first.

CPU Power State Modulator: PAT uses Intel’s Speed-
Step technique (10ms overhead) to tune the CPU DVFS
level. An interesting issue is that the Intel Xeon CPU
E5645 used in our platform (as well as many other
DVFS-enabled CPUs) only supports several discrete
CPU frequency levels. However, PAT needs to set a
value of the DVFS level within a normalized continuous
range [0 – 100]. Therefore, the task of the modulator is
to approximate the desired value using a combination of
the supported discrete frequency levels. For example, to
get 2.23 GHz CPU frequency during one control period,
the modulator would output pseudo frequency signal se-
quence as {2.67, 2, 2, 2.67, 2, 2} to emulate the aver-
age CPU frequency as 2.23 GHz. To realize such idea,
we implemented a first-order delta-sigma modulator in
the system, which is commonly used in analog-to-digital
signal conversion [12].

4
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Throughput Monitor: the throughput monitor is im-
plemented as a daemon program that collects the number
of finished queries in each control period. The monitor
traces every exit signal from DBMS threads and records
the sum in period i. The monitor maintains throughput
data from the past n periods.

System Utilization Monitor: the system utilization
monitor is a program that records system status (e.g.,
CPU utilization) when PAT is active. We use the col-
lected data for the performance analysis.

Query Resource Consumption Estimator: the resource
estimator is a tool that retrieves the run-time query es-
timation information from the query optimizer of the
DBMS. Based on such information, FWC could define
the query type and update the corresponding parameter
λ . Note that the original resource estimator in the DBMS
could be highly unreliable. We calibrate this estimator
before using it for estimation. The detailed work can be
found in the tech report [29].

4 Fuzzy Workload Classifier

As we learned from the observations in Section 2, the key
factor in the workload statistics used in the system model
is the percentage of I/O intensive queries in the current
running workload, namely λ . Thus, to successfully build
the system model in order to control a composite work-
load, the model shall update the value of λ on-the-fly. To
solve this problem, we need to classify queries based on
its I/O intensity.

4.1 Main Challenge
Fig.5(a) shows the classification results of 500 queries
based on a static threshold – 1,000 demanding pages,
which is the size as the L3 cache in the server. Each
query is labeled as I/O-intensive if the I/O cost is more
than 1,000 pages (green node) or non-I/O intensive (red
node), otherwise. However, such a rule-based method
fails when the resource estimation given by the query

optimizer is not accurate enough to reflect the actual re-
quested resource at runtime. Fig.5(b) shows the real re-
source usage of the same set of queries. The results show
only a part of identified I/O queries are real I/O-intensive
queries (e.g., those nodes in circle A in Fig.5(b)). The
above empirical results show that simple rule based clas-
sification fails at obtaining the accurate λ value.
We propose a classification approach based on fuzzy

set theory to solve our problem. Fuzzy-based methods
are particularly suitable for systems with complex be-
haviors. They are designed to handle an unpredictable
environment with limited number of rules to reach suf-
ficient accuracy [25, 21]. Our FWC collects workload
statistics and creates fuzzy rules to identify runtime re-
source consumption patterns of queries in the workload.

4.2 Fuzzy Classifier Design
In FWC, Sugeno-type fuzzy rules [21] are generated
from the clustered data for modeling database workloads.
The input for the FWC is the resource demand of the in-
coming query and the output is the aggregated estimation
of runtime resource utilization. For the ith query, its re-
source demand vector is denoted as [d i

CPU ,d
i
I/O]

T and the
estimated CPU and I/O utilization as [ui

CPU ,u
i
I/O]

T . The
number of fuzzy rules shall be the same as the number
of clusters in the estimated resource demand map [8]. In
our case, there are two clusters: I/O-intensive and non-
I/O-intensive. The member functions of the fuzzy rules
are linear functions generated via rigorous mathematical
tools from Matlab [13]. The rule base is constructed as
follows:

R j: IF [di
CPU ,d

i
I/O]

T ∈ cluster Xj, THEN
[ui

CPU ,u
i
I/O]

T = Mj[di
CPU ,d

i
I/O]

T +Nj

where Xj is the cluster determined by clustering tech-
nique, Mj and Nj are parameters from the fuzzy set asso-
ciated membership functions obtained from the learning
process. The symbol ∈ stands for the distance between
the node and the center of cluster X j. The procedure of
workload classification are as follows:

1. Evaluation: compute the appropriate fuzzy rule out-
put [ui

CPU ,u
i
I/O]

T based on the input resource de-
mand vector [dCPU ,dI/O]

T using the corresponding
membership functions M j and Nj;

2. Implication calculation: obtain implication p j of
each fuzzy set R j and calculate the confidence t j
that the query belongs to fuzzy set R j based on the
implication weight over all ∑(p j)−p j

∑(p j)
;

3. Aggregation result: the output of all fuzzy rules
are aggregated and inversely translated into the av-

5
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erage utilization vector [∑ j t jui
CPU ,∑ j t jui

I/O]
T from

all rules with confidence t j.

Although there still exist errors from workload classi-
fication, those errors are bounded and smaller than the
acceptable maximum tolerance (overshoot) in the con-
troller design. Due to the page limit, we put a detailed
analysis and examples of FWC in our tech report [29].
The accuracy of FWC is evaluated in Section 6.

5 Throughput Controller Design

5.1 System Modeling
Building an accurate mathematical model of the system
to be controlled is of great importance to the entire con-
trol loop design. We build the model of the DBMS
throughput and the power consumption based on obser-
vations in Section 2. Let us denote the length of the con-
trol period as T and the throughput within the i th period
as r(i). Given r(i), our control goal is to guarantee that
the DBMS throughput r could be converged to the set
point Rs after a finite number of control periods (settling
time). Note here, for better establishing the model we
scale those two values into percentage. Thus, Δr and
f are now the relative control error and the related fre-
quency setting, respectively. For example, f = 100%
means that CPU is running at its highest frequency. In
the experiment, the minimum available frequency is 40%
of the maximum frequency.

Here we update the system model in Eq. (1) as:

Δr(i) = λ A f (i)+B (2)

For the convenience of the control analysis, Eq. (2) is
transformed in the z-domain as:

R(z) = λ AF(z) (3)

where R(z),F(z) are the z-transform of signal Δr(i), f (i),
respectively. Thus, the system transfer function of the
DBMS throughput to the frequency change in Fig.2 is:

G(z) =
R(z)
F(z)

= λ A (4)

We test the system with sinusoidal inputs in Fig.6. Fig.6
demonstrates that our model is sufficiently close to the
actual system with R2 = 0.9152.

5.2 Controller Design
The goal of the controller design is to meet the following
goals:

• stability, the throughput shall settle into a bounded
range in response to a bounded reference input;
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Figure 6: A sinusoidal throughput Δr(i) and related con-
trol signal f (i) .

• zero steady state error, when the system enters the
steady state, the throughput shall settle to the set
point with zero errors; and

• short settling time, the system shall settle to the set
point before the specified deadline.

Based on the control theory, we design a Proportional-
Integral (PI) control that has been widely adopted in in-
dustry control systems. We select the PI controller for its
nice property of the zero-state-error and its fast response
[4, 7]. The PI controller can also provide robust control
performance despite modeling error and input/output dis-
turbances. It has the following form in the discrete time
domain:

f (i) = kPΔr(i)+ kI
i

∑
1
(Δr( j)) (5)

where Δr(i) is the control error at ith period. f (i) is the
frequency offset. kI and kP are control parameters. Those
parameters can be analytically chosen to guarantee the
system stability and zero steady-state error. From Eq.
(5), we have the controller transform function in the z-
domain as:

C(z) =
z(kI + kP)− kP

z−1
(6)

Overall, the transfer function F(z) = G(z)C(z) is,

F(z) =
λ Akp(z−1)+λ AkIz

(1+λ A(kI + kP))z− (λ AkP +1)
(7)

We use the Root-Locus method [7] to design the con-
trol coefficients kI and kP to guarantee stability and zero
steady-state error. The poles of the transfer function are
−0.26±0.8i. As both eigenvalues are inside one unit cir-
cle, the closed-loop system in our experiments is stable
[4]. The values of the system model parameters in Eq.
(2) are A = 4.329 and B = 24.329, based on our char-
acterization study. λ is provided at runtime by FWC.
Based on the result of control analysis, control parame-
ters kI = 0.5 and kP = 1.06. More details of the control
analysis are in the tech report [29].
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Figure 7: A snapshot of the database throughput, the DVFS control signal and the active power consumption of
NORMAL, SPEEDSTEP and PAT in three different system settings.

6 Performance Evaluation
6.1 Experimental Setup
Our test bed contains an open-source database Post-
greSQL (version 8.3.18) running under Redhat 5 (kernel
version 3.0.0). The data server is a DELL PowerEdge
R710 with 12-core Intel Xeon E5645. A client feeds the
server with a typical database workload generated from
TPC tools [22] and SDSS traces [20]. We use a WattsUp
power meter ( ±1.5% error, 1 Hz sampling frequency
[1]) to measure the power consumption.

We have designed several baselines for evaluation.

1) NORMAL and TRADITION: those two baselines are
common Advanced Configuration and Power Inter-
faces (ACPIs) in modern servers. NORMAL is when
system runs with the maximum CPU frequency and
TRADITION sets a static CPU frequency based the
offline workload analysis.

2) SPEEDSTEP, HEURISTIC and SCTRL: SPEED-
STEP is the ACPI policy in BIOS that tunes
the CPU frequency according to the system load.
HEURISTIC is an ad hoc control solution with the
DBMS performance set point Rs. SCTRL is an OS-
level feedback control solution with the DBMS per-
formance set point Rs. Comparing with PAT, it con-
tains the basic control loop with throughput moni-
tor to detect the DBMS throughput except the FWC
and any internal parts of the DBMS in Fig.4. Note
that, when those control solutions control the CPU
frequency, other power management policies are
turned off.

6.2 Performance of PAT
To study the impact of PAT on performance and energy
savings, we have designed three scenarios from daily
DBMS operations. 1) Ideal environment: the database

process is the only user of all the computational re-
sources; 2) Competing environment, there exists a set
of pure CPU intensive programs in the system compet-
ing for the CPU resource. 3) Preemptive environment,
there exists a set of high-priority (OS-level) processes
which randomly occupies the CPU resource assigned for
database processes. Fig.7 shows the database through-
put, the DVFS control signal, and the active power con-
sumption of the system using NORMAL, Speedup and
PAT (Rs = 17QPS) in above scenarios in 50 control peri-
ods.
In Fig.7(a), SPEEDSTEP and PAT provide signifi-

cantly larger energy savings than NORMAL does. Com-
paring with SPEEDSTEP, PAT controls the throughput
performance strictly to the setpoint, and the maximum
overshoot (throughput exceeding the set point) is much
smaller.

In the competing scenario in Fig.7(b), the database
throughput is greatly affected by the competing CPU-
intensive processes, which are injected into the sys-
tem follows a Poisson distribution. The noise from
resource competition between database processes and
CPU-intensive processes hurts the control performance
of PAT. However, PAT could tolerate such noise and con-
trol the throughput back to the setpoint within 3 peri-
ods. On the other hand, because SPEEDSTEP controls
the CPU frequency based on the total system utilization,
it usually sets the DVFS level near the highest level.

Fig.7(c) demonstrates the results in the preemptive
scenario. The preemptive behavior of system processes
leads to a low DBMS throughput due to the interrupt and
resource occupation. It is often the case when the actu-
ator fails to handle the overshoot exceeding its control
limit. PAT treats this case as the exception and tunes
down the CPU frequency to save more energy, such as
the 6th, 13th, 18th, etc. period in Fig.7(c).

Overall, PAT saves up to 51.3% of the energy con-

7
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Figure 8: The normalized energy consumption and the
performance overshoot of NORMAL, SPEEDSTEP and
PAT in three scenarios. The energy cost is normalized to
the data of NORMAL.
sumption (15% more than the SPEEDSTEP), comparing
with NORMAL in the ideal environment, shown in Fig.8.
Its maximum performance overshoot6 is less than half of
the overshoot in SPEEDSTEP, especially in the compet-
ing and preemptive scenarios. This is because SPEED-
STEP does not take the DBMS performance as the con-
trol goal and the system dynamic gives more error in the
last two scenarios. Here we show the advantage of PAT
by comparing with ACPI baselines. To further study the
performance and the robustness of PAT, we test it with
other control baselines to control the DBMS throughput.

6.3 Control Performance Comparison
Fig.9 is the snapshot of the database throughput, DVFS
setup and the power consumption of four controllers in
the ideal system environment.

TRADITION cannot control the throughput to the set
point because the workload does not always follow the
pattern in the offline analysis. This is a typical problem
of open control. First, finding a good static DVFS for one
workload in one system scenario needs extensive experi-
mental work and complex learning processes. Second, it
could easily fail under workload variations.

HEURISTIC gives a relatively better control per-
formance, comparing with the SPEEDSTEP. However,
when facing an ever-changing workload, HEURISTIC
fails to commit to a steady state in an acceptable time.
For example, data in control period 20 to 30 in Fig.9(a)
show how HEURISTIC fails to handle the “M” shape
throughput pattern. While SCTRL and PAT could both
commit to the setpoint in 4 periods, the tuning of
HEURISTIC oscillates in many steps, which results in
less energy savings. Solving the problem will eventually
leads to the same feedback controller design in PAT.

SCTRL treats the DBMS processing as a black box.
It settles to the setpoint faster than HEURISTIC. How-
ever, when all DBMS processes are in I/O busy waiting,

6 the performance overshoot is measured by Pmax/Rs, where Pmax is
the maximum performance and Rs is the set point
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Figure 10: The normalized energy consumption and the
performance overshoot of four control solutions.

SCTRL would uselessly set the DVFS level to the maxi-
mum, and waste energy.

We conduct the overall performance evaluation of the
five control technique in Fig.10. While PAT achieved
the 20% more energy savings than that of TRADITION,
HEURISTIC and SCTRL only got 56% and 74% of en-
ergy savings achieved by PAT because of the failure to
commit steady state (HEURISTIC) and the unnecessary
setting of the highest DVFS level (SCTRL). Comparing
the performance violation, PAT has the smallest maxi-
mum overshoot than the other two control methods.

6.4 The performance of FWC
Our fuzzy workload classifier provides a high predic-
tion accuracy of the query resource consumption pattern.
The classification result of the tested workload above is
shown in Fig.11. The accuracy is above 90% for the two
testing traces. FWC provides high accuracy in the sys-
tem model for controller design in PAT. Theoretically,
PAT could tolerate up to 45% overshoot from model and
environment based on the controller design. As shown

8
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Figure 11: The prediction result of the query processing
pattern using FWC.

in Fig.7 and Fig.9, the biggest difference of the work-
load trends is almost 40% but PAT could still control the
throughput to the set point in a few periods.

7 Related Work

Reduction of energy consumption has become an active
topic in the DBMS community. Harizopoulos et al. [6]
and Graefe [5] introduce a new paradigm of DBMS de-
sign concerning energy efficiency. Recent work [30]
shows that there exists energy-efficient query plans in
DBMS. Another work by Harizopoulos [23] suggests
that most energy efficient plans come from DBMS run-
ning in the active low power mode. Poess and Nambiar
[19] examine multiple storage components in the system
for energy saving potentials. Lang et al. [11] claim that it
is worthwhile to scale hardware performance to control
in DBMS’s query processing in the distributed environ-
ment. In contrast to their work, we argue that applying
hardware scaling technique to DBMS design for energy-
saving purposes is not a trivial task and propose a sys-
tematic solution that relies on rigorous control loop de-
sign. As compared to heuristics-based strategies, our so-
lution provides analytical assurance of control accuracy
and system stability.

Application of mathematical control theory has been
conducted in several topics in the DBMS area. Tu et al.
[24] introduce this technique to handle load shedding in
data stream systems by using a classic P feedback con-
troller that successfully avoids noticeable streaming tu-
ple delays with lower data loss. Kang et al. [9] create
Chronos by applying a similar feedback model in con-
trolling number of transactions to a baseline. Our paper,
unlike those two, is one of the first attempts targeting at
energy savings while preserving performance in database
systems. It is inspired by the fact that most database
servers are running in relatively low utilization – energy
proportionality can be achieved if we make database run

under low power modes of hardware.
Recently, feedback control theory has been success-

fully applied to energy efficient control for data center
servers at the system and hardware levels [2, 26, 17].
Existing solutions of power and performance control for
enterprise servers attempt to tackle the problem in two
separate ways. Performance-oriented control solutions
focus on altering power to meet the system-level per-
formance budget while reducing power consumption in
a best effort manner [16]. However, those solutions
do not have any explicit internal information from soft-
ware, such as DBMS. As a result, there could be undesir-
able performance degradation. In the other way, power-
oriented control solutions treat power as the first-class
control target and maximize the performance within the
power budget [2, 26, 28]. In DBMS, its throughput could
not be maximized by control at the system level be-
cause the resource are evenly distributed (Round Robin
scheduling in Linux). Thus, we need to build the control
loop by taking DBMS statistics into consideration.
8 Conclusion and Future Work

The contradictory requirements of high performance and
low energy consumption have attracted a lot of talents
working on database system design. The low-power
modes of hardware provide opportunities for power sav-
ing with predictable performance degradation. In this pa-
per, we tackle the problem of maximizing energy savings
under a user-specified performance bound in database
systems. We argue that such a problem is non-trivial
due to the dynamics in database workloads and envi-
ronment. Therefore, based on the results of our evalu-
ation, traditional offline analysis and heuristic solutions
are not effective. We propose our solution as a feed-
back control framework based on system characteristics.
Unlike heuristic-based adaptive solutions widely used in
database tuning, PAT provides performance guarantees
over the power control on hardware. We implement
PAT with the PostgreSQL engine and the empirical re-
sults demonstrate that PAT can achieve high energy effi-
ciency with small violation of SLA. One immediate fu-
ture work is to consider the performance bound of indi-
vidual queries using DVFS as the global control actuator.
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Abstract 
 
We consider ultra-energy-efficient wireless transmission of notifications in sensor networks. We argue that the usual 
practice where a receiver decodes packets sent by a remote node to acquire its state or message is suboptimal in en-
ergy use. We propose an alternative approach where a receiver first (1) performs physical-layer matched filtering on 
arrived packets without actually decoding them at the link layer or higher layer, and then (2) based on the matching 
results infers the sender's state or message from the time-series pattern of packet arrivals. We show that hierarchical 
multi-layer inference can be effective for this purpose in coping with channel noise. Because packets are not re-
quired to be decodable by the receiver, the sender can reach a farther receiver without increasing the transmit power 
or, equivalently, a receiver at the same distance with a lower transmit power. We call our scheme Wireless Infer-
ence-based Notification (WIN) without Packet Decoding. We demonstrate by analysis and simulation that WIN al-
lows a sender to multiply its notification distance.  We show how senders can realize these energy-efficiency bene-
fits with unchanged system and protocols; only receivers, which normally are larger systems than senders and have 
ample computing and power resources for WIN-related processing. 

1.  Introduction 
We consider a common sensor network scenario where 
remote senders, such as sensors, transmit notifications 
about event detected as well as their operational condi-
tions (e.g., device operating normally, and remaining 
battery power) to some designated receivers over wire-
less channels.  In such a scenario, it is often desirable 
that nodes draw only a small amount of power in 
transmitting such notifications. This would allow 
transmitters to survive for a long time like years even 
operating on a small coin battery, in applications such 
as industrial monitoring and home automation. 
 
Under a conventional approach (e.g., [1]), we will adopt 
a low-power wireless network, e.g., Bluetooth or 
ZigBee, to send notifications. A sender will periodically 
transmit normal packets to report that it is in a normal 
state, and start transmitting event packets when it enters 
an event state upon noticing events of interest. A re-
ceiver will decode each received packet to determine if 
it is a normal or event packet, and in the latter case, 
may also examine packet payload to obtain further in-
formation about the event. In real-world applications, 
we expect that the bulk of the transmission is for nor-
mal packets and transmission of event packets is rela-
tively infrequent. This means that it is especially im-
portant for the sender to minimize transmission energy 
for normal packets, while being able to quickly alert the 
receiver when events of interest occur. 
 

 
 
We argue that for many sensor applications this con-
ventional approach is suboptimal in terms of energy 
use. For example, there is no need for the sender to 
transmit at a relatively high transmit power to ensure all 
these normal packets transmitted can be decoded by the 
receiver, if the time series of packet arrivals can already 
reveal that the sender is in the normal state. Upon notic-
ing events of interest a sender merely need to seek at-
tention from the receiver about the new situation. To 
this end, the sender can just transmit packets with a 
different pattern in time series. The receiver can then 
use a robust inference method to classify the sender 
being in a normal or event state based on patterns in the 
time series of packet arrivals, without having to decode 
packets. 
 
In this paper we explore such inference-based ap-
proaches where no packet decoding is required. This 
would enable the receiver to operate at a lower signal-
to-noise ratio (SNR), and, in turn, allow the sender to 
reach receiver at the same distance with lower transmit 
power or, equivalently, farther receivers with the same 
transmit power.  
 
A key issue with such approaches is their accuracy in 
classifying the current state of the sender in low SNR 
situations when the receiver is distance away, and/or 
the wireless chancel is noisy. We show in this paper 
how a two-layer hierarchical inference can be effective 
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in providing robust and reliable classification based on 
the packet arrival patterns, even when some packets 
may have distorted symbols or may be completely lost. 
We call our approach Wireless Inference-based Notifi-
cation without Packet Decoding, or for short, WIN. 

2.  Observations on Wireless Sensor Net-
work Communications 
We consider a wireless sensor network where the mes-
sages being sent are relatively stationary. For example: 
fire alarm sensors in a building or thermal sensors in an 
exhibition area routinely report their status through a 
wireless channel. In these scenarios where repeated 
traffic patterns are expected, a receiver can come to 
learn the probable patterns of incoming packets. As 
described below our approach has several advantages 
over the conventional packet decoding method. 
 
2.1. Posterior Probability Estimation of Codewords 
Conventional wireless communication assumes no prior 
knowledge of what we expect to receive. Therefore all 
codewords are considered equally likely. Let 𝑐𝑐! be the 
message being sent and x be the received signal. Decod-
ing algorithm makes decisions by maximum likelihood 
estimation (MLE): 
 

𝑝𝑝 𝑐𝑐! 𝑥𝑥 = 𝑝𝑝 𝑥𝑥 𝑐𝑐! 𝑝𝑝 𝑐𝑐! ∝ 𝑝𝑝 𝑥𝑥 𝑐𝑐!  
 
given that the prior 𝑝𝑝 𝑐𝑐!   is assumed to be a constant.  It 
is then the interest of channeling coding to design codes 
with efficient decoding algorithm that approximates 
MLE. 
 
However, note that optimal decisions should be based 
on the real posterior probability 𝑝𝑝 𝑥𝑥 𝑐𝑐! 𝑝𝑝 𝑐𝑐! .  While 
this may be difficult to implement in general, simple 
solutions would suffice in the case were only a few 
codewords are likely to occur.  In a stable sensor net-
work environment, this may be a more fitting assump-
tion than uniform prior.  In this paper, we consider the 
case where 𝑐𝑐! is restricted to {inactive, normal, event}, 
and demonstrate significant gains for utilizing this prior 
knowledge.  

 
2.2. Multi-layer Inference 
When a single packet provides insufficient evidence 
about the state of sender, the receiver can wait for other 
incoming packets for better inference results.  A receiv-
er can be a lot more powerful if is allowed to accumu-
late information overtime time. In WIN, we model 
packet arrival patterns in addition to just packet pat-
terns, so that even undecodable packets can be useful. 
 
2.3. Classification with Respect to False Negative 
and False Positive 
Not all errors are equal.  Sometimes it is safe to mis-
classify normal state as an event while mistaking event 
as normal could lead to more severe consequences.  We 
can make decisions according to the posterior probabil-
ity with respect to false positive/negative rates required 
by application. While this may not be possible for con-
ventional wireless communication due to the complexi-
ty of applications, it is doable for many sensor scenarios 
and should not be overlooked. 
 

3.  Overview of the WIN Approach and 
Comparison with Conventional Methods 
We describe the conventional approach of transmitting 
notifications, and then describe at a high level how our 
proposed WIN approach can accomplish the same task 
with lower energy consumption.   
 
Conventional methods include wireless networks de-
signed for energy-constrained applications, such as 
Bluetooth LE, ANT+ or ZigBee [2, 3, 4]. While hard-
ware and protocols of these networks have been opti-
mized for low-energy senders, they are still based on 
the conventional network-layering abstraction. In par-
ticular, packets must be decoded at the link or a higher 
layer in order to reveal packet load that contains notifi-
cation messages. To be specific, in the rest of the paper, 
we will use Bluetooth LE [9] as our comparison target. 
 
As depicted in Figure , under the conventional approach 
a sender periodically transmits normal packets (black) 
to a receiver to report that the sender is alive and it is in 
a normal state. Upon noticing events of interest, the 
sender enters the event state and starts transmitting 
event packets (red). The receiver will attempt to decode 
every received packet to determine the state of the 
sender. 
 
Under a corresponding WIN approach, the sender in the 
normal state will periodically transmit normal packet 
like in the conventional approach. When the sender 
enters the event state, it will transmit event packets pe-

 

 
 
Figure 1. The WIN receiver can receive notification from 
the sender at a distance beyond the packet decoding range. 
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riodically under a different arrangement about the 
length of packet burst or gap. Figure  depict of an ex-
ample of such a WIN scheme based on the following 
time series of packet transmissions:  

Normal state: burst =1 and gap = 3 
Event state: burst = 2 and gap = 6 

Note that in supporting WIN, a conventional sender 
does not need to change its protocol stack; all it needs 
to do is to change packet transmission patterns during 
the event state. Thus existing sensor transmission sys-
tems are readily useable.  This is an advantage over 
other approaches that also exploit physical layer signal 
properties [5]. 

The receiver employs physical-layer matched filters to 
determine whether each time slot has an arriving pack-
et. Based on the matching results from multiple time 
slots, the receiver uses inference methods to infer the 
state of the sender (see Sections 4). By making use of 
aggregated matching results from multiple time slots 
and leveraging the designed-in separation between the 
time series of packet transmissions for the normal vs. 
event state, as we will show later, a WIN receiver can 
operate at a lower SNR. As a result, a distant receiver 
may still be able to infer the state of the sender even it 
cannot decode normal or event packets. This is illus-
trated in Figure 1. When a receiver determines that the 
sender is in the event state, should the receiver happen 
to be mobile, it could move itself closer to the sender to 
decode the event packet and learn about the event. Al-
ternatively, the receiver may dispatch other agents for 
the task. 

4.  Inference Methods Used by WIN  
WIN infers the state of the sender from physical layer 
measurements on arrived packets. The receiver matches 
arriving signals against a dictionary of patterns corre-
sponding to the sender’s states.  Consider, for example, 
the scenario displayed in Figure , where the sender 

transmits one packet every four slots in the normal 
state, and 2 back-to-back packets every eight slots in 
the event state.  No packets will be sent when sender is 
inactive. Hereafter, we refer these time slots as 
subintervals. 

We use a two-layer hierarchical model to infer the state 
of the sender.  In the first layer, we perform a filtering 
operation matching the observed signal with t, the tar-
get packet pattern, using sliding-window across all pos-
sible locations within a subinterval. The sliding-
window allows us to detect the packet even with delays 
variances caused by multipath [6]. We then take the 
max of these values and call it 𝑚𝑚!   for subinterval i. This 
value reflects the likelihood of the target pattern t being 
present in subinterval i. See Figure 3 for an illustration. 

In the second layer, we match mi with arrival pattern, 
and classify according to the result, m. Figure 4 depicts 
a simulation result on the distribution of m conditioned 
on the three different states, at -15dB SNR. As shown 
in the figure, the distribution of m is fairly close to 
Gaussian distribution, which can be explained by cen-
tral limit theorem.  The inferred state 𝑠𝑠 is selected ac-
cording to:   

𝑠𝑠 =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,      𝑚𝑚 < 𝑡𝑡!
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,      𝑚𝑚 < 𝑡𝑡!  
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,      𝑚𝑚 ≥ 𝑡𝑡!

 

 
where thresholds 𝑡𝑡! and 𝑡𝑡! are chosen to satisfy a noti-
fication false positive rate 𝑅𝑅! and an event false positive 
rate 𝑅𝑅!. 

Our method is a special case of a two-layer model that 
computes sparse representations of input in machine 
learning [7]. Our problem here is simpler because we 
can design the dictionary and assure that the dictionary 
entries are well separated to increase inference accura-
cy.  

 
 
Figure 2. Conventional approach vs. WIN. Time slots 
labeled by time are shown at the bottom. Solid bars de-
note normal (black) and event (red) packets transmitted at 
various time slots. 
 

 
 
Figure 3.  When detecting packets in the first layer, we use 
max-pooling with a sliding-window to address variations in 
packet delay due to multipath. 
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THEOREM 1  If x is 𝑁𝑁!(𝐦𝐦! , 𝐈𝐈!) and B is an 
𝑚𝑚×𝑚𝑚 projection matrix of rank k then 𝐱𝐱!𝐁𝐁𝐁𝐁 has a 
noncentral 𝜒𝜒!!(𝛿𝛿)  distribution where 𝛿𝛿 = 𝐦𝐦𝒙𝒙

𝑯𝑯𝐁𝐁𝐦𝐦𝒙𝒙. 

5.  Performance Analysis 
We compare the conventional approach and WIN by 
computing their probabilities of successful transmission 
of notification. For both methods, the sender is allowed 
to transmit at most R packets, where each packet con-
sists of n bits.  A conventional transmission is success-
ful if the receiver correctly decodes a packet with no 
CRC error. A WIN transmission is successful if the 
sender’s state is classified correctly.  For this analysis, 
we consider the AWGN (additive white Gaussian 
noise) channel with no packet delays. 

Performance	  of	  Conventional	  Approach	  
A conventional method would only fail when none of 
the 𝑅𝑅 packets pass the CRC. Thus, 

𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 − 1 −
1
2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆

! !

 

where 𝐵𝐵𝐵𝐵𝐵𝐵 = !
!
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆  for some 𝑆𝑆𝑆𝑆𝑆𝑆 = !!

!!
 . 

WIN	  Performance	  

In WIN, transmission fails if a state is misclassified.  
We will first find the distribution of detector z for each 
time slot, and then derive the distribution of the second 
layer detector m.  Finally, we will estimate the probabil-
ity of classification error by WIN. 

Let t be the pattern of a packet in physical layer, and y 
be the sensed signal. We consider the hypothesis test on 
hypotheses 𝐻𝐻! and 𝐻𝐻!: 

𝑦𝑦 = 𝐻𝐻!:𝑤𝑤
𝐻𝐻!: 𝑡𝑡 + 𝑤𝑤

 

where 𝑤𝑤~𝑁𝑁(0, 𝐈𝐈) is noise from an AWGN channel.  
Then, a physical-layer detector based on matched filter 
can be expressed as 𝑧𝑧 = 𝑡𝑡!𝑦𝑦 ! = 𝑦𝑦!𝑡𝑡𝑡𝑡!𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦  
where 𝑇𝑇 = 𝑡𝑡𝑡𝑡! is a rank-1 matrix.  We follow the anal-
ysis by Reed et al to compute false positive rates in 
detecting packets with matched filter, which gives the 
distribution of z as summarized in the following theo-
rem [8]:  

By theorem 1, the distribution of z is 

𝜒𝜒!! 𝑑𝑑 = 𝑒𝑒!!!|!|!I! 2 𝑧𝑧|𝑡𝑡|!  

where I! is the modified Bessel function of the first 
kind. We have 𝑑𝑑 = 𝑑𝑑! = 0  ,𝑑𝑑 = 𝑑𝑑! = 𝑡𝑡!𝑡𝑡 = 𝑡𝑡 ! for 
the two hypotheses 𝐻𝐻! and 𝐻𝐻!, respectively.  The mean 
and variance 𝜇𝜇,𝜎𝜎!  of 𝑧𝑧 is (1,1) under 𝐻𝐻! and (d1+1, 
2d1+2) under 𝐻𝐻!.  Given 𝑆𝑆𝑆𝑆𝑆𝑆 = !!

!!
 under unit variance 

Gaussian noise, we have |𝑡𝑡|! = |𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|! where n is the 
number of bits per packet.  Now, we have the distribu-
tion of matched filter detector z as a function of channel 
𝑆𝑆𝑆𝑆𝑆𝑆. 

Let Z0 and Z1 denote the random variables drawn from 
p(z|H0) and p(z|H1).  The second layer detector m is then 

𝑚𝑚~
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  𝑀𝑀 = 𝑅𝑅𝑍𝑍!

                            𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:  𝑀𝑀 = !
! 𝑍𝑍! + 𝑍𝑍!

          𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:  𝑀𝑀 = 𝑅𝑅𝑍𝑍!
 

where R is the max total number of packets to be 
transmitted. (Note that this particular distribution comes 
from the arrival pattern as shown in Figure 2, and it is 
possible to design other patterns to adjust the relative 
distance of these distributions). Since M is just a sum of 
random variables for which we know the mean and 
variance, we then approximate the distribution of m 
with normal distribution: 

𝑚𝑚~
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  𝑁𝑁(𝑅𝑅,𝑅𝑅)

  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:  𝑁𝑁(!!(𝑑𝑑! + 2),
!
!(2𝑑𝑑! + 3))

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:  𝑁𝑁(𝑅𝑅(𝑑𝑑! + 1),𝑅𝑅(2𝑑𝑑! + 2))
 

Once we have the distribution of detector m, we can 
then select thresholds 𝑡𝑡! and 𝑡𝑡! to satisfy desired 
bounds on notification false positive rate 𝑅𝑅! and an 
event false positive rate 𝑅𝑅! using the quantile function 
of normal distribution: 

𝑡𝑡! = 𝑅𝑅 + 2𝑅𝑅    𝑒𝑒𝑒𝑒𝑒𝑒!! 1 − 2𝑅𝑅!
𝑡𝑡! = !

!(𝑑𝑑! + 2) + 2𝑅𝑅(2𝑑𝑑! + 3)    𝑒𝑒𝑒𝑒𝑒𝑒!! 1 − 2𝑅𝑅!
 

After selecting thresholds according to the false posi-
tive rates, we can derive the false negative rate for clas-
sifying normal and event states.  For simplicity, we take 
the max of these two as the failure rate for WIN: 

 
Figure 4. Probability distributions of the value of the 
matching metric  𝒎𝒎 or state inactive, normal and event.  
Dotted lines are approximations with Gaussian. 
 



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 329

𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
1
2 1+ 𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡𝑒𝑒 − 𝑅𝑅(𝑑𝑑1 + 1)

2𝑅𝑅(2𝑑𝑑1 + 2)
 

We compare the WIN failure rate to that of the conven-
tional approach derived earlier in Section 4 by evaluat-
ing failure rate at different SNR. As shown in Figure 5, 
WIN clearly outperforms the conventional approach.  

6.  Simulation 
We present the simulation results on the error rate for 
the conventional system and the WIN proposal. The 
number of total packets (R) in a complete transmission 
is 20, and the number of bits per packet (n) is 80.  Since 
CRC error becomes more likely when the packet size is 
larger, we select the smallest packet size for a wireless 
network to avoid bias against the conventional method. 
This size is 80 bits according to the specifications of 
Bluetooth LE [9]. We simulate with two channel mod-
els: AWGN channel and AWGN channel with uniform 
random packet delay. 

The simulation results are shown in Figure 5. Under 
AWGN channel, WIN achieves error rates lower than 
1% as long as the received SNR is greater than -10dB 
(see blue curve), while the conventional method has 
more than 1% error at 3 dB.  In other words, there is 
roughly a 13 dB gain for WIN. Note that our analytic 
estimations match closely to the results obtained by 
simulation.   

In the case where there are random packet delays due to 
multipath, WIN experience minor performance loss 
because of variations in the packet arrival pattern.  In 
our simulation we assume a random delay up to 3 sam-
ples based on indoor environment, and the SNR loss is 
only about 0.5 dB (See magenta line in Figure 5). The 
conventional method process packets individually, and 
is therefore not affected by packet delays.  Overall, 
WIN outperforms conventional method by a large mar-
gin. 

7.  Conclusion  
Conventional network layering is provided to support 
modular design principles, but it is at the expense of 
losing information in each layer. For example, in the 
physical layer we loss information from demodulation 
and in the link layer we loss information when we toss 
the entire packet upon CRC errors.  Furthermore, con-
ventional design avoids utilizing prior knowledge be-
cause it is not always available. Such information loss 
and underutilization means a substantial drawback for 
applications that have stringent low-energy require-
ments. Via interference technology based on machine 
learning, WIN aims at making use of all information 
resulting from physical-layer matched filtering opera-
tions. In addition, WIN leverages designed-in separa-
tion between traffic patterns of different states of the 
sender, so the state classification can be tolerant to 
channel noise. For these reasons, we have shown that 
WIN can achieve 13 dB gains in terms of robustness 
against channel noise. Lowering the required signal 
strength at receiver by 13 dB translates to 4.5x range in 
free space.  Our results may be useful for future ultra-
low power designs for notification transmission over 
wireless channels.  
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