
conference

proceedings

2013 USENIX
Annual Technical
 Conference
(USENIX ATC ’13)

San Jose, CA, USA
June 26–28, 2013

Proceedings of the 2013 U
SEN

IX A
nnual Technical Conference

 San Jose, CA
, USA

June 26–28, 2013
Sponsored by

© 2013 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primarily
for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-01-0

Thanks to Our USENIX ATC ’13 Sponsors

Media Sponsors and Industry Partners
Computer

Computing in Science
and Engineering

The Data Center Journal
Distributed Management

Task Force (DMTF)
Free Software Magazine

HPCwire
IEEE Pervasive Computing
IEEE Security & Privacy

IEEE Software
InfoSec News

IT Professional

LXer
No Starch Press
O’Reilly Media

Server Fault
UserFriendly.org

Virus Bulletin

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Thanks to Our USENIX and LISA Supporters

USENIX Patrons
Google InfoSys Microsoft Research NetApp VMware

USENIX and LISA Partners
Cambridge Computer Google Meraki

USENIX Partners
Nutanix

USENIX Benefactors
Akamai EMC Hewlett-Packard Linux Journal

Linux Pro Magazine Oracle Puppet Labs

USENIX Association

June 26–28, 2013
San Jose, CA

Proceedings of USENIX ATC ’13:
2013 USENIX Annual Technical Conference

Conference Organizers

Program Co-Chairs
Andrew Birrell, Microsoft Research Silicon Valley
Emin Gün Sirer, Cornell University

Program Committee
Mustaque Ahamad, Georgia Institute of Technology
Lorenzo Alvisi, The University of Texas at Austin
Ozalp Babaoglu, Università di Bologna
Mike Burrows, Google
Manuel Costa, Microsoft Research Cambridge
Jason Flinn, University of Michigan
Phillipa Gill, The Citizen Lab/Stony Brook University
Robert Grimm, New York University
Hermann Härtig, Technische Universität Dresden
Jon Howell, Microsoft Research Redmond
Anthony Joseph, University of California, Berkeley
Terence Kelly, HP Labs
Steve Ko, University of Buffalo
Dejan Kostic, Institute IMDEA Networks

Paul Leach, University of Washington
Boon Loo, University of Pennsylvania
Vivek Pai, Princeton University
Dave Presotto, Google
Rama Ramasubramanian, Microsoft Research

Silicon Valley
Karsten Schwan, Georgia Institute of Technology
Kai Shen, University of Rochester
Prashant Shenoy, University Massachusetts Amherst
Liuba Shrira, Brandeis University
Christopher Small, Quanta Research
Kobus van der Merwe, University of Utah
Jonathan Walpole, Portland State University
Meg Walraed-Sullivan, Microsoft Research Redmond
Alec Wolman, Microsoft Research Redmond
Bernard Wong, University of Waterloo
Yuanyuan Zhou, University of California, San Diego

External Reviewers
Deniz Altınbüken

Hans Boehm

Hyoun Kyu Cho

Björn Döbel

Ayush Dubey

Benjamin Engel

Robert Escriva

Goetz Graefe

Marcus Hähnel

Andy Hwang

Maciej Kuzniar

Adam Lackorzynski

Sandya Srivilliputtur
Mannarswamy

Sang Lyul Min

Brad Morrey

Dejan Novakovic

Pradeep Padala

Stan Park

Michael Roitzsch

Jose Renato Santos

Julian Stecklina

Ioan Stefanovici

Tobias Stumpf

Yoshio Turner

Nedeljko Vasic

Marcus Völp

Carsten Weinhold

USENIX ATC ’13:
2013 USENIX Annual Technical Conference

June 26–28, 2013
San Jose, CA

Message from the Program Co-Chairs . vi

Wednesday, June 26, 2013
Virtual Machine Implementation
Optimizing VM Checkpointing for Restore Performance in VMware ESXi .1
Irene Zhang, University of Washington and VMware; Tyler Denniston, MIT CSAIL and VMware; Yury
Baskakov, VMware; Alex Garthwaite, CloudPhysics and VMware

Hyper-Switch: A Scalable Software Virtual Switching Architecture .13
Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner, Rice University

MiG: Efficient Migration of Desktop VMs Using Semantic Compression .25
Anshul Rai and Ram Ramjee, Microsoft Research India; Ashok Anand, Bell Labs India; Venkata N.
Padmanabhan, Microsoft Research India; George Varghese, Microsoft Research US

Computing in the Cloud
Copysets: Reducing the Frequency of Data Loss in Cloud Storage .37
Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and Mendel Rosenblum, Stanford
University

TAO: Facebook’s Distributed Data Store for the Social Graph .49
Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani, Facebook, Inc.

PIKACHU: How to Rebalance Load in Optimizing MapReduce On Heterogeneous Clusters 61
Rohan Gandhi, Di Xie, and Y. Charlie Hu, Purdue University

Flash-based Storage
FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based SSDs .67
Kai Shen and Stan Park, University of Rochester

The Harey Tortoise: Managing Heterogeneous Write Performance in SSDs .79
Laura M. Grupp, University of California, San Diego; John D. Davis, Microsoft Research; Steven Swanson,
University of California, San Diego

Janus: Optimal Flash Provisioning for Cloud Storage Workloads .91
Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji, François Labelle, Nate Coehlo, Xudong
Shi, and C. Eric Schrock, Google, Inc.

(Wednesday, June 26, continues on p. iv)

Miscellanea #1
Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store .103
Christopher Mitchell, New York University; Yifeng Geng, Tsinghua University; Jinyang Li, New York University

Lightweight Memory Tracing .115
Mathias Payer, Enrico Kravina, and Thomas R. Gross, ETH Zurich

Flash Caching on the Storage Client .127
David A. Holland, Elaine Angelino, Gideon Wald, and Margo I. Seltzer, Harvard University

Practical and Effective Sandboxing for Non-root Users .139
Taesoo Kim and Nickolai Zeldovich, MIT CSAIL

Thursday, June 27, 2013
Data Storage
TABLEFS: Enhancing Metadata Efficiency in the Local File System .145
Kai Ren and Garth Gibson, Carnegie Mellon University

Characterization of Incremental Data Changes for Efficient Data Protection .157
Hyong Shim, Philip Shilane, and Windsor Hsu, EMC Corporation

On the Efficiency of Durable State Machine Replication .169
Alysson Bessani, Marcel Santos, João Felix, and Nuno Neves, FCUL/LaSIGE, University of Lisbon; Miguel
Correia, INESC-ID, IST, University of Lisbon

Estimating Duplication by Content-based Sampling .181
Fei Xie, Michael Condict, and Sandip Shete, NetApp Inc.

Miscellanea #2
MutantX-S: Scalable Malware Clustering Based on Static Features .187
Xin Hu, IBM T.J. Watson Research Center; Sandeep Bhatkar and Kent Griffin, Symantec Research Labs; Kang
G. Shin, University of Michigan

Redundant State Detection for Dynamic Symbolic Execution .199
Suhabe Bugrara and Dawson Engler, Stanford University

packetdrill: Scriptable Network Stack Testing, from Sockets to Packets .213
Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath Raghavan, Nandita Dukkipati, Hsiao-
keng Jerry Chu, Andreas Terzis, and Tom Herbert, Google

Virtual Machine Performance
DeepDive: Transparently Identifying and Managing Performance Interference in
Virtualized Environments .219
Dejan Novaković, Nedeljko Vasić, and Stanko Novaković, École Polytechnique Fédérale de Lausanne (EPFL);
Dejan Kostić, Institute IMDEA Networks; Ricardo Bianchini, Rutgers University

Efficient and Scalable Paravirtual I/O System .231
Nadav Har’El, Abel Gordon, and Alex Landau, IBM Research–Haifa; Muli Ben-Yehuda, Technion IIT and
Hypervisor Consulting; Avishay Traeger and Razya Ladelsky, IBM Research–Haifa

vTurbo: Accelerating Virtual Machine I/O Processing Using Designated Turbo-Sliced Core 243
Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu, Purdue University

Managing Resources
When Slower Is Faster: On Heterogeneous Multicores for Reliable Systems .255
Tomas Hruby, Herbert Bos, and Andrew S. Tanenbaum, VU University Amsterdam

IAMEM: Interaction-Aware Memory Energy Management .267
Mingsong Bi, Intel Corporation; Srinivasan Chandrasekharan, and Chris Gniady, University of Arizona

XLH: More Effective Memory Deduplication Scanners Through Cross-layer Hints .279
Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and Frank Bellosa, Karlsruhe Institute of
Technology

Enabling OS Research by Inferring Interactions in the Black-Box GPU Stack .291
Konstantinos Menychtas, Kai Shen, and Michael L. Scott, University of Rochester

Friday, June 28, 2013
Small Applications
Mantis: Automatic Performance Prediction for Smartphone Applications .297
Yongin Kwon, Seoul National University; Sangmin Lee, University of Texas at Austin; Hayoon Yi, Donghyun
Kwon, and Seungjun Yang, Seoul National University; Byung-Gon Chun, Microsoft; Ling Huang and Petros
Maniatis, Intel; Mayur Naik, Georgia Institute of Technology; Yunheung Paek, Seoul National University

IO Stack Optimization for Smartphones .309
Sooman Jeong, Hanyang University; Kisung Lee, Samsung Electronics; Seongjin Lee, Hanyang University;
Seoungbum Son, Samsung Electronics; Youjip Won, Hanyang University

How to Run POSIX Apps in a Minimal Picoprocess .321
Jon Howell, Bryan Parno, and John R. Douceur, Microsoft Research

Packets
Network Interface Design for Low Latency Request-Response Protocols .333
Mario Flajslik and Mendel Rosenblum, Stanford University

DEFINED: Deterministic Execution for Interactive Control-Plane Debugging .347
Chia-Chi Lin, Virajith Jalaparti, and Matthew Caesar, University of Illinois at Urbana-Champaign; Jacobus Van
der Merwe, University of Utah

Improving Server Application Performance via Pure TCP ACK Receive Optimization 359
Michael Chan and David R. Cheriton, Stanford University

Message from the 2013 USENIX Annual Technical Conference
Program Co-Chairs

Welcome to the 2013 USENIX Annual Technical Conference.

Once again, we received a record number of submissions to the conference. Authors registered 321 abstracts, of
which 233 were submitted as complete papers. Of the submitted papers, 38 were submitted as short papers (no
longer than six pages), and the rest were traditional full-length papers (up to 12 pages, including references). The
 program co-chairs rejected 10 papers without review for serious violations of the formatting rules (incorrect for-
matting that increased the effective available space by 5% or more).

Reviewing was single-blind, done almost entirely by the program committee, with some assistance from outsiders
with special expertise. The reviewing was done in three rounds. In the first round, every paper received two reviews.
Based on these reviews, 69 of the papers were tentatively rejected, because both reviews had overall merit scores of
one or two (on a scale of one through five) with adequate confidence levels. In round two, the remaining 154 papers
each received one more review. Finally, the 47 papers from round two that had at least one overall merit score less
than three, and at least one higher than three, were each given two additional reviews in the third round. Altogether,
we produced 700 reviews.

The program committee meeting was held in April in scenic Lombard, Illinois. Most of the committee was present
in person. In a 10-hour session, we discussed 76 of the papers, including a few low-ranked ones that individual PC
members thought merited more consideration. We accepted a total of 33 papers. Of these, six were accepted as short
papers. Three of the short papers had originally been submitted as full-length papers. Each accepted paper was shep-
herded by a PC member in preparing revisions for the final published versions that you see here.

Our committee had 30 members, plus the two co-chairs. Nine of the committee and one co-chair were from indus-
trial institutions. The committee members were allowed to submit papers; the chairs chose not to submit anything.
We followed conventional rules for conflict of interest, with conflicted members (or co-chair) leaving the room dur-
ing discussion of the conflicted papers.

The papers you see in this year’s program represent a broad diversity of current systems work. In keeping with the
goals and tradition of USENIX ATC, there is strong representation of papers with a very practical orientation, in
 addition to papers with pure novel research contributions.

Besides the paper authors and reviewers, we would like to thank the USENIX staff who actually do the orga-
nization here; without their support, our jobs would have been much harder. They made it possible for us to focus
on creating the conference program, without worrying about the endless details of conference organization and
proceedings publication.

Thank you for participating in the USENIX ATC community, and enjoy the conference.

Andrew Birrell, Microsoft Research Silicon Valley
Emin Gün Sirer, Cornell University
ATC ’13 Program Co-Chairs

vi 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 1

Optimizing VM Checkpointing for Restore Performance in VMware ESXi

Irene Zhang∗

University of Washington
Tyler Denniston∗

MIT CSAIL
Yury Baskakov

VMware
Alex Garthwaite∗

CloudPhysics

Abstract
Cloud providers are increasingly looking to use virtual ma-
chine checkpointing for new applications beyond fault tol-
erance. Existing checkpointing systems designed for fault
tolerance only optimize for saving checkpointed state,
so they cannot support these new applications, which
require better restore performance. Improving restore per-
formance requires a predictive technique to reduce the
number of disk accesses to bring in the VM’s memory on
restore. However, complex VM workloads can diverge
at any time due to external inputs, background processes,
and timing variation, so predicting which pages the VM
will access on restore to reduce faults to disk is impossi-
ble. Instead, we focus on predicting which pages the VM
will access together on restore to improve the efficiency
of disk accesses.

To reduce the number of faults to disk on restore, we
group memory pages likely to be accessed together into
locality blocks. On each fault, we can load a block of
pages that are likely to be accessed with the faulting page,
eliminating future faults and increasing disk efficiency.
We implement support for locality blocks, along with sev-
eral other optimizations, in a new checkpointing system
for VMware ESXi Server called Halite. Our experiments
show that Halite reduces restore overhead by up to 94%
for a range of workloads.

1 Overview
The ability to checkpoint and restore the state of a run-
ning virtual machine has been crucial for fault tolerance
of virtualized workloads. Recently, cloud providers have
been exploring new applications for VM checkpointing.
For example, they want to use checkpointing to save and
power off idle VMs to conserve energy. Restoring a check-
pointed “template” VM could be used to clone new VMs
on demand, which would enable fast, dynamic allocation
of VMs for stateless workloads.

Unlike traditional fault tolerance applications, these
new applications depend on efficient restore of check-
pointed VMs. For example, using checkpointing for dy-
namic allocation of VMs depends on the ability to quickly

∗Work done while all authors were at VMware.

start up a VM on demand. Checkpointing systems de-
signed to support fault tolerance only restore on failures,
so they optimize for checkpoint save performance instead.
As a result, previous work rarely addresses restore be-
yond basic support, so existing systems would offer poor
performance for these new applications.

Virtual machine checkpointing takes a snapshot of the
state of a VM at a single point in time. The hypervisor
writes any temporary VM state, like VM memory, to
persistent storage and then reads it back into memory
when restoring the checkpoint. Since memory images
can be large, VMware ESXi uses a technique called lazy
restore that loads the memory image from disk while the
VM runs. While the VM’s memory is partially on disk,
any access to on-disk pages causes a fault that requires a
disk synchronous access before the VM’s execution can
resume. Pauses in execution for faults to disk can quickly
degrade the usability of the VM.

Improving lazy restore performance requires a predic-
tive technique that reduces the number of faults to pages
on disk. However, it is impossible to predict which pages
the VM will access on restore; the VM’s execution might
diverge at any time due to timing differences or external
inputs, particularly with complex workloads that have
many background tasks and user applications. Previous
work [24] based on predicting which pages the VM would
access on restore could not cope with divergence, leading
to poor performance for complex workloads like Win-
dows desktop applications.

Rather than reducing the number of faults to disk by
predicting the pages that the VM will access on restore,
we instead predict the pages that the VM will access to-
gether on restore. On each fault to disk during lazy restore,
we prefetch a few pages that are likely to be accessed with
the faulting page, rather than prefetching before the VM’s
execution begins. This technique is more resilient to di-
vergence since the prefetching decision is based directly
on pages that have been accessed by the VM after the re-
store. There is a smaller penalty for incorrect predictions
because only a few pages are prefetched at a time.

To allow for efficient prefetching on restore, we sort
pages likely to be accessed together into locality blocks
in the VM’s checkpointed memory image. On restore,

2 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

we load an entire locality block on each fault to disk.
Since the other pages in the locality block are likely to
be accessed with the faulting page, we eliminate faults to
disk for those pages. We implement this technique in a
new VM checkpointing system for VMware ESXi Server
called Halite.

Halite uses two techniques to predict the access local-
ity of memory pages. The first uses the VM’s memory
accesses during lazy save. The VM continues running
past the checkpoint while its memory is written to disk,
so the VM’s execution during lazy restore is actually a re-
execution of the VM’s execution during lazy save. While
the exact execution of the VM will vary on restore due
to divergence, there is less change to the access locality.
Pages accessed together during lazy save are likely to be
accessed together again on restore.

Since the VM may not access all of its pages during
checkpointing, we must use a second technique for pre-
dicting access locality. For the unaccessed pages, Halite
uses locality in the guest operating system’s virtual ad-
dress space to predict access locality. Pages that are
mapped together in the virtual address space are likely
to be accessed together, so locality in the virtual address
space is another good predictor of access locality.

We designed and implemented Halite as an improved
VM memory checkpointing system for VMware ESXi
5.1 [22] and included other optimizations to the current
system. Halite performs fine-grained compression of the
checkpointed memory file, so that compression can be
done in parallel on checkpoint save and only a small
amount of decompression is required for each fault to
disk on checkpoint restore. Compression increases the
effectiveness of locality blocks because more pages can
fit into each block. Unlike ESXi, Halite makes extensive
use of threads to parallelize work during checkpoint save
and restore, including threads for compression and I/O.
Halite dynamically throttles background work during lazy
save and restore to avoid disk contention.

The next section reviews some new applications for
VM checkpointing that VMware has explored. Section 3
gives background on the current virtual machine memory
checkpointing system in VMware ESX 5.1. Section 4
describes Halite’s new memory file layout with locality
blocks. Section 5 describes the algorithms that we use
for predicting access locality. Section 6 details the other
optimizations in Halite. Section 7 gives implementation
details including the algorithm for saving and restoring
VM memory in Halite. Section 8 presents our experimen-
tal results. Section 9 gives an overview of related work,
including our previous work, and Section 10 concludes.

2 Checkpointing Workloads
The primary motivation for Halite is to improve the check-
point restore performance of ESXi, enabling a variety of

new and emerging use cases. In contrast to fault toler-
ance scenarios, where restore is uncommon and happens
only on failure, these new use cases depend on efficient
checkpoint restore.

2.1 Dynamic VM Provisioning

One of the advantages to cloud computing is the ability to
allocate the appropriate amount of computing resources
for any workload. This allocation does not have to be
static; as a workload requires more or less resources,
the number of allocated VMs can be increased or de-
creased. However, most cloud infrastructures are not able
to quickly bring more VMs online. On Amazon EC2, it
can take up to 10 minutes to bring up a VM [1]. Due to
this delay, users must keep a buffer of unused VMs to
handle spikes in requests. Running a number of idle VMs
is both a waste of resources and still may not be sufficient
to protect against severe spikes in usage.

Halite enables fast checkpoint restore from a tem-
plate VM image, similar to VM fork supported by
Snowflock [10], Kaleidoscope [2] or FlurryDB [14]. This
feature allows users to better scale their resource alloca-
tion with usage. Using a checkpointed VM image with
a running Apache server, a VM could be online and han-
dling user requests in a few seconds. Using a check-
pointed VM also offers advantages over quickly booting
a VM; the applications in the VM benefit from a warm
cache and several applications can be running in the VM
without the overhead of application start up times, which
can sometimes be long. Alternatively, for some work-
loads, Halite gives users the ability to allocate a single
stateless VM for each incoming connection. Customers
have requested this feature because it is an easy solution
to ensure security between users.

2.2 Energy Conservation

Virtualization reduces energy usage with server consolida-
tion, but conserving energy consumed by idle VMs is still
a serious concern in cloud deployments. Some systems
have explored turning off servers [3] or suspending idle
VMs [5] to conserve power, but all of these systems strug-
gle with restarting servers or VMs. They use predictive
techniques to restart VMs in advance. When these tech-
niques incorrectly predict usage patterns, either energy is
wasted powering on VMs that are not needed, or users are
forced to wait for the needed VM to restart.

Halite makes it much easier to turn off idle VMs with-
out suffering from poor performance when the VM is
needed again. Using Halite, the user can checkpoint
VMs and power them off. Complex predictive models are
not required with Halite because suspended VMs can be
quickly restarted on demand.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 3

2.3 Virtual Desktop Infrastructure
Large companies have started to move toward converting
desktop PCs into VMs running in a datacenter. These
virtual desktops are easier to maintain and reduce the
amount of hardware needed. However, since there are
more users sharing hardware, users can see performance
degradation when there are spikes in usage. In particular,
VMware has observed a “boot storm” problem, where all
users arrive at work in the morning and attempt to boot
their VMs close in time, leading to severe disk contention.
VM checkpointing can be used to mitigate this problem. If
users checkpoint their desktop VM before going home (or
an energy conservation system checkpoints it for them),
then they can simply restore their VM in the morning.
Restoring a checkpointed VM requires reading much less
from disk than a full boot, easing contention on the disk.
In addition, Halite efficiently restores the VM in much
less time than booting a VM, further reducing the disk
usage and wait time for the user.

3 ESXi Checkpointing
In order to give some background and motivation to
our work, we describe the state of the art in virtual ma-
chine checkpointing implemented in the current release
of VMware ESXi. We primarily discuss the mechanism
for checkpointing VM memory and not other VM state.

3.1 ESXi Save and Restore Algorithm
ESXi has used lazy checkpointing since VMware ESXi
4.0. Lazy checkpointing allows the VM to run while
its memory is saved or restored, reducing the amount of
downtime. ESXi implements a generic copy-on-write
scheme similar to the one described here [20] and similar
to Xen’s implementation [4]. VMware’s implementation
depends on ESXi’s memory tracing mechanism to track
write accesses, which is also used for Halite.

On checkpoint save, ESXi pauses the VM’s execution
and saves its CPU and device state. ESXi installs memory
traces on all of the VM’s pages and resumes the VM.
When the VM writes to an unsaved page, it triggers the
trace on that page. ESXi saves the page and removes the
memory trace before allowing the write to proceed.

While the VM runs, the hypervisor concurrently writes
out memory pages using a background thread. This thread
ensures that the checkpointing process finishes in a rea-
sonable amount of time. The background thread walks
the VM’s physical address space, saving any pages that
have not been already written. It removes the trace on any
page that it saves to avoid triggering the trace later. The
checkpoint save is complete when the background thread
has walked the entire address space.

ESXi supports lazy checkpoint restore using the swap
subsystem by treating a restoring VM like a VM with all
of its memory swapped. This implementation was chosen

LB LB LB LB LB

MB MB MB MB

Physical Page Physical Page

Figure 1: Block layout of checkpointed memory file.
Memory blocks (MB) consist of several pages in physical
address order. Locality blocks (LB) contain a variable
number of compressed memory blocks. Memory blocks
are grouped into locality blocks based on access locality.

for its simplicity and ease of deployment. To restore a
VM, ESXi sets up the checkpointed memory file as the
swap file and then restarts the VM at the checkpoint. On
each access by the VM, a single memory page is swapped
in from the memory file. Concurrently, a background
thread touches swapped out pages to ensure that the re-
store finishes in a reasonable period of time.

3.2 Memory File Organization
ESXi saves the VM’s memory in physical address order
from physical address 0 to the VM’s memory size. This
file layout is simple and requires no metadata, but is not
optimal for either checkpoint save or restore. On every
write to an unsaved page, ESXi must save the page be-
fore allowing the VM to continue executing. Since these
writes are to random memory pages, the disk accesses are
random as well. ESXi avoids having to write to disk on
each write access by buffering, but buffered pages still
cannot be written out sequentially because of the file lay-
out. These writes can degrade the VM’s performance if
the rate of writes to memory is high.

This organization is even worse for checkpoint restore.
On every access to an unrestored memory page, the VM
must pause while waiting for the page to be read from
disk. Since physical memory is inherently random ac-
cess, every access to an unrestored memory page requires
the disk to seek and read a single page, leading to poor
disk performance. Because ESXi treats the memory as
swapped, the hypervisor only reads one 4K page from
disk on each access, further degrading disk performance.

4 Halite Memory File Organization
This section describes Halite’s memory file layout. Halite
uses a significantly different memory file organization
from ESXi, with locality blocks and fine-grained com-
pression. Figure 1 shows the layout of the Halite memory
file. Locality blocks are crucial for efficient prefetching
on each fault to disk during restore.

4 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

4.1 Memory Blocks
For simplicity of implementation and to reduce the size
of meta-data, Halite divides the VM’s physical memory
into fixed-size, aligned blocks of a few pages each called
memory blocks. Halite uses memory blocks as the small-
est unit of processing (i.e., compression, buffering, etc.),
so memory blocks must be small enough that there is still
some access locality in the physical address space.

We found using a memory block size of two pages
was a good trade-off in our implementation; it halves the
amount of meta-data, but remains small enough for work-
loads with poor access locality in the physical address
space like Windows applications. Larger memory blocks
sizes can be used for Linux because of its use of a buddy
allocator1, but performed poorly for Windows.

4.2 Locality Blocks
Halite groups a number of memory blocks into each lo-
cality block, based on access locality. Halite loads an
entire locality block on each fault to disk, reducing disk
accesses and increasing disk efficiency. For simplicity,
locality blocks are fixed-size. Due to the fixed size of
locality blocks, they contain a variable number of com-
pressed memory blocks and some empty space. Locality
blocks also reduce the size of meta-data needed for com-
pression because only the byte offset within the locality
block is needed. Larger locality blocks increase the effi-
ciency of the disk, but also increase the latency of each
fault to disk on restore. In our implementation, we used a
locality block size of 64KB, which we found to be a good
trade-off between efficiency and latency.

5 Access Locality Prediction
Halite uses two techniques to predict access locality for
grouping memory pages into locality blocks. The first
technique traces the execution of the VM past the check-
point during the lazy save. The first technique only works
for pages that are accessed during the lazy save, so we
combine it with a second technique that uses guest vir-
tual address locality to predict access locality. Both of
these techniques are standard in CPU prefetching [19],
although not at the 4KB page level.

5.1 Lazy Save Memory Accesses
In our previous work [24], we observed that the check-
point restore period is a re-execution of the checkpoint
save period since the VM restores back to the point in time
at the beginning of the lazy save period. Unlike working
set restore, Halite uses the VM’s memory accesses during
lazy save to predict access locality, rather than access
ordering. If the VM accessed page X , followed by page

1Linux’s buddy allocator increases access locality in the physical
address space by mapping contiguous physical addresses to virtual
addresses whenever possible.

Y during lazy save, then it is highly likely that if the VM
accesses X or Y on restore, it will also access the other,
even with divergence due to timing or different external
inputs.

Halite groups the pages that were accessed together
during lazy save into locality blocks. The first N pages
accessed by the VM are stored in one locality block, the
next N in another, where N is the size of a locality block.
The number of pages in a locality block can vary due
to compression. Halite does this sorting during the save
process by writing pages out to locality blocks as they
are accessed. Simply filling locality blocks in access
order allows Halite to fill locality blocks without post-
processing, to easily fill a locality block at a time, and to
write locality blocks out sequentially to disk as they are
filled.

For VMs with more than one virtual CPU (vCPU),
Halite separates pages into locality blocks based on the
vCPU. Since each vCPU is running a separate thread of
execution, we believe that an access to page X on one
vCPU, followed by an access to page Y on another vCPU
is not a good predictor of access locality since differences
in timing can easily cause divergence. Sorting based on
vCPU simply requires Halite to fill one locality block per
vCPU at a time.

5.2 Guest Virtual Address Space

Divergence from the VM’s execution during lazy save on
restore is unavoidable; there will be pages that weren’t
accessed during lazy save that are accessed on restore. For
pages that are not accessed during lazy save, we use guest
virtual address space locality to predict access locality.
This technique assumes that if page X and Y are adjacent
in the virtual address space, then an access to page X or
Y is a good predictor that the VM will also access the
other page. Previous work [16] has shown that the virtual
address space is a better predictor of access locality than
the physical address space.

Halite sorts pages not accessed by the VM during the
checkpoint save into locality blocks based on virtual ad-
dress. The first N mapped pages in a guest virtual address
are stored in one locality block, the next N in another.
Again, N may vary due to compression. Halite collects
page table roots as the VM runs. The background thread
in Halite walks the guest virtual address space using the
guest page tables. As the background thread scans, it fills
locality blocks in the order it encounters pages and writes
them out sequentially to disk. We only save a single copy
of each memory page. Memory pages that are mapped in
more than one guest address are saved the first time we
encounter them in a page table.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 5

6 Halite Checkpointing Optimizations
This section introduces other improvements made in
Halite to ESXi’s checkpointing system. These optimiza-
tions include dynamic background thread throttling, com-
pression, zero page optimizations, and threading. Some of
them take advantage of Halite’s more sophisticated mem-
ory file organization, while some of them are just general
improvements to the ESXi checkpointing infrastructure.

Dynamic Background Thread Throttling The back-
ground thread in ESXi is designed to ensure that the check-
pointing process finishes, even if the VM does not access
all of its memory pages. When the VM is rapidly touch-
ing pages, disk access to the checkpointing file becomes
a bottleneck and the background thread begins to contend
with the VM. However, we observed that if the VM is
accessing pages rapidly, there is no reason for the back-
ground thread to run since the checkpointing process is
clearly still making progress. Therefore, we only run the
background thread in Halite if the checkpointing process
is not progressing, which keeps the background thread
from contending with the VM. We do this throttling for
both checkpoint save and restore.

Compression Compression reduces the size of the
checkpointing image, which reduces not only the size
on disk of the image, but also the amount of data that
needs to be moved to and from the disk for the check-
point. Reducing the disk space required can be important,
especially if the VM has a large memory size, but reduc-
ing the amount of I/O is even more important because the
disk is a bottleneck during checkpointing. Compression
also allows more memory to be prefetched on each page
fault with the same amount of I/O. In Halite, each mem-
ory block in a locality block is separately compressed.
We chose to compress memory blocks instead of whole
locality blocks to allow more parallelization and to reduce
the amount of decompression required on each page fault.
We found that using smaller blocks for compression has
minimal impact on the compression ratio.

Zero Pages ESXi scans guest memory for pages that
are completely zero and does copy-on-write sharing of
those pages. For these pages, there is no reason to read or
write the page for checkpointing, so Halite tracks these
pages and does not include them in the memory image.
Halite also does this for pages that the VM has never
touched, and therefore, are not backed in the hypervisor.

Threading Halite introduces several threads to allow
more parallel processing of memory pages. On check-
point save, these threads reduce the amount of time that
the VM has to be paused on each page fault. Halite only
needs to pause the VM long enough to copy the memory
page to a buffer; threads perform the compression and
writing the memory out to the checkpointing file. On

restore, the faulting page must be read in from disk and
decompressed synchronously, so threads cannot improve
the performance. However, Halite decompresses and re-
stores the other memory blocks in the locality block using
threads in parallel. This minimizes the work for each
prefetched page on a page fault and eliminates the work
required if the VM later accesses one of the prefetched
pages.

7 Implementation
We implemented Halite using VMware ESXi 5.1. Halite
replaces ESXi’s existing checkpointing mechanisms be-
cause they are not designed to asynchronously process
memory and restore memory that is not organized in physi-
cal address order. In addition, ESXi does not save memory
to a separate file by default; memory is normally stored
in one file with other checkpointed state. Halite required
a separate file because there is no way to anticipate the
size of the region required for checkpointed memory due
to compression. ESXi does not support compression of
the memory image. Halite only replaces the VM memory
checkpointing system, so ESXi still handles saving any
other VM state.

7.1 Halite Save and Restore Algorithm
Like ESXi, Halite uses lazy checkpointing, but Halite
does copy-on-access, rather than copy-on-write check-
pointing to capture access locality. However, Halite
buffers pages on checkpoint save and writes to disk se-
quentially, rather than randomly, so the overhead is small.

On both checkpoint save and restore, Halite tries to do
as much work asynchronously as it can. During the lazy
save period, when a trace triggers, Halite simply copies
the memory block to a buffer and removes all of the traces
on the pages in that block. Later the memory block is
compressed by a thread and copied to a locality block.
When the locality block fills up, another thread writes it
out to disk. The thread also updates the mapping to record
which locality block contains each memory block.

When the VM faults on an unrestored page, Halite
consults the map to find which locality block it needs to
fetch. The locality block might already be in memory if
it was prefetched by a previous fault. If not, Halite reads
the locality block, and decompresses and restores just the
memory block of the faulting page. The other pages in
the locality block will be decompressed by threads later.

The background thread in Halite works similarly to
ESXi, except it is throttled as described in Section 6.

8 Evaluation
Our evaluation answers several questions about the per-
formance of Halite:
• How does Halite compare to ESXi 5.1 for some

representative workloads?

6 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

• How do locality blocks compare to other block orga-
nizations?

• How does compression impact the performance of
Halite for workloads with differing amounts of com-
pressibility?

• How much do locality blocks contribute to the per-
formance benefits offered by Halite?

• How does restoring a checkpointed VM using Halite
compare to a cold boot of the VM?

We evaluated Halite using a synthetic workload and
three application benchmarks. pgbench [18] is a stan-
dard database benchmark for PostgreSQL. Worldbench
is a Windows desktop application workload. We also
designed a simulated Apache [6] web server benchmark.
Our workloads represent a range of complexity from the
simple synthetic workload to the complex Worldbench
benchmark. We ran our experiments on a server with a
2.3GHz 8-core AMD Opteron processor and 24GB of
RAM. All of the VMs and checkpoints are stored on a
15,000 RPM Seagate 1TB drive running VMFS-5.

8.1 Microbenchmark
First, to evaluate the performance benefit of Halite and
its various optimizations in a controlled environment, we
created a synthetic workload generator. The benefit of the
workload generator is having control over every aspect of
the workload. VM workloads tend to be very complex,
making it difficult to isolate the source of performance
differences.

The workload sequentially accesses memory using one
thread per vCPU, with each thread accessing a separate
region of memory. We ran our workload on Red Hat 6
Enterprise Server in a VM with 4 vCPUs and 2GB of
RAM. The workload has a working set size of 256MB. It
allocates 1GB of memory for the test and fills that memory
with data that is 50% compressible. In order to increase
physical memory fragmentation, the workload allocates
memory in a 16 page stride. Workload performance is
measured by the time needed to access 100,000 pages.
We checkpointed the VM in the middle of the workload
test run, then restored the checkpoint and recorded the
time to complete the test. The VM restores back to the
start of the checkpointing, so the result does not include
any overhead from creating the checkpoint. We separately
discuss the cost of checkpoint save in Section 8.3.

8.1.1 Checkpoint Restore Overhead

We tested the overhead imposed by checkpoint restore
on the microbenchmark for several different test config-
urations. We tested the current implementation of VM
checkpointing in ESXi against Halite with all of its opti-
mizations. We also measured the impact of locality blocks
compared to other block organization schemes. We used a
version of Halite without any memory file optimizations,

ESXi Random P-A A-L Halite
0

20

40

60

80

100

120

C
he

ck
po

in
tin

g
O

ve
rh

ea
d

(s
ec

s)

Block Organizations
(Halite, no compression)

Figure 2: Synthetic workload performance for the current
ESXi implementation, Halite with different memory file
organizations and Halite with memory file optimizations.
The middle bars give Halite performance for an uncom-
pressed memory file using (from left to right) random
blocks, physical address blocks (P-A) and access local-
ity blocks (A-L). Performance is given as the increase in
runtime caused by the checkpoint restore (lower is better).

such as compression and the zero page optimization, but
with different block organizations. We do not use com-
pression in this test, so each file block holds 8 memory
blocks or 16 pages. Thus, on each fault to disk, 15 other
pages in the block are “prefetched” from disk. We tested
three organizations: memory pages grouped into blocks
randomly (random blocks), memory pages grouped by
physical address (physical address blocks) and locality
blocks.

Random blocks should be the lower bound worst-case
performance; on each fault to disk, 15 random pages are
loaded along with the faulting page. Physical address
blocks use the same memory file organization as the cur-
rent ESXi implementation, but group 16 pages into a
block to read for each fault to disk instead of a single
4KB page. This organization simulates the performance
of ESXi if we had added Halite’s other optimizations, but
kept the memory file organization. The test using locality
blocks simulates Halite, but isolates the effects of local-
ity blocks from Halite’s other memory file organizations,
including compression and the zero page optimization.

Figure 2 gives the performance overhead of checkpoint
restore for each of our test configurations. Each test result
is the average of 10 test runs. The baseline runtime of
the workload generator is 54 seconds on average. The
restore overhead is given as the increase in runtime of the
synthetic workload due to the VM being restored in the
middle of the run. We use the same snapshot for all test
configurations by reformatting the same memory file, so
the performance before the checkpoint is identical and the
difference in runtime is only due to the restore process.

Comparing ESXi and Halite, Halite reduces the restore
overhead by 100 seconds or more than 10x. The three

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 7

Table 1: Efficiency of each type of block organization
(no compression) given by number of blocks faulted in
from disk and percentage of other pages in the blocks
later accessed.

Disk Accesses VM Access %

Random 22,975 19%
P-A 14,501 36%
A-L 6,908 83%

bars in the middle of the graph show the impact of varying
just the block organization. It is important to isolate the
performance impact of different block organizations to
understand the benefit offered by locality blocks.

As expected, random blocks perform the worst. Ran-
dom blocks perform worse than even ESXi, although
reading blocks of pages from disk should increase disk
efficiency. This result shows that reading blocks from disk
only improves performance if the other pages in the block
are useful for eliminating future faults to disk. Otherwise,
using bigger blocks only increases the latency of each
fault to disk without reducing the overall number of faults.
Physical address blocks halve the overhead compared
to the random organization because the other pages in a
block are more likely to be accessed, eliminating some
faults to disk. This improvement is due to access locality
in the physical address space.

Locality blocks perform the best, improving perfor-
mance by 6x over random blocks and almost 3x over
physical address blocks. We see further improvement
because locality blocks have better access locality than
physical blocks. More of the other pages in the block are
likely to be accessed after the faulting page, eliminating
more faults to disk. These results show how crucial block
organization is for restore performance.

8.1.2 Memory File Organization

We can see how different block organizations impact per-
formance by looking at the checkpointing statistics col-
lected by Halite. Table 1 gives the total number of faults
to disk for each block organization and the percentage
of prefetched pages the VM accessed after each fault.
Prefetched pages are the pages other than the faulting
page in a block of pages brought in from disk. Accesses
to prefetched pages eliminate faults to disk, improving
disk efficiency.

It is clear that locality blocks lead to more efficient
disk access than the other block organizations. There
are fewer faults to disk and more pages in each faulted
block are eventually accessed, eliminating more faults
and increasing disk efficiency.

We collected hypervisor statistics on the percentage of

0 50 100 150 200 250 300
0

20

40

60

80

100

Rand
P-A
A-L

seconds

%
Ex

ec
ut

io
n

Ti
m

e
Sp

en
ti

n
V

M

Figure 3: VM performance during lazy restore given as
% of time spent executing in the VM (higher is better).
Results are given for three block organizations: random,
physical address blocks (P-A) and access locality blocks
(A-L)

time spent running guest code to show the impact of faults
to disk. Faults to disk pause the VM’s execution, leading
to less time spent running guest code and a reduction in
performance for the guest. For the best performance, we
want to return the guest to running almost 100% of the
time as soon as possible.

Figure 3 shows the impact on guest execution during
restore for the different block organizations. Locality
blocks improve performance by reducing the period of
time where the VM does not run much due to faults to
disk. With locality blocks, the VM sees a large number of
page faults for the first 30 seconds. That time increases to
120 seconds with a physical address blocks, and to 210
seconds with a random blocks. The total time to restore
the VM also decreases from locality blocks to random
blocks.

During the restore, the VM sees a large number of
faults until the working set is entirely faulted in. The
period where the VM sees performance degradation is
not directly related to the test overhead given in Figure 2
because the VM is making some progress during that
time. Locality blocks pack the VM’s working set into
fewer blocks and brings the working set in with fewer
faults to disk.

For some workloads, we could prefetch these page
before starting the VM as we previously proposed [24].
However, the working set cannot be determined before
the VM restores for some workload, and in fact, changes
while the VM runs. For those workloads, Halite provides
better performance because locality blocks group pages
that are likely to be accessed together into blocks, so
Halite will still be able to efficiently fault in the working
set, whereas working set restore would hurt performance
by prefetching pages that are not needed before the VM
starts. We saw this reduction in performance for work-
ing set restore with the Worldbench workload presented

8 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

zlib

uncompressed

Compression Ratio

C
he

ck
po

in
tin

g
O

ve
rh

ea
d

(s
ec

)

Figure 4: Restore overhead for Halite using compressed
and uncompressed memory files for workloads with vary-
ing compression ratios. Smaller compression ratio means
that the workload is more compressible. Performance is
given as the increase in the synthetic workload runtime
(lower is better).

in Section 8.2.1, whereas Halite provides a significant
performance improvement.

8.1.3 Compression

The performance impact of including compression in
Halite depends heavily on the compressibility of the work-
load. Thus, we compare Halite performance with a com-
pressed and uncompressed memory file for workloads
with different compression ratios. We varied the com-
pression ratio of the memory allocated by the workload
generator by packing some percentage of every page with
already compressed data. These tests were performed us-
ing zlib [13]. Halite also supports LZRW [23]; however,
we found that zlib performed similarly to or better than
LZRW in most cases.

Figure 4 shows the performance results for workloads
that compress to 10% of their original size to workloads
that compress to 90% of their original size. The perfor-
mance improvement due to compression varies from a
89% improvement to a 26% improvement depending on
the compressibility of the VM’s memory.

8.2 Application Benchmarks
In addition to our synthetic benchmark, we also evaluated
the performance of Halite for a number of representa-
tive application benchmarks. These workloads vary in
complexity, and therefore, the amount of divergence they
exhibit. Worldbench is a simulated desktop application
workload running in Windows XP. It is the most divergent;
there are timing variances in the inputs from the workload
generator, and Windows XP has many background pro-
cesses that run at various times. In comparison, pgbench
running on PostgreSQL in a server Linux install is more
deterministic. The benchmark is deterministic and there

are few background processes. Finally, our Apache server
benchmark is designed to have divergence in the random
selection of pages that we request from it, but it runs on
top of Linux and has a small working set.

The workloads also vary in their compressibility, which
affects the performance benefit of Halite, as shown in the
previous section. The Worldbench checkpointed memory
file only compresses to 67% of its original size due to
a large number of media files in memory. The pgbench
checkpointed memory file compresses to 10% of its origi-
nal size due to pgbench filling the database with patterns.

8.2.1 Worldbench

Worldbench is a simulated desktop workload with typical
desktop applications like word processing, web brows-
ing and video editing. Worldbench closely simulates the
expected workload of a VDI deployment described in
Section 2.3. We ran Worldbench in Windows XP in a VM
with 1GB of memory and 2 vCPUs. We used the multi-
tasking test from the test suite that simulates a browser
workload and media encoding. Worldbench reports the
amount of time taken to run the test suite once. We check-
pointed the VM 10 minutes into the test run, so the first 10
minutes are identical across runs. Each test is the average
of 10 test runs.

We evaluated the performance of Worldbench on ESXi
and three Halite configurations. The current ESXi im-
plementation of checkpointing uses a memory file that is
organized by physical address and reads one 4KB page
on each fault to disk. The first Halite configuration is
Halite (P-A), which gives the performance of Halite using
physical blocks. Halite (P-A) uses Halite’s checkpoint-
ing optimizations like threading and background thread
throttling, but none of the memory file optimizations like
locality blocks, compression and zero page optimization.
This configuration simulates the performance of ESXi
with the Halite optimizations that would be easy to add to
ESXi, like increasing the block size faulted in from disk
and throttling the background thread, but not changing
the memory file layout.

The next Halite configuration is Halite (A-L), which
gives the performance of Halite with locality blocks,
which is the key contribution in Halite. This configu-
ration isolates the performance impact of locality blocks,
from other memory file optimizations like compression
and zero page optimization. The last configuration is
Halite with all optimizations including compression and
zero page optimization. This configuration gives the total
performance benefit of Halite over ESXi.

The baseline performance of Worldbench without
checkpointing is 816 seconds. Figure 5 gives the World-
bench results as the average increase in the runtime due
to checkpointing. Again, there is no performance impact
from saving in these results because the checkpoint is

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 9

ESXi Halite(P-A) Halite(A-L) Halite
0

10

20

30

40

50

60
Ch

ec
kp

oi
nt

in
g

O
ve

rh
ea

d
(s

ec
s)

Figure 5: Checkpointing overhead for Worldbench given
as number of seconds increase in runtime over baseline
(lower is better).

before the beginning of the save process, so the increase
in runtime is only due to the lazy restore process. All
configurations use the same memory file, re-organized
into the appropriate block organization, so there is only
one checkpoint across all of the configuration tests.

ESXi increases the runtime of Worldbench by more
than 25 seconds due to faults to disk during the lazy re-
store period. Halite (P-A) adds a number of optimizations
to ESXi, including physical blocks, which should increase
disk efficiency. However, Worldbench has poor access
locality in the physical address space, so physical blocks
actually reduce performance like random blocks did in
our microbenchmark test. Halite (P-A) actually increases
the runtime overhead by almost 2x, up to 56 seconds on
average.

Like Halite (P-A), Halite (A-L) also uses blocks, but
locality blocks instead of physical blocks. Halite (A-L)
reduces the runtime overhead by almost 6x compared to
Halite (P-A), showing the importance of block organi-
zation based on access locality. Halite, which includes
compression, further improves performance, reducing
the checkpointing overhead to an average of 1.6 seconds.
Compared to the current implementation of ESXi, Halite
reduces restore overhead by 94%. This performance is
a significant improvement over our previous work [24],
which did not cope with divergence well and actually
reduced performance for Worldbench.

8.2.2 pgbench

pgbench is a benchmarking tool, based on TPC-B, for the
PostgreSQL database used to test the performance of a
database installation. We used VMware’s vFabric Post-
greSQL [21] based on PostgreSQL 9.0. We ran pgbench
and PostgreSQL in a Red Hat 6 Enterprise server in a VM
with 2GB of memory and 4 vCPUs. pgbench measures
database performance by recording the total number of
transactions completed within a timed run.

We used a pgbench run of 5 minutes with 16 clients

ESXi Halite(P-A) Halite(A-L) Halite
0

1

2

3

4

5

6

Ch
ec

kp
oi

nt
in

g
O

ve
rh

ea
d

(m
ill

io
ns

of
tra

ns
ac

tio
ns

)

Figure 6: Checkpointing overhead for pgbench given as
a reduction in transactions completed in 5 minutes over
baseline (lower is better).

running on 4 threads. We ran pgbench with only select
queries because we found the performance to be more
consistent and it avoided disk contention. The default
85/15 read/write mix showed similar performance im-
provements, but with a larger range of performance over
test runs. We checkpointed pgbench at the beginning of
the run and collected the test results after restoring. vFab-
ric PostgreSQL is designed to be an in-memory database,
so we sized our database to 1.8GB.

We used ESXi with the same Halite configurations as
the Worldbench experiments. pgbench shows the differ-
ence between the different configurations for a workload
that has less divergence. The baseline performance of pg-
bench with no checkpoint taken is 6.9 million transactions.
Figure 6 shows checkpointing overhead for pgbench as
the reduction in number of transactions completed in 5
minutes. For example, pgbench completes 2.8 million
transactions after restoring from a checkpoint on ESXi, a
reduction of 4.1 million over the baseline. We chose to
plot the overhead metric because it stays constant regard-
less of the length of the test.

For pgbench, Halite (P-A) only increases checkpoint-
ing overhead by 20% compared to ESXi. This increase is
smaller than Worldbench because Linux workloads have
better physical address locality due to Linux’s buddy allo-
cator. Still, Halite (A-L) reduces performance overhead
by more than 2x for both ESXi and Halite (P-A). Halite
with compression and the zero page optimization further
reduces the overhead by 75%. Compared to ESXi, Halite
reduces performance overhead by 89%.

8.2.3 Apache Webserver

To evaluate the performance of Halite for dynamic VM
allocation that we described in Section 2.1, we created
an experiment to simulate an Apache server application
running in a VM. The test uses an Apache server with an

10 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Boot ESXi Halite
0

5

10

15

20

25
Re

sp
on

se
Ti

m
e

(s
ec

on
ds

)

Figure 7: Apache Response Times. Time until first re-
sponse (lower is better) from Apache server starting from
boot of the VM, an ESXi checkpoint and a Halite check-
point.

HTML dump of Spanish Wikipedia2. The test client re-
quests pages randomly with a Gaussian distribution from
a set of 10,000 pages from the dump. Before checkpoint-
ing, the client makes 10,000 requests to warm the cache.
We ran Apache in Ubuntu 10.04 Server in a VM with 2
vCPUs and 2GB of memory.

We tested the performance of our server application
with a few scenarios. First, we measured the response la-
tency of the server when booting the VM and starting the
web server on the first HTTP request. This scenario sim-
ulates dynamic allocation of VMs without using check-
pointing. Next, we measured the response latency when
restoring a checkpoint of a VM with a running Apache
server using the current ESXi implementation. This sce-
nario reflects the performance of using ESXi checkpoint-
ing for dynamic VM allocation. Finally, we tested the
latency using Halite to restore the server VM.

Figure 7 gives the response times for each setup. Dy-
namically allocating a new VM for each connection re-
quires 23 seconds on average to respond to the first HTTP
request. Restoring a checkpointed VM with a running
Apache server using the current ESXi checkpointing im-
plementation gives response times of 18.4 seconds on
average. Using Halite reduces response time to 7.3 sec-
onds. Halite reduces the response time of a dynamically
allocated web server VM by a factor of three compared
to a cold boot of the VM and a factor of 2.5 compared to
a restore using the current ESXi implementation, making
it much more feasible to dynamically allocate VMs.

We also measured the response times for subsequent
HTTP requests to the web server. Once the connection
to the server has been established, our test client issues
10,000 random page requests, also with a Gaussian distri-
bution. These measurements further show the benefits of
Halite as well as showing the benefit of using a checkpoint,

2http://dumps.wikimedia.org/eswiki/

Table 2: Average response time and maximum response
time for the first 10,000 requests, excluding the first re-
quest.

Avg. Response Time Max Response Time

Boot 18 ms 25.168 s
ESXi 13 ms 9.333 s
Halite 3 ms 3.010 s

Table 3: Checkpoint save overhead for ESXi and Halite
given as increase in runtime or reduction in transactions
over baseline.

Workload ESXi Halite

Synthetic workload (sec) 1 4
pgbench (millions of trans.) .31 .76
Worldbench (seconds) 11 5

rather than a newly booted VM, for dynamic allocation.
Table 2 shows the average and maximum response time
for HTTP requests issued to the web server.

Since the VM’s cache is on disk at the beginning of
all of these scenarios, the performance of the web server
depends entirely on how efficiently the VM’s cache can
be filled from disk. Using a checkpointed VM reduces
both average and maximum response times. The web
server running in the VM already has a warmed cache, so
the VM’s working set just has to be restored, the cache
does not have to be refilled. Restoring the checkpoint
using ESXi reduces the response times, however, Halite
performs the best because it is able to most efficiently
restore the VM’s working set from disk. Halite reduces
the average response time of the web server by a factor
of 6 and the maximum response time by a factor of more
than 8 over booting the VM and starting the web server
for each connection.

8.3 Checkpoint Save
Since most of the work for checkpoint save is done asyn-
chronously in ESXi and Halite, the difference in perfor-
mance between the two is minimal. Halite does copy-on-
access checkpointing, which increases the checkpointing
overhead, but writes out to disk sequentially, which re-
duces the overhead.

Table 3 gives performance results for our synthetic
workload, pgbench and Worldbench. Performance was
measured for each workload after a checkpoint was taken
in the middle of the run. For the synthetic workload and
pgbench, the additional read traces only reduced perfor-
mance by 7-8%. These two workloads are both read-only

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 11

workloads, so the performance impact is higher than for a
more balanced read-write workload. Halite performs bet-
ter than ESXi for Worldbench due to the more write-heavy
workload.

9 Related Work
Most previous checkpointing systems focused on check-
point save performance for supporting fault tolerance, so
there is a limited body of work on improving checkpoint
restore performance. For systems that do not support lazy
restore, the memory file organization is not important,
so it is frequently not addressed. We also describe some
techniques used by process and file system checkpointing
systems to optimize checkpointing.

9.1 Virtual Machine Checkpointing
There is not a large body of work on virtual machine
checkpointing and almost all of it focuses on checkpoint
save performance. Many [15, 20] do not address the
restore algorithm at all.

Commercial hypervisors all include support for check-
pointing and restoring VMs, however not all support lazy
checkpoint save or restore due to the complex implemen-
tation. For systems that do not support lazy checkpoint
restore, the disk layout of checkpointed memory does not
matter, although performance could be improved using
compression. Xen supports lazy checkpointing [4], but
it is not clear whether it supports lazy restore or what
organization is used for checkpointed memory.

Our previous work [24] addressed the issue of lazy
restore performance by prefetching the working set of
the VM’s memory before restarting the VM. However,
we found that, while it was effective for simple work-
loads like MPlayer running on basic Linux, it offered
little benefit for more complex workloads, like Windows
desktop applications. These complex workloads have
more divergence, and since working set restore depends
on predicting which memory pages the VM will access
on restore, it cannot cope with divergence. In contrast,
Halite focuses on predicting which pages the VM will
access together on restore, making it more effective for a
wider range of workloads, including a 94% reduction in
restore overhead for Windows workloads.

9.2 Other Virtualization
One related area of work is VM migration. Post-copy
migration suffers from the same performance challenges
as lazy restore due to the network latency while the VM is
paused waiting for the page to be copied from the source.
However, the organization of VM memory is not a factor
because the VM’s memory is not on disk on the source,
so it can be accessed in any order with no performance
penalty.

Hines et al. [7] implemented a background page walk-

ing thread that adaptively picks the order in which it walks
depending on the last access. For each access, the page
walker will try to push some of the other pages around
that access in the physical address space. However, previ-
ous work [16] found that the guest virtual address space is
a more reliable predictor of access locality and we found
in our experiments that locality in the physical address
space can be poor.

VM fork is another solution for dynamic allocation of
virtual machines that requires restoring memory while the
VM runs. Snowflock [10] depends on there being a small
difference between forked VMs that the memory can be
sent from the parent to the child with little performance
degradation for the child VM. Kaleidoscope [2] groups
pages based on what the page is used for as another way
to predict access locality. Our approach is more general
because it does not require paravirtualization to categorize
pages.

9.3 Process Checkpointing
Previous work in optimizing checkpointing for individual
or distributed processes has focused primarily on check-
point save, but not checkpoint restore. Plank et al. [17]
implemented the process checkpointing system Ickp us-
ing copy-on-write checkpointing as well as compression
as an optimization. Li et al. [11] compare performance
characteristics of four algorithms for checkpoint/restart
of parallel programs. The work of Liao et al. [12], called
Concurrent CKPT, aims to improve on the CLL algorithm
by avoiding page table manipulation. However, all of this
work focuses solely on checkpoint save performance, and
does not discuss checkpoint restore.

9.4 Fast OS and Application boot
There has been some work on organizing operating sys-
tems and application files to improve boot times for both.
Windows uses a mechanism called SuperFetch [8] that or-
ders files on disk in the order that they are accessed during
boot. SuperFetch uses an adaptive algorithm that tracks
past boot processes to predict the order of accesses. Like
Halite, SuperFetch addresses the performance of restor-
ing some set of data by reordering the data on disk in a
more optimal way. Unlike Halite, SuperFetch attempts to
predict the order of all accesses, not just the locality, so
performance suffers when there is divergence. However,
divergence may be less of a concern for booting the OS.

Joo et al. [9] implemented a system that predicts and
prefetches application data on application startup to opti-
mize for interleaving application execution and I/O. Like
other predictive techniques, theirs suffers from reduced
performance on divergence, although divergence is less
of a problem for applications. They do not address disk
layout at all because their system is designed for SSDs.
However, they could improve performance on SSDs by

12 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

reorganizing the data for prefetching into fewer blocks.

10 Conclusion
We presented a new checkpointing system, Halite, for
VMware ESXi that reduces restore overhead for a range
of workloads. Halite predicts which pages the VM will
access together on restore and groups these pages into
locality blocks. We showed that locality blocks offer
significant performance benefits over other block organi-
zations and copes well with divergence in complex VM
workloads like Windows desktop applications. In partic-
ular, locality blocks outperform physical address blocks
by 10x for Windows. Combining locality blocks with
Halite’s other optimizations, Halite reduces the overhead
of checkpoint restore in VMware ESXi to 1.6 seconds
for a Windows desktop workload, a reduction of 94%.
This significant improvement in restore performance al-
lows Halite to efficiently support new applications for
VM checkpointing.

11 Acknowledgements
Many thanks to Karen Zee, Ron Mann and Dan Ports for
their discussions on this work. Thanks to all of the mem-
bers of the monitor group for their support throughout the
project. Thanks to Steve Gribble and Pete Hornyack for
their insightful evaluation of the evaluation. Thanks to the
entire University of Washington systems lab and to our
anonymous reviewers for their paper comments. Special
thanks to our manager, Joyce Spencer, for her continued
support and encouragement throughout this work.

References
[1] Amazon. Amazon EC2 FAQ. aws.amazon.com/ec2/faqs/.

[2] Roy Bryant, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaus-
tubh Joshi, Matti Hiltunen, Andres Lagar-Cavilla, and Eyal
de Lara. Kaleidoscope: cloud micro-elasticity via vm state color-
ing. In Proceedings of the 6th European Conference on Computer
Systems, EuroSys ’11, pages 273–286, New York, NY, USA, April
2011. ACM.

[3] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M.
Vahdat, and Ronald P. Doyle. Managing energy and server re-
sources in hosting centers. In Proceedings of the 18th Symposium
on Operating System Principles, SOSP ’01, pages 103–116, New
York, NY, USA, October 2001. ACM.

[4] Patrick Colp, Chris Matthews, Bill Aiello, and Andrew Warfield.
VM Snapshots, February 2009. http://www.xen.org/files/
xensummit_oracle09/VMSnapshots.pdf.

[5] Tathagata Das, Pradeep Padala, Venkata N. Padmanabhan, Ra-
machandran Ramjee, and Kang G. Shin. Litegreen: saving energy
in networked desktops using virtualization. In Proceedings of the
USENIX Annual Technical Conference, USENIX’10, pages 3–3,
Berkeley, CA, USA, June 2010. USENIX Association.

[6] Apache Software Foundation. Apache http server project, 2012.
http://httpd.apache.org/.

[7] Michael R. Hines and Kartik Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging and dynamic
self-ballooning. In Proceedings of the 5th Conference on Virtual
Execution Environments, VEE ’09, pages 51–60, Washington, DC,
USA, March 2009. ACM.

[8] Thom Holwerda. SuperFetch: How it works & myths, May 2009.
http://www.osnews.com/story/21471/SuperFetch_

How_it_Works_Myths.

[9] Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G. Shin. Fast:
quick application launch on solid-state drives. In Proceedings of
the 9th Conference on File and Storage Technologies, FAST ’11,
Berkeley, CA, USA, February 2011. USENIX Association.

[10] Horacio Andrs Lagar-Cavilla, Joseph Andrew Whitney,
Adin Matthew Scannell, Philip Patchin, Stephen M. Rumble,
Eyal de Lara, Michael Brudno, and Mahadev Satyanarayanan.
SnowFlock: rapid virtual machine cloning for cloud computing.
In Proceedings of the 4th European Conference on Computer
Systems, EuroSys ’09, pages 1–12, Nuremberg, Germany, April
2009. ACM.

[11] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent
checkpointing for parallel programs. IEEE Parallel & Distributed
Systems, pages 874–879, August 1994.

[12] Jianwei Liao and Yutaka Ishikawa. A new concurrent checkpoint
mechanism for real-time and interactive processes. In Proceed-
ings of the 34th Computer Software and Applications Conference,
COMPSAC ’10, pages 47–52, Washington, DC, USA, 2010. IEEE
Computer Society.

[13] Jean loup Gailly and Mark Adler. zlib. zlib.net.

[14] Michael J. Mior and Eyal de Lara. Flurrydb: a dynamically
scalable relational database with virtual machine cloning. In Pro-
ceedings of the 4th Annual International Conference on Systems
and Storage, SYSTOR ’11, pages 1–9, New York, NY, USA, 2011.
ACM.

[15] Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and space-
efficient virtual machine checkpointing. In Proceedings of the 7th
Conference on Virtual Execution Environments, VEE ’11, pages
75–86, New York, NY, USA, March 2011. ACM.

[16] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Ab-
hishek Bhattacharjee. CoLT: coalesced large-reach TLBs. In
Proceedings of the Conference on Microprogramming and Mi-
croarchitecture, MICRO ’12. IEEE, December 2012.

[17] James S. Plank and Kai Li. ickp: A consistent checkpointer
for multicomputers. IEEE Parallel & Distributed Technology,
2(2):62–67, June 1994.

[18] PostgreSQL. pgbench. http://www.postgresql.org/docs/
devel/static/pgbench.html.

[19] Alan Jay Smith. Sequential program prefetching in memory hier-
archies. IEEE Computer, 11(12):7–21, December 1978.

[20] Michael H. Sun and Douglas M. Blough. Fast, lightweight virtual
machine checkpointing. Technical report, Georgia Institute of
Technology, 2010.

[21] VMware. VMware vfabric postgres. http://www.vmware.com/
products/application-platform/vfabric-postgres/

overview.html.

[22] VMware. VMware vSphere Hypervisor. www.vmware.com/

products/vsphere-hypervisor/overview.html.

[23] Ross N. Williams. http://www.ross.net/compression/

introduction.html.

[24] Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C.
Barr. Fast restore of checkpointed memory using working set
estimation. In Proceedings of the 7th Conference on Virtual Ex-
ecution Environments, VEE ’11, pages 87–98, New York, NY,
USA, March 2011. ACM.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 13

Hyper-Switch: A Scalable Software Virtual Switching Architecture

Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha and Scott Rixner

Rice University

Abstract
In virtualized datacenters, the last hop switching hap-

pens inside a server. As the number of virtual machines
hosted on the server goes up, the last hop switch can
be a performance bottleneck. This paper presents the
Hyper-Switch, a highly efficient and scalable software-
based network switch for virtualization platforms that
support driver domains. It combines the best of the ex-
isting I/O virtualization architectures by hosting device
drivers in a driver domain to isolate faults and placing
the packet switch in the hypervisor for efficiency. In ad-
dition, this paper presents several optimizations that en-
hance performance. They include virtual machine (VM)
state-aware batching of packets to mitigate the costs of
hypervisor entries and guest notifications, preemptive
copying and immediate notification of blocked VMs to
reduce packet arrival latency, and, whenever possible,
packet processing is dynamically offloaded to idle pro-
cessor cores. These optimizations enable efficient packet
processing, better utilization of the available CPU re-
sources, and higher concurrency.

We implemented a Hyper-Switch prototype in the Xen
virtualization platform. This prototype’s performance
was then compared to Xen’s default network I/O archi-
tecture and KVM’s vhost-net architecture. The Hyper-
Switch prototype performed better than both, especially
for inter-VM network communication. For instance, in
one scalability experiment measuring aggregate inter-
VM network throughput, the Hyper-Switch achieved a
peak of ∼81 Gbps as compared to only ∼31 Gbps under
Xen and ∼47 Gbps under KVM.

1 Introduction

Machine virtualization is now used extensively in data-
centers. This has led to considerable change to both the
datacenter network and the I/O subsystem within virtual-
ized servers. In particular, the communication endpoints
within the datacenter are now virtual machines (VMs),
not physical servers. Consequently, the datacenter net-
work now extends into the server and last hop switching
occurs within the physical server.

At the same time, thanks to increasing core counts
on processors, server VM densities is on the rise. This

trend is placing enormous pressure on the network I/O
subsystem and the last-hop virtual switch to support effi-
cient communication—especially between VMs—in vir-
tualized servers.

There are many I/O architectures for network commu-
nication in virtualized systems. Of these, software device
virtualization is the most widely used. This preference
for software over specialized hardware devices is due in
part to the rich set of features—including security, isola-
tion, and mobility—that the software solutions offer.

The software solutions can be further divided
into driver domain and hypervisor-based architectures.
Driver domains are dedicated VMs that host the drivers
that are used to access the physical devices. It provides
a safe execution environment for the device drivers. Ar-
guably, the hypervisors that support driver domains are
more robust and fault tolerant, as compared to the alter-
nate solutions that locate the device drivers within the
hypervisor. However, on the flip side, they incur signifi-
cant software overheads that not only reduce the achiev-
able I/O performance but also severely limit I/O scalabil-
ity [29, 31].

In existing I/O architectures, the virtual switch is im-
plemented inside the same software domain where the
virtual devices are implemented and the device drivers
are hosted. For instance, all of these components are im-
plemented inside a driver domain in Xen [13] and the
hypervisor in KVM [26]. This collocation is purely a
matter of convenience since packets must be switched
when they are moved between the virtual devices and the
device drivers.

In this paper, we introduce the Hyper-Switch, which
challenges the existing convention by separating the vir-
tual switch from the domain that hosts the device drivers.
The Hyper-Switch is a highly efficient and scalable
software-based switch for virtualization platforms that
support driver domains. In particular, the hypervisor in-
cludes the data plane of a flow-based software switch,
while the driver domain continues to safely host the de-
vice drivers. Since the data plane is small relative to the
size of the switch control plane, it does not significantly
increase the size of the hypervisor or the platform’s over-
all trusted computing base (TCB). The Hyper-Switch ex-
plores a new point in the virtual switching design space.

1

14 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Another contribution of this paper is a set of optimiza-
tions that increase performance. They enable the Hyper-
Switch to efficiently support both bulk and latency sensi-
tive network traffic. They include VM state-aware batch-
ing of packets to mitigate the costs of hypervisor entries
on the transmit side and guest notifications on the receive
side. Preemptive copying is employed at the receiving
VM, when it is being notified of packet arrival, to reduce
latency. Further, whenever possible, packet processing
is dynamically offloaded to idle processor cores. The of-
floading is performed using a low-overhead mechanism
that takes into account CPU cache locality, especially in
NUMA systems.

These optimizations enable efficient packet process-
ing, better utilization of the available CPU resources, and
higher concurrency. They take advantage of the Hyper-
Switch data plane’s integration within the hypervisor and
its proximity to the scheduler. As a result, the Hyper-
Switch enables much improved and scalable network
performance, while maintaining the robustness and fault
tolerance that derive from the use of driver domains. Fur-
ther, we believe that these optimizations can and should
be a part of any virtual switching solution that aims to
deliver high performance.

We evaluated the Hyper-Switch using a prototype
that was implemented in the Xen virtualization plat-
form [4]. The prototype was built by modifying Open
vSwitch [24], a multi-layer software switch for com-
modity servers. In this evaluation, the Hyper-Switch’s
performance was compared to that of KVM’s vhost-net
and Xen’s default network I/O architectures. The results
show that the Hyper-Switch enables much better scala-
bility and peak throughput than both of these existing ar-
chitectures.

The rest of this paper is organized as follows. Sec-
tion 2 further motivates the Hyper-Switch by discussing
some of the issues with existing architectures. Section 3
explains the Hyper-Switch’s design. Section 4 describes
the implementation of the Hyper-Switch prototype. Sec-
tion 5 presents a detailed evaluation of the Hyper-Switch.
Section 6 discusses related work. Finally, Section 7 sum-
marizes the conclusions.

2 Motivation

The need for efficient and scalable network communica-
tion within virtualized servers is increasing. Intel already
claims to have an architecture that can scale to 1000 cores
on a single chip [15]. Furthermore, the number of cores
on a chip is predicted to grow to 64 in a few years and
to 256–512 by the end of the decade [12]. If this last
prediction is borne out, then in 2020 a single 1U server
will have as many cores as an entire rack of servers does
today.

In addition, communication between servers within
the same datacenter already accounts for a significant
fraction of the datacenter’s total network traffic [14].
Moreover, Benson et al.’s study of multiple datacenter
networks reported that 80% of the traffic originating at
servers in cloud datacenters never leaves the rack [5]. If
the predictions for the growing number of cores come
to pass, then a rack of servers may be replaced by VMs
within a single physical server, and the network traffic
that today never leaves the rack may instead never leave
the server. Consequently, the Hyper-Switch has been
heavily optimized to enable high performance inter-VM
communication.

Modern multi-core systems enable concurrent pro-
cessing of network packets. Under Xen’s default net-
work architecture, the driver domain can run in parallel
to the transmitting and receiving VMs. Consequently, it
is possible to perform packet switching in parallel with
packet transmission and reception. However, there are
several fundamental problems with traditional driver do-
main architectures that limit I/O performance scalability.
Fundamentally, the driver domain must be scheduled to
run whenever packets are waiting to be processed. This
might involve scheduling multiple virtual processors de-
pending on the number of threads used for packet pro-
cessing in the driver domain. As a result, scheduling
overheads are incurred while processing network pack-
ets. Further, the driver domain must be scheduled in a
timely manner to avoid unpredictable delays in the pro-
cessing of network packets.

Today, it is standard practice in real-world virtualiza-
tion deployments to dedicate processor cores to the driver
domain. This avoids scheduling delays, but often leaves
cores idle. In fact, dedicating CPU resources for back-
end processing is not limited to just driver domain-based
architectures. There have also been several proposals
to offload some of the packet processing to dedicated
cores—including Kumar et al.’s sidecore approach [17],
and Landau et al.’s split execution (SplitX) model [18].
But, this can lead to underutilization of these cores. Fur-
ther, this goes against one of the fundamental tenets of
virtualization, which is to enable the most efficient uti-
lization of the server resources. Hence the Hyper-Switch
has been designed to smartly and dynamically utilize the
available resources.

At the same time, reliability cannot be ignored, es-
pecially as servers in datacenters move toward multi-
tenancy. Hypervisors that support driver domains are
potentially more robust and fault tolerant. However,
driver domains incur significant overheads. These over-
heads are due to the costs of moving packets between
the guest VMs and the driver domain [21, 29, 31], be-
cause the driver domain cannot trivially access a packet
in the guest VM’s memory. The driver domain is just

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 15

NIC

physical
driver

Guest VM Driver Domain

Hardware

Management
Domain

Hyper-Switch
control plane

Hyper-Switch data plane

control vNIC vNIC

Hyper-Switch
ext driverPV network

driver

vNIC

Guest VM

Virtualized Server

PV network
driver

Hypervisor

Figure 1: The Hyper-switch architecture. The last
hop virtual switch is implemented partly in the hy-
pervisor (data plane) and partly in the management
layer (control plane). The device drivers are hosted
in the driver domain.

Guest VM Driver Domain

Hardware

physical
driver

NIC

vNICPV network
driver

Guest VM

Virtualized Server

PV network
driver

virtual switch

vNIC

Hypervisor

Figure 2: Traditional driver domain architecture.
The driver domain hosts the device drivers and the
last hop virtual switch.

another VM and the hypervisor maintains memory iso-
lation between VMs. So, the driver domain must use an
expensive memory sharing mechanism provided to ac-
cess the packet. Hypervisor-based architectures do not
incur these memory sharing overheads since the packets
in the guest VMs’ memory can be directly accessed from
the hypervisor. The Hyper-Switch has been designed to
take advantage of driver domains without incurring the
associated memory sharing overheads.

3 Hyper-Switch Design

Figure 1 illustrates the Hyper-Switch architecture.
There are two fundamental aspects to this architecture.
First, unlike existing systems that use driver domains,
the Hyper-Switch architecture—as the name implies—
implements the virtual switch inside the hypervisor. So
internal network traffic between virtual machines (VMs)
that are collocated on the same server is handled entirely
within the hypervisor. Incoming external network traffic
is initially handled by the driver domain, since it hosts
the device drivers, and then is forwarded to the destina-
tion VM through the Hyper-Switch. For outgoing ex-
ternal traffic, these two steps are simply reversed. In
essence, from the Hyper-Switch’s perspective, two guest
VMs form the endpoints for internal network traffic, and
the driver domain and a guest VM form the endpoints for
external network traffic. Contrast this with the traditional
driver domain architecture as illustrated in Figure 2.

Second, the hypervisor implements just the data-plane
of the virtual switch that is used to forward network
packets between VMs. The switch’s control plane is
implemented in the management layer. So the vir-
tual switch implementation is distributed across virtu-
alization software layers with only the bare essentials
implemented inside the hypervisor. The separation of

control and data planes is achieved using a flow-based
switching approach. This approach has been previously
used in other virtual switching solutions such as Open
vSwitch [24]. However, Open vSwitch’s control and data
planes are both implemented inside the driver domain.

The rest of this section describes the Hyper-Switch’s
design in detail. First, the basics are explained by de-
scribing the path taken by a network packet. This is
followed by several performance optimizations that im-
prove upon the basic design.

3.1 Basic Design
Packet processing by the Hyper-Switch begins at the
transmitting VM (or driver domain) where the packet
originates and ends at the receiving VM (or driver do-
main) where the packet has to be delivered. It proceeds
in four stages: (1) packet transmission, (2) packet switch-
ing, (3) packet copying, and (4) packet reception.
Packet Transmission . In the first stage, the transmit-
ting VM pushes the packet to the Hyper-Switch for pro-
cessing. Packet transmission begins when the guest
VM’s network stack forwards the packet to its para-
virtualized network driver. Then the packet is queued
for transmission by setting up descriptors in the trans-
mit ring. A single packet can potentially span multiple
descriptors depending on its size. Typically, packets are
never segmented in the transmitting guest VM. So the
packets belonging to internal network traffic can be for-
warded as is. The external packets are segmented either
in the driver domain or the network hardware. Today,
segmentation offload is a standard feature in most net-
work devices.
Packet Switching . In the second stage of packet pro-
cessing, the packet is switched to determine its desti-
nation. Switching is triggered by a hypercall from the

3

16 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

transmitting VM. It begins with reading the transmit ring
to find new packets. Each packet is then pushed to the
Hyper-Switch’s data plane where it is processed using
flow-based packet switching. The data plane must be
able to read the packet’s headers in order to switch it.
Since the data plane is located in the hypervisor, which
has direct access to every VM’s memory, it can read the
headers directly from the transmitting VM’s memory.

Packet switching by the data plane proceeds as fol-
lows: (1) The packet header fields are parsed to identify
the corresponding packet flow. (2) The packet flow is
used to lookup a matching flow rule in a software flow
table. When this lookup fails, the packet is forwarded to
the control plane in the management layer. (3) A suc-
cessful flow table lookup identifies a flow rule, which
specifies one or more actions to be performed. Typically,
the action is to forward the packet to one or more destina-
tion ports or to drop the packet. Each port has an internal
receive queue where the switched packet is temporarily
placed. This port corresponds to a virtual network inter-
face (vNIC) within the destination VM.

When the flow table lookup fails, the packet is for-
warded to the control plane through a separate control
interface. The control plane decides how the packet must
be forwarded based on packet filtering rules, forwarding
entries from an Ethernet address learning service, and/or
other protocol specific tables. This is composed into a
new flow rule that specifies the actions to be performed
on packets belonging to this flow. Then the packet is
re-injected into the hypervisor’s data plane and the as-
sociated actions are executed. Finally, the control plane
adds the new flow rule to the flow table. This allows the
flow’s subsequent packets to be handled entirely within
the hypervisor’s data plane.
Packet Copying . In the third stage of packet process-
ing, the switched packet is copied into the receiving
VM’s memory. Empty buffers for receiving new packets
are provided through the vNIC. Specifically, the descrip-
tors in the receive ring provide the address of the empty
buffers in the VM’s memory.

By default, the destination VM is responsible for per-
forming packet copies. Once switching is completed, the
destination VM is notified via a virtual interrupt. Subse-
quently, that VM issues a hypercall. While in the hyper-
visor, it dequeues the packet from the port’s internal re-
ceive queue, and copies the packet into the memory given
by the next descriptor in the receive ring. The packet
is copied directly from the transmitting VM’s memory
to the receiving VM’s memory. After which, the mem-
ory that was allocated for this packet at various places—
inside the hypervisor and in the transmitting VM—is re-
leased.

Packet Reception . In the fourth and final stage, the
para-virtualized network driver in the receiving VM re-
constructs the packet from the descriptors in the receive
ring. Typically, the receiving OS is notified, through in-
terrupts, that there are new packets to be processed in the
receive ring. However, under the Hyper-Switch, the re-
ceiving VM was already notified in the previous stage.
So packet reception can happen as soon as the hypercall
for copying the packet is complete. The new packet is
then pushed into the receiving VM’s network stack.

3 .2 Preemptive Packet Copying
Packet copies are performed by default in a receiving
VM’s context. When a packet is placed in the internal
receive queue, after it has been switched, the receiving
VM is notified. Eventually, the receiving VM calls into
the hypervisor to copy the packet. However, delivering a
notification to a VM already requires entry into the hy-
pervisor. Under Xen, when there is a pending notification
to a VM, the VM is interrupted and pulled inside the hy-
pervisor. Since hypercalls are expensive operations, the
Hyper-Switch tries to avoid them. In this case, it takes
advantage of the hypervisor entry upon event notifica-
tion to avoid a separate hypercall to perform the packet
copy. Instead, the packet copy is performed preemptively
when the receiving VM is being notified. In essence, the
packet copy operation is combined with the notification
to the receiving VM. This optimization avoids one hy-
pervisor entry for every packet that is delivered to a VM.

3 .3 Batching Hypervisor Entries
In the Hyper-Switch architecture, as described thus far,
the transmitting VM enters the hypervisor every time
there is a packet to send. Moreover, the receiving VM is
notified every time there is a packet pending in the inter-
nal receive queue. As mentioned before, even this notifi-
cation requires hypervisor intervention.1 Therefore, de-
spite the preemptive packet copy optimization, the over-
head of entering the hypervisor is incurred multiple times
on every packet.

To mitigate this overhead, we use VM state-aware
batching, which amortizes the cost of entering the hyper-
visor across several packets. This approach to batching
shares some features with the interrupt coalescing mech-
anisms of modern network devices. Typically, in net-
work devices, the interrupts are coalesced irrespective
1In Xen, notifying a running guest VM involves two entries into the
hypervisor. First, the running VM is interrupted via an IPI and forced
to enter the hypervisor. Then the hypervisor runs a special exception
context where the guest VM handles all pending notifications. Finally,
the guest VM again enters the hypervisor to return from the exception
context.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 17

of whether the host processor is busy or not. But, un-
like those devices the Hyper-Switch is integrated within
the hypervisor, where it can easily access the scheduler
to determine when and where a VM is running. So a
blocked VM can be notified immediately when there are
packets pending to be received by that VM. This enables
the VM to wake up and process the new packets without
delay. On the other hand, the notification to a running
VM may be delayed if it was recently interrupted.

3.4 Offloading Packet Processing
In Hyper-Switch, by default, packet switching is per-
formed in the transmitting VM’s context and packet
copying is performed in the receiving VM’s context. As
a result, asynchronous packet switching does not occur
with respect to the transmitting VM, and asynchronous
packet copying does not occur with respect to the receiv-
ing VM. However, concurrent and asynchronous packet
processing can significantly improve performance.

Concurrent packet processing can be achieved by
polling: (1) all the internal receive queues, looking for
packets waiting to be copied, and (2) all the transmit
rings, looking for packets waiting to be switched. This
can be performed by processor cores that are currently
idle. Packet copying is prioritized over switching be-
cause packet copying is typically the more expensive op-
eration and the receiving VM is more likely to be perfor-
mance bottlenecked than a transmitting VM.

Instead, the idle cores are woken up just when there is
work to be done. On the receive side, this can be ascer-
tained precisely when packets are placed in an internal
receive queue of a vNIC. Then one of the idle cores is
chosen and woken up to perform the packet copy. A low-
overhead mechanism is used to offload work to the idle
cores. It uses a simple interprocessor messaging facility
to request a specific idle core to copy packets at a spe-
cific vNIC. Further, this mechanism attempts to spread
the work across many idle cores. Otherwise, if all the
work is offloaded to a single idle core, it might become a
bottleneck.

The offloading to idle cores is delayed if the receiv-
ing VM is going to be notified immediately. As ex-
plained previously, this typically happens when the re-
ceiving VM is not running. Subsequently, the receiv-
ing VM copies a bounded number of packets sufficient
to keep it busy, and then if packets are still pending in
the internal receive queue, the remaining copies are of-
floaded to an idle core. The rationale is to immediately
copy some packets so that the receiver can start process-
ing them, while the remaining packets are concurrently
copied at an idle core.

Unfortunately, offloading packet switching to idle
cores is not trivial. In the common case, packets are

asynchronously queued by the transmitting VM with-
out entering the hypervisor. So it is not possible to
offload the switching tasks precisely when packets are
queued. Therefore, packet switching is performed at
the idle cores only as a side effect of offloading packet
copies. In other words, when an idle core is woken up to
perform packet copies, it also polls all the transmit rings
looking for packets pending to be switched.

Further, when packets are being processed by an idle
core, the Hyper-Switch checks for any other work that
might need that core. If so, it aborts the packet process-
ing. This ensures that the offloaded packet processing
happens at the lowest possible priority and does not pre-
vent other tasks from using that processor.
CPU Cache Awareness . CPU cache locality can have
a significant impact on the cost of packet copying under
Hyper-Switch. Essentially, the packet data is accessed in
three places:2 (1) The transmitting VM, (2) the packet
copier, and (3) the receiving VM. So the packet data can
be potentially brought into three different CPU caches
depending on the system’s cache hierarchy and where the
two VMs and the packet copier are run.

If the receiving VM is also the packet copier, then
the packet data is brought into the receiving VM’s CPU
cache while the copy is performed. Subsequently, when
the packet is accessed in the receiving VM, it can be read
with low latency from the cache. But if the packet copier
runs on an idle core, the access latency will depend on
whether the idle core shares any cache with the receiving
VM’s core. Therefore, under Hyper-Switch, the offload
mechanism for packet processing is optimized to take ad-
vantage of CPU cache locality. At the same time, it en-
sures that the offloaded work does not unfairly affect the
performance of other VMs running on cores that share
their CPU cache with the idle cores.
Hysteresis . Waking up an idle core takes a non-trivial
amount of time, particularly when the idle core is us-
ing deeper sleep states to save power. Further, the inter-
processor interrupts (IPIs) that are used to wake up cores
are not cheap. Therefore, a small hysteresis period is in-
troduced to ensure that the idle cores stay awake longer
than they normally would. The idea is to keep the cores
running, after they are woken up, until there is a period—
the hysteresis time period—during which no packets are
processed. In other words, the idle cores are kept running
as long as there is a steady stream of packets to process.

3 .5 More Packet Processing Opportunities
A packet that is queued in the transmit ring at a vNIC will
eventually be switched by either the transmitting VM or
2Packet switching is ignored here since it only accesses the packet
headers.

5

18 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

an idle core. This might happen immediately if an idle
core polls this interface looking for packets waiting to be
switched or it might happen only when the transmit timer
period that is implemented by VM-state aware batching
elapses.3

Consider a VM that queues some packets for transmis-
sion at its vNIC and then blocks. Let’s assume that there
are no other idle cores. If another VM is scheduled to
run on this core, then the queued packets are not going
to be switched until the blocked VM is scheduled to run
again. But this might happen only at the end of the trans-
mit timer period. Even if the core becomes idle after the
VM blocks, there is no guarantee that the blocked VM’s
packets will be switched at that idle core. In fact, the idle
core can end up copying packets destined for other VMs.
In essence, a VM can block despite its packets waiting to
be switched.

When a VM’s virtual processor blocks, it has to en-
ter the hypervisor to give up its core. Since the VM is
already inside the hypervisor, it might as well as check
if there are packets pending to be switched or copied.
This allows any packet processing work to be completed
before the VM stops running. Also, new packet copies
result in a notification to the VM. Consequently, instead
of blocking, the VM returns to process the packets that
were just received.

4 Implementation Details

We implemented a prototype of the Hyper-Switch archi-
tecture, which is depicted in Figure 3. We implemented
the switch’s data plane by porting parts of Open vSwitch
to the Xen hypervisor. Open vSwitch’s control plane
was used without modification. We also developed a
new para-virtualized (PV) network interface for the guest
VMs to communicate with the data plane. The same in-
terface was also used by the driver domain to forward ex-
ternal network traffic. The rest of this section describes
each part of the Hyper-Switch prototype in detail.
Open vSwitch Overview . Open vSwitch [24] is an
OpenFlow compatible, multi-layer software switch for
commodity servers. The control and data planes are
separated. While the data plane is implemented inside
the OS kernel, the control plane is implemented in user
space. It uses the flow-based approach for switching
packets in its data plane. In a typical deployment of Open
vSwitch as a last hop virtual switch, it is implemented
entirely inside a driver domain (Xen) or the hypervisor
(KVM). In the common case, the network traffic between
the guest VMs is directly switched by Open vSwitch’s
data plane within the kernel. Open vSwitch provides a
vport abstraction that can be bound to any network inter-
3The maximum delay is bounded by the transmit timer period.

datapath glue

Open vSwitch
control plane

User space

Kernel

Driver Domain

Open vSwitch

datapath
vport

vportvport

Guest VM

Xen
Hypercalls

Xen Hypervisor

control

Guest VMGuest VM

Figure 3: Hyper-Switch prototype. It was built by porting
essential parts of Open vSwitch’s datapath to the Xen
hypervisor.

face in the driver domain. In addition, there is one vport
for every vNIC in the system.
Porting Open vSwitch’s Datapath. We implemented
the Hyper-Switch’s data plane by porting Open
vSwitch’s datapath to the Xen hypervisor. The vports
on the datapath were bound to a newly developed para-
virtualized network interface that allowed guest VMs to
communicate with the Hyper-Switch’s data plane.

The driver domain kernel also included a datapath glue
layer to enable communication between the control and
data planes. This layer converted the commands from
Open vSwitch’s control plane into a new set of Xen hy-
percalls to manipulate the flow tables in the datapath.
The glue layer also transferred the packets that are punted
to the control plane.
Para-virtualized Network Interface . The guest VMs
and the driver domain communicated with the Hyper-
Switch through a para-virtualized network interface
(vNIC). The interface included two transmit rings—one
for queueing packets for transmission and another for re-
ceiving transmission completion notifications—and one
receive ring to deliver incoming packets. The rings
were fixed circular buffers where the producer and con-
sumer(s) could access the ring descriptors concurrently.
The interface also included an internal receive queue that
contained packets that were yet to be copied into the re-
ceiving VM’s memory.
Hypervisor Integration . As explained in Section 3.2,
packet copying was preemptively performed by combin-
ing it with the notification to the receiving VM. We im-
plemented this by checking for packets to copy when the
associated virtual interrupt was delivered by the Xen hy-
pervisor to a VM. Further, packet switching and copy-
ing were also performed when a VM voluntarily blocked.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 19

Thus the VM’s vNIC was polled for packets to be copied
or switched, just before the scheduler was invoked to
yield the processor and find another VM to run.
Offloading Packet Processing. We implemented the
offloading of packet processing inside Xen’s idle do-
main. The idle domain contains one idle vCPU for ev-
ery physical CPU core in the system. The idle vCPUs
have the lowest priority among all the vCPUs and there-
fore, they are scheduled to run on a physical CPU core
only when none of the VMs’ vCPUs are runnable on that
core. The idle vCPUs execute an idle loop that checks
for pending softirqs and tasklets, and executes the corre-
sponding handlers. Finally, when there is no more work
to be done, it enters one of the sleep states to save power.

In the Hyper-Switch architecture, we extended Xen’s
idle loop to copy and switch packets. A simple, low-
overhead mechanism was used to offload packet process-
ing to idle cores. The mechanism identified a suitable
idle core based on an offload criteria. The criteria were
chosen to select an idle core that made the best use of
the CPU caches. Further, this mechanism also ensured
that the offloaded work was distributed across multiple
idle cores using a simple hash function. The mecha-
nism included a lightweight interprocessor messaging fa-
cility that was implemented using small fixed circular
buffers. There was one buffer for every processor core
in the system. It was used to communicate the vNICs
that were being offloaded to a specific idle core. The
Hyper-Switch-related packet processing was performed
only at the lowest priority. The pending softirqs and
tasklets were checked after each packet was processed.
If there was ever higher priority work to be done, then
the offloaded packet processing was aborted.

5 Evaluation

This section presents a detailed evaluation of the Hyper-
Switch architecture. The evaluation was performed using
the Hyper-Switch prototype in Xen. The primary goal of
this evaluation was to compare Hyper-Switch with ex-
isting architectures that implement the virtual switch ei-
ther entirely within the driver domain or entirely within
the hypervisor. Toward this end, the end-to-end perfor-
mance under Hyper-Switch was compared to that un-
der Xen’s default driver domain-based architecture and
KVM’s hypervisor-based architecture.

5 .1 Experimental Setup and Methodology
The experiments were run on a 32-core server with two
2.2 GHz AMD Opteron 6274 processors and 64 GB of
memory. This processor is based on AMD’s Bulldozer
micro-architecture where two cores (called a module)

share the second level data cache (L2) and the instruc-
tion caches (L1i and L2i). Further, four modules (called
a node) share the unified third level cache (L3). And
each Opteron 6274 processor includes two such nodes.
Under Xen,4 the server was configured to run up to 32
para-virtualized (PV) Linux guest VMs (v2.6.38 pvops)
and one PV Linux driver domain (v2.6.38 pvops), in ad-
dition to the privileged management domain 0 (Linux
v3.4.4 pvops). The PV linux guests use a specialized
network driver which is optimized for the virtual net-
work interface that the hypervisor provides to the VMs.
The guest VMs were each configured with a single vir-
tual CPU (vCPU) and 1 GB of memory. The driver do-
main was configured with up to 8 vCPUs and 2 GB of
memory. But under Hyper-Switch the driver domain was
given only a single vCPU since it only handled external
network traffic. The server was directly connected to an
external client using a 10 Gbps Ethernet link. The client
consisted of a 2.67 GHz Intel Xeon W3520 quad-core
CPU and 6 GB of memory. It ran an Ubuntu distribution
of native Linux kernel v2.6.32. The CPUs at the external
client were never a performance bottleneck in any of the
experiments.

The netperf microbenchmark [2] was used in all the
experiments to generate network traffic. In particular,
netperf was used to create two types of network traf-
fic: (1) TCP stream and (2) UDP request/response traffic.
The TCP stream traffic was used to measure the achiev-
able throughput. The UDP request/response traffic was
used to measure the packet processing latency. Unless
otherwise specified, the sendfile option was used on
the transmit side in all experiments. The performance
of Hyper-Switch was compared to the performance of
Open vSwitch under both Xen [13] and KVM [26]. Para-
virtualized network interfaces were used in all these sys-
tems. In the rest of this section, we use “KVM” to refer
to the performance of Open vSwitch under KVM. Simi-
larly, we use “Xen” to refer to the performance of Open
vSwitch under Xen’s default network I/O architecture.
This should not be confused with the Hyper-Switch pro-
totype that is also implemented in Xen.
Open vSwitch under Xen . In Xen, Open vSwitch is
implemented entirely in the driver domain. Under Xen,
all network packets are forwarded to the driver domain,
where they are switched. Xen’s backend driver called
netback acts as an intermediary between the guest VMs
and the virtual switching module in the driver domain.
Netback is multi-threaded, and there is one netback (ker-
nel) thread for every vCPU in the driver domain. Each
guest VM’s vNIC is bound to one of these threads. The
packets associated with a specific vNIC are processed
only by the thread to which it is bound. The recom-
4Xen v4.2 - mainline git repository (xen-unstable.git) May 2012.

7

20 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

64K 16K 4K 1K 256

TCP Payload Size (bytes)

0

2

4

6

8

10

12

14

16

18
T

h
ro

u
g
h

p
u

t
(G

b
p

s)
Hyper-Switch Xen KVM

Figure 4: Throughput results from TCP stream traffic be-
tween a single pair of VMs under different payload sizes.

64K 16K 4K 1K 256

TCP Payload Size (bytes)

0

50

100

150

200

250

300

350

400

T
h

o
u

sa
n

d
s

o
f

C
y
cl

e
s/

P
k

t

Hyper-Switch Xen KVM

Figure 5: CPU load results from TCP stream traffic be-
tween a single pair of VMs under different payload sizes.

mended practice is to dedicate cores for running the
driver domain’s vCPUs. In this evaluation, the driver do-
main was configured with up to 8 vCPUs.
Open vSwitch under KVM . In KVM, Open vSwitch
is implemented entirely in the hypervisor (also referred
to as the KVM host). Under KVM’s vhost-net architec-
ture, all network packets are forwarded to the vhost-net
driver in the host, which is similar to Xen’s netback.
But unlike netback, there is a separate vhost-net (kernel)
thread for every vNIC in the system. The vhost-net’s
threads can also be run on dedicated cores.

5 .2 Experimental Results
5 .2 .1 Inter-VM Performance and Scalability

In these experiments, network performance was studied
under different loads by setting up network traffic be-
tween VMs collocated on the same server.
Single VM Pair . In the first set of experiments, traffic
was set up between just a single pair of VMs. Each guest
VM’s vCPU was pinned to a separate core within the
same processor node to avoid any potential VM schedul-
ing effects. Xen’s driver domain was configured with 2
vCPUs. Recall that there is one netback kernel thread
for every vCPU in Xen’s driver domain. The driver do-

64K 16K 4K 1K 256 1

UDP Payload Size (bytes)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Hyper-Switch Xen KVM

Figure 6: Latency results from UDP request/response
traffic between a single pair of VMs under different pay-
load sizes.

main’s vCPUs were also pinned to separate processor
cores, but on the same processor node where the cor-
responding guest VMs’ vCPUs were pinned. Similarly,
under KVM, the two vhost-net kernel threads (one per
guest VM) were also pinned.

First, as shown in Figure 4, higher throughput was
achieved under Hyper-Switch than under both the ex-
isting architectures in the experiments where the TCP
payload was between 4 KB and 64 KB, with stream-
based traffic. On average, the throughput under Hyper-
Switch, in these cases, was ∼56% higher than that under
Xen and ∼61% higher than that under KVM. But there
was not much performance difference at smaller packet
sizes since in those experiments the transmitting VM was
the performance bottleneck. Figure 5 shows the average
CPU load (cycles/packet) in each of these experiments.
Clearly, the Hyper-Switch is more efficient in processing
packets than both the existing architectures in KVM and
Xen.

Second, as shown in Figure 6, higher transactions
per second was achieved under Hyper-Switch, across
all UDP payload sizes, with request-response traffic. A
transaction comprises of a single request followed by a
single response in the opposite direction. So these re-
sults indicate that the round-trip packet latencies were
the lowest under the Hyper-Switch among all the three
architectures. On average, the transactions per second
under Hyper-Switch was ∼117% higher than that under
Xen and ∼222% higher than that under KVM. So the
Hyper-Switch architecture is suited for both bulk as well
as latency sensitive network traffic. Further, these results
show the benefit from optimizations such as preemptive
copying and immediate notification of blocked VMs that
enable timely delivery of packets.
Pairwise Scalability Experiments . In the next set of
experiments, the performance scalability of the three ar-
chitectures was studied by setting up TCP stream-based
traffic flows between 1–16 pairs of VMs in one direc-
tion. TCP payload size of 64 KB was used in all the sub-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 21

2 4 6 8 10 12 14 16

Number of VM Pairs

0

20

40

60

80

100
T

h
ro

u
g
h

p
u

t
(G

b
p

s)
Hyper-Switch KVM Xen

Figure 7: Pairwise performance scalability results.
Multiple concurrent TCP streams set up between
pairs of VMs. Figure shows aggregate inter-VM
throughput as the number of VM pairs is increased.

2 6 10 14 18 22 26 30

Number of VMs

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Hyper-Switch KVM Xen

Figure 8: All-to-all performance scalability results.
Multiple concurrent TCP streams set up between all
VMs. Figure shows aggregate inter-VM throughput
as the number of VMs is increased.

sequent experiments. Again, the guest VMs’ vCPUs, the
vhost-net kernel threads (KVM), and the driver domains’
vCPUs (Xen) were pinned to specific processor cores.
Also, the VMs that were communicating with each other
were always pinned to the same processor node. The
pinning was done such that, in each experiment, the load
was uniformly distributed across all the processor mod-
ules and nodes in the system. For instance, one core
from each module was used for pinning VMs across the
system, before the other cores were used. Under KVM,
the guest VMs’ vCPUs and the vhost-net kernel threads
were pinned. As a result, when the system was scaled
beyond 8 pairs of VMs, each processor core had to run
one of the guest VM’s vCPUs and one of the vhost-net
threads. Under Xen, the driver domain was configured
with 8 vCPUs. The driver domain’s vCPUs were dis-
tributed by pinning two of them to each processor node
in the system. Then the guest VMs’ vCPUs were evenly
distributed across the remaining processor cores.

The results in Figure 7 show that the Hyper-Switch ar-
chitecture exhibited much better performance scalability
than both the existing architectures. Specifically, under
Hyper-Switch, the performance reached a peak through-
put of ∼81 Gbps before it started to flatten out. But
the peak throughput was only ∼47 Gbps and ∼31 Gbps
under KVM and Xen respectively. Further, the perfor-
mance under these existing architectures did not scale
beyond 4 pairs of VMs. On average, the throughput
under Hyper-Switch was ∼55% higher than that under
KVM and ∼146% higher than that under Xen. Fig-
ure 7 also shows three distinct regions in Hyper-Switch’s
performance curve: (1) The performance scaled almost
linearly, from ∼16.2 Gbps to ∼62.7 Gbps, between 1
and 4 pairs of VMs. (2) The performance continued to
scale linearly but at a lower rate, from ∼62.7 Gbps to
∼81 Gbps, between 5 and 7 pairs of VMs. (3) The per-
formance did not scale beyond 8 pairs of VMs.

Fundamentally, the network performance is deter-

mined by the number of packets that can be transferred
between the source and destination VMs in a given time.
A typical packet transfer involves switching and packet
copying overheads. But there are limits to how many
packets that can be processed by a single processor. This
is determined in part by the underlying hardware archi-
tecture. The hardware determines how efficiently the
available processor time is used to process—switch and
copy—packets. Today’s processors are incredibly com-
plex and therefore, there are several factors that impact
this efficiency. In particular, the structure of the mem-
ory subsystem can have a significant impact on per-
formance [25]. This includes the size and levels of
the CPU caches, the maximum number of outstanding
reads/writes/cache misses, the available memory band-
width, the number of channels to the system memory,
and so on. One can scale the performance beyond the
limits imposed by a single processor core by increas-
ing concurrency, i.e. by using multiple processor cores.
But some of the system resources could be shared be-
tween processor cores—such as CPU caches, memory
channels, etc.—that could potentially reduce the avail-
able concurrency. When additional VMs are added to the
system, there is a natural increase in concurrency since
many of the switching tasks can be concurrently per-
formed under each VM’s context. Further, under Hyper-
Switch, the offloading of packet processing adds to this
concurrency. When choosing an idle core for offload-
ing packet processing, preference is given to idle pro-
cessor cores that are on the same node as the receiving
VM’s vCPU, to take advantage of any CPU cache local-
ity. Further, the packet processing is offloaded only to
a processor core in an idle module, i.e. a module where
both the processor cores are idle, to avoid potential cache
interference effects [3].

In the first region of the curve (Figure 7), each pair
of VMs were run in a separate processor node. So
the packet processing could be offloaded to other cores

9

22 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

within the same node. As a result, under these condi-
tions, the best scalability was achieved. In the second re-
gion, some of the packet processing had to be offloaded
to idle modules on other nodes in the system. This was
not as efficient since packets had to be copied across pro-
cessor nodes. Hence the performance scalability was
reduced. In the third region, the performance stopped
scaling in part due to the reduction in the offloading of
packet processing since most of the processor modules
were busy. Also, some of the VMs’ vCPUs were run-
ning on two cores within the same processor module.
So the cache interference effects also came into effect.
Finally, as more VMs were added to the system, there
was increased contention for the system resources such
as CPU caches. So, effectively, all these factors offset
the increase in packet processing concurrency and hence
the performance stopped scaling.
All-to-all Scalability Experiments . In the second set
of scalability experiments, TCP stream-based traffic was
set up between every pair of VMs in the system in both
directions. These experiments were designed to generate
significant load on the network by having tens of VMs
concurrently communicating with each other. For in-
stance, when there were 30 VMs in the system, there
were as many as 870 concurrent TCP flows. The con-
figuration and setup was similar to the previous set of
experiments.

Figure 8 shows the results from these experiments.
The performance again scaled much better under Hyper-
Switch than under KVM or Xen. Specifically, un-
der Hyper-Switch, the performance reached a peak
throughput of ∼65 Gbps as compared to ∼55 Gbps and
∼31 Gbps under KVM and Xen respectively. Similar to
the previous set of experiments, the performance curve
under Hyper-Switch scaled up very well at the beginning
before tapering off. The performance analysis presented
with the previous results is applicable here as well. In
fact, the contention for system resources is even higher
in this case, due to the significant load placed on the sys-
tem.

5 .2 .2 External Performance

In the external experiments, the network traffic was set
up between guest VM(s) and the external client. The
driver domain, under Hyper-Switch and Xen, was con-
figured with only a single vCPU. In the TX and RX ex-
periments, there were one or two guest VMs (concur-
rently) sending and receiving packets respectively. The
guest VMs’ vCPUs and the driver domain’s vCPU were
again pinned.

The results from these experiments showed that the
Hyper-Switch’s performance was comparable and in
some cases even better than the performance under KVM

and Xen. In the TX experiments, with a single guest
VM transmitting packets, line rate of ∼9.4 Gbps was
achieved under both Hyper-Switch and Xen. But under
KVM, the TX VM’s vCPU was a performance bottle-
neck. Therefore, only ∼7.8 Gbps was possible in this
case. In the RX experiments, with one guest VM re-
ceiving packets, the CPU at the guest VM was the bot-
tleneck. So line rate was not achieved under any of
the architectures. But the performance was better under
Hyper-Switch (7.5 Gbps) and KVM (7.8 Gbps) than Xen
(4.1 Gbps). But with two guest VMs receiving packets,
line rate of ∼9.4 Gbps was achieved under both Hyper-
Switch and KVM. Under Xen, the driver domain’s vCPU
was the performance bottleneck. Therefore, having a
second guest VM receive packets had no positive impact
on the aggregate throughput. These results show that the
driver domain under Hyper-Switch can send and receive
packets at 10 GbE line rate using a single CPU core. So
the driver domain consumes minimal resources.

TCP request-response traffic was also set up between a
single guest VM and the external client. In these exper-
iments, the Hyper-Switch achieved 13,243 transactions
per second of as compared to 10,721 and 11,342 under
KVM and Xen respectively. As explained before, higher
transactions per second indicate lower round trip latency.
Therefore, despite the “longer” route taken by packets
under Hyper-Switch due to their forwarding through both
the hypervisor and the driver domain, the packet laten-
cies were still the lowest under Hyper-Switch.

5.2.3 Design Evaluation

Experiments were also run to determine the offload crite-
ria under Hyper-Switch. In these experiments, the packet
processing was offloaded to different CPU cores relative
to where the transmitting and receiving VMs’ vCPUs
were running. The results from these experiments5 indi-
cated that, for best performance, packet processing must
be offloaded to a processor module where both the cores
were idle. Further, while searching for idle modules, first
the processor node on which the receiving VM’s vCPU
was running must be searched, before searching the other
nodes in the system. However, the offload criteria could
vary depending on a processor’s cache hierarchy. So the
exact criteria must be determined based on the particular
hardware platform on which Hyper-Switch is run.

6 Related Work

The current state-of-the-art network subsystem architec-
tures for virtualized servers can be broadly classified
5Due to lack of space, the results from these experiments are not pre-
sented here.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 23

into three categories. The first category of systems in-
cludes a simple network card (NIC) that is virtualized
by a software intermediary, either the hypervisor (e.g.
KVM [26], VMware ESX server [10]) or a driver do-
main (e.g. Xen [13]). Today, this category of systems is
most commonly used in virtualized servers since it offers
a rich set of features, including security, isolation, and
mobility. There are several software virtual switches—
such as Linux bridge [1], VMware vswitch [32], Cisco
Nexus 1000v [8], Open vSwitch [24], etc.—that are used
in these systems. Recently, Rizzo et al. [30] also pro-
posed a new virtual switching solution based on their
netmap API. They use memory-mapped buffers to avoid
data copies inside the host. It will be interesting to see if
the netmap API can be exported all the way to the VMs.
Unlike Hyper-Switch, all these existing systems imple-
ment the entire virtual switch within a single software
domain—either the hypervisor or the driver domain. But
we believe that the optimizations proposed in this paper
are applicable to many of these solutions. Further, in this
paper, the Hyper-Switch’s performance was only com-
pared to the performance under Xen and KVM. A recent
report from VMware has shown an impressive perfor-
mance of 27 Gbps between two VMs running on their
vSphere architecture [33]. Unfortunately, it is hard to
compare this to Hyper-Switch’s performance since the
hardware platforms used in the evaluations are vastly dif-
ferent.

The second category of systems employ more sophis-
ticated NICs (direct-access NICs) with multiple con-
texts that present a vNIC interface directly to each
VM [20, 27, 34]. Today, there exists an industry-wide
standard called SR-IOV, which has been adopted by sev-
eral network interface vendors to implement this solu-
tion [6, 16, 22]. These NICs also implement a virtual
switch internally within the hardware. However, today
most of them only implement a rudimentary form of
switch. The sNICh [28] architecture explores the idea
of switch/server integration. It implements a full-fledged
switch while enabling a low cost NIC solution, by ex-
ploiting its tight integration with the server internals.
This makes sNICh more valuable than simply a combina-
tion of a network interface and a datacenter switch. Luo
et al. [19] propose offloading Open vSwitch’s in-kernel
data path to programmable NICs. Similarly, one can also
imagine offloading Hyper-Switch’s data plane to the NIC
hardware. These solutions can enable high-performance
since the VMs directly communicate with the NIC. But,
in general, they lack the flexibility that pure software so-
lutions offer.

The third category of switches attempt to leverage
the functionality that already exist in today’s datacen-
ter switches. This approach uses an external switch for
switching all network packets [9, 23]. But, fundamen-

tally, this approach results in a waste of network band-
width since even packets from inter-VM traffic must
travel all the way to the external switch and back again.

There have also been proposals to distribute virtual
networking across all endpoints within a data center [7,
11]. Here the software-based components reside on all
servers that collaborate with each other and implement
network virtualization and access control for VMs, while
network switches are completely unaware of the indi-
vidual VMs on the end-points. All these architectures
are aimed at solving the network management problem,
which is not the focus of this paper. But the Hyper-
Switch can easily be a part of these solutions.

7 Conclusions

This paper presented the Hyper-Switch architecture that
combines the best of the existing last hop virtual switch-
ing architectures. It hosts the device drivers in a driver
domain to isolate any faults and the last hop virtual
switch in the hypervisor to perform efficient packet
switching. In particular, the hypervisor implements just
the fast, efficient data plane of a flow-based software
switch. The driver domain is needed only for handling
external network traffic.

Further, this paper also presented several carefully de-
signed optimizations that enable efficient packet process-
ing, better utilization of the available CPU resources, and
higher concurrency. The optimizations take advantage of
the Hyper-Switch data plane’s integration within the hy-
pervisor. As a result, the Hyper-Switch enables much im-
proved and scalable network performance, while main-
taining the robustness and fault tolerance that derive from
the use of driver domains. Moreover, these optimizations
should be a part of any virtual switching solution that
aims to deliver high performance.

This paper also presented an evaluation of the Hyper-
Switch architecture using a prototype implemented in
the Xen platform. The evaluation showed that, for
inter-VM network communication, the Hyper-Switch
achieved higher performance and exhibited better scal-
ability than both Xen’s default network I/O architecture
and KVM’s vhost-net architecture. Further, the external
network performance under Hyper-Switch was compara-
ble and in some cases even better than the performance
under Xen and KVM.

References

[1] Linux Ethernet bridge. http://www.linuxfoundation.org/
collaborate/workgroups/networking/bridge.

[2] Netperf: A network performance benchmark. http://www.

netperf.org, 1995. Revision 2.5.

[3] AMD CORPORATION. Shared level-1 instruction-cache perfor-
mance on AMD family 15h CPUs.

11

24 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HAR-
RIS, T. L., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (October 2003), pp. 164–177.

[5] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

[6] BROADCOM CORPORATION. BCM57712 product
brief. http://www.broadcom.com/collateral/pb/

57712-PB00-R.pdf, January 2010.
[7] CABUK, S., DALTON, C. I., RAMASAMY, H., AND SCHUNTER,

M. Towards automated provisioning of secure virtualized net-
works. In CCS ’08: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (October 2007),
pp. 235–245.

[8] CISCO SYSTEMS, INC. Cisco Nexus 1000V series switches.
http://www.cisco.com/en/US/prod/collateral/

switches/ps9441/ps9902/data_sheet_c78-492971.pdf,
August 2011.

[9] CONGDON, P. Virtual Ethernet port aggregator.
http://www.ieee802.org/1/files/public/docs2008/

new-congdon-vepa-1108-v01.pdf, November 2008.
[10] DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualiza-

tion system including a virtual machine monitor for a computer
with a segmented architecture. US Patent #6,397,242 (October
1998).

[11] EDWARDS, A., FISCHER, A., AND LAIN, A. Diverter: A new
approach to networking within virtualized infrastructures. In
WREN ’09: Proceedings of the ACM SIGCOMM Workshop: Re-
search on Enterprise Networking (August 2009).

[12] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R.,
SANKARALĨNGAM, K., AND BURGER, D. Dark silicon
and the end of multicore scaling. In Proceedings of the 38th
annual international symposium on Compute r architecture
(New York, NY, USA, 2011), ISCA ’11, ACM, pp. 365–376.

[13] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMS, M. Safe hardware access with
the Xen virtual machine monitor. In OASIS ’04: Proceedings of
the 1st Workshop on Operating System and Architectural Support
for the on demand IT Infrastructure (October 2004).

[14] GREENBERG, A., HAMILTON, J., MALTZ, D. A., AND PATEL,
P. The cost of a cloud: Research problems in data center networ
ks. SIGCOMM Computer Communcation Review 39, 1 (2009),
68–73.

[15] INTEL. http://goo.gl/5lpY8, 2010. "Intel 1000 Core Chip".
[16] INTEL CORPORATION. Intel 82599 10 GbE controller

datasheet. http://download.intel.com/design/

network/datashts/82599_datasheet.pdf, October 2011.
Revision 2.72.

[17] KUMAR, S., RAJ, H., SCHWAN, K., AND GANEV, I. Re-
architecting VMMs for multicore systems: The sidecore ap-
proach. In WIOSCA ’07: Proceedings of the Workshop on the
Interaction between Operating Systems and Computer Architec-
ture (June 2007).

[18] LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX:
Split guest/hypervisor execution on multi-core. In WIOV ’11:
Proceedings of the 4th Workshop on I/O Virtualization (May
2011).

[19] LUO, Y., MURRAY, E., AND FICARRA, T. Accelerated vir-
tual switching with programmable NICs for scalable data center
networking. In VISA ’10: Proceedings of the 2nd ACM SIG-
COMM Workshop on Virtualized Infrastructure Systems and Ar-
chitectures (September 2010).

[20] MANSLEY, K., LAW, G., RIDDOCH, D., BARZINI, G., TUR-
TON, N., AND POPE, S. Getting 10 Gb/s from Xen: Safe and
fast device access from unprivileged domains. In Proceedings
of the Euro-Par Workshop on Parallel Processing (August 2007),
pp. 224–233.

[21] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G.,
AND ZWAENEPOEL, W. Diagnosing performance overheads in
the Xen virtual machine environment. In VEE ’05: Proceedings
of the 1st ACM/USENIX International Conference on Virtual Ex-
ecution Environments (June 2005), pp. 13–23.

[22] PCI-SIG. Single Root I/O Virtualization. http://www.

pcisig.com/specifications/iov/single_root.

[23] PELISSIER, J. VNTag 101. http://www.

ieee802.org/1/files/public/docs2009/

new-pelissier-vntag-seminar-0508.pdf, 2009.

[24] PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending networking into the virtual-
ization layer. In HotNets-VIII: Proceedings of the Workshop on
Hot Topics in Networks (October 2009).

[25] PORTERFIELD, A., FOWLER, R., MANDAL, A., AND LIM,
M. Y. Empirical evaluation of multi-core memory concur-
rency. Tech. rep., RENCI, January 2009. www.renci.org/

publications/techreports/TR-09-01.pdf.

[26] QUMRANET. KVM: Kernel-based virtualization driver. http:

//www.redhat.com/f/pdf/rhev/DOC-KVM.pdf.

[27] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In HPDC ’07: Pro-
ceedings of the IEEE International Symposium on High Perfor-
mance Distributed Computing (June 2007).

[28] RAM, K. K., MUDIGONDA, J., COX, A. L., RIXNER, S., RAN-
GANATHAN, P., AND SANTOS, J. R. sNICh: Efficient last hop
networking in the data center. In ANCS ’10: Proceedings of
the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (October 2010), pp. 1–12.

[29] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10 Gb/s using safe and transparent net-
work interface virtualization. In VEE ’09: Proceedings of the
ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (March 2009), pp. 61–70.

[30] RIZZO, L., AND LETTIERI, G. VALE, a switched ethernet for
virtual machines. In CoNEXT ’12: Proceedings of the 8th Inter-
national Conference on Emerging Networking Experiments and
Technologies (Decemeber 2012), pp. 61–72.

[31] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G., AND PRATT,
I. Bridging the gap between software and hardware techniques
for I/O virtualization. In ATC ’08: Proceedings of the USENIX
Annual Technical Conference (June 2008), pp. 29–42.

[32] VMWARE, INC. VMware virtual networking con-
cepts. http://www.vmware.com/files/pdf/virtual_

networking_concepts.pdf, 2007.

[33] VMWARE, INC. VMware vSphere 4.1 networking perfor-
mance. http://www.vmware.com/files/pdf/techpaper/

Performance-Networking-vSphere4-1-WP.pdf, April
2011.

[34] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent di-
rect network access for virtual machine monitors. In HPCA
’07: Proceedings of the 13th International Symposium on High-
Performance Computer Architecture (February 2007).

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 25

MiG: Efficient Migration of Desktop VMs
using Semantic Compression

Anshul Rai†, Ramachandran Ramjee†, Ashok Anand‡∗,
Venkata N. Padmanabhan†, and George Varghese§

†Microsoft Research India ‡Bell Labs India §Microsoft Research US

ABSTRACT

We consider the problem of efficiently migrating desktop

virtual machines. The key challenge is to migrate the desk-

top VM quickly and in a bandwidth-efficient manner. The

idea of replaying computation to reconstruct state seems ap-

pealing. However, our detailed analysis shows that the match

between the source memory and the memory reconstructed

via replay at the destination is poor, even at the sub-page

level; the ability to reconstruct memory state is stymied be-

cause modern OSes use address space layout randomization

(ASLR) to improve security, and page prefetching to im-

prove performance.

Despite these challenges, we show that desktop VM mem-

ory state can be efficiently compressed for transfer without

relying on replay, using a suite of semantic techniques – col-

lectively dubbed as MiG – that are tailored to the type of

each memory page. Our evaluation on Windows and Linux

desktop VMs shows that MiG is able to compress the VM

state effectively, requiring on average 51-65% fewer bytes to

be transferred during migration compared to standard com-

pression, and halving the migration time in a typical setting.

1. INTRODUCTION

Efficient migration of desktop virtual machines (VM) is

important in a variety of scenarios. First, consider the vision

of a desktop PC environment that is always available and lo-

cal to the user [15, 16, 25, 27]. In these systems, the user’s

desktop environment is encapsulated in a VM, so that it can

be moved flexibly between, say, the user’s office worksta-

tion, home PC, and laptop, providing a seamless computing

experience, without sacrificing interactive responsiveness of

local execution. Second, consider the desktop as a service

model where desktop VMs execute in the cloud and are ac-

cessible from any local device. A key requirement in this

scenario is ensuring low response times [24]. This necessi-

tates migrating the VM over WAN links so that the VM exe-

cutes in a data center that is always close to the user. Finally,

desktop VM migration has also been utilized for saving en-

ergy [20]. In these systems, when the user is not engaged in

computing, the VM is migrated to a server in the cloud so

that the local machine can go to sleep and save energy.

∗The author was an intern at MSR India during part of this work.

A key challenge common to the above scenarios is effi-

cient migration of VMs, both in terms of migration time and

the amount of data transferred, especially over links of mod-

est bandwidth. For instance, transferring a 4 GB VM over a

10 Mbps connection would take nearly an hour, which can

be frustrating for a user who wants to transfer the VM from

workplace or cloud to her home for better interactivity. Fur-

ther, many ISPs worldwide offer tiered service plans with

bandwidth caps ranging from 1GB to 250GB per month,

with higher cost for higher limits [4]; apart from transfer

time, a home user would also care equally about the amount

of bytes transferred.

In this paper, we consider the problem of efficiently mi-

grating desktop VMs. We start by revisiting the idea of re-

playing input to speed up migration [28] and show its limi-

tations in practice. We then present MiG, which categorizes

memory pages based on type (e.g., free page, code (i.e., im-

age) page, heap page, etc.) and then employs a page-type-

specific technique to perform effective compression. This

paper only considers migration of memory state; while mi-

gration of disk state could be important in certain settings,

measurements presented in prior work show that the amount

of dirty disk state to be migrated is an order or magnitude

smaller than the VM’s memory size (e.g., [20] reports dirty-

ing of disk blocks at an uncompressed rate of 40-100 MB

per hour).

Input replay has been proposed as a technique to speed

up desktop VM migration [28], by trading computation for

byte savings. By replaying user input (e.g., keyboard/mouse

events), the “same” computation is performed on the desti-

nation machine. The hope is to recreate much of the source’s

memory state on the destination, thereby reducing the state

to be transferred during VM migration. Our study reveals

that mechanisms employed by modern OSes pose many prac-

tical difficulties in benefiting from input replay.

First, for improving interactive performance, modern desk-

top OSes prefetch pages into memory based on user actions,

application behavior, etc. (e.g., SuperFetch [9] in Windows

and preload in Linux). Thus, a long running workload might

result in a certain set of pages prefetched into memory while

the same workload, replayed in an accelerated fashion for

fast migration, might result in a different set of prefetched

pages at the replayed VM.

26 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Second, for security reasons, modern OSes (e.g., Win-

dows Vista/7 and recent versions of Linux) employ Address

Space Layout Randomization (ASLR), wherein the layout of

code segments is randomized, which in turn impacts the val-

ues of the embedded pointers. Therefore, the “same” pages,

or even sub-pages, at the source and the destination will not

match with input replay.

Third, managed code runtimes (e.g., the .NET Common

Language Runtime) actively manage memory using mech-

anisms such as garbage collection. The invocation of these

mechanisms during replay on the destination machine will

typically not match that on the source machine, resulting in

poor matches for heap pages. We find that even matching at

the level of heap allocation units yields little benefit.

Our first contribution in this paper is an evaluation of the

impact of the above mechanisms through extensive measure-

ments of VMs running multiple flavours of Windows and

Linux, spanning the evolution in the prevalence of ASLR

and page prefetching. Our findings go beyond a recent study

of memory similarity in VMs [13] by showing that even

identical VMs with identical input can have dramatic differ-

ences in memory, even at the sub-page level. For example,

while zero pages account for 72% of the pages in a Win-

dows XP VM that is left running for several hours, the cor-

responding figure for the newer Windows 7 OS is only 4%,

because of SuperFetch implemented by the latter. Likewise,

the fraction of non-zero pages that match across two freshly

booted VMs goes from 66% in the case of Windows XP to

33% with Windows 7, on account of ASLR. We also see a

corresponding, though less pronounced, trend with Linux.

Despite the above findings, we show that we do not have

to turn off prefetching and ASLR (which could have undesir-

able performance and security implications) for efficient VM

migration. We present MiG, our second contribution, which

leverages observations from our measurement study to tailor

compression to the semantics of memory pages, thereby ob-

taining significant gains in the context of VM migration. The

page-semantics-dependent techniques including identifying

and suppressing free pages, eliminating significant intra-VM

redundancy in heap pages and compressing image and Su-

perFetch pages using a novel approach that uses file sys-

tem data as a primer dictionary for a dictionary-based redun-

dancy elimination [12]. Our experiments bear out the effec-

tiveness of MiG, which yields average byte savings of 51%

and 65% over a gzip-compressed VM image, for Windows

and Linux desktop VMs, respectively. These byte savings

translate into a significant speedup in migration time; e.g.,

for a 2GB Windows 7 VM being migrated over a 10Mbps

link, MiG halves the migration time (including computing

overhead) to 275s from 558s with gzip-only compression.

Our third contribution is a reality check on the gains achiev-

able through replay. To this end, we develop MiG-Replay,

which uses MiG as the starting point but additionally ex-

ploits full page and heap matches with respect to the memory

state of a replayed VM. We find that MiG-Replay can pro-

vide 15% gains over MiG but only in specific cases where

Type WinXP Win7 Debian 6d Debian 6

Blank VM 85% 66% 89% 80%

Short workload 72% 47% 68% 56%

Long Workload 72% 4% 63% 55%

Table 1: Zero pages in Win XP, Win 7, Debian 6 with

preload/ASLR disabled (Debian 6d) and Debian 6

Type WinXP Win7 Debian 6d Debian 6

Blank VM 66% 33% 76% 61%

Short+Paced 42% 34% 66% 48%

Long+Accelerated 41% 14% 62% 43%

Table 2: Identical non-zero pages in OSes with replay

either the workload is short or the pace of replay is identi-

cal to the original; for long workloads and where replay is

accelerated in time to be practical, MiG-Replay even under-

performs MiG, because of ASLR and SuperFetch.

2. MEMORY SIMILARITY

A high degree of full and partial page similarity were re-

ported [23] in Windows XP and older Linux VMs (Debian

3.1/Slackware 10.2). A recent study [13] of memory simi-

larity among VMs shows that page similarity has reduced to

15%. However, these studies [13, 23] were in the context of

a server hosting disparate VMs. In this section, we character-

ize memory similarity between two identical VMs provided

with identical input. In particular, we seek to answer the fol-

lowing questions:

• How similar are two VMs at the full page level? At the

sub-page level?

• How effective are existing techniques, like rsync [29], in

leveraging inter-VM similarity?

• How do these similarities vary for different page types

(e.g., Heap, Image, etc.)?

• How much redundancy exists intra-VM? How effective

are existing compression techniques (gzip, bzip2, 7zip)

on intra-VM redundancy?

Understanding these issues is crucial for designing an effi-

cient migration scheme. We now briefly describe the work-

load and the replay techniques used in our experiments be-

fore presenting the results of our analysis.

2.1 VM Workloads and Input Replay

Workload. Our workload consists of VMs running various

versions of Windows and Linux for three cases: i) Freshly

booted blank VM, ii) short workload of running applications

for 30 minutes and iii) long workload of running applica-

tions over several hours (workload is typical desktop office

applications, detailed in Section 5).

Replay. Replay on VMs can be accomplished in a num-

ber of ways. Instruction-level replay with strict adherence to

timing as in the ReVirt system [21] will ensure that the des-

tination VM is identical to the source VM in all respects.

However, accomplishing instruction-level replay on a multi-

processor system has large overheads [22]. In this paper, we

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 27

10.02
1.71 0.90 0.54 0.70 0.70 0.89

42.49 42.05

0
5

10
15
20
25
30
35
40
45

P
e

rc
en

ta
ge

Word match count
(a) WinXP Paced

25.81

3.03 1.84 1.80 2.07 2.22
5.99

23.07

34.16

0
5

10
15
20
25
30
35
40

P
e

rc
e

n
ta

ge

Word match count
(b) Win7 Paced

42.46

4.66 3.16 2.52 2.77 2.38 4.39

23.50

14.16

0
5
10
15
20
25
30
35
40
45

P
e

rc
en

ta
ge

Word match count
(c) Win7 Accelerated

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

70

80

90

64-byte chunk match count

Pe
rce

nta
ge

(d) WinXP Paced

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

2

4

6

8

10

12

14

64-byte chunk match count

Pe
rce

nta
ge

(e) Win7 Paced

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

64-byte chunk match count

Pe
rce

nta
ge

(f) Win7 Accelerated

Figure 1: Distribution of sub-page matches

consider input replay, which involves simply replaying the

user inputs to the system (e.g., keyboard and mouse events),

detailed in Section 5). While input replay cannot guarantee

that the destination VM memory is identical to the source

VM due to non-determinism and network interactions, the

hope is to recreate similar memory so that creating an iden-

tical version is efficient. In this section, we evaluate the sim-

ilarity of VMs that are created using this input replay mech-

anism.

We consider 3 scenarios: i) Blank VM: two freshly booted

VMs, ii) short workload, paced replay: two VMs with iden-

tical apps executing for 30 minutes with paced input replay

(same keyboard and mouse events paced identically at both

VMs), iii) long workload, accelerated replay: two VMs with

identical apps/replay but one is a long running VM where in-

put is spread over a period of several hours representing typ-

ical usage, while, in the other VM the input is accelerated in

time (e.g., ten minutes), representing a practical scenario of

using replay for fast migration.

2.2 Page-level Similarity

We start with Table 1 that lists the percentage of zero

pages in VMs running various OSes that have each been al-

located 2 GB of memory. We see that the fraction of zero

pages in Windows XP starts at 85% and reduces to 72%; in

the case of Windows 7, the fraction of zero pages starts at

66% but goes down to 4% for the long workload case.

The dramatic reduction in zero pages in Windows 7 is due

to a new feature that was first introduced in Windows Vista

called SuperFetch [9]. SuperFetch is a user-customized pre-

fetching technique that tracks application usage and selec-

tively preloads applications or data into memory in order to

improve interactive responsiveness. Linux has a similar fea-

ture called preload available in Debian 6 that preloads pages

to improve performance. While it does not appear to be as

aggressive as SuperFetch, it also reduces the number of zero

pages. For a blank VM, Debian with preload disabled had

89% zero pages which reduces to 80% with preload enabled,

and for a long workload, the corresponding numbers are 63%

and 55%, respectively.

Next, in Table 2, we consider the number of identical non-

zero pages when replay is used. Consider the case of freshly

booted Windows XP and Windows 7 VMs. While 66% of the

non-zero pages are identical in two XP VMs, only 33% are

identical in Windows 7. Next consider paced replay which

represents an ideal scenario for recreating similar memory;

the percentage of identical non-zero pages in Windows XP

reduces to 42%, while, for Windows 7 it is 34%.

However, in the more practical accelerated replay scenario,

we notice an interesting divergence. While the numbers for

Windows XP do not change significantly, we notice a dras-

tic reduction in the percentage of identical non-zero pages in

Windows 7 to 14%. This reduction is due to a combination of

SuperFetch (acceleration of input has significant impact on

SuperFetch’s pre-fetching) and ASLR, that we will discuss

in the next sub-section.

In the case of Linux, we verified that Debian 3.1 used in

Difference Engine [23] does not have ASLR while Debian

6 has a weaker form of ASLR with less randomization, re-

sulting in higher non-zero page matches than Windows 7.

For the long workload, accelerated replay scenario, Debian

6 with ASLR and preload disabled had 62% non-zero iden-

tical page matches which reduced to 43% when ASLR and

preload was enabled.

Two observations follow from these results:

• O1: Fraction of zero pages is dramatically reduced to 4%

in Windows 7 and significantly reduced to 55% in Debian

6 compared to 70+% in Windows XP due to prefetching.

3

28 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

• O2: Fraction of identical non-zero pages between two

Windows 7 VMs running identical applications with iden-

tical input ranges between 14-33% compared to 41-66%

for Windows XP and 43-61% for Debian 6.

2.3 Sub-page-level Similarity

We now investigate partial-page similarity between two

2GB identical VMs provided with same input. A brute-force

way to identify a page in the second VM most similar to

a page in the source VM would entail 2GB*2GB or 1018

comparisons! Instead, we adapt Min-wise hashing [14] and

compute hashes of each 4-byte word using 16 hash func-

tions. For each hash function, we store the minimum hash

value of all words in the page as a 16-tuple that succinctly

represents the page. For each page in the source VM, we

find the page in the second VM with the largest number of

matching hash values in the 16-tuple. Tuple similarity is an

unbiased estimator [14] of page similarity, a fact we verified

by brute-force calculation on a small sample of source VM.

After finding the most similar page in the destination VM,

we compute a similarity measure as the number of corre-

sponding words that match between the two similar pages

The distribution of word match count between non-zero

pages of two identical Windows XP and Windows 7 VMs are

shown in Figures 1a and 1b, respectively. Note that a page

is 4KB in size and thus there are 1024 4-byte words in a

page. Consider Windows XP with paced replay (accelerated

replay is similar). We find that, in 42% of pages, the word-

level match count is 1024, i.e., these are identical pages.

We also find that, for another 42.5% of the pages, there is

a very high degree of similarity (896-1023 word matches).

Now consider Windows 7 with paced replay. While 34% of

pages are identical, only 23% of pages have a high degree of

similarity.

The presence of highly similar pages is not sufficient for

reducing the amount of bytes transferred; the word differ-

ences in these similar pages must also be clustered to have

long sequences of continuous word matches, which can be

efficiently removed. To examine this issue, we segment each

4 KB page into sixty four 64-byte chunks and study the dis-

tribution of differences between the highly similar pages.

Figure 1d shows that the differences are indeed clustered in

the case of Windows XP (56 or more out of 64 chunks match

in over 90% of the cases) while Figures 1e and 1f shows that

the differences are spread throughout the page in the case of

Windows 7, resulting in far fewer chunk-level matches.

The difference between Windows XP and Windows 7 is

due to Address Space Layout Randomization (ASLR) [2],

a security feature where the start addresses of executables,

the heap, etc. are placed at random locations to make it diffi-

cult for an attacker to guess. The randomization, performed

at the granularity of 64 KB chunks, can result in pointer ref-

erences in code/heap pages being different in executions in

two VMs. This results in differences between similar Win-

dows 7 pages being spread throughout the page. For Linux, a

minimal version of ASLR was enabled only in 2.6.12 while

both Linux versions studied in [23] used older kernels. Thus,

while the authors in [23] found a high degree of partial page

matches (> 2KB) across VMs, our findings corroborate the

diminished page sharing found in [13].

Finally, Figure 1c shows the distribution of word match

count for the Windows 7 VM with accelerated replay. The

fraction of pages that have very low match (0-127) has in-

creased to 42.5% for the Windows 7 VM with accelerated

replay, up from 26% in the case of Windows 7 VM with

paced replay and just 10% in the case of Windows XP. Su-

perFetch is the primary reason for this increase in the preva-

lence of low matches (as elaborated further in Section 2.5),

since SuperFetch customized to the first VM is unlikely to

make matching decisions regarding prefetching in the sec-

ond VM, where the input replay is accelerated in time.

Summarizing sub-page-level similarity results:

• O3: Even among pages that are highly similar (896-1023

word matches), the locations of differences in the page

are not clustered in Windows 7 due to ASLR. Thus, par-

tial page sharing opportunities, as identified in [23], are

significantly diminished.

• O4: Fraction of pages with little match is significant (42%)

in Windows 7, primarily, due to SuperFetch.

2.4 Chunk-level Matches using rsync

While pages are a natural way of segmenting physical

memory, an alternative is finer-grained chunk-level match-

ing between two VMs. In this section, we consider synchro-

nizing two VM memory dumps using rsync[29], a file syn-

chronization application that leverages a similar, remote ver-

sion of the file for compression. rsync computes sliding

window chunk hashes over the remote version (replayed VM

in our case) and uses these hashes to identify and compress

identical chunks in the local version (current VM) for effi-

cient migration.

We perform a parameter sweep, in steps of 32 bytes, to

determine the optimal chunk-size for rsync that maximizes

compression for the VM dumps. Using this optimal chunk

size (128 bytes), rsync yields compression savings of 69.7%

and 40.4%, respectively, for the Windows 7 with paced and

accelerated replay.. These savings correspond roughly to the

sum of the last three bars in Figures 1b and 1c, respectively.

Applying gzip in addition to rsync yields a total savings of

72.5% with accelerated replay.

In the context of VM migration, the on-the-wire traffic

goes from 100-66.5 = 33.5% with gzip compression alone

to 100-72.5 = 27.5% of the VM size with rsync (plus gzip).

Thus, rsync, which relies on replay, provides only a modest

18% relative byte savings over gzip. Furthermore, it takes

840s, 10X slower than gzip.

• O5: Applying a fine-grained chunk-matching technique

like rsync on two VMs with identical applications and

identical replay, only yields about an 18% reduction over

conventional gzip compression.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 29

0
10
20
30
40
50
60
70

0-127 896-1023 1024

Pe
rc

en
ta

ge

Word match count

Heap Image Kernel SuperFetch NonZero Free

Figure 2: Page Type Distribution

2.5 Semantic Analysis

To gain a deeper understanding, we now parse the page

similarity results by page type. We consider the accelerated

replay case. We classify the pages into five categories: heap,

image (i.e., code), kernel, SuperFetch, and free. Figure 2

shows the relative distribution of different page types, cor-

responding to a few cases in Figure 1c, namely, pages with

very low matches (0-127), highly similar pages (896-1023),

and identical pages (1024).

For pages with very low match (0-127), SuperFetch pages

are dominant, (50%); this is caused due to the difference in

the prefetching decisions in the long-running VM and the

replayed VM where input is accelerated in time. In contrast,

for pages with high similarity (896-1023), heap is dominant

(over 50%) while SuperFetch is second (over 20%). ASLR

converts what might have been identical pages in Windows

XP into pages that are highly similar in Windows 7. Finally,

for identical page matches, SuperFetch constitutes over 60%,

followed by kernel pages at 20%.

Full VM Heap Image Kernel SFetch Free

66.5% 80.0% 69.2% 67.6% 47.3% 81.4%

Table 3: Savings by page type using gzip

Intra-VM redundancy: We applied gzip on the entire VM

and also on different collection of pages collated by their

type (Table 3). While the entire VM can be reduced by 66.5%

using gzip, we see that compression savings vary signifi-

cantly across page types. Heap and free pages can be reduced

by 80% (due to a predominance of zero bytes; e.g. 66% of

bytes in heap pages were zeros compared to 45% for the en-

tire VM), while SuperFetch pages can be reduced by only

47%.

gzip vs bzip2 vs 7zip: We also examined other well-known

compression utilities such as bzip2 and 7zip that have been

shown to be better than gzip in other contexts [18]. However,

these utilities were all significantly slower than gzip, signifi-

cantly inflating overall VM migration time, another metric of

interest in our setting. For example, on a 2.2 GHz CPU core,

gzip takes 65s when optimized for speed (with compression

savings of 66.5%) and 117s when optimized for compression

(savings increases to 68.5%). In contrast, using default set-

tings, bzip2 [5] takes 390s to reduce the VM by 68.4% and

7zip [1] takes 810s to reduce the VM by 77.5%.

Summarizing, semantic analysis of memory pages helps

inform our design of efficient migration:

• O6: Free pages can be compressed by almost 100% since

these need not be transferred.

• O7: Heap pages are highly compressible using gzip.

• O8: SuperFetch pages constitute a significant fraction of

low-match pages and are not highly compressible using

gzip. Hence, we need an efficient technique for transfer-

ring these pages. Many SuperFetch pages are also image

pages; a technique that works for these SuperFetch pages

will also work for image pages.

• O9: Full page matches can benefit kernel and SuperFetch

pages.

3. MIG DESIGN

We now present the design of MiG, our solution for ef-

ficient migration of desktop VMs, which does not resort to

input replay. As a point of comparison, we also design MiG-

Replay, which leverages a replayed VM’s memory state where

appropriate.

Design Constraints: In order to ensure correct operation

post migration, we need to ensure that source memory is

replicated fully and identically at destination. Even the goal

of input replay is only to create similar memory at the desti-

nation so that creating an identical version is efficient, since

as mentioned earlier, due to non-determinism and network

interactions, input replay cannot guarantee a semantically

identical VM.

The only exception to the above is that Free pages need

not be identical since the OS does not rely on its contents.

Note that even SuperFetch pages have to be identical at the

two ends. This is because the SuperFetch service may “acti-

vate” these pages at any time based on its internal represen-

tation (e.g, SuperFetch page 1 is image page for process x),

without the knowledge of the hypervisor.

Another constraint we impose is that the design should

not require changes to the guest OS. For example, requir-

ing that the guest OS implement a mechanism to get/set the

ASLR random seed via the hypervisor is out of scope. This

is to ensure that the migration solution will work for exist-

ing versions of guest OSes that are deployed today. Note that

this constraint does not preclude the design from using any

publicly documented information of the guest OSes for its

operation, since this does not affect its deployability.

3.1 Overview

At a high level, MiG and MiG-Replay operate as follows.

When a desktop machine is to be migrated from a source ma-

chine S to a destination machine D, we examine each mem-

ory page on S and apply techniques tailored to the type of

the page. MiG relies only on local state at S, including disk

state that has been synced previously, MiG-Replay, in addi-

tion, also leverages the memory state of the VM at D that

has been constructed via input replay. The set of techniques

applied derives from the observations O6 through O9:

5

30 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

• Free/Zero pages: In both MiG and MiG-Replay, these

pages are identified on S and not transferred.

• Full-page matches: In MiG, memory image of a freshly

booted VM is pre-provisioned at both S and D. Full-page

matches with respect to this “blank VM” helps reduce the

bytes transferred. In MiG-Replay, full-page matches are

computed against the replayed VM at D instead of a blank

VM.

• Image/SuperFetch pages: For image pages, whether ac-

tive or prefetched, both MiG and MiG-Replay employ a

novel approach involving statically precomputing a com-

mon, primer dictionary at both S and D. This dictionary

comprises the contents of commonly-accessed executable

and library files, and is used as a reference for computing

a diff of the memory state.

• Heap pages: In MiG, we employ a combination of history-

based redundancy elimination [12] and gzip to identify

and eliminate redundancy within heap pages. In MiG-

Replay, where possible, we parse the heap to identify the

chunks that match between S and D.

• Other: For both MiG and MiG-Replay, the remaining

pages are compressed using a combination of dictionary-

based redundancy elimination [12] and gzip.

Next, we discuss each technique in greater detail.

3.2 Free/Zero Pages

MiG and MiG-Replay identify free/zero pages by parsing

the page allocation table on S (Section 4) and only convey

their indices to D, thereby achieving nearly 100% compres-

sion for these pages. Since free pages can have non-zero con-

tent, conventional compression schemes achieve less savings

on these pages (e.g., only 81% savings when gzip is applied

on free pages – Table 3).

3.3 Full-page Matches

As seen in Figure 2, kernel pages constitute a good per-

centage of full-page matches, in large part because ASLR is

typically not applied to kernel pages. Thus, MiG preprovi-

sions the memory state of a freshly booted “blank VM” and

the corresponding page hashes at both S and D. At transfer

time, MiG simply computes a fast 4-byte hash [6] for each

page at S, matches it against the hash list of the blank VM,

verifies using a byte-by-byte comparison with the local copy

(to neutralize hash collision risk), and sends across the index

and location of the matched page to D, which then reads in

the corresponding page from its local copy to reconstruct the

memory state.

In MiG-Replay, we look for full-page matches between

S and the replayed VM, D. A 4-byte hash is computed for

each page at S and these are sent across to D as a list of

(page index, hash) pairs. D then compares these hashes from

S with those computed locally on its own pages. When a

hash from S matches one at D, the corresponding page need

not be transferred from S to D. To reduce hash collision risk

in MiG-Replay, we also send a full 20-byte SHA1 hash [11]

of just the matched pages.

3.4 Image/SuperFetch Pages

Image pages comprise active pages that are in the ad-

dress space of a process as well as SuperFetch pages that

are prefetched in anticipation of future use. ASLR impacts

both active and SuperFetch pages by impeding even sub-

page level matching. Indeed, as reported in Section 2, even

if the page were divided into 64-byte chunks, 40-75% of the

pages have 8 or more chunks that do not match (Figures 1e

and 1f). The fine-grained nature of the matches, interspersed

with non-matching pointers, means that two pages would

ideally need to be compared side-by-side, defeating the goal

of efficient transfer.

3.4.1 Using Precomputed File System Context

For the reasons noted above, neither MiG nor MiG-Replay

relies on D for compressing image pages. Instead, as shown

in Figure 3, they employ a novel approach that builds on

the observation that the image pages in memory are derived

from the file system content. Indeed, the OS loader reads

binaries from the file system and places these in memory,

albeit with modifications because of ASLR. The content of

these binary files provides context both similar to the tar-

get pages (image/SuperFetch) and also locally available at

both S and D. Thus, the pre-computed context built using

file system content offers the prospect of good compression

savings without any overhead incurred in establishing the

shared context.

To realize pre-computed context based compression, we

prime the dictionary in an existing redundancy elimination

algorithm, EndRE [12]. EndRE works as follows. Given a

cache/dictionary of past packets that have been transferred

from a source to a destination, EndRE identifies contiguous

strings of bytes in the current packet that are also present in

the cache. This is accomplished by 1) identifying a set of

representative “fingerprints” for each packet 2) looking up

these fingerprints in a “fingerprints store” that holds the fin-

gerprints of all the past packets in the cache’ and 3) for each

fingerprint of the packet that is found in the store, the match-

ing packet is retrieved and the matching region is expanded

byte-by-byte in both directions to obtain the maximal re-

gion of redundant bytes. Once all matches are identified, the

matched segments are replaced with fixed-size pointers into

the cache, thereby suppressing redundancy. In the original

EndRE, the cache starts empty and is dynamically built up

as packets are transferred between source and destination. In

the primed version, the cache at both ends is primed with

2 GB worth of file system content, comprising commonly-

used binary and library files. The priming is done by passing

these files to EndRE which builds its internal data structures

for identifying redundancy. Subsequently, when the Super-

Fetch/image pages are passed to EndRE, contiguous byte

strings that are redundant with the bytes in the primed con-

text are identified and replaced with pointers, which are then

restored at the destination using its primed cache.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 31

App1

SuperFetch
Proactively
loads App 1
pages

Physical pages of
Local VM

MiG: Combatting SuperFetch
• Exploit differences with file system content to migrate SuperFetch Pages

Kernel

Zero

Free

Free

Free

Kernel

App 2

Destination VM with
replay of running apps

App 1

App 1

App 2

(a) SuperFetch (shaded pages) impacts the ability of replay
to recreate matching pages at the destination VM; MiG/MiG-
Replay exploit differences with (local) file system to migrate
these pages

Use diff with
file system
for Image
pages

DLL1: Function F

DLL2: Function G

Heap

Heap DLL2: Function G

DLL1: Function F

Heap

Heap

Physical pages of
Local VM

MiG: Combatting ASLR
• Image pages: use diff with file system instead of matching with Destination
• Heap pages: match 64-byte chunks on heap entries with matching signatures

After
matching
heap entries,
match at 64-
byte chunk
level

DLL1
DLL2

Destination VM with
replay of running apps

(b) Due to ASLR, function and data pointers in image and heap
pages may not match across two VMs; MiG relies on intra-VM
redundancy for heap while MiG-Replay matches 64-byte heap
chunks across VMs

Figure 3: Illustration depicting how MiG and MiG-Replay combat SuperFetch and ASLR

While we have not performed any optimization or cus-

tomization of the context, we believe user-specific personal-

ization could yield both reduction in context size as well as

potentially higher compression savings.

3.5 Heap Pages

Now we turn to heap pages. Since MiG does not rely on

replay, it exploits intra-VM redundancy for heap pages. We

already saw that gzip was able to compress heap pages by

80% due to predominance of zero-bytes. Further, examining

the heap pages of a VM instance, we found that out of the

total heap of 670MB, about 170MB (non-zero bytes) was

redundant. Even though over 91% of this redundancy was

from within the heaps belonging to the same process, the

vast majority of the redundancy was between byte strings lo-

cated in different memory pages. So compression techniques

such as gzip, which look for redundancy over a small win-

dow (64KB), will often not be able to identify such redun-

dancy across disparate locations. Hence, to compress heap

pages, MiG uses an intra-VM redundancy technique based

on EndRE [12], that identifies redundancy over a large his-

tory (e.g., 2GB), coupled with gzip.

MiG-Replay, on the other hand, has the advantage of ac-

cess to the replayed VM to eke out additional gains over

MiG. Conceptually, replay should create a heap at D similar

or identical to the one at S. However, in practice there is a

distinction between heap content and heap structure. Replay

could, in fact, help make the heap content similar. Yet, the

structure of the heap could be very different across the two

ends because of garbage collection and compaction, which

kick in asynchronously.

Therefore, to match the process heaps across S and D,

MiG-Replay looks deeper. Heaps in Windows 7 come in two

forms: managed heap, whose structure can be parsed, and

unmanaged heap which are private to a process. For man-

aged heap, MiG-Replay performs a heap walk on the heap

of each process at S and D, to produce the list of heap entries

at each end. For each heap entry at S, MiG-Replay computes

a hash of its used portion (parts of the heap entry might be

unused), and sends it across to D. D looks through its heap

entries for hash matches. If a matching heap entry is found,

the corresponding content need not be transferred from S to

D.

As shown in Figure 3b, ASLR can again result in differ-

ing pointers inside the heap entries of S and D, that make an

exact match of the full heap entry less likely. To mitigate this

effect of ASLR, we chunk the heap entry into n-byte blocks

and compute 4-byte hashes to identify potential matches.

Based on our evaluation (Section 5), we find that blocks of

size n = 64 bytes provided us with the highest compression

savings. Finally, for unmanaged heaps, since the heap struc-

ture cannot be parsed, MiG-Replay simply chunks them into

64-byte chunks at S and looks for chunk matches at D on

corresponding heap pages that belong to the same process.

To keep the processing overhead manageable, we only ap-

ply the above procedure for heap entries that are larger than

1KB in allocated size. Our measurements show that heap

entries that qualify as being “large” per the above criterion

account for an overwhelming 80+% of the bytes in the heap.

We stress again that all of the above complexity associ-

ated with replay and parsing the heap is only for the case

of MiG-Replay, which we designed solely for the purpose of

comparison with the much simpler MiG scheme.

3.6 Other Pages

The pages that remain include stack pages, and also kernel

pages that did not benefit from a full-page match. For such

pages, both with MiG and MiG-Replay, we employ intra-

VM redundancy elimination using EndRE [12].

4. IMPLEMENTATION

We now briefly discuss the implementation of MiG on

Windows. MiG runs in the root partition of the Microsoft

Windows Server 2008 Hyper-V system [8]. While our cur-

rent prototype is targeted towards the quick migration fea-

ture of Hyper-V (suspend-migrate-resume), wherein the VM

7

32 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

state is saved, moved, and restored at the destination, we be-

lieve MiG can be effectively applied to the VM live migra-

tion [17] scenario as well.

To initiate migration, we use existing Hyper-V mecha-

nisms to save the state of the VM, which yields a VM phys-

ical memory file and two small (few MB) configuration files

containing the VM configuration information and the saved

state of devices. MiG reads in the saved physical memory

and extracts semantic information in two steps. First, it con-

sults a system-wide data structure, the Page Frame Number

(PFN) database, which has metadata information for each

page (zero or free, allocated to a process or kernel, etc.),

and allows the reverse mapping of a physical memory ad-

dress to the virtual address of a process, where applicable.

Second, MiG consults the Virtual Address Descriptor (VAD)

tree process-specific data structure to determine the type of

the page (MEM PRIVATE for heap, MEM IMAGE for code and

MEM MAPPED for memory mapped file pages) in the virtual

address space. MiG then applies the appropriate technique

from Section 3 to each of the pages and, thus, creates a com-

pressed version of the memory file, which is migrated to the

destination. Note that both PFN and VAD are publicly docu-

mented, so while MiG is intrusive in having to look into the

memory state of the VM, it does not depend on access to any

proprietary information.

In case of MiG-Replay, our prototype takes in two saved

memory image files — one each corresponding to the orig-

inal and the replayed VM — and simply performs an anal-

ysis of the compression gains of having a replayed VM. In

addition to extracting the above semantic information, MiG-

Replay also performs a heap walk by parsing the heap struc-

ture of each process on the two VMs, to identify the allocated

heap chunks for heap compression.

For Linux, we use the libVMI tool [7] for introspection

into VM memory.

5. EVALUATION

Metrics. We evaluate the performance of MiG, MiG-Replay

and rsync primarily in terms of volume of bytes transferred

relative to using gzip as the compression scheme.1 Let gzip

yield a total byte transfer requirement of bgzip. For any other

scheme x (e.g., MiG), let the byte requirement be bx. The

byte savings, or compression gains, of x over the baseline

is then gx =
(bgzip−bx)

bgzip
× 100. This relative savings metric

captures the bytes saved compared to the scheme, namely

gzip, that is commonly used in commercial systems such as

Windows Server 2008 Hyper-V. Further, if compression pro-

cessing is faster than the link speed, this relative byte sav-

ings would translate into an equivalent reduction in migra-

tion time. Thus, we also evaluate the migration transfer time

for the various schemes. Finally, we do not present absolute

byte savings as a separate metric since it is already captured

1We do not use rsync or 7zip as a baseline to compare against
since these are an order of magnitude slower than gzip at the set-
tings that provide savings.

as part of the migration transfer time metric. In general, ab-

solute byte savings for MiG ranges between 80-95% for the

various scenarios.

Workloads. We evaluate MiG performance for both Win-

dows and Linux OSes. For Windows, we collect memory

dumps from 10 desktops with real user workloads, running

the 32-bit version of Windows 7 with 2-4 GB of RAM, 8

of which were from desktops used by researchers and 2 by

admin staff. For Linux, we use 64-bit VMs running Debian

squeeze (2.6.32.5-amd64) and workload consists of a mix

of document editing (openoffice word/ presentation, gedit),

image manipulation (gimp, inkscape, photo manager), and

web-browsing (firefox, epiphany) applications, reflecting com-

mon desktop usage.

In order to evaluate MiG-Replay, we use Windows VMs

with artificially generated workloads that emulate a Win-

dows desktop computing environment, with applications such

as Outlook (email), Internet Explorer (browser), Word (doc-

ument editor), Excel (spreadsheet), etc. running. We use the

AutoIt scripting language [3] to automate the Windows GUI

and design scripts to feed keyboard input into Word or Excel

interspersed with random think-time, sync email, download

pages from different websites, etc. We perform 5 runs of this

emulation, with different combinations of applications used

in each instance, with each experiment lasting between 30

minutes and four hours to mimic a user work session. For

each of these experiments, we also performed paced and ac-

celerated replay (same script without think-times).

5.1 MiG Byte Savings

Figures 4 and 5 show the percentage byte savings achieved

by MiG relative to gzip for each of the individual Windows

and Linux desktop VMs, respectively. First, we see that MiG

delivers consistent byte savings of 40%-60% for the ten Win-

dows VMs (average 51%) and 58%-68% for the five Linux

VMs (average 65%) over gzip.

It is interesting to observe the contribution of the differ-

ent MiG techniques towards achieving the overall gains. For

Linux VMs, the bulk of the gains come from the use of pre-

computed context (30-38%), followed by Full page matches

(18-25%) and intra-VM redundancy elimination (6-13%). In

contrast, for Windows VMs, the majority of the gains come

from Intra-VM redundancy elimination (35-44%), followed

by precomputed context (3-15%), Full page matches (2-7%),

and Free pages (0-7%).

The surprising finding in the above results is that while

the use of precomputed context (Section 3.4) provides sub-

stantial benefits for Linux VMs (30-38%), its contribution to

savings in Windows VMs is modest (3-15%). Upon examin-

ing this in more detail, we find that while precomputed con-

text in Windows had indeed full or partial matches with over

80% of image pages and 45% of SuperFetch pages2, many

of these matches were also captured by intra-VM redun-

dancy elimination. These intra-VM redundant matches were

2The lower cache hit rate for SuperFetch pages is because Super-
Fetch pages can also be non-image pages.

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 33

0

20

40

60

1 2 3 4 5 6 7 8 9 10

B
y

te
 S

a
vi

n
gs

 (
%

)

Free Full Intra-VM Context

Figure 4: MiG byte savings on Windows VMs

0

20

40

60

1 2 3 4 5

B
y

te
 S

a
vi

n
gs

 (
%

)

Free Full Intra-VM Context

Figure 5: MiG byte savings on Linux VMs

between pages belonging to the same DLL that had been

loaded by different processes (e.g., user32.dll was loaded by

almost 50 out of the 100 processes in one Windows desktop),

though, vast majority of these matches were for only small

portions of a page (average match length of only 107 and 83

bytes for image and SuperFetch pages, respectively). Thus,

in Windows, a substantial portion of the savings that would

have accrued from using a precomputed context is already

obtained by intra-VM redundancy elimination.

The other notable difference is the higher contribution of

Full page matches in Linux (18-25%) versus Windows (2-

7%). This is explained by the fact that Windows has much

more extensive ASLR support turned on by default than Linux

and agrees with the higher full page sharing numbers for

Linux (Section 2).

In summary, MiG delivers significant byte savings of 51%

and 65% over gzip for Windows and Linux desktop VMs, re-

spectively. The different techniques in MiG each contribute

towards achieving these savings, though, the significance of

each technique’s contribution varies between Windows and

Linux.

5.2 Replay

Figure 6 depicts the byte savings relative to gzip for the

non-semantic scheme rsync, and the two semantic schemes

(MiG and MiG-replay) for four Windows desktop VM work-

loads, viz., different combinations of short/long workloads

and paced/accelerated replays. In this case, short/long work-

loads lasted 30 mins/four hours of automated use of office

applications and while paced replay took the same time as

the original workload, accelerated replay took under ten min-

utes to complete for both workloads.

From the figure, we see that MiG provides average sav-

ings relative to gzip of 38-48% for all these workloads with-

out relying on any replay. Using the replayed VM memory,

we find that rsync provides about 18-34% relative savings

while MiG-Replay provides 39-63% relative savings. Note

that rsync gains over gzip are modest when the replay is

accelerated, indicating that the memory image created with

accelerated replay is not as close to the source image as in

paced replay.

Interestingly, MiG-Replay delivers about 15% additional

savings compared to MiG in cases where either the replay is

paced or the workload is short; however, when the workload

Type Excel Outlook Powerpoint OneNote

Managed pages 131 212 205 347

Unmanaged pages 893 1045 1249 860

Bytes (%) (heap size > 1KB) 84.5 84.9 83.8 89.8

Bytes % match 84 80.6 77.4 73.3

MiG-Replay savings % 50 44 36 42

Table 4: Heap characteristics of some office apps

is long and replay is accelerated in time (as would be nec-

essary for fast migration), we find that MiG-Replay surpris-

ingly performs worse than MiG by 8%. The reason is two-

fold. First, the gains due to matching of SuperFetch pages

disappear because accelerated replay fails to evoke the same

prefetching pattern as the actual execution of the VM. Sec-

ond, the degree of similarity in the heap also diminishes,

so the overhead of performing heap matching (e.g., send-

ing hash values across from S to D) overwhelms the gains

obtained from the actual matches. We examine this second

reason next.

Table 4 shows some important statistics for the heap pages

of a few Office applications. The heap comprises of managed

and unmanaged heap and we can see that managed heap is

only 13-29% of total heap for these applications. The ability

of replay to recreate the source’s memory state at the desti-

nation is highlighted in the next row that lists the percentage

of bytes that match heap entries between source and destina-

tion VMs. For these applications, we see that between 73 to

84% of bytes do indeed match between source and destina-

tion VM. However, since the match is not exact (because of

pointers affected by ASLR), we resort to dividing the heap

into chunks and perform matching at the smaller granularity

of chunks rather than matching at larger full heap entries. We

evaluated compression savings for the entire managed heap

size using the replay mechanism for different chunk sizes

(not shown) and found that 64-byte chunks provide the high-

est savings of 40-50%, balancing the overhead of sending

4-byte hashes for each of the chunks and the cost of losing a

chunk match due to a small difference (e.g., a pointer value

change) between source and destination chunks. For unman-

aged heap, we use the same chunk size to divide up the heap

pages and try to identify matches at the replayed VM; again,

the 4-byte hash overhead for each 64-byte chunk results in

decreasing the savings. Additional protection against hash

collisions will further reduce these savings.

To summarize, while replay does indeed create similar

9

34 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0

20

40

60

Short,
Paced

Short,
Accelerated

Long,
Paced

Long,
Accelerated

B
y

te
 S

a
v

in
g

s
(%

)

MiG rsync MiG-Replay

Figure 6: Replay workloads

0

10

20

30

40

50

2004 1728 1537 1339 1138 935

B
y

te
 S

a
v

in
g

s
 (

%
)

VM assigned memory (MB)

Figure 7: Ballooning

0

20

40

60

80

100

0.5 1.25 2.5 3 4 6 12 60

B
y

te
 S

a
v

in
g

s
 (

%
)

Hours since previous migration

Figure 8: Repeated migrations

state at the destination, MiG-Replay’s ability to compress

heap pages effectively using replay is impeded by the re-

ality that (a) only a small fraction (13-29%) of the heap is

parseable, (b) the reconstruction of the heap using replay is

far from perfect (only 73-84% of bytes match), and (c) we

have to resort to matching small, 64-byte chunks to get maxi-

mum compression savings, incurring high overhead and lim-

iting savings. Since MiG is able to perform effective intra-

VM redundancy elimination for heap pages, MiG-Replay is

unable to gain over MiG.

5.3 Ballooning

Ballooning is a technique to artificially introduce memory

pressure in a VM, leading it to evict less important pages [30].

One application of ballooning proposed in the literature is

in the context of efficient migration, wherein unnecessary

pages are shed from the VM memory prior to migration [26].

In general, it is hard to estimate the amount of memory to

be ballooned out; overdoing it can cause the eviction of im-

portant pages and thus adversely impact user-perceived per-

formance. Thus, migrating the entire memory is desirable.

However, since memory ballooning can be applied indepen-

dently of MiG, in this section, we investigate the impact of

memory ballooning on MiG byte savings by using Hyper-

V dynamic memory feature to create different amounts of

memory pressure on the VM before applying MiG.

Figure 7 shows MiG’s relative savings over gzip for dif-

ferent amounts of assigned memory for a 2GB VM, corre-

sponding to a memory reduction of 5-55% through balloon-

ing. While the savings decreases as the assigned memory

is reduced, MiG is still able to deliver 36% relative savings

even with 55% of VM memory pages evicted. This is be-

cause while ballooning evicts low priority pages like free

pages, it does not evict all SuperFetch or heap pages3 and,

thus, a substantial portion of the MiG byte savings remains.

Further, at high memory pressure, many of the evicted

pages are paged out into a pagefile (swap) in disk which, of

course, also needs to be migrated. MiG can be directly ap-

plied to the pages sitting in the pagefile just as to the pages in

memory. MiG’s savings on pagefile was similar to the sav-

ings achieved for in-memory pages.

3SuperFetch pages retain the priority of the original page.

5.4 Repeated Migrations

One of the scenarios targeted by MiG is the desktop that

is always-on and is migrated repeatedly between work and

home or work and cloud. In this section, we evaluate the

benefit of using the memory from previously migrated state

for byte savings. In these cases, both source and destination

save the previously transferred VM memory and MiG uses

this for its full page matches instead of a blank VM as before

(all other techniques remain the same).

We had a user use a 2GB Windows 7 VM for several days;

applications used included the browser and several office ap-

plications. Every once in a while, sometimes after short in-

tervals of 30 minutes to few hours, and sometimes after long

intervals of several hours to even days, we took snapshots of

the VM memory, representing a checkpoint of VM state that

needs to be migrated. We then used MiG with the benefit of

the previous snapshot for computing byte savings.

Figure 8 depicts MiG’s relative byte savings over gzip

for the different migration cases corresponding to workloads

that last from 30 minutes to 60 hours. From the figure, we

see that short workloads of up to a couple of hours in gen-

eral significantly benefit from using the previous snapshot

by delivering relative savings over gzip of up to 87% (cor-

responding to absolute reduction of VM size by 95%). Of

course, not all short workloads result in such gains (for ex-

ample the 1.25 hour data point), due to windows update or

other system activity that can potentially induce large change

in memory, effectively reducing the effectiveness of the pre-

vious snapshot. Finally, we see that for workloads beyond a

few hours, the previous snapshot is not as useful and MiG’s

relative gains drop down to about 50%.

5.5 Migration Time

We now evaluate the time for VM migration for the var-

ious schemes. Let us first consider the computational cost

of the different MiG techniques on a 2.2 GHz CPU core for

a typical 2GB Windows 7 VM.4 In the following analysis,

MiG’s context cache is preloaded in memory and the VM

image is also in memory.

Parsing the PFN database to extract semantic informa-

4Most of these numbers scale proportionately with VM size but can
vary depending on the amount of compression achieved.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 35

Compressed Size Compute time Transfer time

gzip 670MB 65s 558s

MiG 330MB 67s 275s

Table 5: Migration time for 2GB VM on 10Mbps link

Off Default Aggressive

Full 26% 23% 22%

Full+Intra-VM 32% 32% 30%

Full+Intra-VM+context 62% 69% 70%

Table 6: Impact of preload on MiG savings (Linux)

tion takes about 20s.5. MiG also creates a 4-byte hash of

each page using Jenkins Hash [6] and compares these hashes

against the local precomputed hashes of a blank VM for

identifying full page matches. This process takes around 8s.

The processing of SuperFetch and image pages using En-

dRE [12] with primed context takes about 15s. Finally, all

remaining pages are compressed using EndRE+gzip, which

takes about 24s. Thus, our MiG prototype implementation is

able to reduce a 2GB VM to about 330 MB in 67s. For the

same VM, gzip reduces it to 670 MB in 65s.

Migration time (Table 5) is determined by the maximum

of transfer time and compression processing time. Trans-

fer time is directly proportional to (compressed) VM size

and inversely proportional to link speed. Thus, on slow links

and/or for large VMs, MiG’s migration is significantly faster

than gzip. For example, on a 10 Mbps link, MiG transfers

the 2GB VM in about 275s, halving the transfer time of gzip

(558s). For comparison, it takes 810s for 7zip, 840s for

rsync and 1665s for uncompressed transfer.

We can also take advantage of multi-core CPUs to per-

form many of the above operations in parallel to optimize

MiG (and gzip). Using 4 cores, processing for an optimized

version of MiG can easily be limited to less than 28s (and

optimized gzip to less than 55s), thereby allowing MiG to

retain the 50% reduction in both bytes and migration time

compared to gzip at 100 Mbps speeds. Of course, on 1 Gbps

or faster links, transferring the raw VM may be faster than

using either gzip or MiG.

6. DISCUSSION

Turning off page prefetching prior to migration: Turning

off page prefetching mechanisms such as SuperFetch could

aid VM migration by cutting out the prefetched pages from

the set that needs to be moved. However, doing so can have

an adverse impact on user-perceived performance [10]. Nev-

ertheless, it is interesting to ask how much there is to be

gained from varying the amount of prefetching, in terms of

the byte savings achieved by MiG.

To answer this question, we used a Linux desktop VM

loaded with a few applications and tested it under three dif-

ferent settings for prefetching: off (preload removed), de-

fault, and aggressive (increased free memory to be used for

5This is primarily due to our prototype using windbg APIs which
makes disk accesses; an optimized version should take under 10s.

prefetching from default of 50% to 90%). The byte savings

relative to gzip is shown in Table 6. While increasing the de-

gree of prefetching results in a reduction in the number of

full-page matches relative to a blank VM, this loss is more

than offset by leveraging pre-computed context to compress

the prefetched (and other) pages, resulting in similar abso-

lute byte savings for all these cases. This suggests that we

do not have to turn off prefetching to obtain byte savings for

migration.

Influencing randomization in ASLR: While turning off

ASLR would adversely impact security, one could arguably

influence ASLR’s randomization policy more subtly, to make

it more migration friendly while not compromising secu-

rity. For instance, when a VM is migrated, the randomiza-

tion seed used for ASLR at the destination could be set to

be the same as that at the source, which might then make

the memory state of a replayed instance match more closely

with the source. However, to our knowledge, for security rea-

sons, OSes do not make the seed available through an API

or document the location of the seed in memory so that, for

instance, it could be read from the hypervisor.

Nevertheless, to get a sense for the gains to be had if the

same seed were used at the source and the destination, con-

sider the evaluation presented in Section 5.4. Since a single

VM instance was snapshoted repeatedly, the randomization

seed remained unchanged across the snapshots. When the in-

terval between two snapshots is short (under 2 hours), there

is a high degree of match between the snapshots. However,

when the interval is longer, the snapshots tend to diverge,

even though the randomization seed is the same across the

snapshots. The divergence is because of SuperFetch, garbage

collection, etc., factors which exist independent of ASLR.

Thus, any short-term gains arising from maintaining the same

ASLR seed get overshadowed over longer durations by other

sources of non-determinism.

7. RELATED WORK

ISR, Collective, Transient PCs. The vision of a desktop

PC environment that is mobile and available anywhere was

articulated by Chen and Noble [16] and in the Internet Sus-

pend Resume (ISR) project [25]. The Collective [15] is an-

other system that provides users with a consistent desktop

environment at a computer nearby as users move. Recently,

this paradigm of having the desktop environment stored in

the cloud but executed on a PC close to the user has been

dubbed the transient PC [27].

Efficient Migration. Prior work closest to MiG is the work

on optimizing the migration of virtual computers [26]. Their

system uses copy-on-write disks in order to migrate disk

changes, supplanted with demand paging to fetch needed

blocks, memory ballooning to zero out unused memory, and

page hashing to suppress identical memory blocks. While

MiG can benefit from the disk migration techniques in [26],

migrating memory state is much more challenging today due

to new OS features. The idea of using replay in order to mi-

grate VMs efficiently was proposed in [28]. However, as we

11

36 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

show in this paper, replay provides only small gains.

CloudNet [31] supports efficient Live WAN migration of

VMs. It implements smart stop and copy to reduce the num-

ber of iterations/copies for Live migration which can be use-

ful for live migration support in MiG. It also implements

redundancy elimination by computing sub page-level hashes

(1 KB in size) and comparing this to previously sent data.

MiG’s intra-VM redundancy elimination eliminates redun-

dant chunks that are as small as 32 bytes. Remus [19] is

a system that replicates VMs asynchronously. Remus uses

page compression including delta and gzip compression for

efficient checkpointing. Since Remus checkpoints state ev-

ery 25ms, memory page delta-based approach works well

for them. For durations comprising several hours, typical for

VM migration, we find that previous memory state is not

useful.

Similarity in VM memory. Looking beyond migration, the

recent study by Barker et al. [13] reports that page sharing in

Linux and Windows VMs running at a server is diminished

because of ASLR. Our study differs from and goes beyond

this prior work in several ways. First, since our goal is ef-

ficient migration, we compare two VMs running the same

OSes/applications and provided with the same input, which

is not a scenario considered in [13]. Second, while [13] fo-

cuses mostly on page-level sharing, we show that even at

64-byte chunk level, changes due to ASLR render sharing

ineffective. Third, going beyond ASLR, we also evaluate and

show the significant impact of OS prefetching (e.g., Super-

Fetch) on memory redundancy.

8. CONCLUSION

When we started our investigation into efficient migra-

tion of desktop VMs, we had assumed that replay and mem-

ory similarity would lead to efficiency. However, we were

puzzled by the lack of similarity even in blank VMs. The

culprit, as explained in this paper, is randomness and non-

determinism due to mechanisms such as ASLR and page

prefetching in modern OSes. Through extensive experiments

on both Windows and Linux, we have characterized and quan-

tified the impact of these mechanisms.

Despite these hurdles, our migration solution, MiG, yields

compression gains of 51% and 65% over gzip on Windows

and Linux VMs, respectively, and halving of the overall mi-

gration time. Central to MiG is the idea of tailoring the com-

pression technique to the semantics of memory pages, an

approach which we believe could transcend the specific OS

mechanisms and compression techniques considered here.

9. ACKNOWLEDGEMENTS

We thank our shepherd, Jason Flinn, and the anonymous

reviewers for their constructive comments.

10. REFERENCES
[1] 7zip. http://www.7-zip.org.

[2] ASLR. http://blogs.msdn.com/b/michael_howard/
archive/2006/05/26/address-space-layout-
randomization-in-windows-vista.aspx.

[3] AutoIT. http://www.autoitscript.com/site/.

[4] Bandwidth caps around the world. http://www.maximumpc.com/
article/features/how_bad_do_we_really_have_it\
_bandwidth_caps_around_world.

[5] bzip2. http://www.bzip.org.

[6] Jenkins Hash. http://burtleburtle.net/bob/c/lookup3.c.

[7] LibVMI tool. http://code.google.com/p/vmitools/.

[8] Microsoft Hyper-V. http://www.microsoft.com/en-
us/server-cloud/windows-server/hyper-vaspx.

[9] SuperFetch. http://msdn.microsoft.com/en-
us/library/bb188739.aspx.

[10] SuperFetch performance.

http://everythingexpress.wordpress.com/2011/11/13/
how-to-adjusting-windows-7-superfetch/.

[11] US Secure Hash Algorithm 1 (SHA1). RFC 3174, September 2001.

[12] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,

C. Muthukrishnan, R. Ramjee, and G. Varghese. EndRE: An

End-System Redundancy Elimination Service for Enterprises. In

USENIX NSDI, April 2010.

[13] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman. An Empirical

Study of Memory Sharing in Virtual Machines. In USENIX ATC,

June 2012.

[14] A. Z. Broder. On the resemblance and containment of documents. In

Proceedings of IEEE Compression and Complexity of Sequences,

June 1997.

[15] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. Lam. The

Collective: A Cache-Based System Management Architecture. In

NSDI, May 2005.

[16] P. Chen and B. D. Noble. When virtual is better than real. In 8th

IEEE Workshop on Hot Topics on Operating Systems, May 2001.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield. Live Migration of Virtual Machines. In

NSDI, May 2005.

[18] L. Collin. A quick benchmark: Gzip vs. Bzip2 vs. LZMA, 2005.

http://tukaani.org/lzma/benchmarks.html.

[19] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High Availability via Asynchronous Virtual

Machine Replication. In USENIX NSDI, April 2008.

[20] T. Das, P. Padala, V. Padmanabhan, R. Ramjee, and K. Shin.

LiteGreen: Saving Energy in Networked Desktops using

Virtualization. In USENIX ATC, June 2010.

[21] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt:

enabling intrusion analysis through virtual-machine logging and

replay. In OSDI, 2002.

[22] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution

replay of multiprocessor virtual machines. In VEE, 2008.

[23] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,

G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing

Memory Redundancy in Virtual Machines . In OSDI, December

2008.

[24] A. Kochut and H. Shaikh. Desktop to cloud transformation planning.

In IEEE IPDPS, May 2009.

[25] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. In

IEEE WMCSA, June 2002.

[26] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and

M. Rosenblum. Optimizing the migration of virtual computers. In

OSDI, 2002.

[27] M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes1, and

L. Iftode. Bringing the Cloud Down to Earth: Transient PCs

Everywhere. In MobiCloud 2010, Santa Clara, CA, October 2010.

[28] A. Surie, H. A. Lagar-Cavilla, E. de Lara, and M. Satyanarayanan.

Low-Bandwidth VM Migration via Opportunistic Replay. In

HotMobile, February 2008.

[29] A. Tridgell. Efficient Algorithms for Sorting and Synchronization,

2000. PhD thesis, Australian National University.

[30] C. Waldspurger. Memory Resource Management in VMware ESX

Server. In OSDI, December 2002.

[31] T. Wood, K. Ramakrishnan, P. Shenoy, and J. V. der Merwe.

CloudNet: Dynamic Pooling of Cloud Resources by Live WAN

Migration of Virtual Machines. In Virtual Execution Environments

(VEE), March 2011.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 37

Copysets: Reducing the Frequency of Data Loss in
Cloud Storage

Asaf Cidon, Stephen M. Rumble, Ryan Stutsman,
Sachin Katti, John Ousterhout and Mendel Rosenblum

Stanford University
cidon@stanford.edu, {rumble,stutsman,skatti,ouster,mendel}@cs.stanford.edu

ABSTRACT
Random replication is widely used in data center storage
systems to prevent data loss. However, random replica-
tion is almost guaranteed to lose data in the common sce-
nario of simultaneous node failures due to cluster-wide
power outages. Due to the high fixed cost of each in-
cident of data loss, many data center operators prefer to
minimize the frequency of such events at the expense of
losing more data in each event.

We present Copyset Replication, a novel general-
purpose replication technique that significantly reduces
the frequency of data loss events. We implemented
and evaluated Copyset Replication on two open source
data center storage systems, HDFS and RAMCloud,
and show it incurs a low overhead on all operations.
Such systems require that each node’s data be scattered
across several nodes for parallel data recovery and ac-
cess. Copyset Replication presents a near optimal trade-
off between the number of nodes on which the data is
scattered and the probability of data loss. For example,
in a 5000-node RAMCloud cluster under a power outage,
Copyset Replication reduces the probability of data loss
from 99.99% to 0.15%. For Facebook’s HDFS cluster, it
reduces the probability from 22.8% to 0.78%.

1. INTRODUCTION
Random replication is used as a common technique by

data center storage systems, such as Hadoop Distributed
File System (HDFS) [25], RAMCloud [24], Google File
System (GFS) [14] and Windows Azure [6] to ensure
durability and availability. These systems partition their
data into chunks that are replicated several times (we use
R to denote the replication factor) on randomly selected
nodes on different racks. When a node fails, its data is re-
stored by reading its chunks from their replicated copies.

However, large-scale correlated failures such as clus-
ter power outages, a common type of data center fail-
ure scenario [7, 10, 13, 25], are handled poorly by ran-
dom replication. This scenario stresses the availability of
the system because a non-negligible percentage of nodes

 0 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

HDFS, Random Replication

RAMCloud, Random Replication

Facebook, Random Replication

Figure 1: Computed probability of data loss with
R = 3 when 1% of the nodes do not survive a power
outage. The parameters are based on publicly avail-
able sources [5, 7, 24, 25] (see Table 1).

(0.5%-1%) [7, 25] do not come back to life after power
has been restored. When a large number of nodes do not
power up there is a high probability that all replicas of at
least one chunk in the system will not be available.

Figure 1 shows that once the size of the cluster scales
beyond 300 nodes, this scenario is nearly guaranteed to
cause a data loss event in some of these systems. Such
data loss events have been documented in practice by Ya-
hoo! [25], LinkedIn [7] and Facebook [5]. Each event re-
portedly incurs a high fixed cost that is not proportional
to the amount of data lost. This cost is due to the time
it takes to locate the unavailable chunks in backup or re-
compute the data set that contains these chunks. In the
words of Kannan Muthukkaruppan, Tech Lead of Face-
book’s HBase engineering team: “Even losing a single
block of data incurs a high fixed cost, due to the overhead
of locating and recovering the unavailable data. There-
fore, given a fixed amount of unavailable data each year,
it is much better to have fewer incidents of data loss with
more data each than more incidents with less data. We
would like to optimize for minimizing the probability of
incurring any data loss” [22]. Other data center operators
have reported similar experiences [8].

1

38 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Another point of view about this trade-off was ex-
pressed by Luiz André Barroso, Google Fellow: “Hav-
ing a framework that allows a storage system provider to
manage the profile of frequency vs. size of data losses
is very useful, as different systems prefer different poli-
cies. For example, some providers might prefer fre-
quent, small losses since they are less likely to tax storage
nodes and fabric with spikes in data reconstruction traf-
fic. Other services may not work well when even a small
fraction of the data is unavailable. Those will prefer to
have all or nothing, and would opt for fewer events even
if they come at a larger loss penalty." [3]

Random replication sits on one end of the trade-off be-
tween the frequency of data loss events and the amount
lost at each event. In this paper we introduce Copy-
set Replication, an alternative general-purpose replica-
tion scheme with the same performance of random repli-
cation, which sits at the other end of the spectrum.

Copyset Replication splits the nodes into copysets,
which are sets of R nodes. The replicas of a single chunk
can only be stored on one copyset. This means that data
loss events occur only when all the nodes of some copy-
set fail simultaneously.

The probability of data loss is minimized when each
node is a member of exactly one copyset. For exam-
ple, assume our system has 9 nodes with R = 3 that
are split into three copysets: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}.
Our system would only lose data if nodes 1, 2 and 3,
nodes 4, 5 and 6 or nodes 7, 8 and 9 fail simultaneously.

In contrast, with random replication and a sufficient
number of chunks, any combination of 3 nodes would
be a copyset, and any combination of 3 nodes that fail
simultaneously would cause data loss.

The scheme above provides the lowest possible proba-
bility of data loss under correlated failures, at the expense
of the largest amount of data loss per event. However, the
copyset selection above constrains the replication of ev-
ery chunk to a single copyset, and therefore impacts other
operational parameters of the system. Notably, when a
single node fails there are only R − 1 other nodes that
contain its data. For certain systems (like HDFS), this
limits the node’s recovery time, because there are only
R − 1 other nodes that can be used to restore the lost
chunks. This can also create a high load on a small num-
ber of nodes.

To this end, we define the scatter width (S) as the
number of nodes that store copies for each node’s data.

Using a low scatter width may slow recovery time
from independent node failures, while using a high
scatter width increases the frequency of data loss from
correlated failures. In the 9-node system example above,
the following copyset construction will yield S = 4:
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}.
In this example, chunks of node 5 would be replicated

either at nodes 4 and 6, or nodes 2 and 8. The increased
scatter width creates more copyset failure opportunities.

The goal of Copyset Replication is to minimize the
probability of data loss, given any scatter width by us-
ing the smallest number of copysets. We demonstrate
that Copyset Replication provides a near optimal solu-
tion to this problem. We also show that this problem has
been partly explored in a different context in the field of
combinatorial design theory, which was originally used
to design agricultural experiments [26].

Copyset Replication transforms the profile of data loss
events: assuming a power outage occurs once a year, it
would take on average a 5000-node RAMCloud cluster
625 years to lose data. The system would lose an aver-
age of 64 GB (an entire server’s worth of data) in this
rare event. With random replication, data loss events oc-
cur frequently (during every power failure), and several
chunks of data are lost in each event. For example, a
5000-node RAMCloud cluster would lose about 344 MB
in each power outage.

To demonstrate the general applicability of Copyset
Replication, we implemented it on two open source data
center storage systems: HDFS and RAMCloud. We
show that Copyset Replication incurs a low overhead on
both systems. It reduces the probability of data loss in
RAMCloud from 99.99% to 0.15%. In addition, Copy-
set Replication with 3 replicas achieves a lower data
loss probability than the random replication scheme does
with 5 replicas. For Facebook’s HDFS deployment,
Copyset Replication reduces the probability of data loss
from 22.8% to 0.78%.

The paper is split into the following sections. Sec-
tion 2 presents the problem. Section 3 provides the
intuition for our solution. Section 4 discusses the design
of Copyset Replication. Section 5 provides details on
the implementation of Copyset Replication in HDFS and
RAMCloud and its performance overhead. Additional
applications of Copyset Replication are presented in in
Section 6, while Section 7 analyzes related work.

2. THE PROBLEM
In this section we examine the replication schemes of

three data center storage systems (RAMCloud, the de-
fault HDFS and Facebook’s HDFS), and analyze their
vulnerability to data loss under correlated failures.

2.1 Definitions
The replication schemes of these systems are defined

by several parameters. R is defined as the number of
replicas of each chunk. The default value of R is 3 in
these systems. N is the number of nodes in the sys-
tem. The three systems we investigate typically have
hundreds to thousands of nodes. We assume nodes are

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 39

System Chunks
per
Node

Cluster
Size

Scatter
Width

Replication Scheme

Facebook 10000 1000-
5000

10 Random replication on
a small group of nodes,
second and third replica
reside on the same rack

RAMCloud 8000 100-
10000

N-1 Random replication
across all nodes

HDFS 10000 100-
10000

200 Random replication on
a large group of nodes,
second and third replica
reside on the same rack

Table 1: Replication schemes of data center storage
systems. These parameters are estimated based on
publicly available data [2, 5, 7, 24, 25]. For simplicity,
we fix the HDFS scatter width to 200, since its value
varies depending on the cluster and rack size.

indexed from 1 to N . S is defined as the scatter width.
If a system has a scatter width of S, each node’s data is
split uniformly across a group of S other nodes. That is,
whenever a particular node fails, S other nodes can par-
ticipate in restoring the replicas that were lost. Table 1
contains the parameters of the three systems.

We define a set, as a group of R distinct nodes.
A copyset is a set that stores all of the copies of a
chunk. For example, if a chunk is replicated on nodes
{7, 12, 15}, then these nodes form a copyset. We will
show that a large number of distinct copysets increases
the probability of losing data under a massive correlated
failure. Throughout the paper, we will investigate the re-
lationship between the number of copysets and the sys-
tem’s scatter width.

We define a permutation as an ordered list of all
nodes in the cluster. For example, {4, 1, 3, 6, 2, 7, 5} is
a permutation of a cluster with N = 7 nodes.

Finally, random replication is defined as the following
algorithm. The first, or primary replica is placed on a
random node from the entire cluster. Assuming the pri-
mary replica is placed on node i, the remaining R − 1
secondary replicas are placed on random machines cho-
sen from nodes {i + 1, i + 2, ..., i + S}. If S = N − 1,
the secondary replicas’ nodes are chosen uniformly from
all the nodes in the cluster 1.

2.2 Random Replication
The primary reason most large scale storage systems

use random replication is that it is a simple replica-
tion technique that provides strong protection against
uncorrelated failures like individual server or disk fail-

1Our definition of random replication is based on Facebook’s
design, which selects the replication candidates from a window
of nodes around the primary node.

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of RAMCloud nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=3, Random Replication

R=4, Random Replication

R=5, Random Replication

R=6, Random Replication

Figure 2: Simulation of the data loss probabilities of
a RAMCloud cluster, varying the number of replicas
per chunk.

ures [13, 25] 2. These failures happen frequently (thou-
sands of times a year on a large cluster [7, 10, 13]), and
are caused by a variety of reasons, including software,
hardware and disk failures. Random replication across
failure domains (e.g., placing the copies of a chunk on
different racks) protects against concurrent failures that
happen within a certain domain of nodes, such as racks
or network segments. Such failures are quite common
and typically occur dozens of times a year [7, 10, 13].

However, multiple groups, including researchers from
Yahoo! and LinkedIn, have observed that when clusters
with random replication lose power, several chunks of
data become unavailable [7, 25], i.e., all three replicas of
these chunks are lost. In these events, the entire cluster
loses power, and typically 0.5-1% of the nodes fail to
reboot [7, 25]. Such failures are not uncommon; they
occur once or twice per year in a given data center [7].

Figure 1 shows the probability of losing data in the
event of a power outage in the three systems. The figure
shows that RAMCloud and HDFS are almost guaranteed
to lose data in this event, once the cluster size grows be-
yond a few hundred nodes. Facebook has a lower data
loss probability of about 20% for clusters of 5000 nodes.

Multiple groups have expressed interest in reducing
the incidence of data loss, at the expense of losing a
larger amount of data at each incident [3, 8, 22]. For
example, the Facebook HDFS team has modified the de-
fault HDFS implementation to constrain the replication
in their deployment to significantly reduce the proba-
bility of data loss at the expense of losing more data
during each incident [2, 5]. Facebook’s Tech Lead of
the HBase engineering team has confirmed this point, as
cited above [22]. Robert Chansler, Senior Manager of

2For simplicity’s sake, we assume random replication for all
three systems, even though the actual schemes are slightly dif-
ferent (e.g., HDFS replicates the second and third replicas on
the same rack [25].). We have found there is little difference in
terms of data loss probabilities between the different schemes.

3

40 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Hadoop Infrastructure at Linkedin has also confirmed the
importance of addressing this issue: “A power-on restart
of HDFS nodes is a real problem, since it introduces a
moment of correlated failure of nodes and the attendant
threat that data becomes unavailable. Due to this issue,
our policy is to not turn off Hadoop clusters. Administra-
tors must understand how to restore the integrity of the
file system as fast as possible, and an option to reduce
the number of instances when data is unavailable–at the
cost of increasing the number of blocks recovered at such
instances–can be a useful tool since it lowers the overall
total down time" [8].

The main reason some data center operators prefer to
minimize the frequency of data loss events, is that there
is a fixed cost to each incident of data loss that is not
proportional to the amount of data lost in each event. The
cost of locating and retrieving the data from secondary
storage can cause a whole data center operations team to
spend a significant amount of time that is unrelated to the
amount of data lost [22]. There are also other fixed costs
associated with data loss events. In the words of Robert
Chansler: “In the case of data loss... [frequently] the data
may be recomputed. For re-computation an application
typically recomputes its entire data set whenever any data
is lost. This causes a fixed computational cost that is not
proportional with the amount of data lost”. [8]

One trivial alternative for decreasing the probability
of data loss is to increase R. In Figure 2 we computed
the probability of data loss under different replication
factors in RAMCloud. As we would expect, increasing
the replication factor increases the durability of the sys-
tem against correlated failures. However, increasing the
replication factor from 3 to 4 does not seem to provide
sufficient durability in this scenario. In order to reliably
support thousands of nodes in current systems, the repli-
cation factor would have to be at least 5. Using R = 5
significantly hurts the system’s performance and almost
doubles the cost of storage.

Our goal in this paper is to decrease the probability
of data loss under power outages, without changing the
underlying parameters of the system.

3. INTUITION
If we consider each chunk individually, random repli-

cation provides high durability even in the face of a
power outage. For example, suppose we are trying to
replicate a single chunk three times. We randomly select
three different machines to store our replicas. If a power
outage causes 1% of the nodes in the data center to fail,
the probability that the crash caused the exact three ma-
chines that store our chunk to fail is only 0.0001%.

However, assume now that instead of replicating just
one chunk, the system replicates millions of chunks
(each node has 10,000 chunks or more), and needs to

ensure that every single one of these chunks will survive
the failure. Even though each individual chunk is very
safe, in aggregate across the entire cluster, some chunk
is expected to be lost. Figure 1 demonstrates this effect:
in practical data center configurations, data loss is nearly
guaranteed if any combination of three nodes fail simul-
taneously.

We define a copyset as a distinct set of nodes that con-
tain all copies of a given chunk. Each copyset is a sin-
gle unit of failure, i.e., when a copyset fails at least one
data chunk is irretrievably lost. Increasing the number of
copysets will increase the probability of data loss under
a correlated failure, because there is a higher probabil-
ity that the failed nodes will include at least one copy-
set. With random replication, almost every new repli-
cated chunk creates a distinct copyset, up to a certain
point.

3.1 Minimizing the Number of Copysets
In order to minimize the number of copysets a repli-

cation scheme can statically assign each node to a sin-
gle copyset, and constrain the replication to these pre-
assigned copysets. The first or primary replica would be
placed randomly on any node (for load-balancing pur-
poses), and the other secondary replicas would be placed
deterministically on the first node’s copyset.

With this scheme, we will only lose data if all the
nodes in a copyset fail simultaneously. For example,
with 5000 nodes, this reduces the data loss probabilities
when 1% of the nodes fail simultaneously from 99.99%
to 0.15%.

However, the downside of this scheme is that it
severely limits the system’s scatter width. This may
cause serious problems for certain storage systems. For
example, if we use this scheme in HDFS with R = 3,
each node’s data will only be placed on two other nodes.
This means that in case of a node failure, the system will
be able to recover its data from only two other nodes,
which would significantly increase the recovery time. In
addition, such a low scatter width impairs load balanc-
ing and may cause the two nodes to be overloaded with
client requests.

3.2 Scatter Width
Our challenge is to design replication schemes that

minimize the number of copysets given the required scat-
ter width set by the system designer.

To understand how to generate such schemes, consider
the following example. Assume our storage system has
the following parameters: R = 3, N = 9 and S = 4.
If we use random replication, each chunk will be repli-
cated on another node chosen randomly from a group of
S nodes following the first node. E.g., if the primary
replica is placed on node 1, the secondary replica will be

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 41

randomly placed either on node 2, 3, 4 or 5.
Therefore, if our system has a large number of chunks,

it will create 54 distinct copysets.
In the case of a simultaneous failure of three nodes, the

probability of data loss is the number of copysets divided
by the maximum number of sets:

copysets(
N
R

) =
54(
9
3

) = 0.64

Now, examine an alternative scheme using the same pa-
rameters. Assume we only allow our system to replicate
its data on the following copysets:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}{1, 4, 7}, {2, 5, 8}, {3, 6, 9}

That is, if the primary replica is placed on node 3, the
two secondary replicas can only be randomly on nodes 1
and 2 or 6 and 9. Note that with this scheme, each node’s
data will be split uniformly on four other nodes.

The new scheme created only 6 copysets. Now, if three
nodes fail, the probability of data loss is:

copysets

84
= 0.07.

As we increase N , the relative advantage of creating
the minimal number of copysets increases significantly.
For example, if we choose a system with N = 5000,
R = 3, S = 10 (like Facebook’s HDFS deployment), we
can design a replication scheme that creates about 8,300
copysets, while random replication would create about
275,000 copysets.

The scheme illustrated above has two important prop-
erties that form the basis for the design of Copyset Repli-
cation. First, each copyset overlaps with each other copy-
set by at most one node (e.g., the only overlapping node
of copysets {4, 5, 6} and {3, 6, 9} is node 6). This en-
sures that each copyset increases the scatter width for its
nodes by exactly R−1. Second, the scheme ensures that
the copysets cover all the nodes equally.

Our scheme creates two permutations, and divides
them into copysets. Since each permutation increases the
scatter width by R− 1, the overall scatter width will be:

S = P (R− 1)

Where P is the number of permutations. This scheme

will create P
N

R
copysets, which is equal to:

S

R− 1

N

R
.

The number of copysets created by random replica-

tion for values of S <
N

2
is: N

(
S

R−1

)
. This number is

equal to the number of primary replica nodes times R−1
combinations of secondary replica nodes chosen from a
group of S nodes. When S approaches N , the number
of copysets approaches the total number of sets, which is
equal to

(
N
R

)
.

 50 100 150 200 250 300 350 400 450 500
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Facebook HDFS

Probability of data loss when 1% of the nodes fail concurrently

Scatter Width

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

Random Replication

Copyset Replication

Figure 3: Data loss probability when 1% of the nodes
fail simultaneously as a function of S, using N =
5000, R = 3.

Node	 1	

Permuta(on	 1	

Node	 2	 Node	 3	 Node	 4	 Node	 5	 Node	 6	 Node	 7	 Node	 8	 Node	 9	

Node	 7	 Node	 5	 Node	 1	 Node	 6	 Node	 4	 Node	 9	 Node	 3	 Node	 2	 Node	 8	

Permuta(on	 2	

Node	 9	 Node	 7	 Node	 2	 Node	 3	 Node	 6	 Node	 1	 Node	 4	 Node	 5	 Node	 8	

Copyset	 1	 Copyset	 2	 Copyset	 3	

Copyset	 4	 Copyset	 5	 Copyset	 6	

Permuta(on	 Phase	

Figure 4: Illustration of the Copyset Replication Per-
mutation phase.

In summary, in a minimal copyset scheme, the number
of copysets grows linearly with S, while random replica-
tion creates O(SR−1) copysets. Figure 3 demonstrates
the difference in data loss probabilities as a function of
S, between random replication and Copyset Replication,
the scheme we develop in the paper.

4. DESIGN
In this section we describe the design of a novel repli-

cation technique, Copyset Replication, that provides a
near optimal trade-off between the scatter width and the
number of copysets.

As we saw in the previous section, there exist replica-
tion schemes that achieve a linear increase in copysets for
a linear increase in S. However, it is not always simple to
design the optimal scheme that creates non-overlapping
copysets that cover all the nodes. In some cases, with
specific values of N , R and S, it has even been shown
that no such non-overlapping schemes exist [18, 19]. For
a more detailed theoretical discussion see Section 7.1.

Therefore, instead of using an optimal scheme, we
propose Copyset Replication, which is close to opti-
mal in practical settings and very simple to implement.
Copyset Replication randomly generates permutations

5

42 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Replica(on	 Phase	
Node	 2	
Primary	

Node	 7	 Node	 5	 Node	 1	 Node	 6	 Node	 4	 Node	 9	 Node	 3	 Node	 2	 Node	 8	

Node	 9	 Node	 7	 Node	 2	 Node	 3	 Node	 6	 Node	 1	 Node	 4	 Node	 5	 Node	 8	

Copyset	 1	 Copyset	 2	 Copyset	 3	

Copyset	 4	 Copyset	 5	 Copyset	 6	

Randomly	 pick	 copyset	

Figure 5: Illustration of the Copyset Replication
Replication phase.

 0 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

HDFS, Random Replication

RAMCloud, Random Replication

Facebook, Random Replication

HDFS, Copyset Replication

Facebook, Copyset Replication

RAMCloud, Copyset Replication

Figure 6: Data loss probability of random replication
and Copyset Replication with R = 3, using the pa-
rameters from Table 1. HDFS has higher data loss
probabilities because it uses a larger scatter width
(S = 200).

and splits each permutation into copysets. We will show
that as long as S is much smaller then the number of
nodes in the system, this scheme is likely to generate
copysets with at most one overlapping node.

Copyset Replication has two phases: Permutation and
Replication. The permutation phase is conducted of-
fline, while the replication phase is executed every time
a chunk needs to be replicated.

Figure 4 illustrates the permutation phase. In this
phase we create several permutations, by randomly per-
muting the nodes in the system. The number of permu-
tations we create depends on S, and is equal to P =

S

R− 1
. If this number is not an integer, we choose

its ceiling. Each permutation is split consecutively into
copysets, as shown in the illustration. The permutations
can be generated completely randomly, or we can add
additional constraints, limiting nodes from the same rack
in the same copyset, or adding network and capacity
constraints. In our implementation, we prevented nodes
from the same rack from being placed in the same copy-
set by simply reshuffling the permutation until all the

constraints were met.
In the replication phase (depicted by Figure 5) the sys-

tem places the replicas on one of the copysets generated
in the permutation phase. The first or primary replica
can be placed on any node of the system, while the other
replicas (the secondary replicas) are placed on the nodes
of a randomly chosen copyset that contains the first node.

Copyset Replication is agnostic to the data placement
policy of the first replica. Different storage systems have
certain constraints when choosing their primary replica
nodes. For instance, in HDFS, if the local machine has
enough capacity, it stores the primary replica locally,
while RAMCloud uses an algorithm for selecting its pri-
mary replica based on Mitzenmacher’s randomized load
balancing [23]. The only requirement made by Copyset
Replication is that the secondary replicas of a chunk are
always placed on one of the copysets that contains the
primary replica’s node. This constrains the number of
copysets created by Copyset Replication.

4.1 Durability of Copyset Replication
Figure 6 is the central figure of the paper. It compares

the data loss probabilities of Copyset Replication and
random replication using 3 replicas with RAMCloud,
HDFS and Facebook. For HDFS and Facebook, we plot-
ted the same S values for Copyset Replication and ran-
dom replication. In the special case of RAMCloud, the
recovery time of nodes is not related to the number of
permutations in our scheme, because disk nodes are re-
covered from the memory across all the nodes in the clus-
ter and not from other disks. Therefore, Copyset Repli-
cation with with a minimal S = R − 1 (using P = 1)
actually provides the same node recovery time as using a
larger value of S. Therefore, we plot the data probabili-
ties for Copyset Replication using P = 1.

We can make several interesting observations. Copy-
set Replication reduces the probability of data loss un-
der power outages for RAMCloud and Facebook to close
to zero, but does not improve HDFS as significantly.
For a 5000 node cluster under a power outage, Copy-
set Replication reduces RAMCloud’s probability of data
loss from 99.99% to 0.15%. For Facebook, that proba-
bility is reduced from 22.8% to 0.78%. In the case of
HDFS, since the scatter width is large (S = 200), Copy-
set Replication significantly improves the data loss prob-
ability, but not enough so that the probability of data loss
becomes close to zero.

Figure 7 depicts the data loss probabilities of 5000
node RAMCloud, HDFS and Facebook clusters. We can
observe that the reduction of data loss caused by Copy-
set Replication is equivalent to increasing the number
of replicas. For example, in the case of RAMCloud, if
the system uses Copyset Replication with 3 replicas, it
has lower data loss probabilities than random replication

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 43

 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of RAMCloud nodes

P
ro

b
a

b
ili

ty
 o

f
d

a
ta

 l
o

s
s

R=3, Random Replication

R=4, Random Replication

R=2, Copyset Replication

R=5, Random Replication

R=3, Copyset Replication

 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of HDFS nodes

P
ro

b
a

b
ili

ty
 o

f
d

a
ta

 l
o

s
s

R=3, Random Replication

R=2, Copyset Replication

R=4, Random Replication

R=3, Copyset Replication

R=5, Random Replication

R=4, Copyset Replication

 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of Facebook nodes

P
ro

b
a

b
ili

ty
 o

f
d

a
ta

 l
o

s
s

R=2, Copyset Replication

R=3, Random Replication

R=3, Copyset Replication

R=4, Random Replication

Figure 7: Data loss probability of random replication and Copyset Replication in different systems.

0% 1% 2% 3% 4% 5%
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss with varying percentage of concurrent failures

Percentage of node failures in a Facebook HDFS cluster

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

10000 Nodes

5000 Nodes

2000 Nodes

1000 Nodes

500 Nodes

Figure 8: Data loss probability on Facebook’s HDFS
cluster, with a varying percentage of the nodes failing
simultaneously.

with 5 replicas. Similarly, Copyset Replication with 3
replicas has the same the data loss probability as random
replication with 4 replicas in a Facebook cluster.

The typical number of simultaneous failures observed
in data centers is 0.5-1% of the nodes in the cluster [25].
Figure 8 depicts the probability of data loss in Face-
book’s HDFS system as we increase the percentage of si-
multaneous failures much beyond the reported 1%. Note
that Facebook commonly operates in the range of 1000-
5000 nodes per cluster (e.g., see Table 1). For these clus-
ter sizes Copyset Replication prevents data loss with a
high probability, even in the scenario where 2% of the
nodes fail simultaneously.

4.2 Optimality of Copyset Replication
Copyset Replication is not optimal, because it doesn’t

guarantee that all of its copysets will have at most one
overlapping node. In other words, it doesn’t guarantee
that each node’s data will be replicated across exactly S
different nodes. Figure 9 depicts a monte-carlo simu-
lation that compares the average scatter width achieved
by Copyset Replication as a function of the maximum S
if all the copysets were non-overlapping for a cluster of
5000 nodes.

The plot demonstrates that when S is much smaller
than N , Copyset Replication is more than 90% optimal.
For RAMCloud and Facebook, which respectively use

S

Pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ca

tt
er

 w
id

th

Figure 9: Comparison of the average scatter width
ofCopyset Replication to the optimal scatter width in
a 5000-node cluster.

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Expected lost chunks under concurrent failures

Percentage of RAMCloud nodes that fail concurrently

E
x
p

e
c
te

d
 p

e
rc

e
n

ta
g

e
 o

f
lo

s
t

c
h

u
n

k
s

1000 Nodes, R=3

Figure 10: Expected amount of data lost as a percent-
age of the data in the cluster.

S = 2 and S = 10, Copyset Replication is nearly opti-
mal. For HDFS we used S = 200, and in this case Copy-
set Replication provides each node an average of 98% of
the optimal bandwidth, which translates to S = 192.

4.3 Expected Amount of Data Lost
Copyset Replication trades off the probability of data

loss with the amount of data lost in each incident. The
expected amount of data lost remains constant regardless
of the replication policy. Figure 10 shows the amount of
data lost as a percentage of the data in the cluster.

Therefore, a system designer that deploys Copyset

7

44 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Replication should expect to experience much fewer
events of data loss. However, each one of these events
will lose a larger amount of data. In the extreme case,
if we are using Copyset Replication with S = 2 like in
RAMCloud, we would lose a whole node’s worth of data
at every data loss event.

5. EVALUATION
Copyset Replication is a general-purpose, scalable

replication scheme that can be implemented on a wide
range of data center storage systems and can be tuned to
any scatter width. In this section, we describe our imple-
mentation of Copyset Replication in HDFS and RAM-
Cloud. We also provide the results of our experiments
on the impact of Copyset Replication on both systems’
performance.

5.1 HDFS Implementation
The implementation of Copyset Replication on HDFS

was relatively straightforward, since the existing HDFS
replication code is well-abstracted. Copyset Replication
is implemented entirely on the HDFS NameNode, which
serves as a central directory and manages replication for
the entire cluster.

The permutation phase of Copyset Replication is run
when the cluster is created. The user specifies the scatter
width and the number of nodes in the system. After all
the nodes have been added to the cluster, the NameNode
creates the copysets by randomly permuting the list of
nodes. If a generated permutation violates any rack or
network constraints, the algorithm randomly reshuffles a
new permutation.

In the replication phase, the primary replica is picked
using the default HDFS replication.

5.1.1 Nodes Joining and Failing
In HDFS nodes can spontaneously join the cluster or

crash. Our implementation needs to deal with both cases.
When a new node joins the cluster, the NameNode

randomly creates
S

R− 1
new copysets that contain it.

As long as the scatter width is much smaller than the
number of nodes in the system, this scheme will still be
close to optimal (almost all of the copysets will be non-
overlapping). The downside is that some of the other
nodes may have a slightly higher than required scatter
width, which creates more copysets than necessary.

When a node fails, for each of its copysets we replace
it with a randomly selected node. For example, if the
original copyset contained nodes {1, 2, 3}, and node 1
failed, we re-replicate a copy of the data in the original
copyset to a new randomly selected node. As before, as
long as the scatter width is significantly smaller than the
number of nodes, this approach creates non-overlapping

Replication Recovery
Time (s)

Minimal
Scatter
Width

Average
Scatter
Width

Copy-
sets

Random
Replication

600.4 2 4 234

Copyset
Replication

642.3 2 4 13

Random
Replication

221.7 8 11.3 2145

Copyset
Replication

235 8 11.3 77

Random
Replication

139 14 17.8 5967

Copyset
Replication

176.6 14 17.8 147

Random
Replication

108 20 23.9 9867

Copyset
Replication

127.7 20 23.9 240

Table 2: Comparison of recovery time of a 100 GB
node on a 39 node cluster. Recovery time is measured
after the moment of failure detection.

copysets.

5.2 HDFS Evaluation
We evaluated the Copyset Replication implementation

on a cluster of 39 HDFS nodes with 100 GB of SSD stor-
age and a 1 GB ethernet network. Table 2 compares the
recovery time of a single node using Copyset Replication
and random replication. We ran each recovery five times.

As we showed in previous sections, Copyset Replica-
tion has few overlapping copysets as long as S is signif-
icantly smaller than N . However, since our experiment
uses a small value of N , some of the nodes did not have
sufficient scatter width due to a large number of overlap-
ping copysets. In order to address this issue, our Copyset
Replication implementation generates additional permu-
tations until the system reached the minimal desired scat-
ter width for all its nodes. The additional permutations
created more copysets. We counted the average number
of distinct copysets. As the results show, even with the
extra permutations, Copyset Replication still has orders
of magnitude fewer copysets than random replication.

To normalize the scatter width between Copyset Repli-
cation and random replication, when we recovered the
data with random replication we used the average scatter
width obtained by Copyset Replication.

The results show that Copyset Replication has an over-
head of about 5-20% in recovery time compared to ran-
dom replication. This is an artifact of our small cluster
size. The small size of the cluster causes some nodes to
be members of more copysets than others, which means
they have more data to recover and delay the overall re-
covery time. This problem would not occur if we used

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 45

Scatter
Width

Mean
Load

75th %
Load

99th %
Load

Max Load

10 10% 10% 10% 20%
20 5% 5% 5% 10%
50 2% 2% 2% 6%
100 1% 1% 2% 3%
200 0.5% 0.5% 1% 1.5%
500 0.2% 0.2% 0.4% 0.8%

Table 3: The simulated load in a 5000-node HDFS
cluster with R = 3, using Copyset Replication. With
Random Replication, the average load is identical to
the maximum load.

a realistic large-scale HDFS cluster (hundreds to thou-
sands of nodes).

5.2.1 Hot Spots
One of the main advantages of random replication is

that it can prevent a particular node from becoming a ‘hot
spot’, by scattering its data uniformly across a random
set of nodes. If the primary node gets overwhelmed by
read requests, clients can read its data from the nodes that
store the secondary replicas.

We define the load L(i, j) as the percentage of node
i’s data that is stored as a secondary replica in node j.
For example, if S = 2 and node 1 replicates all of its
data to nodes 2 and 3, then L(1, 2) = L(1, 3) = 0.5, i.e.,
node 1’s data is split evenly between nodes 2 and 3.

The more we spread the load evenly across the nodes
in the system, the more the system will be immune to hot
spots. Note that the load is a function of the scatter width;
if we increase the scatter width, the load will be spread
out more evenly. We expect that the load of the nodes
that belong to node i’s copysets will be dfrac1S. Since
Copyset Replication guarantees the same scatter width
of random replication, it should also spread the load uni-
formly and be immune to hot spots with a sufficiently
high scatter width.

In order to test the load with Copyset Replication,
we ran a monte carlo simulation of data replication in
a 5000-node HDFS cluster with R = 3.

Table 3 shows the load we measured in our monte
carlo experiment. Since we have a very large number of
chunks with random replication, the mean load is almost
identical to the worst-case load. With Copyset Replica-
tion, the simulation shows that the 99th percentile loads
are 1-2 times and the maximum loads 1.5-4 times higher
than the mean load. Copyset Replication incurs higher
worst-case loads because the permutation phase can pro-
duce some copysets with overlaps.

Therefore, if the system’s goal is to prevent hot spots
even in a worst case scenario with Copyset Replication,
the system designer should increase the system’s scatter

width accordingly.

5.3 Implementation of Copyset Replication
in RAMCloud

The implementation of Copyset Replication on RAM-
Cloud was similar to HDFS, with a few small differ-
ences. Similar to the HDFS implementation, most of
the code was implemented on RAMCloud’s coordinator,
which serves as a main directory node and also assigns
nodes to replicas.

In RAMCloud, the main copy of the data is kept in a
master server, which keeps the data in memory. Each
master replicates its chunks on three different backup
servers, which store the data persistently on disk.

The Copyset Replication implementation on RAM-
Cloud only supports a minimal scatter width (S = R −
1 = 2). We chose a minimal scatter width, because it
doesn’t affect RAMCloud’s node recovery times, since
the backup data is recovered from the master nodes,
which are spread across the cluster.

Another difference between the RAMCloud and
HDFS implementations is how we handle new back-
ups joining the cluster and backup failures. Since each
node is a member of a single copyset, if the coordinator
doesn’t find three nodes to form a complete copyset, the
new nodes will remain idle until there are enough nodes
to form a copyset.

When a new backup joins the cluster, the coordinator
checks whether there are three backups that are not as-
signed to a copyset. If there are, the coordinator assigns
these three backups to a copyset.

In order to preserve S = 2, every time a backup node
fails, we re-replicate its entire copyset. Since backups
don’t service normal reads and writes, this doesn’t af-
fect the sytem’s latency. In addition, due to the fact that
backups are recovered in parallel from the masters, re-
replicating the entire group doesn’t significantly affect
the recovery latency. However, this approach does in-
crease the disk and network bandwidth during recovery.

5.4 Evaluation of Copyset Replication on
RAMCloud

We compared the performance of Copyset Replication
with random replication under three scenarios: normal
RAMCloud client operations, a single master recovery
and a single backup recovery.

As expected, we could not measure any overhead of
using Copyset Replication on normal RAMCloud opera-
tions. We also found that it does not impact master recov-
ery, while the overhead of backup recovery was higher as
we expected. We provide the results below.

5.4.1 Master Recovery
One of the main goals of RAMCloud is to fully re-

9

46 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Replication Recovery Data Recovery Time

Random Replication 1256 MB 0.73 s
Copyset Replication 3648 MB 1.10 s

Table 4: Comparison of backup recovery perfor-
mance on RAMCloud with Copyset Replication. Re-
covery time is measured after the moment of failure
detection.

cover a master in about 1-2 seconds so that applications
experience minimal interruptions. In order to test mas-
ter recovery, we ran a cluster with 39 backup nodes and
5 master nodes. We manually crashed one of the mas-
ter servers, and measured the time it took RAMCloud
to recover its data. We ran this test 100 times, both
with Copyset Replication and random replication. As
expected, we didn’t observe any difference in the time
it took to recover the master node in both schemes.

However, when we ran the benchmark again using 10
backups instead of 39, we observed Copyset Replication
took 11% more time to recover the master node than the
random replication scheme. Due to the fact that Copy-
set Replication divides backups into groups of three, it
only takes advantage of 9 out of the 10 nodes in the clus-
ter. This overhead occurs only when we use a number
of backups that is not a multiple of three on a very small
cluster. Since we assume that RAMCloud is typically de-
ployed on large scale clusters, the master recovery over-
head is negligible.

5.4.2 Backup Recovery
In order to evaluate the overhead of Copyset Replica-

tion on backup recovery, we ran an experiment in which
a single backup crashes on a RAMCloud cluster with
39 masters and 72 backups, storing a total of 33 GB
of data. Table 4 presents the results. Since masters re-
replicate data in parallel, recovery from a backup fail-
ure only takes 51% longer using Copyset Replication,
compared to random replication. As expected, our im-
plementation approximately triples the amount of data
that is re-replicated during recovery. Note that this ad-
ditional overhead is not inherent to Copyset Replication,
and results from our design choice to strictly preserve a
minimal scatter width at the expense of higher backup
recovery overhead.

6. DISCUSSION
This section discusses how coding schemes relate to

the number of copysets, and how Copyset Replication
can simplify graceful power downs of storage clusters.

6.1 Copysets and Coding
Some storage systems, such as GFS, Azure and HDFS,

use coding techniques to reduce storage costs. These

techniques generally do not impact the probability of
data loss due to simultaneous failures.

Codes are typically designed to compress the data
rather than increase its durability. If the coded data is
distributed on a very large number of copysets, multiple
simultaneous failures will still cause data loss.

In practice, existing storage system parity code im-
plementations do not significantly reduce the number of
copysets, and therefore do not impact the profile of data
loss. For example, the HDFS-RAID [1, 11] implementa-
tion encodes groups of 5 chunks in a RAID 5 and mirror-
ing scheme, which reduces the number of distinct copy-
sets by a factor of 5. While reducing the number of copy-
sets by a factor of 5 reduces the probability of data loss,
Copyset Replication still creates two orders of magni-
tude fewer copysets than this scheme. Therefore, HDFS-
RAID with random replication is still very likely lose
data in the case of power outages.

6.2 Graceful Power Downs
Data center operators periodically need to gracefully

power down parts of a cluster [4, 10, 13]. Power downs
are used for saving energy in off-peak hours, or to con-
duct controlled software and hardware upgrades.

When part of a storage cluster is powered down, it is
expected that at least one replica of each chunk will stay
online. However, random replication considerably com-
plicates controlled power downs, since if we power down
a large group of machines, there is a very high probability
that all the replicas of a given chunk will be taken offline.
In fact, these are exactly the same probabilities that we
use to calculate data loss. Several previous studies have
explored data center power down in depth [17, 21, 27].

If we constrain Copyset Replication to use the min-
imal number of copysets (i.e., use Copyset Replication
with S = R− 1), it is simple to conduct controlled clus-
ter power downs. Since this version of Copyset Repli-
cation assigns a single copyset to each node, as long as
one member of each copyset is kept online, we can safely
power down the remaining nodes. For example, a cluster
using three replicas with this version of Copyset Replica-
tion can effectively power down two-thirds of the nodes.

7. RELATED WORK
The related work is split into three categories. First,

replication schemes that achieve optimal scatter width
are related to a field in mathematics called combinato-
rial design theory, which dates back to the 19th century.
We will give a brief overview and some examples of such
designs. Second, replica placement has been studied in
the context of DHT systems. Third, several data center
storage systems have employed various solutions to mit-
igate data loss due to concurrent node failures.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 47

7.1 Combinatorial Design Theory
The special case of trying to minimize the number of

copysets when S = N−1 is related to combinatorial de-
sign theory. Combinatorial design theory tries to answer
questions about whether elements of a discrete finite set
can be arranged into subsets, which satisfy certain “bal-
ance" properties. The theory has its roots in recreational
mathematical puzzles or brain teasers in the 18th and
19th century. The field emerged as a formal area of math-
ematics in the 1930s for the design of agricultural exper-
iments [12]. Stinson provides a comprehensive survey of
combinatorial design theory and its applications. In this
subsection we borrow several of the book’s definitions
and examples [26].

The problem of trying to minimize the number of
copysets with a scatter width of S = N − 1 can be ex-
pressed a Balanced Incomplete Block Design (BIBD), a
type of combinatorial design. Designs that try to mini-
mize the number of copysets for any scatter width, such
as Copyset Replication, are called unbalanced designs.

A combinatorial design is defined a pair (X,A), such
that X is a set of all the nodes in the system (i.e.,
X = {1, 2, 3, ..., N}) and A is a collection of nonempty
subsets of X . In our terminology, A is a collection of all
the copysets in the system.

Let N , R and λ be positive integers such that N >
R ≥ 2. A (N,R, λ) BIBD satisfies the following prop-
erties:

1. |A| = N

2. Each copyset contains exactly R nodes

3. Every pair of nodes is contained in exactly λ copy-
sets

When λ = 1, the BIBD provides an optimal design for
minimizing the number of copysets for S = N − 1.

For example, a (7, 3, 1)BIBD is defined as:

X = {1, 2, 3, 4, 5, 6, 7}
A = {123, 145, 167, 246, 257, 347, 356}

Note that each one of the nodes in the example has a
recovery bandwidth of 6, because it appears in exactly
three non-overlapping copysets.

Another example is the (9, 3, 1)BIBD:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168,
249, 357}

There are many different methods for constructing
new BIBDs. New designs can be constructed by com-
bining other known designs, using results from graph and

coding theory or in other methods [20]. The Experimen-
tal Design Handbook has an extensive selection of design
examples [9].

However, there is no single technique that can produce
optimal BIBDs for any combination of N and R. More-
over, there are many negative results, i.e., researchers
that prove that no optimal designs exists for a certain
combination of N and R [18, 19].

Due to these reasons, and due to the fact that BIBDs
do not solve the copyset minimization problem for any
scatter width that is not equal to N − 1, it is not practical
to use BIBDs for creating copysets in data center storage
systems. This is why we chose to utilize Copyset Repli-
cation, a non-optimal design based on random permuta-
tions that can accommodate any scatter width. However,
BIBDs do serve as a useful benchmark to measure how
optimal Copyset Replication in relationship to the opti-
mal scheme for specific values of S, and the novel formu-
lation of the problem for any scatter width is a potentially
interesting future research topic.

7.2 DHT Systems
There are several prior systems that explore the impact

of data placement on data availability in the context of
DHT systems.

Chun et al. [15] identify that randomly replicating data
across a large “scope" of nodes increases the probability
of data loss under simultaneous failures. They investi-
gate the effect of different scope sizes using Carbonite,
their DHT replication scheme. Yu et al. [28] analyze
the performance of different replication strategies when a
client requests multiple objects from servers that may fail
simultaneously. They propose a DHT replication scheme
called “Group", which constrains the placement of repli-
cas on certain groups, by placing the secondary repli-
cas in a particular order based on the key of the primary
replica. Similarly, Glacier [16] constrains the random
spread of replicas, by limiting each replica to equidistant
points in the keys’ hash space.

None of these studies focus on the relationship be-
tween the probability of data loss and scatter width, or
provide optimal schemes for different scatter width con-
straints.

7.3 Data Center Storage Systems
Facebook’s proprietary HDFS implementation con-

strains the placement of replicas to smaller groups, to
protect against concurrent failures [2, 5]. Similarly,
Sierra randomly places chunks within constrained groups
in order to support flexible node power downs and data
center power proportionality [27]. As we discussed pre-
viously, both of these schemes, which use random repli-
cation within a constrained group of nodes, generate or-
ders of magnitude more copysets than Copyset Replica-

11

48 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

tion with the same scatter width, and hence have a much
higher probability of data loss under correlated failures.

Ford et al. from Google [13] analyze different fail-
ure loss scenarios on GFS clusters, and have proposed
geo-replication as an effective technique to prevent data
loss under large scale concurrent node failures. Geo-
replication across geographically dispersed sites is a fail-
safe way to ensure data durability under a power outage.
However, not all storage providers have the capability to
support geo-replication. In addition, even for data center
operators that have geo-replication (like Facebook and
LinkedIn), losing data at a single site still incurs a high
fixed cost due to the need to locate or recompute the data.
This fixed cost is not proportional to the amount of data
lost [8, 22].

8. ACKNOWLEDGEMENTS
We would like to thank David Gal, Diego Ongaro, Is-

rael Cidon, K.V. Rashmi and Shankar Pasupathy for their
valuable feedback. We would also like to thank our shep-
herd, Bernard Wong, and the anonymous reviewers for
their comments. Asaf Cidon is supported by the Leonard
J. Shustek Stanford Graduate Fellowship. This work
was supported by the National Science Foundation under
Grant No. 0963859 and by STARnet, a Semiconductor
Research Corporation program sponsored by MARCO
and DARPA.

References
[1] HDFS RAID. http://wiki.apache.org/hadoop/

HDFS-RAID.

[2] Intelligent block placement policy to decrease probability of data
loss. https://issues.apache.org/jira/browse/
HDFS-1094.

[3] L. A. Barroso. Personal Communication, 2013.

[4] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40(12):33–37, Dec. 2007.

[5] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache hadoop
goes realtime at Facebook. In Proceedings of the 2011 interna-
tional conference on Management of data, SIGMOD ’11, pages
1071–1080, New York, NY, USA, 2011. ACM.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Hari-
das, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows Azure Storage: a highly available
cloud storage service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, SOSP ’11, pages 143–157, New York, NY, USA, 2011.
ACM.

[7] R. J. Chansler. Data Availability and Durability with the Hadoop
Distributed File System. ;login: The USENIX Magazine, 37(1),
February 2012.

[8] R. J. Chansler. Personal Communication, 2013.

[9] W. Cochran and G. Cox. Experimental designs . 1957.

[10] J. Dean. Evolution and future directions of large-scale storage
and computation systems at Google. In SoCC, page 1, 2010.

[11] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce:
Replication as a prelude to erasure coding in data-intensive scal-
able computing, 2011.

[12] R. Fisher. An examination of the different possible solutions
of a problem in incomplete blocks. Annals of Human Genetics,
10(1):52–75, 1940.

[13] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
OSDI’10, pages 1–7, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file sys-
tem. In SOSP, pages 29–43, 2003.

[15] B. gon Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica
maintenance for distributed storage systems. In IN PROC. OF
NSDI, pages 45–58, 2006.

[16] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated failures.
In IN PROC. OF NSDI, 2005.

[17] D. Harnik, D. Naor, and I. Segall. Low power mode in cloud
storage systems.

[18] S. Houghten, L. Thiel, J. Janssen, and C. Lam. There is no (46, 6,
1) block design*. Journal of Combinatorial Designs, 9(1):60–71,
2001.

[19] P. Kaski and P. Östergård. There exists no (15, 5, 4) RBIBD.
Journal of Combinatorial Designs, 9(3):227–232, 2001.

[20] J. Koo and J. Gill. Scalable constructions of fractional repetition
codes in distributed storage systems. In Communication, Control,
and Computing (Allerton), 2011 49th Annual Allerton Conference
on, pages 1366–1373. IEEE, 2011.

[21] J. Leverich and C. Kozyrakis. On the energy (in)efficiency of
hadoop clusters. SIGOPS Oper. Syst. Rev., 44(1):61–65, Mar.
2010.

[22] K. Mathukkaruppan. Personal Communication, 2012.

[23] M. D. Mitzenmacher. The power of two choices in randomized
load balancing. Technical report, IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, 1996.

[24] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In SOSP,
pages 29–41, 2011.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. Mass Storage Systems and Technologies,
IEEE / NASA Goddard Conference on, 0:1–10, 2010.

[26] D. Stinson. Combinatorial designs: construction and analysis.
Springer, 2003.

[27] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical
power-proportionality for data center storage. Proceedings of Eu-
rosys 11, pages 169–182, 2011.

[28] H. Yu, P. B. Gibbons, and S. Nath. Availability of multi-object
operations. In Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages
16–16, Berkeley, CA, USA, 2006. USENIX Association.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 49

TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract
We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4–6), and evaluate its
performance on our workload (§ 8).

����� ������������������ ���

���� �����

�	�������
���

����	��
��
���������� ���	����	

��������������������
�����������

���� �����
���� ���

����������������� ���� �
������������������������
������������������������������

�
�

��
��
�

��
��
��
��

�
�
��

�
���

��
��
��

��
��
��

�

��

��

��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�

��
��
�
�

��������������������
��������� ������

��������

��
��
�
�

��
��
�
�

��
��
�
�

��������������������
����������

���� ��������� ���

�����������������������

��
��
�
�

��
��
�
�

��������������������
�����������

�������
�����

����������������� �����
��������	��
��
����������

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache
Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

50 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

of the data mapping and cache-invalidation computations
are in client code that is deployed frequently. Over time
a PHP abstraction was developed that allowed develop-
ers to read and write the objects (nodes) and associations
(edges) in the graph, and direct access to MySQL was
deprecated for data types that fit the model.

TAO is a service we constructed that directly imple-
ments the objects and associations model. We were mo-
tivated by encapsulation failures in the PHP API, by the
opportunity to access the graph easily from non-PHP
services, and by several fundamental problems with the
lookaside cache architecture:

Inefficient edge lists: A key-value cache is not a good
semantic fit for lists of edges; queries must always fetch
the entire edge list and changes to a single edge require
the entire list to be reloaded. Basic list support in a looka-
side cache would only address the first problem; some-
thing much more complicated is required to coordinate
concurrent incremental updates to cached lists.

Distributed control logic: In a lookaside cache archi-
tecture the control logic is run on clients that don’t com-
municate with each other. This increases the number of
failure modes, and makes it difficult to avoid thundering
herds. Nishtala et al. provide an in-depth discussion of
the problems and present leases, a general solution [21].
For objects and associations the fixed API allows us to
move the control logic into the cache itself, where the
problem can be solved more efficiently.

Expensive read-after-write consistency: Facebook
uses asynchronous master/slave replication for MySQL,
which poses a problem for caches in data centers using a
replica. Writes are forwarded to the master, but some
time will elapse before they are reflected in the local
replica. Nishtala et al.’s remote markers [21] track keys
that are known to be stale, forwarding reads for those
keys to the master region. By restricting the data model
to objects and associations we can update the replica’s
cache at write time, then use graph semantics to interpret
cache maintenance messages from concurrent updates.
This provides (in the absence of multiple failures) read-
after-write consistency for all clients that share a cache,
without requiring inter-regional communication.

2.2 TAO’s Goal
TAO provides basic access to the nodes and edges of a
constantly changing graph in data centers across multiple
regions. It is optimized heavily for reads, and explicitly
favors efficiency and availability over consistency.

A system like TAO is likely to be useful for any ap-
plication domain that needs to efficiently generate fine-
grained customized content from highly interconnected
data. The application should not expect the data to be
stale in the common case, but should be able to tolerate
it. Many social networks fit in this category.

3 TAO Data Model and API

Facebook focuses on people, actions, and relationships.
We model these entities and connections as nodes and
edges in a graph. This representation is very flexible;
it directly models real-life objects, and can also be used
to store an application’s internal implementation-specific
data. TAO’s goal is not to support a complete set of graph
queries, but to provide sufficient expressiveness to han-
dle most application needs while allowing a scalable and
efficient implementation.

Consider the social networking example in Figure 1a,
in which Alice used her mobile phone to record her visit
to a famous landmark with Bob. She ‘checked in’ to
the Golden Gate Bridge and ‘tagged’ Bob to indicate
that he is with her. Cathy added a comment that David
has ‘liked.’ The social graph includes the users (Alice,
Bob, Cathy, and David), their relationships, their actions
(checking in, commenting, and liking), and a physical
location (the Golden Gate Bridge).

Facebook’s application servers would query this
event’s underlying nodes and edges every time it is ren-
dered. Fine-grained privacy controls mean that each user
may see a different view of the checkin: the individual
nodes and edges that encode the activity can be reused
for all of these views, but the aggregated content and the
results of privacy checks cannot.

3.1 Objects and Associations

TAO objects are typed nodes, and TAO associations
are typed directed edges between objects. Objects are
identified by a 64-bit integer (id) that is unique across all
objects, regardless of object type (otype). Associations
are identified by the source object (id1), association
type (atype) and destination object (id2). At most one
association of a given type can exist between any two
objects. Both objects and associations may contain
data as key→value pairs. A per-type schema lists the
possible keys, the value type, and a default value. Each
association has a 32-bit time field, which plays a central
role in queries1.

Object: (id) → (otype, (key � value)∗)
Assoc.: (id1, atype, id2) → (time, (key � value)∗)

Figure 1b shows how TAO objects and associations
might encode the example, with some data and times
omitted for clarity. The example’s users are represented
by objects, as are the checkin, the landmark, and Cathy’s
comment. Associations capture the users’ friendships,
authorship of the checkin and comment, and the binding
between the checkin and its location and comments.

1The time field is actually a generic application-assigned integer.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 51

Actions may be encoded either as objects or associ-
ations. Both Cathy’s comment and David’s ‘like’ repre-
sent actions taken by a user, but only the comment results
in a new object. Associations naturally model actions
that can happen at most once or record state transitions,
such as the acceptance of an event invitation, while re-
peatable actions are better represented as objects.

Although associations are directed, it is common for
an association to be tightly coupled with an inverse edge.
In this example all of the associations have an inverse
except for the link of type COMMENT. No inverse
edge is required here since the application does not tra-
verse from the comment to the CHECKIN object. Once
the checkin’s id is known, rendering Figure 1a only re-
quires traversing outbound associations. Discovering the
checkin object, however, requires the inbound edges or
that an id is stored in another Facebook system.

The schemas for object and association types describe
only the data contained in instances. They do not impose
any restrictions on the edge types that can connect to a
particular node type, or the node types that can terminate
an edge type. The same atype is used to represent au-
thorship of the checkin object and the comment object in
Figure 1, for example. Self-edges are allowed.

3.2 Object API
TAO’s object API provides operations to allocate a new
object and id, and to retrieve, update, or delete the object
associated with an id. A notable omission is a compare-
and-set functionality, whose usefulness is substantially
reduced by TAO’s eventual consistency semantics. The
update operation can be applied to a subset of the fields.

3.3 Association API
Many edges in the social graph are bidirectional, ei-
ther symmetrically like the example’s FRIEND rela-
tionship or asymmetrically like AUTHORED and AU-
THORED BY. Bidirectional edges are modeled as two
separate associations. TAO provides support for keeping
associations in sync with their inverses, by allowing as-
sociation types to be configured with an inverse type. For
such associations, creations, updates, and deletions are
automatically coupled with an operation on the inverse
association. Symmetric bidirectional types are their own
inverses. The association write operations are:

• assoc add(id1, atype, id2, time, (k→v)*) –
Adds or overwrites the association (id1, atype,id2),
and its inverse (id1, inv(atype), id2) if defined.

• assoc delete(id1, atype, id2) – Deletes the asso-
ciation (id1, atype, id2) and the inverse if it exists.

• assoc change type(id1, atype, id2, newtype)
– Changes the association (id1, atype, id2) to (id1,
newtype, id2), if (id1, atype, id2) exists.

3.4 Association Query API

The starting point for any TAO association query is an
originating object and an association type. This is the
natural result of searching for a specific type of informa-
tion about a particular object. Consider the example in
Figure 1. In order to display the CHECKIN object, the
application needs to enumerate all tagged users and the
most recently added comments.

A characteristic of the social graph is that most of the
data is old, but many of the queries are for the newest
subset. This creation-time locality arises whenever an
application focuses on recent items. If the Alice in Fig-
ure 1 is a famous celebrity then there might be thousands
of comments attached to her checkin, but only the most
recent ones will be rendered by default.

TAO’s association queries are organized around asso-
ciation lists. We define an association list to be the list of
all associations with a particular id1 and atype, arranged
in descending order by the time field:

Association List: (id1, atype) → [anew . . .aold]

For example, the list (i, COMMENT) has edges to the
example’s comments about i, most recent first.
TAO’s queries on associations lists:

• assoc get(id1, atype, id2set, high?, low?) –
returns all of the associations (id1, atype, id2) and
their time and data, where id2 ∈ id2set and high
≥ time ≥ low (if specified). The optional time
bounds are to improve cacheability for large asso-
ciation lists (see § 5).

• assoc count(id1, atype) – returns the size of the
association list for (id1, atype), which is the num-
ber of edges of type atype that originate at id1.

• assoc range(id1, atype, pos, limit) – returns el-
ements of the (id1, atype) association list with in-
dex i ∈ [pos,pos+ limit).

• assoc time range(id1, atype, high, low, limit)
– returns elements from the (id1, atype) association
list, starting with the first association where time≤
high, returning only edges where time≥ low.

TAO enforces a per-atype upper bound (typically
6,000) on the actual limit used for an association query.
To enumerate the elements of a longer association list
the client must issue multiple queries, using pos or high
to specify a starting point.

For the example shown in Figure 1 we can map some
possible queries to the TAO API as follows:

• “50 most recent comments on Alice’s checkin” ⇒
assoc range(632, COMMENT, 0, 50)

• “How many checkins at the GG Bridge?” ⇒
assoc count(534, CHECKIN)

52 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

4 TAO Architecture

In this section we describe the units that make up TAO,
and the multiple layers of aggregation that allow it to
scale across data centers and geographic regions. TAO
is separated into two caching layers and a storage layer.

4.1 Storage Layer
Objects and associations were stored in MySQL at Face-
book even before TAO was built; it was the backing store
for the original PHP implementation of the API. This
made it the natural choice for TAO’s persistent storage.

The TAO API is mapped to a small set of simple
SQL queries, but it could also be mapped efficiently to
range scans in a non-SQL data storage system such as
LevelDB [3] by explicitly maintaining the required in-
dexes. When evaluating the suitability of a backing store
for TAO, however, it is important to consider the data
accesses that don’t use the API. These include back-
ups, bulk import and deletion of data, bulk migrations
from one data format to another, replica creation, asyn-
chronous replication, consistency monitoring tools, and
operational debugging. An alternate store would also
have to provide atomic write transactions, efficient gran-
ular writes, and few latency outliers.

Given that TAO needs to handle a far larger volume of
data than can be stored on a single MySQL server, we
divide data into logical shards. Each shard is contained
in a logical database. Database servers are responsible
for one or more shards. In practice, the number of shards
far exceeds the number of servers; we tune the shard to
server mapping to balance load across different hosts. By
default all object types are stored in one table, and all
association types in another.

Each object id contains an embedded shard id that
identifies its hosting shard. Objects are bound to a shard
for their entire lifetime. An association is stored on the
shard of its id1, so that every association query can be
served from a single server. Two ids are unlikely to map
to the same server unless they were explicitly colocated
at creation time.

4.2 Caching Layer
TAO’s cache implements the complete API for clients,
handling all communication with databases. The caching
layer consists of multiple cache servers that together
form a tier. A tier is collectively capable of responding to
any TAO request. (We also refer to the set of databases
in one region as a tier.) Each request maps to a single
cache server using a sharding scheme similar to the one
described in § 4.1. There is no requirement that tiers have
the same number of hosts.

Clients issue requests directly to the appropriate cache
server, which is then responsible for completing the read

or write. For cache misses and write requests, the server
contacts other caches and/or databases.

The TAO in-memory cache contains objects, associ-
ation lists, and association counts. We fill the cache on
demand and evict items using a least recently used (LRU)
policy. Cache servers understand the semantics of their
contents and use them to answer queries even if the exact
query has not been previously processed, e.g. a cached
count of zero is sufficient to answer a range query.

Write operations on an association with an inverse
may involve two shards, since the forward edge is stored
on the shard for id1 and the inverse edge is on the shard
for id2. The tier member that receives the query from
the client issues an RPC call to the member hosting id2,
which will contact the database to create the inverse asso-
ciation. Once the inverse write is complete, the caching
server issues a write to the database for id1. TAO does
not provide atomicity between the two updates. If a
failure occurs the forward may exist without an inverse;
these hanging associations are scheduled for repair by an
asynchronous job.

4.3 Client Communication Stack
It is common for hundreds of objects and associations
to be queried while rendering a Facebook page, which is
likely to require communication with many cache servers
in a short period of time. The challenges of the resulting
all-to-all communication are similar to those faced by our
memcache pools. TAO and memcache share most of the
client stack described by Nishtala et al. [21]. The latency
of TAO requests can be much higher than those of mem-
cache, because TAO requests may access the database,
so to avoid head-of-line blocking on multiplexed connec-
tions we use a protocol with out-of-order responses.

4.4 Leaders and Followers
In theory a single cache tier could be scaled to handle any
foreseeable aggregate request rate, so long as shards are
small enough. In practice, though, large tiers are prob-
lematic because they are more prone to hot spots and they
have a quadratic growth in all-to-all connections.

To add servers while limiting the maximum tier size
we split the cache into two levels: a leader tier and mul-
tiple follower tiers. Some of TAO’s advantages over a
lookaside cache architecture (as described in § 2.1) rely
on having a single cache coordinator per database; this
split allows us to keep the coordinators in a single tier
per region. As in the single-tier configuration, each tier
contains a set of cache servers that together are capable
of responding to any TAO query; that is, every shard in
the system maps to one caching server in each tier. Lead-
ers (members of the leader tier) behave as described in
§ 4.2, reading from and writing to the storage layer. Fol-

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 53

lowers (members of follower tiers) will instead forward
read misses and writes to a leader. Clients communicate
with the closest follower tier and never contact leaders
directly; if the closest follower is unavailable they fail
over to another nearby follower tier.

Given this two-level caching hierarchy, care must be
taken to keep TAO caches consistent. Each shard is
hosted by one leader, and all writes to the shard go
through that leader, so it is naturally consistent. Follow-
ers, on the other hand, must be explicitly notified of up-
dates made via other follower tiers.

TAO provides eventual consistency [33, 35] by asyn-
chronously sending cache maintenance messages from
the leader to the followers. An object update in the leader
enqueues invalidation messages to each corresponding
follower. The follower that issued the write is updated
synchronously on reply from the leader; a version num-
ber in the cache maintenance message allows it to be ig-
nored when it arrives later. Since we cache only con-
tiguous prefixes of association lists, invalidating an as-
sociation might truncate the list and discard many edges.
Instead, the leader sends a refill message to notify follow-
ers about an association write. If a follower has cached
the association, then the refill request triggers a query to
the leader to update the follower’s now-stale association
list. § 6.1 discusses the consistency of this design and
also how it tolerates failures.

Leaders serialize concurrent writes that arrive from
followers. Because a single leader mediates all of the
requests for an id1, it is also ideally positioned to protect
the database from thundering herds. The leader ensures
that it does not issue concurrent overlapping queries to
the database and also enforces a limit on the maximum
number of pending queries to a shard.

4.5 Scaling Geographically
The leader and followers configuration allows TAO to
scale to handle a high workload, since read throughput
scales with the total number of follower servers in all
tiers. Implicit in the design, however, is the assumption
that the network latencies from follower to leader and
leader to database are low. This assumption is reasonable
if clients are restricted to a single data center, or even to
a set of data centers in close proximity. It is not true,
however, in our production environment.

As our social networking application’s computing and
network requirements have grown, we have had to ex-
pand beyond a single geographical location: today, fol-
lower tiers can be thousands of miles apart. In this con-
figuration, network round trip times can quickly become
the bottleneck of the overall architecture. Since read
misses by followers are 25 times as frequent as writes in
our workloads, we chose a master/slave architecture that
requires writes to be sent to the master, but that allows

����������������������

�������
�����

������
	

�������
�����

������
	
�����������

� 	

�

����������������������
������� ��������� ���������

Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave is made separately for each shard.

read misses to be serviced locally. As with the leader/-
follower design, we propagate update notifications asyn-
chronously to maximize performance and availability, at
the expense of data freshness.

The social graph is tightly interconnected; it is not pos-
sible to group users so that cross-partition requests are
rare. This means that each TAO follower must be local
to a tier of databases holding a complete multi-petabyte
copy of the social graph. It would be prohibitively ex-
pensive to provide full replicas in every data center.

Our solution to this problem is to choose data center
locations that are clustered into only a few regions, where
the intra-region latency is small (typically less than 1 mil-
lisecond). It is then sufficient to store one complete copy
of the social graph per region. Figure 2 shows the overall
architecture of the master/slave TAO system.

Followers behave identically in all regions, forwarding
read misses and writes to the local region’s leader tier.
Leaders query the local region’s database regardless of
whether it is the master or slave. Writes, however, are
forwarded by the local leader to the leader that is in the
region with the master database. This means that read
latency is independent of inter-region latency.

The master region is controlled separately for each
shard, and is automatically switched to recover from the
failure of a database. Writes that fail during the switch
are reported to the client as failed, and are not retried.
Note that since each cache hosts multiple shards, a server
may be both a master and a slave at the same time. We
prefer to locate all of the master databases in a single re-
gion. When an inverse association is mastered in a differ-
ent region, TAO must traverse an extra inter-region link
to forward the inverse write.

54 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

TAO embeds invalidation and refill messages in the
database replication stream. These messages are deliv-
ered in a region immediately after a transaction has been
replicated to a slave database. Delivering such messages
earlier would create cache inconsistencies, as reading
from the local database would provide stale data. At
Facebook TAO and memcache use the same pipeline for
delivery of invalidations and refills [21].

If a forwarded write is successful then the local leader
will update its cache with the fresh value, even though
the local slave database probably has not yet been up-
dated by the asynchronous replication stream. In this
case followers will receive two invalidates or refills from
the write, one that is sent when the write succeeds and
one that is sent when the write’s transaction is replicated
to the local slave database.

TAO’s master/slave design ensures that all reads can
be satisfied within a single region, at the expense of po-
tentially returning stale data to clients. As long as a user
consistently queries the same follower tier, the user will
typically have a consistent view of TAO state. We discuss
exceptions to this in the next section.

5 Implementation

Previous sections describe how TAO servers are aggre-
gated to handle large volumes of data and query rates.
This section details important optimizations for perfor-
mance and storage efficiency.

5.1 Caching Servers
TAO’s caching layer serves as an intermediary between
clients and the databases. It aggressively caches objects
and associations to provide good read performance.

TAO’s memory management is based on Facebook’s
customized memcached, as described by Nishtala et
al. [21]. TAO has a slab allocator that manages slabs of
equal size items, a thread-safe hash table, LRU eviction
among items of equal size, and a dynamic slab rebalancer
that keeps the LRU eviction ages similar across all types
of slabs. A slab item can hold one node or one edge list.

To provide better isolation, TAO partitions the avail-
able RAM into arenas, selecting the arena by the object
or association type. This allows us to extend the cache
lifetime of important types, or to prevent poor cache cit-
izens from evicting the data of better-behaved types. So
far we have only manually configured arenas to address
specific problems, but it should be possible to automati-
cally size arenas to improve TAO’s overall hit rate.

For small fixed-size items, such as association counts,
the memory overhead of the pointers for bucket items in
the main hash table becomes significant. We store these
items separately, using direct-mapped 8-way associative
caches that require no pointers. LRU order within each

bucket is tracked by simply sliding the entries down. We
achieve additional memory efficiency by adding a table
that maps the each active atype to a 16 bit value. This
lets us map (id1, atype) to a 32-bit count in 14 bytes; a
negative entry, which records the absence of any id2 for
an (id1, atype), takes only 10 bytes. This optimization
allows us to hold about 20% more items in cache for a
given system configuration.

5.2 MySQL Mapping
Recall that we divide the space of objects and associ-
ations into shards. Each shard is assigned to a logical
MySQL database that has a table for objects and a table
for associations. All of the fields of an object are serial-
ized into a single ‘data‘ column. This approach allows
us to store objects of different types within the same ta-
ble, Objects that benefit from separate data management
polices are stored in separate custom tables.

Associations are stored similarly to objects, but to sup-
port range queries, their tables have an additional index
based on id1, atype, and time. To avoid potentially ex-
pensive SELECT COUNT queries, association counts
are stored in a separate table.

5.3 Cache Sharding and Hot Spots
Shards are mapped onto cache servers within a tier using
consistent hashing [15]. This simplifies tier expansions
and request routing. However, this semi-random assign-
ment of shards to cache servers can lead to load imbal-
ance: some followers will shoulder a larger portion of
the request load than others. TAO rebalances load among
followers with shard cloning, in which reads to a shard
are served by multiple followers in a tier. Consistency
management messages for a cloned shard are sent to all
followers hosting that shard.

In our workloads, it is not uncommon for a popular
object to be queried orders of magnitude more often than
other objects. Cloning can distribute this load across
many followers, but the high hit rate for these objects
makes it worthwhile to place them in a small client-side
cache. When a follower responds to a query for a hot
item, it includes the object or association’s access rate.
If the access rate exceeds a certain threshold, the TAO
client caches the data and version. By including the ver-
sion number in subsequent queries, the follower can omit
the data in replies if the data has not changed since the
previous version. The access rate can also be used to
throttle client requests for very hot objects.

5.4 High-Degree Objects
Many objects have more than 6,000 associations with the
same atype emanating from them, so TAO does not cache

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 55

the complete association list. It is also common that as-
soc get queries are performed that have an empty result
(no edge exists between the specified id1 and id2). Un-
fortunately, for high-degree objects these queries will al-
ways go to the database, because the queried id2 could
be in the uncached tail of the association list.

We have addressed this inefficiency in the cache im-
plementation by modifying client code that is observed
to issue problematic queries. One solution to this prob-
lem is to use assoc count to choose the query direction,
since checking for the inverse edge is equivalent. In
some cases where both ends of an edges are high-degree
nodes, we can also leverage application-domain knowl-
edge to improve cacheability. Many associations set the
time field to their creation time, and many objects in-
clude their creation time as a field. Since an edge to a
node can only be created after the node has been created,
we can limit the id2 search to associations whose time
is ≥ than the object’s creation time. So long as an edge
older than the object is present in cache then this query
can be answered directly by a TAO follower.

6 Consistency and Fault Tolerance

Two of the most important requirements for TAO are
availability and performance. When failures occur we
would like to continue to render Facebook, even if the
data is stale. In this section, we describe the consistency
model of TAO under normal operation, and how TAO
sacrifices consistency under failure modes.

6.1 Consistency
Under normal operation, objects and associations in TAO
are eventually consistent [33, 35]; after a write, TAO
guarantees the eventual delivery of an invalidation or re-
fill to all tiers. Given a sufficient period of time during
which external inputs have quiesced, all copies of data
in TAO will be consistent and reflect all successful write
operations to all objects and associations. Replication
lag is usually less than one second.

In normal operation (at most one failure encountered
by a request) TAO provides read-after-write consistency
within a single tier. TAO synchronously updates the
cache with locally written values by having the master
leader return a changeset when the write is successful.
This changeset is propagated through the slave leader (if
any) to the follower tier that originated the write query.
If an inverse type is configured for an association, then
writes to associations of that type may affect both the
id1’s and the id2’s shard. In these cases, the changeset
returned by the master leader contains both updates, and
the slave leader (if any) and the follower that forwarded
the write must each send the changeset to the id2’s shard
in their respective tiers, before returning to the caller.

The changeset cannot always be safely applied to the
follower’s cache contents, because the follower’s cache
may be stale if the refill or invalidate from a second fol-
lower’s update has not yet been delivered. We resolve
this race condition in most cases with a version number
that is present in the persistent store and the cache. The
version number is incremented during each update, so
the follower can safely invalidate its local copy of the
data if the changeset indicates that its pre-update value
was stale. Version numbers are not exposed to the TAO
clients. In slave regions, this scheme is vulnerable to
a rare race condition between cache eviction and stor-
age server update propagation. The slave storage server
may hold an older version of a piece of data than what
is cached by the caching server, so if the post-changeset
entry is evicted from cache and then reloaded from the
database, a client may observe a value go back in time
in a single follower tier. Such a situation can only oc-
cur if it takes longer for the slave region’s storage server
to receive an update than it does for a cached item to be
evicted from cache, which is rare in practice.

Although TAO does not provide strong consistency for
its clients, because it writes to MySQL synchronously
the master database is a consistent source of truth. This
allows us to provide stronger consistency for the small
subset of requests that need it. TAO reads may be marked
critical, in which case they will be proxied to the master
region. We could use critical reads during an authentica-
tion process, for example, so that replication lag doesn’t
allow use of stale credentials.

6.2 Failure Detection and Handling
TAO scales to thousands of machines over multiple ge-
ographical locations, so transient and permanent fail-
ures are commonplace. Therefore, it is important that
TAO detect potential failures and route around them.
TAO servers employ aggressive network timeouts so as
not to continue waiting on responses that may never ar-
rive. Each TAO server maintains per-destination time-
outs, marking hosts as down if there are several consec-
utive timeouts, and remembering downed hosts so that
subsequent requests can be proactively aborted. This
simple failure detector works well, although it does not
always preserve full capacity in a brown-out scenario,
such as bursty packet drops that limit TCP throughput.
Upon detection of a failed server, TAO routes around the
failures in a best effort fashion in order to preserve avail-
ability and performance at the cost of consistency. We
actively probe failed machines to discover when (if) they
recover.

Database failures: Databases are marked down in a
global configuration if they crash, if they are taken of-
fline for maintenance, or if they are replicating from a
master database and they get too far behind. When a

56 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

master database is down, one of its slaves is automati-
cally promoted to be the new master.

When a region’s slave database is down, cache misses
are redirected to the TAO leaders in the region hosting the
database master. Since cache consistency messages are
embedded in the database’s replication stream, however,
they can’t be delivered by the primary mechanism. Dur-
ing the time that a slave database is down an additional
binlog tailer is run on the master database, and the re-
fills and invalidates are delivered inter-regionally. When
the slave database comes back up, invalidation and refill
messages from the outage will be delivered again.

Leader failures: When a leader cache server fails,
followers automatically route read and write requests
around it. Followers reroute read misses directly to
the database. Writes to a failed leader, in contrast,
are rerouted to a random member of the leader’s tier.
This replacement leader performs the write and associ-
ated actions, such as modifying the inverse association
and sending invalidations to followers. The replacement
leader also enqueues an asynchronous invalidation to the
original leader that will restore its consistency. These
asynchronous invalidates are recorded both on the coor-
dinating node and inserted into the replication stream,
where they are spooled until the leader becomes avail-
able. If the failing leader is partially available then fol-
lowers may see a stale value until the leader’s consis-
tency is restored.

Refill and invalidation failures: Leaders send refills
and invalidations asynchronously. If a follower is un-
reachable, the leader queues the message to disk to be
delivered at a later time. Note that a follower may be
left with stale data if these messages are lost due to per-
manent leader failure. This problem is solved by a bulk
invalidation operation that invalidates all objects and as-
sociations from a shard id. After a failed leader box is
replaced, all of the shards that map to it must be invali-
dated in the followers, to restore consistency.

Follower failures: In the event that a TAO follower
fails, followers in other tiers share the responsibility of
serving the failed host’s shards. We configure each TAO
client with a primary and backup follower tier. In nor-
mal operations requests are sent only to the primary. If
the server that hosts the shard for a particular request has
been marked down due to timeouts, then the request is
sent instead to that shard’s server in the backup tier. Be-
cause failover requests still go to a server that hosts the
corresponding shard, they are fully cacheable and do not
require extra consistency work. Read and write requests
from the client are failed over in the same way. Note that
failing over between different tiers may cause read-after-
write consistency to be violated if the read reaches the
failover target before the write’s refill or invalidate.

read requests 99.8 % write requests 0.2 %
assoc get 15.7 % assoc add 52.5 %
assoc range 40.9 % assoc del 8.3 %
assoc time range 2.8 % assoc change type 0.9 %
assoc count 11.7 % obj add 16.5 %
obj get 28.9 % obj update 20.7 %

obj delete 2.0 %

Figure 3: Relative frequencies for client requests to TAO
from all Facebook products. Reads account for almost
all of the calls to the API.

7 Production Workload

Facebook has a single instance of TAO in production.
Multi-tenancy in a system such as TAO allows us to
amortize operational costs and share excess capacity
among clients. It is also an important enabler for rapid
product innovation, because new applications can link to
existing data and there is no need to move data or pro-
vision servers as an application grows from one user to
hundreds of millions. Multi-tenancy is especially im-
portant for objects, because it allows the entire 64-bit id
space to be handled uniformly without an extra step to
resolve the otype.

The TAO system contains many follower tiers spread
across several geographic regions. Each region has one
complete set of databases, one leader cache tier, and at
least two follower tiers. Our TAO deployment contin-
uously processes a billion reads and millions of writes
per second. We are not aware of another geographically
distributed graph data store at this scale.

To characterize the workload that is seen by TAO, we
captured a random sample of 6.5 million requests over a
40 day period. In this section, we describe the results of
an analysis of that sample.

At a high level, our workload shows the following
characteristics:

• reads are much more frequent than writes;
• most edge queries have empty results; and
• query frequency, node connectivity, and data size

have distributions with long tails.

Figure 3 breaks down the load on TAO. Reads domi-
nate, with only 0.2% of requests involving a write. The
majority of association reads resulted in empty associa-
tion lists. Calls to assoc get found an association only
19.6% of the time, 31.0% of the calls to assoc range in
our trace had a non-empty result, and only 1.9% of the
calls to assoc time range returned any edges.

Figure 4 shows the distribution of the return values
from assoc count. 45% of calls return zero. Among the
non-zero values, although small values are the most com-
mon, 1% of the return values were > 500,000.

Figure 5 shows the distribution of the number of asso-

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 57

10-5

10-4

10-3

1%

10%

100%

1 2 4 8 25 27 29 211 213 215 217 219 221 223 225 227

C
C

D
F

(fr
ac

tio
n

>)

assoc_count return value

Figure 4: assoc count frequency in our production envi-
ronment. 1% of returned counts were ≥512K.

10-6

10-5

10-4

10-3

1%

10%

100%

1 2 4 8 24 25 26 27 28 29 210 211 212 213

C
C

D
F

(fr
ac

tio
n

>)

of returned assocs

assoc_range
assoc_time_range

Figure 5: The number of edges returned by assoc range
and assoc time range queries. 64% of the non-empty
results had 1 edge, 13% of which had a limit of 1.

ciations returned for range and time-range queries, and
the subset that hit the limit for returned associations.
Most range and time range queries had large client-
supplied limits. 12% of the queries had limit = 1, but
95% of the remaining queries had limit ≥ 1000. Less
than 1% of the return values for queries with a limit ≥ 1
actually reached the limit.

Although queries for non-existent associations were
common, this is not the case for objects. A valid id is
only produced during object creation, so obj get can only
return an empty result if the object has been removed
or if the object’s creation has not yet been replicated to
the current region. Neither of these cases occurred in
our trace; every object read was successful. This doesn’t
mean that objects were never deleted – it just means that
there was never an attempt to read a deleted object.

Figure 6 shows the distribution of the data sizes for
TAO query results. 39.5% of the associations queried
by clients contained no data. Our implementation allows
objects to store 1MB of data and associations to store
64K of data (although a custom table must be configured
for associations that store more than 255 bytes of data).
The actual size of most objects and associations is much

1006

10-5

10-4

10-3

1%

10%

0 1 2 4 8 24 25 26 27 28 29 210211212213214215216217218

fre
qu

en
cy

data size

associations
objects

Figure 6: The size of the data stored in associations and
objects that were returned by the TAO API. Associations
typically store much less data than objects. The aver-
age association data size was 97.8 bytes for the 60.5%
of returned associations that had some data. The average
object data size was 673 bytes.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

si
ng

le
-s

er
ve

r t
hr

ou
gh

pu
t (

re
qu

es
t p

er
 s

ec
)

follower hit rate (%)

avg aggregate hit rate

Figure 7: Throughput of an individual follower in our
production environment. Cache misses and writes are
more expensive than cache hits, so the peak query rate
rises with hit rate. Writes are included in this graph as
non-hit requests.

smaller. However, large values are frequent enough that
the system must deal with them efficiently.

8 Performance

Running a single TAO deployment for all of Facebook
allows us to benefit from economies of scale, and makes
it easy for new products to integrate with existing por-
tions of the social graph. In this section, we report on the
performance of TAO under a real workload.

Availability: Over a period of 90 days, the fraction
of failed TAO queries as measured from the web server
was 4.9× 10−6. Care must be taken when interpreting
this number, since the failure of one TAO query might
prevent the client from issuing another query with a dy-
namic data dependence on the first. TAO’s failures may
also be correlated with those of other dependent systems.

58 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

hit lat. (msec) miss lat. (msec)
operation 50% avg 99% 50% avg 99%
assoc count 1.1 2.5 28.9 5.0 26.2 186.8
assoc get 1.0 2.4 25.9 5.8 14.5 143.1
assoc range 1.1 2.3 24.8 5.4 11.2 93.6
assoc time range 1.3 3.2 32.8 5.8 11.9 47.2
obj get 1.0 2.4 27.0 8.2 75.3 186.4

Figure 8: Client-observed TAO latency in milliseconds
for read requests, including client API overheads and net-
work traversal, separated by cache hits and cache misses.

0%

10%

20%

30%

40%

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

fre
qu

en
cy

write latency (msec)

remote region latency
master region latency

avg ping latency

Figure 9: Write latency from clients in the same region
as database masters, and from a region 58 msec away.

Follower capacity: The peak throughput of a follower
depends on its hit rate. Figure 7 shows the highest 15-
minute average throughput we observe in production for
our current hardware configuration, which has 144GB
of RAM, 2 Intel Xeon 8 core E5-2660 CPUs running at
2.2Ghz with Hyperthreading, and 10 Gigabit ethernet.

Hit rates and latency: As part of the data collection
process that was described in § 7, we measured latencies
in the client application; these measurements include all
network latencies and the time taken to traverse the PHP
TAO client stack. Requests were sampled at the same
rate in all regions. TAO’s overall hit rate for reads was
96.4%. Figure 8 shows the client-observed latencies for
reads. obj get has higher miss latencies than the other
reads because objects typically have more data (see Fig-
ure 6). assoc count requests to the persistent store have a
larger id1 working set than other association queries, and
hence make poorer use of the database’s buffer cache.

TAO’s writes are performed synchronously to the mas-
ter database, so writes from other regions include an
inter-region round trip. Figure 9 compares the latency
in two data centers that are 58.1 milliseconds away from
each other (average round trip). Average write latency
in the same region as the master was 12.1 msec; in the
remote region it was 74.4 = 58.1 + 16.3 msec.

Replication lag: TAO’s asynchronous replication of
writes between regions is a design trade-off that favors

read performance and throughput over consistency. We
observed that TAO’s slave storage servers lag their mas-
ter by less than 1 second during 85% of the tracing win-
dow, by less than 3 seconds 99% of the time, and by less
than 10 seconds 99.8% of the time.

Failover: Follower caches directly contact the
database when a leader is unavailable; this failover path
was used on 0.15% of follower cache misses over our
sample. Failover for write requests involves delegating
those requests to a random leader, which occurred for
0.045% of association and object writes. Slave databases
were promoted to be the master 0.25% of the time due to
planned maintenance or unplanned downtime.

9 Related Work

TAO is a geographically distributed eventually consis-
tent graph store optimized for reads. Previous distributed
systems works have explored relaxed consistency, graph
databases, and read-optimized storage. To our knowl-
edge, TAO is the first to combine all of these techniques
in a single system at large scale.

Eventual consistency: Terry et al. [33] describe
eventual consistency, the relaxed consistency model
which is used by TAO. Werner describes read-after-write
consistency as a property of some variants of eventual
consistency [35].

Geographically distributed data stores: The Coda
file system uses data replication to improve performance
and availability in the face of slow or unreliable net-
works [29]. Unlike Coda, TAO does not allow writes
in portions of the system that are disconnected.

Megastore is a storage system that uses Paxos across
geographically distributed data centers to provide strong
consistency guarantees and high availability [5]. Span-
ner, the next generation globally distributed database de-
veloped at Google after Megastore, introduces the con-
cept of a time API that exposes time uncertainty and
leverages that to improve commit throughput and provide
snapshot isolation for reads [8]. TAO addresses a very
different use case, providing no consistency guarantees
but handling many orders of magnitude more requests.

Distributed hash tables and key-value systems: Un-
structured key-value systems are an attractive approach
to scaling distributed storage because data can be easily
partitioned and little communication is needed between
partitions. Amazon’s Dynamo [10] demonstrates how
they can be used in building flexible and robust com-
mercial systems. Drawing inspiration from Dynamo,
LinkedIn’s Voldemort [4] also implements a distributed
key-value store but for a social network. TAO accepts
lower write availability than Dynamo in exchange for
avoiding the programming complexities that arise from
multi-master conflict resolution. The simplicity of key-

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 59

value stores also allows for aggressive performance opti-
mizations, as seen in Facebook’s use of memcache [21].

Many contributions in distributed hash tables have fo-
cused on routing [28, 32, 25, 24]. Li et al. [16] character-
ize the performance of DHTs under churn while Dabek et
al. [9] focus on designing DHTs in a wide-area network.
TAO exploits the hierarchy of inter-cluster latencies af-
forded by our data center placement and assumes a con-
trolled environment that has few membership or cluster
topology changes.

Many other works have focused on the consistency se-
mantics provided by key-value stores. Gribble et al. [13]
provide a coherent view of cached data by leverag-
ing two-phase commit. Glendenning et al. [12] built a
linearizable key-value store tolerant of churn. Sovran
et al. [31] implement geo-replicated transactions.

The COPS system [17] provides causal consistency
in a highly available key-value store by tracking all de-
pendencies for all keys accessed by a client context.
Eiger [18] improves on COPS by tracking conflicts be-
tween pending operations in a column-family database.
The techniques used in Eiger may be applicable TAO if
the per-machine efficiency can be improved.

Hierarchical connectivity: Nygren et al. [22] de-
scribe how the Akamai content cache optimizes latency
by grouping edge clusters into regional groups that share
a more powerful ‘parent’ cluster, which are similar to
TAO’s follower and leader tiers.

Structured storage: TAO follows the recent trend of
shifting away from relational databases towards struc-
tured storage approaches. While loosely defined, these
systems typically provide weaker guarantees than the
traditional ACID properties. Google’s BigTable [6],
Yahoo!’s PNUTS [7], Amazon’s SimpleDB [1], and
Apache’s HBase [34] are examples of this more scal-
able approach. These systems all provide consistency
and transactions at the per-record or row level similar to
TAO’s semantics for objects and associations, but do not
provide TAO’s read efficiency or graph semantics. Es-
criva et al. [27] describe a searchable key-value store.
Redis [26] is an in-memory storage system providing a
range of data types and an expressive API for data sets
that fit entirely in memory.

Graph serving: Since TAO was designed specifically
to serve the social graph, it is unsurprising that it shares
features with existing works on graph databases. Shao
and Wang’s Trinity effort [30] stores its graph structures
in-memory. Neo4j [20] is a popular open-source graph
database that provides ACID semantics and the ability
to shard data across several machines. Twitter uses its
FlockDB [11] to store parts of its social graph, as well.
To the best our knowledge, none of these systems scale
to support Facebook’s workload.

Redis [26] is a key-value store with a rich selection of

value types sufficient to efficiently implement the objects
and associations API. Unlike TAO, however, it requires
that the data set fit entirely in memory. Redis replicas are
read-only, so they don’t provide read-after-write consis-
tency without a higher-level system like Nishtala et al.’s
remote markers [21].

Graph processing: TAO does not currently support
an advanced graph processing API. There are several
systems that try to support such operations but they are
not designed to receive workloads directly from client
applications. PEGASUS [14] and Yahoo’s Pig Latin [23]
are systems to do data mining and analysis of graphs on
top of Hadoop, with PEGASUS being focused on peta-
scale graphs and Pig Latin focusing on a more-expressive
query language. Similarly, Google’s Pregel [19] tackles
a lot of the same graph analysis issues but uses its own
more-expressive job distribution model. These systems
focus on throughput for large tasks, rather than a high
volume of updates and simple queries. Facebook has
similar large-scale offline graph-processing systems that
operate on data copied from TAO’s databases, but these
analysis jobs do not execute within TAO itself.

10 Conclusion

Overall, this paper makes three contributions. First, we
characterize a challenging Facebook workload: queries
that require high throughput, low latency read access to
the large, changing social graph. Second, we describe
the objects and associations data model for Facebook’s
social graph, and the API that serves it. Lastly, we detail
TAO, our geographically distributed system that imple-
ments this API.

TAO is deployed at scale inside Facebook. Its separa-
tion of cache and persistent store has allowed those layers
to be independently designed, scaled, and operated, and
maximizes the reuse of components across our organiza-
tion. This separation also allows us to choose different
tradeoffs for efficiency and consistency at the two lay-
ers, and to use an idempotent cache invalidation strategy.
TAO’s restricted data and consistency model has proven
to be usable for our application developers while allow-
ing an efficient and highly available implementation.

Acknowledgements

We would like to thank Rajesh Nishtala, Tony Savor, and
Barnaby Thieme for reading earlier versions of this pa-
per and contributing many improvements. We thank the
many Facebook engineers who built, used, and scaled the
original implementation of the objects and associations
API for providing us with the design insights and work-
load that led to TAO. Thanks also to our reviewers and
our shepherd Phillipa Gill for their detailed comments.

60 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

References
[1] Amazon SimpleDB. http://aws.amazon.com/simpledb/.

[2] Facebook – Company Info. http://newsroom.fb.com.

[3] LevelDB. https://code.google.com/p/leveldb.

[4] Project Voldemort. http://project-voldemort.com/.

[5] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services.
In Proceedings of the Conference on Innovative Data system Re-
search, CIDR, 2011.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating System Design and
Implementation, OSDI. USENIX Assoc., 2006.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. PNUTS: Yahoo!’s hosted data serving platform. PVLDB,
1(2), 2008.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI, Berkeley, CA, USA, 2012.

[9] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Mor-
ris. Designing a DHT for low latency and high throughput. In
Proceedings of the 1st Symposium on Networked Systems Design
and Implementation, NSDI, Berkeley, CA, USA, 2004.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
Proceedings of 21st ACM Symposium on Operating Systems Prin-
ciples, SOSP, New York, NY, USA, 2007.

[11] FlockDB. http://engineering.twitter.com/2010/05/introducing-
flockdb.html.

[12] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. An-
derson. Scalable consistency in scatter. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles, SOSP,
New York, NY, USA, 2011.

[13] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service construc-
tion. In Proceedings of the 4th Symposium on Operating System
Design and Implementation, OSDI, Berkeley, CA, USA, 2000.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: min-
ing peta-scale graphs. Knowledge Information Systems, 27(2),
2011.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent Hashing and Random trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the 29th annual ACM Symposium on
Theory of Computing, STOC, 1997.

[16] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek. Com-
paring the performance of distributed hash tables under churn. In
Proceedings of the Third International Conference on Peer-to-
Peer Systems, IPTPS, Berlin, Heidelberg, 2004.

[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In T. Wobber and P. Druschel, editors,
Proceedings of the 23rd ACM Symposium on Operating System
Design and Implementation, SOSP. ACM, 2011.

[18] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In
Proceedings of the 10th USENIX conference on Networked Sys-
tems Design and Implementation, NSDI, 2013.

[19] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In A. K. Elmagarmid and D. Agrawal, editors,
Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2010.

[20] Neo4j. http://neo4j.org/.

[21] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, NSDI, 2013.

[22] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network:
a platform for high-performance internet applications. SIGOPS
Operating Systems Review, 44(3), Aug. 2010.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In J. T.-
L. Wang, editor, Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, 2008.

[24] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)lookup per-
formance for power-law query distributions in peer-to-peer over-
lays. In Proceedings of the 1st Symposium on Networked Systems
Design and Implementation, NSDI, Berkeley, CA, USA, 2004.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of the 2001
conference on Applications, technologies, architectures, and pro-
tocols for computer communications, SIGCOMM, New York,
NY, USA, 2001.

[26] Redis. http://redis.io/.

[27] E. G. S. Robert Escriva, Bernard Wong. Hyperdex: A dis-
tributed, searchable key-value store for cloud computing. Techni-
cal report, Department of Computer Science, Cornell University,
Ithaca, New York, December 2011.

[28] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg, Middleware, Lon-
don, UK, UK, 2001.

[29] M. Satyanarayanan. The evolution of coda. ACM Transactions
on Computer Systems, 20(2), May 2002.

[30] B. Shao and H. Wang. Trinity. http://research.microsoft.com/en-
us/projects/trinity/.

[31] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP, New
York, NY, USA, 2011.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer
communications, SIGCOMM, New York, NY, USA, 2001.

[33] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles,
SOSP, New York, NY, USA, 1995.

[34] The Apache Software Foundation. http://hbase.apache.org, 2010.

[35] W. Vogels. Eventually consistent. Queue, 6(6), Oct. 2008.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 61

PIKACHU: How to Rebalance Load in Optimizing MapReduce On

Heterogeneous Clusters

Rohan Gandhi, Di Xie, Y. Charlie Hu

Purdue University

Abstract

For power, cost, and pricing reasons, datacenters are

evolving towards heterogeneous hardware. However,

MapReduce implementations, which power a representa-

tive class of datacenter applications, were originally de-

signed for homogeneous clusters and performed poorly

on heterogeneous clusters. The natural solution, rebal-

ancing load among the reducers running on heteroge-

neous nodes has been explored in Tarazu, but shown to

be only mildly effective.

In this paper, we revisit the key design challenge in

this important optimization for MapReduce on hetero-

geneous clusters and make three contributions. (1) We

show that Tarazu estimates the target load distribution

too early into MapReduce job execution, which results in

the rebalanced load far from the optimal. (2) We articu-

late the delicate tradeoff between the estimation accuracy

versus wasted work from delayed load adjustment, and

propose a load rebalancing scheme that strikes a balance

between the tradeoff. (3) We implement our design in the

PIKACHU task scheduler, which outperforms Hadoop by

up to 42% and Tarazu by up to 23%.

1 Introduction

For power, cost, and pricing reasons, datacenters have

evolved towards heterogeneous hardware. For example,

different hardware generations exist in Amazon EC2 [1]

due to phased hardware upgrades over the years. Hetero-

geneity also arises due to other factors including special

hardware such as GPUs, unequal creation of instances,

and background load variation [18, 11, 15].

MapReduce, a high-level programming model for

data-intensive applications [10], has been widely adopted

in cloud datacenters such as Google, Yahoo, Microsoft,

and Facebook [7, 8, 17, 9], to power a significant portion

of applications. However, the numerous MapReduce im-

plementations have been designed and optimized for ho-

mogeneous clusters. A recent study [6] has shown that

contemporary MapReduce implementations can perform

extremely poorly on heterogeneous clusters.

The same study characterized how heterogeneous

hardware, i.e., mix of fast and slow nodes, adversely af-

fects the performance of MapReduce frameworks into

two primary effects. (1) Map-side effect: The built-in

load balance of map tasks leads to faster nodes stealing

tasks from slow nodes, which can greatly increase the

network load which in turn can coincide with and slow

down the subsequent network-intensive shuffle phase.

(2) Reduce-side effect: MapReduce implementations as-

sume homogeneous nodes and distribute the keys equally

among reduce tasks. Such distribution leads to disparate

progress on fast and slow nodes in heterogeneous clus-

ters, and contributes to prolonged job completion time.

In [6], the authors proposed Tarazu, a suite of opti-

mizations for heterogeneous clusters. For map-side ef-

fect, it adaptively allows task stealing from slow nodes

and interleaving map tasks with shuffling on fast nodes.

For reduce-side effect, it explores the natural solution,

i.e., rebalancing load between reducers running on fast

and slow nodes. In particular, it estimates the target load

split between fast and slow nodes, i.e., key range parti-

tions, right before the start of the reduce tasks, based on

the relative progress rates of map tasks running on the

fast and slow nodes so far. Evaluation results in [6] how-

ever show the simple load rebalancing scheme is only

mildly effective, and can even degrade job performance

from inaccurate key distribution estimation.

In this paper, we revisit the key design challenge in

this important optimization for MapReduce on heteroge-

neous clusters: load rebalancing among reduce tasks to

even out their completion time. We make three concrete

contributions. First, we show that the relative progress

rates of map tasks on fast and slow nodes often do not

give a good indication of the relative progress rates of

reduce tasks on heterogeneous nodes due to different re-

source requirement, and hence estimating the target re-

ducer load distribution before reduce tasks start can re-

sult in the adjusted load being far from well-balanced.

Second, we explore the design space and articulate the

tradeoff between the estimation accuracy versus wasted

work from delayed load adjustment, and propose a load

rebalancing scheme that strikes a balance between the

two factors. We show an estimator that simply peeks into

the initial relative progress rates of reduce tasks can still

incur estimator error, because reducers on fast and slow

nodes can have different room for increased resource uti-

lization. Our final design captures this additional intri-

cacy using observed reducer CPU utilization on fast and

slow nodes to accurately estimate the target load split.

1

62 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 1: Four stages and their concurrency in MapRe-

duce job execution.

Finally, we implement our new load rebalancing

scheme in the PIKACHU task scheduler, and experi-

mentally show it substantially outperforms Tarazu and

Hadoop, reducing the job completion time by up to 23%

and 42%, respectively, for a diverse set of benchmarks

and cluster configurations.

2 Background

The execution of a MapReduce job is broken down by the

runtime system into many Map tasks and Reduce tasks

(called reducers hereafter) running in parallel on differ-

ent nodes of the cluster. A reducer consists of three types

of subtasks: (1) shuffle, (2) sort, and (3) user-defined re-

duce function. Every node in the cluster has a fixed num-

ber of map and reduce slots, and the scheduler assigns a

task whenever a slot frees up.

Four stages of MapReduce execution in Hadoop. To

help illustrate of the impact of heterogeneous hardware

on MapReduce performance, we divide the execution of

a MapReduce job in Hadoop into four distinct stages in

the time dimension, as shown in Figure 1. (1) Map-

Only: In this stage, only map tasks are running across

the nodes in the cluster; the reducer is yet to begin. (2)

Map-Shuffle: This stage starts when the reduce tasks

start to run (T1 in Figure 1). The start time for reducers

is configurable, but is typically set to be when the first

wave of map tasks is finished, i.e., at least one map task

is finished on all nodes. In this stage, the reduce task

continuously performs staggered shuffle and sort 1 (or

simply shuffle-sort hereafter) to digest the output of each

wave of map tasks. Effective, map tasks and shuffle-sort

are running concurrently on all nodes. (3) Shuffle-Only:

This stage begins when all map tasks are finished (time

T2) but the shuffle-sort phases of the reducers are yet to

be finished. In this stage, only the shuffle and sort tasks

are running concurrently. (4) User-Reducer: This stage

begins when all the data have been shuffled and sorted,

and only the user-defined reducer function executes. Fi-

nally, the job is said to be finished when the user-defined

reducer function is finished on all the nodes.

3 Impact of Heterogeneity

The scheduler of MapReduce implementations, e.g.,

Hadoop, however, does not consider heterogeneity,

1They do not have to be strictly inter-leaved as each sort task can

begin before the corresponding shuffle task is over, when sufficient

amount of data has been shuffled.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Setup-1 Setup-2

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(a) Wordcount

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Setup-1 Setup-2

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(b) Sort

Figure 2: Job completion time breakdown (normalized

to total time) for Wordcount and Sort.

which results in poor application performance on hetero-

geneous clusters. Using testbed measurement, we dissect

the impact of hardware heterogeneity on the four stages

of MapReduce execution.

3.1 Setup
Our heterogeneous cluster consists of 5 Xeon (slow)

nodes and 2 Opteron (fast) nodes, all of which are con-

nected to a 1Gbps switch. Each Opteron node has 8 cores

and 16GB RAM, and each Xeon node has 2 cores and

2GB RAM. We run Hadoop Wordcount (CPU-intensive)

and Sort (IO-intensive) benchmarks and analyze their job

completion time. The total job size consists of 40GB in-

put data, i.e., 680 map tasks each with 64 MB data size.

We use two configurations in our experiments. Both

have 8 and 2 map slots each on fast and slow nodes,

proportional to their numbers of cores, as in Tarazu [6].

They differ in reduce slots per node. Config-1 uses 2

reduce slots on both fast and slow nodes, as in Tarazu,

while Config-2 uses 4 and 1 reduce slots on fast and slow

nodes, i.e., proportional to their numbers of cores.

3.2 Impact of Heterogeneous Nodes
Figure 2 shows the execution time and their breakdown

into the four stages discussed in §2, of the two bench-

marks on the fast and slow nodes, respectively, under the

two configurations. We make the following observations.

(1) Map-Only: We observe the duration of Map-Only

stage is short. For Wordcount, this stage ends when 1

wave of map tasks is over on the slow nodes, and 2 waves

of map tasks are completed on the fast nodes.

(2) Map-Shuffle: The Map-Shuffle stage always fin-

ishes at almost the same time on the fast and slow nodes.

This is due to the inherent load balancing feature of the

task scheduler: whenever a Map slot is freed on a node,

a new map task is scheduled. For example, in Config-1,

each fast node processes far more map tasks (41%) than

slow nodes (3.6%) for Wordcount. This imbalanced map

task processing has two consequences. First, after the

fast nodes finish map tasks on local data first (a locality

feature of the Hadoop scheduler), they will execute re-

mote map tasks (stealing data from the slow nodes). In

Config-1, about 9% of the total map tasks (of the whole

job) executed by a fast node in Wordcount are remote

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 63

map tasks. Such remote map tasks generate extra net-

work traffic from fetching data remotely. Second, since

a fast node performed more map tasks, it will shuffle

much more intermediate data out to other nodes than

slow nodes. In Figure 2(a) Config-1, each fast node in

total shuffles out 7 times more data than each slow node.

(3) Shuffle-Only: Figure 2 shows the duration of the

Shuffle-Only stage can vary significantly on fast and

slow nodes. The gap results from the difference between

shuffle-sort speeds on fast and slow nodes, which results

in different total shuffle-sort durations – the shuffle-only

stage is the leftover shuffle-sort beyond the time all map

tasks are finished. Figure 2(a) shows the stage is 7.4

times shorter on fast nodes than on slow nodes for Word-

count, but completes at about the same on fast and slows

for Sort, under Config-1.

(4) User-Reducer: Since the default scheduler

equally partitions the key range across reducers, each re-

ducer processes equal amount of data in the user-reducer

phase. The execution time, however, can differ among

different nodes due to the difference in their processing

speed. Figure 2(a) shows under Config-1, this stage is

3.51 times slower on slow nodes than on fast nodes for

Wordcount but finishes at about the same time for Sort,

whereas under under Config-2, it finishes at about the

same time for Wordcount, but is 1.26 times slower on

fast nodes than on slow nodes.

(5) Diversity of impact: Overall, Figure 2 shows the

impact of hardware heterogeneity on different stages dif-

fer for different applications under different configura-

tions, suggesting it cannot be easily solved by any static

map/reduce slot configuration.

4 Dynamic Load Rebalancing

We revisit the key design challenge in dynamic load re-

balancing, a potentially effective technique to optimize

MapReduce execution on heterogeneous clusters.

4.1 General Approach
The idea of load rebalancing is straight-forward: faster

reducer gets more data; the task scheduler calculates the

key range partition for fast and slow nodes that results in

the reducers on them finishing at about the same time.

One can potentially derive an analytic model to cap-

ture the effects of all contributing factors to the reducer

completion time on fast and slow nodes [6]. However,

the extensive information needed in such a model are ap-

plication and hardware specific, which requires extensive

profiling and makes it infeasible to use in practice [6].

This motivates the practical approach of dynamic load

rebalancing, i.e., the task scheduler starts with the de-

fault even split policy, estimates the key range partitions

for fast and slow nodes at runtime, and instructs the re-

duce tasks to carry their new workload accordingly.

Dynamic load rebalancing faces two conflicting chal-

lenges. (1) The new load split estimate needs to be accu-

rate, to maximally even out the reducer completion time

on fast and slow nodes. (2) The new load split estimate

needs to be calculated as early as possible, to minimize

the wasted (and hence extra) data movement and process-

ing. In particular, when the assignment of a bin changes

from one reduce task to another, the data associated with

the bin needs to be reshuffled to the newly assigned re-

duce task and re-processed thereafter. Conceptually, the

two challenges are at odds with each other: the longer

the task scheduler waits to estimate the new load split,

the more information it can collect and estimate the split

more accurately, but also the more wasted (and hence

extra) data movement and processing due to the default

even load split before rebalancing takes place.

4.2 Design Space
We define the target ratio of key partition sizes assigned

to each reducer on a fast node to each reducer on a slow

node as the partition ratio — P. The challenge is to cal-

culate P accurately to balance the completion time of the

reducers. We now explore the design space for when and

how the task scheduler should attempt to estimate P.

D1: At start of the Map-Only stage (T0)2. At the begin-

ning of job execution, since no information is available

about the progress rates of map and reduce tasks, P can

only be set to the default value 1. This is the default even-

split policy which is oblivious to cluster heterogeneity. 3

D2: At start of the Map-Shuffle stage (T1). At T1,

since the reduce tasks have not started, P can only be

estimated using the relative progress rates of map tasks

(so far) on fast and slow nodes, i.e., P =
S f a,m

Ssl,m
, where

S f a,m and Ssl,m are the progress rates for map tasks on

fast and slow nodes. This method is used in Tarazu [6].

The main advantage of this method is that, since

shuffle-sort has not started, there is no need to reshuf-

fle any data after the load rebalancing act. However, it

can give a poor estimate of P. Map and reduce tasks

are known to have very different resource requirements,

e.g., a map task is CPU-intensive in the first half and I/O-

intensive in the second half, whereas shuffle-sort has in-

terleaved network-intensive and CPU- and I/O-intensive

phases. As a result, the relative speed of map tasks can be

a poor approximation to the relative speed of shuffle-sort.

Figure 3(b) shows for Sort, the ratio of map task progress

rates at T1 is 1.25 , which would be a poor approximation

to the steady-state ratio of shuffle-sort progress rates 0.7.

D3: during the Map-shuffle stage (between T1 and

T2). Between T1 and T2, P can be estimated as
S f a

Ssl
where

S f a and Ssl denote the actual progress rates of Shuffle-

Sort so far. The ratio, however, may not be a good ap-

2T0 to T4 are marked in Figure 1.
3Although conceptually P can be set to a biased value based on the

prior knowledge about the node heterogeneity, picking a suitable value

is hard as the progress rate varies significantly for different phases and

jobs on the same node.

3

64 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 2

 4

 6

 8

 10

 0 250 500 750 1000 1250

P
ro

g
re

s
s
 r

a
ti
o
 (

p
e
r

s
lo

t)

Time (s)

D2 D4
Map

Reduce

(a) Wordcount.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

P
ro

g
re

s
s
 r

a
ti
o
 (

p
e
r

s
lo

t)

Time (s)

D2 D4

Map
Reduce

(b) Sort.

Figure 3: Ratio of progress rates of map and reduce tasks

on fast and slow nodes.

proximation to the ratio of progress rates of user-reducers

on fast and slow nodes, which perform different opera-

tions from shuffle-sort subtasks.

D3 achieves better estimate of P at the cost of the

penalty associated with adjusting load in the middle of

the Shuffle-Sort stage in two ways: (1) Re-Shuffling: the

reducer on a fast node needs to shuffle in some data al-

ready shuffled to slow nodes; (2) Dropping data: the re-

ducer on a slow node needs to drop some data shuffled in

and sorted under even split.

To strike a balance between accuracy and penalty, the

progress rates and their ratio of reducers on fast and slow

nodes can be measured once they are observed to stabi-

lize, typically after shuffling in one wave of map tasks.

D4: during the Shuffle-Only stage (after T2). Estima-

tion of P can be further delayed till the shuffle-only or

even user-reducer stage has started. At this point, the

relative progress rates of these stages on fast and slow

nodes can be measured accurately; but this design choice

suffers a major disadvantage in terms of reshuffling costs

as slow and fast nodes have fetched substantial amount

of data, ranging from 30-100%. Thus, rebalancing load

at this stage would result in too high data reshuffling

penalty which is likely to erase the gain from rebalancing

the data. We do not consider this option further.

4.3 Design Refinement

We implemented D3 (details in §5, the calculated P=2

from Figure 3(a)) and reran Wordcount. The new execu-

tion time breakdowns, shown in Figure 4, show that the

Shuffle-Only stage still finishes at different time on fast

and slow nodes! To understand the reason, we plot the

(total) map task completion rate and the rate map tasks

are shuffled in by fast nodes and slow nodes for Word-

count in Figure 5. We make two observations. (1) The

fast node is able to match the rate at which map tasks

are completed, which shows that fast node is able to get

enough CPU and network resources to fetch the map out-

puts. (2) The shuffle on slow nodes never catches up with

the total number of map tasks completed, possibly due to

lack of resources, i.e., slow nodes are overloaded.

The CPU utilization shown in Figure 5 further con-

firms this explanation. We see the CPU utilization of the

reducer on slow nodes is stable between 59-66%. Since

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Fast Slow

B
re

a
k
d

o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o

n
ti
m

e
 (

N
o

rm
a

liz
e

d
)

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

Figure 4: Job execution time and breakdown of Word-

count under D3 (P=2).

 0

 40

 80

 120

 160

 0 100 200 300 400 500 600

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Time (Sec)

CPU-Fast CPU-Slow

 0

 60

 120

 180

 0 100 200 300 400 500 600

T
a
s
k
s
 C

o
m

p
le

te
d

Time (Sec)

Map Tasks Shuffle-Fast Shuffle-Slow

Figure 5: Shuffling progress and CPU utilization by each

reducer on fast and slow nodes in D3 (calculated P=2).

the reducer on slow nodes always lags behind the map

tasks completed, we can conclude that 66% is the maxi-

mum CPU a reducer can get on slow nodes. In contrast,

the reducer CPU utilization on fast nodes reaches 120%

(the multi-threaded process uses multiple cores) at the

start of reducers, then gradually decreases and stabilizes

at 55%, at which moment it has caught up with map task

completion. This suggests at the steady state, the reducer

on fast nodes just needs 55% of CPU, but it can get as

much as 120% of CPU if needed.
The above finding suggests D3 needs to be adjusted

to use the potential progress rate of the reducer on fast
nodes, as opposed to the progress rate observed (so far).
The partition ratio P is now calculated as

P =
S f a

Ssl

∗
1

E f a

(1)

where E f a denotes the CPU efficiency (<1) of the re-

ducer on fast nodes, defined as the ratio of the CPU uti-

lization in the steady state (Tw in Figure 6 bottom) to the

CPU utilization when shuffle (on fast nodes) has caught

up with map tasks completed (Ts in Figure 6 top). In

practice, we observe the steady state Tw on fast nodes is

typically reached when 1 wave of map-tasks are com-

pleted after Ts. Note the CPU utilization on slow nodes

is fairly stable. Figure 6 shows the CPU utilization and

shuffle when the partition ratio is adjusted at time Tw us-

ing the refined scheme, denoted by D3’. The calculated

partition ratio was 4.34. It can be seen that the fast node

regains CPU utilization and both slow and fast nodes

shuffle data at the same rate.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 65

 0

 40

 80

 120

 160

 0 100 200 300 400 500 600 700 800

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Time (Sec)

Ts Tw
CPU-Fast CPU-Slow

 0

 60

 120

 180

 240

 300

 0 100 200 300 400 500 600 700 800

T
a
s
k
s
 C

o
m

p
le

te
d

Time (Sec)

Ts Tw
Map Tasks Shuffle-Fast Shuffle-Slow

Figure 6: Shuffling progress and CPU utilization by each

reducer on fast and slow nodes under D3’.

Lastly, D3’ can be easily extended to more than two

types of nodes. We skip the details due to page limit.

5 Implementation

We implemented our new load rebalancing scheme D3’

in Hadoop v0.20.203.0 [4] by adding ≈2KLOC. We

name the new system PIKACHU. Partition ratio P is cal-

culated at JobTracker based on Hadoop progress rates

and CPU efficiency of the reducer processes, which are

reported by TaskTracker on each node every 3 seconds.

We use virtual bins to dynamically change the load be-

tween fast nodes and slow nodes based on partition ratio

P. Each map task output is partitioned into 10 ·N splits,

where N is the total number of reducers. Initially each

reducer is mapped with 10 virtual bins. Once the Job-

Tracker determines the ratio P, it translates the ratio to

the target number of virtual bins for reducers on fast and

slow nodes. Let Ns and Nf be the total number of reducer

slots on all slow nodes and all fast nodes, respectively.

The numbers of virtual bins for a reducer on a slow node

Vs and on a fast node Vf are calculated as

Vs =
10 · (Ns +Nf)

Ns +P ·Nf

,Vf =
10 · (Ns +Nf) ·P

Ns +P ·Nf

(2)

Following this, the JobTracker assigns a new virtual bin

mapping to each reducer. Upon receiving the new map-

ping, the reducers on fast nodes need to fetch the newly

added virtual bins, while the reducers on slow nodes

will drop the existing sorted data corresponding to the

dropped virtual bins.

6 Evaluation

We also implemented Tarazu [6] in Hadoop (version

0.2.203.0). We compare job completion time under

PIKACHU, Tarazu, and Hadoop. We also measure the

overhead incurred in PIKACHU due to re-shuffling and

re-sorting. We use five benchmark applications: Word-

count, Sort, Multi-Wordcount, Inverted-index and Self-

join [6]. Wordcount counts the occurrences of every

word. Sort sorts the given dataset. Multi-Wordcount

 0

 0.5

 1

 1.5

 2

Wordcount Sort Multi-WC Inv-Index SelfJoin

S
p
e
e
d
u
p
 O

v
e
r

H
a
d
o
o
p

0.98

0.95

0.92 0.97

0.98

Hadoop
Tarazu

Pikachu
Optimal

Figure 7: Speedup of of Tarazu and PIKACHU over

Hadoop, under Config-1.

counts all unique sets of 3 consecutive words. Inverted-

index generates words-to-file indexing. Self-join gen-

erates association among k+1 fields given the set of k-

field association. Sort and Selfjoin are shuffle-intensive,

whereas the other 3 applications are compute-intensive.

Performance on Local Cluster. Figure 7 shows the

speedup (in terms of job completion time) achieved by

PIKACHU and Tarazu against Hadoop for 5 different ap-

plications using Config-1. In addition to Hadoop, Tarazu

and PIKACHU, we also measure the job completion time

at the optimal partition ratio found using trial-and-error

method. The numbers above the bars denote the per-

centage of the optimal performance PIKACHU achieves.

For Sort and Selfjoin applications, the initial configura-

tion was close to optimal (the difference between the job

completion time of Hadoop and Optimal was <4%) and

there was little room for improvement. For the remaining

applications, PIKACHU outperforms Hadoop by 33-42%

and Tarazu by 14-22% because of better accuracy in cal-

culating P. Furthermore, PIKACHU achieves 92-98% of

the optimal job completion time, showing there is not

much room to improve over PIKACHU.

Table 1 summarizes the partition ratios calculated by

Tarazu (T), PIKACHU (P) and Optimal (O). The parti-

tion ratio calculated using PIKACHU is closer to Optimal

compared to Tarazu. Table 1 also shows the overhead

incurred by PIKACHU, measured as the extra data shuf-

fled by all the nodes in PIKACHU compared to Hadoop.

We see PIKACHU incurs a low overhead 0.96-4.75% in

re-shuffling and re-sorting.

Figure 8 shows the breakdown of the job completion

time under PIKACHU normalized to the job completion

time under Tarazu for all 5 applications on slow and fast

nodes. It can be seen that in all 5 cases, the difference

between the shuffle-only execution time, and more im-

portantly the difference between the reducer task com-

pletion time, on the nodes are within 10% on PIKACHU

and 31% on Tarazu.

Performance on EC2 Cluster. Finally, we compared

PIKACHU with Tarazu and Hadoop on a 60-node het-

erogeneous cluster in EC2, consisting of 40 m1.small

(slow) and 20 m1.xlarge (fast) nodes. We evaluated

the performance using 3 applications, Wordcount, Sort

and Multi-Wordcount under Config-1 and Config-2 for

5

66 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Table 1: Partitioning ratio P and overhead under Tarazu, PIKACHU, and optimal partition for the five applications.

Observation
Wordcount Sort Multi-Wordcount Inverted-Index Self-join

T P O T P O T P O T P O T P O

Calculated P 2 4.5 4 1.1 0.67 0.9 2.37 3.7 3.5 2.44 3.4 3.3 1 1.1 1.2

Shuffle-Overhead 3.86% 4.13% 4.58% 4.75% 0.96%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(a) Wordcount

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(b) Sort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(c) Multi-Wordcount

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(d) Inverted Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(e) Selfjoin

Figure 8: Job completion time breakdown on fast and slow nodes (Normalized to Tarazu).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Wordcount Sort Multi-WC

S
p
e
e
d
u
p
 O

v
e
r

H
a
d
o
o
p Tarazu-C1

Pikachu-C1
Tarazu-C2

Pikachu-C2

Figure 9: Speedup of Tarazu and PIKACHU over Hadoop

on the 60-node EC2 cluster on 2 configurations.

180 GB data (2880 map tasks). Figure 9 shows the

speedup achieved by Tarazu and PIKACHU over Hadoop

for the 2 configurations.

In Config-1, Tarazu and PIKACHU outperform Hadoop

by 0-18% and 25-42%, respectively. Config-2 was op-

timal configuration for Hadoop for Wordcount without

much scope for improvement. Tarazu and PIKACHU per-

formance was lower than Hadoop by 6% and 2%. For the

other 2 applications, Tarazu and PIKACHU outperformed

Hadoop by up to 10% and 18%, respectively.

7 Related Work

Many implementations, extensions, and domain specific

libraries of MapReduce have been developed to support

large-scale data processing [3, 4, 14, 2, 16, 5]. None of

them explicitly study optimizing MapReduce execution

on heterogeneous hardware. LATE [18] was one of the

first work to show the shortcomings of MapReduce on

heterogeneous clusters. However, it focused on strag-

gler detection and mitigation. Mantri [8] further explores

the causes of stragglers/outliers. Such designs treat the

symptoms of heterogeneity, i.e., stragglers, as opposed

to the root cause, and speculatively re-execute tasks on

fast nodes, wasting utilization of slow nodes.

Lee et al. also considered heterogeneity in the MapRe-

duce scheduler [13, 12] and proposed a fair sched-

uler [12] for a multi-tenant heterogeneous cluster. This

work is orthogonal to ours as it improves the perfor-

mance of multiple jobs rather than a single job. Finally,

Tarazu [6] has already been discussed previously.

8 Conclusion

We showed that the prior-art MapReduce scheduler for

heterogeneous clusters, Tarazu, poorly balances the load

among reducers on fast and slow nodes. We pro-

posed PIKACHU, which strikes a balance between ac-

curacy and overhead in estimating the load adjustment

and doubles Tarazu’s improvement over Hadoop. We

have released PIKACHU at http://github.com/

mapreduce-pikachu.

Acknowledgment. This work was supported in part by

NSF grant CNS-1065456.

References

[1] Amazon ec2. aws.amazon.com/ec2/.
[2] Apache mahout: Scalable machine learning and data min-

ing. http://mahout.apache.org.
[3] Facebook hive. hadoop.apache.org/hive.
[4] Hadoop. http://lucene.apache.org/hadoop.
[5] X-rime: Hadoop based large scale social network analy-

sis. http://xrime.sourceforge.net/.
[6] F. Ahmad, et al. Tarazu: optimizing mapreduce on het-

erogeneous clusters. In ASPLOS ’12.
[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-

ica. Why let resources idle? aggressive cloning of jobs
with dolly. In HotCloud’12.

[8] G. Ananthanarayanan, et al. Reining in the outliers in
map-reduce clusters using mantri. In OSDI’10.

[9] E. Bortnikov, et al. Predicting execution bottlenecks in
map-reduce clusters. In HotCloud’12.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI’04.

[11] B. Farley, et al. More for your money: exploiting perfor-
mance heterogeneity in public clouds. In SoCC ’12.

[12] G. Lee, et al. Heterogeneity-aware resource allocation
and scheduling in the cloud. In HotCloud’11.

[13] G. Lee, et al. Topology-aware resource allocation for
data-intensive workloads. In APSys ’10.

[14] C. Olston, et al. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08.

[15] C. Reiss, et al. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC ’12.

[16] Y. Yu, et al. Dryadlinq: a system for general-purpose dis-
tributed data-parallel computing using a high-level lan-
guage. In OSDI’08.

[17] M. Zaharia, et al. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling.
In EuroSys ’10.

[18] M. Zaharia, et al. Improving mapreduce performance in
heterogeneous environments. In OSDI’08.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 67

FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based SSDs

Kai Shen Stan Park

Department of Computer Science, University of Rochester

Abstract

On Flash-based solid-state disks (SSDs), different

I/O operations (reads vs. writes, operations of differ-

ent sizes) incur substantially different resource usage.

This presents challenges for fair resource management

in multi-programmed computer systems and multi-tenant

cloud systems. Existing timeslice-based I/O schedulers

achieve fairness at the cost of poor responsiveness, par-

ticularly when a large number of tasks compete for I/O

simultaneously. At the same time, the diminished ben-

efits of I/O spatial proximity on SSDs motivate fine-

grained fair queueing approaches that do not enforce

task-specific timeslices. This paper develops a new Flash

I/O scheduler called FlashFQ. It enhances the start-time

fair queueing schedulers with throttled dispatch to ex-

ploit restricted Flash I/O parallelism without losing fair-

ness. It also employs I/O anticipation to minimize fair-

ness violation due to deceptive idleness. We implemented

FlashFQ in Linux and compared it with several existing

I/O schedulers—Linux CFQ [2], an Argon [19]-inspired

quanta scheduler, FIOS timeslice scheduler [17], FIOS

with short timeslices, and 4-Tag SFQ(D) [11]. Results

on synthetic I/O benchmarks, the Apache web server,

and Kyoto Cabinet key-value store demonstrate that only

FlashFQ can achieve both fairness and high responsive-

ness on Flash-based SSDs.

1 Introduction

NAND Flash devices are increasingly used as solid-

state disks (SSDs) in computer systems. Compared to

traditional secondary storage, Flash-based SSDs deliver

much higher I/O performance which can alleviate the

I/O bottlenecks in critical data-intensive applications. At

the same time, the SSD resource management must rec-

ognize unique Flash characteristics and work with in-

creasingly sophisticated firmware management. For in-

stance, while the raw Flash device desires sequential

writes, the write-order-based block mapping on modern

SSD firmware can translate random write patterns into

sequential writes on Flash and thereby relieve this burden

for the software I/O scheduler. On the other hand, dif-

ferent I/O operations on Flash-based SSDs may exhibit

large resource usage discrepancy. For instance, a write

can consume much longer device time than a read due to

the erase-before-write limitation on Flash. In addition, a

larger I/O operation can take much longer than a small

request does (unlike on a mechanical disk when both are

dominated by mechanical seek/rotation delays). Without

careful regulation, heavy resource-consuming I/O opera-

tions can unfairly block light operations.

Fair I/O resource management is desirable in a

multi-programmed computer system or a multi-tenant

cloud platform. Existing I/O schedulers including

Linux CFQ [2], Argon [19], and our own FIOS [17]

achieve fairness by assigning timeslices to tasks that si-

multaneously compete for the I/O resource. One critical

drawback for this approach is that the tasks that com-

plete their timeslices early may experience long periods

of unresponsiveness before their timeslices are replen-

ished in the next epoch. Such unresponsiveness is partic-

ularly severe when one must wait for a large number of

co-running tasks in the system to complete their times-

lices. Poor responsiveness is harmful but unnecessary on

Flash-based SSDs that often complete an I/O operation

in a fraction of a millisecond.

High responsiveness is supported by classic fair

queueing approaches that originated from network

packet switching [6, 8, 9, 16] but were also used in stor-

age systems [3, 11, 18]. They allow fine-grained inter-

leaving of requests from multiple tasks / flows as long as

fair resource utilization is maintained through balanced

virtual time progression. The lagging virtual time for an

inactive task / flow is brought forward to avoid a large

burst of requests from one task / flow and prolonged unre-

sponsiveness for others. One drawback for fine-grained

fair queueing on mechanical disks is that frequent task

switches induce high seek and rotation costs. Fortu-

nately, this is only a minor concern for Flash-based SSDs

due to diminished benefits of I/O spatial proximity on

modern SSD firmware.

This paper presents a new operating system I/O sched-

uler (called FlashFQ) that achieves fairness and high re-

sponsiveness at the same time. FlashFQ enhances the

start-time fair queueing scheduler SFQ(D) [11] with two

new mechanisms to support I/O on Flash-based SSDs.

First, while SFQ(D) allows concurrent dispatch of re-

quests (called depth) to exploit I/O parallelism, it vio-

lates fairness when parallel I/O operations on a Flash de-

vice interfere with each other. We introduce a throttled

dispatch technique to exploit restricted Flash I/O par-

68 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

allelism without losing fairness. Second, existing fair

queueing schedulers are work-conserving—they never

idle the device when there is pending work to do. How-

ever, work-conserving I/O schedulers are susceptible to

deceptive idleness [10] that causes fairness violation. We

propose anticipatory fair queueing to mitigate the effects

of deceptive idleness. We have implemented FlashFQ

with the throttled dispatch and anticipatory fair queueing

mechanisms in Linux.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 characterizes key

motivations and challenges for our fair queueing sched-

uler on Flash-based SSDs. Sections 4 and 5 present

the design techniques and implementation issues in our

FlashFQ scheduler. Section 6 illustrates our experimen-

tal evaluation and comparison with several alternative

I/O schedulers. Section 7 concludes this paper with a

summary of our findings.

2 Related Work

Flash I/O characterization and operating system sup-

port have been recognized in research. Agrawal et al. [1]

discussed the impact of block erasure (before writes) and

parallelism on the performance of Flash-based SSDs.

Work by Chen et al. [4] further examined strided ac-

cess patterns and identified abnormal performance issues

like those caused by storage fragmentation. File system

work [5,14,15] attempted to improve the sequential write

patterns through the use of log-structured file systems.

These efforts are orthogonal to our research on Flash I/O

scheduling.

New I/O scheduling heuristics were proposed to im-

prove Flash I/O performance. In particular, write

bundling [12], write block preferential [7], and page-

aligned request merging/splitting [13] help match I/O re-

quests with the underlying Flash device data layout. The

effectiveness of these write alignment techniques, how-

ever, is limited on modern SSDs with write-order-based

block mapping. Further, these Flash I/O schedulers have

paid little attention to the issue of fairness.

Fairness-oriented resource scheduling has been ex-

tensively studied. Fairness can be realized through

per-task timeslices (as in Linux CFQ [2], Argon [19],

and FIOS [17]) and credits (as in the SARC rate con-

troller [20]). The original fair queueing approaches, in-

cluding Weighted Fair Queueing (WFQ) [6], Packet-by-

Packet Generalized Processor Sharing (PGPS) [16], and

Start-time Fair Queueing (SFQ) [8, 9], take virtual time-

controlled request ordering over several task queues to

maintain fairness. While they are designed for network

packet scheduling, later fair queueing approaches like

Cello’s proportionate class-independent scheduler [18],

YFQ [3] and SFQ(D) [11] are adapted to support I/O re-

sources. In particular, they allow the flexibility to re-

order and parallelize I/O requests for better efficiency.

Most of these fair-share schedulers (with the only ex-

ception of FIOS) do not address unique characteristics

on Flash-based SSDs and many (including FIOS) do not

support high responsiveness.

3 Motivations and Challenges

Timeslice Scheduling vs. Fair Queueing Timeslice-

based I/O schedulers such as Linux CFQ, Argon, and

FIOS achieve fairness by assigning timeslices to co-

running tasks. A task that completes its timeslice early

would have to wait for others to finish before its timeslice

is replenished in the next epoch, leading to a period of

unresponsiveness at the end of each epoch. Figure 1(A)

illustrates this effect in timeslice scheduling. While some

schedulers allow request interleaving (as shown in Fig-

ure 1(B)), the period of unresponsiveness still exists at

the end of an epoch. This unresponsiveness is particu-

larly severe in a highly loaded system where one must

wait for a large number of co-running tasks to complete

their timeslices. One may shorten the per-task timeslices

to improve responsiveness. However, outstanding re-

quests at the end of a timeslice may consume resources at

the next timeslice that belongs to some other task. Such

resource overuse leads to unfairness and this problem

is particularly pronounced when each timeslice is short

(Figure 1(C)).

In fine-grained fair queueing (as shown in Fig-

ure 1(D)), requests from multiple tasks are interleaved in

a fine-grained fashion to enable fair progress by all tasks.

It achieves fairness and high responsiveness at the same

time. Furthermore, since fine-grained fair queueing does

not restrict the request-issuing task in each timeslice, it

works well with I/O devices possessing internal paral-

lelism (Figure 1(E)).

Finally, due to substantial background maintenance

such as Flash garbage collection, Flash-based SSDs pro-

vide time-varying capacities (more I/O capacity at one

moment and less capacity at a later time). The timeslice

scheduling that focuses on the equal allocation of device

timemay not provide fair shares of time-varying resource

capacities to concurrent tasks. In contrast, the fair queue-

ing scheduling targets equal progress of completed work

and therefore it can achieve fairness even for resources

with time-varying capacities.

Restricted Parallelism Flash-based SSDs have some

built-in parallelism through the use of multiple channels.

Within each channel, the Flash package may have mul-

tiple planes which are also parallel. We run experiments

to understand such parallelism. We utilize the following

Flash-based storage devices—

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 69

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
I/

O
4KB reads

Intel 311 SSD

Intel X25−M SSD

OCZ Vertex 3 SSD

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
I/

O

4KB writes

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p

e
e

d
u

p
 o

v
e

r
s
e

ri
a

l
I/

O

128KB reads

Figure 2: Efficiency of I/O parallelism (throughput speedup over serial I/O) for 4KB reads, 4KB writes, and 128KB

reads on three Flash-based SSDs.

Task 1

Task 2

(B) Timeslice scheduling that allows request interleaving

An epoch

Task 1

Task 2

(A) Timeslice scheduling

Task 1

Task 2

(D) Fine-grained fair queueing

Unresponsiveness

Unresponsiveness

Task 1 timeslice Task 2 timeslice

An epoch

Task 1

Task 2

(C) Timeslice scheduling with short timeslices

T 2
slice

Task 1

Task 2

(E) Fine-grained fair queueing on parallel I/O device

T 1
slice

T 2
slice

T 1
slice

T 2
slice

T 1
slice

Figure 1: Fairness and responsiveness of timeslice

scheduling and fine-grained fair queueing.

• An Intel 311 Flash-based SSD, released in 2011, us-

ing single-level cells (SLC) in which a particular cell

stores a single bit of information.

• An Intel X25-M Flash-based SSD, released in 2009,

using multi-level cells (MLC).

• AnOCZVertex 3 Flash-based SSD, released in 2011,

using MLC.

To acquire the native device properties, we bypass the

memory buffer (through direct I/O) and operating sys-

tem I/O scheduler (configuring Linux noop scheduler)

in these measurements. We also disable the device

write cache so that all writes reach the durable storage

medium.

Figure 2 shows the efficiency of Flash I/O parallelism

for 4KB reads, 4KB writes, and 128KB reads on our

SSDs. We observe that the parallel dispatch of multiple

4KB reads to an SSD lead to substantial throughput en-

hancement (up to 4-fold, 6-fold, and 7-fold for the three

SSDs respectively). However, the parallelism-induced

speedup is diminished by writes and large reads. We ob-

serve significant write parallelism only on the Vertex 3

SSD. Large reads suppress the parallel efficiency be-

cause a large read already uses the multiple channels in

a Flash device.

Such restricted parallelism leads to new challenges for

a fair queueing I/O scheduler. On one hand, the sched-

uler should allow the simultaneous dispatch of multiple

I/O requests to exploit the Flash parallel efficiency when

available. On the other hand, it must recognize the un-

fairness resulting from the interference of concurrently

dispatched I/O requests and mitigate it when necessary.

Diminished Benefits of Spatial Proximity One draw-

back for fine-grained fair queueing on mechanical disks

is that frequent task switches lead to poor spatial proxim-

ity and consequently high seek and rotation costs. For-

tunately, at the absence of such mechanical overhead,

Flash I/O performance is not as dependent on the I/O

spatial proximity. This is particularly the case for mod-

ern SSDs with write-order-based block mapping where

randomwrites become spatially contiguous on Flash due

to block remapping.

We run experiments to demonstrate such diminished

benefits of spatial proximity. Besides the three Flash-

based SSDs, we also include a conventional mechanical

disk (a 10KRPM Fujitsu SCSI drive) for the purpose of

comparison. Figure 3 shows the performance discrepan-

cies between random and sequential I/O on the storage

devices. The random I/O performance is measured when

each I/O operation is applied to a randomized offset ad-

dress in a 256MB file.

We observe that the sequential I/O for small (4KB)

70 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0

1

2

4

6

8

10
R

a
n
d
o
m

/S
e
q
u
e
n
ti
a
l
I/
O

 l
a
te

n
c
y
 r

a
ti
o

39

Read 4KB

Write 4KB

Read 128KB

Write 128KB

Intel 311 SSD

Intel X−25M SSD

OCZ Vertex 3 SSD

Fujitsu mechanical disk

Figure 3: The ratios of random I/O latency over sequen-

tial I/O latency for reads / writes at two I/O request gran-

ularities (4KB and 128KB) on three Flash-based SSDs.

reads are still beneficial for some SSDs (3-fold speedup

for the two Intel SSDs). However, such benefits are

much diminished compared to the 39-fold sequential

read speedup on the mechanical disk. The performance

difference between random and sequential I/O is further

diminished for writes and large-grained (128KB) I/O re-

quests on SSDs. These results also match the findings

in Chen et al.’s 2009 paper [4] for mid- and high-end

SSDs at the time. The diminished benefits of I/O spa-

tial proximity mitigates a critical drawback for adopting

fine-grained fair queueing on Flash-based SSDs. Particu-

larly in the case of small reads, while the fine-grained fair

queueing loses some sequential I/O efficiency, it gains

the much larger benefit of I/O parallelism on small reads.

Note that the poor sequential write performance on the

rotating mechanical disk in our measurement results is

due to the disabling of its write cache, in which case all

writes must reach the durable disk. Therefore the disk

head has typically rotated beyond the desired location

when a newwrite request arrives after a small delay (soft-

ware system processing) from the completion of the pre-

vious operation. This effect is particularly pronounced

in our measurement setup where the disk rotation time

dominates the seek time since our random I/O addresses

are limited in a small disk area (a 256MB file).

Deceptive Idleness Fair queueing I/O schedulers like

SFQ(D) [11] are work-conserving—they never idle the

device when there is pending work to do. However,

work-conserving I/O schedulers are susceptible to de-

ceptive idleness [10]—an active task that issues the next

request a short time after receiving the result of the pre-

vious one may temporarily appear to be idle. For fair

queueing schedulers, the deceptive idleness may let an

active task to be mistakenly considered as being “inac-

tive”. This can result in the premature advance of virtual

time for such “inactive tasks” and therefore unfairness.

Consider the simple example of a concurrent run in-

volving two tasks—one continuously issues I/O requests

with heavy resource usage (heavy task) while the other

continuously issues light I/O requests (light task). We

further assume that the I/O scheduler issues one request

to the device at a time (no parallelism). At the moment

when a request from the light task completes, the only

queued request is from the heavy task and therefore a

work-conserving I/O scheduler will dispatch it to the de-

vice. This effectively results in one-request-at-a-time al-

ternation between the two tasks and therefore unfairness

favoring the heavy task.

4 FlashFQ Design

In a concurrent system, many resource principals si-

multaneously compete for a shared I/O resource. The

scheduler should regulate I/O in such a way that accesses

are fair. When the storage device time is the bottleneck

resource in the system, fairness is the case that each re-

source principal acquires an equal amount of device time.

At the same time, responsiveness requires that each user

does not experience prolonged periods with no response

to its I/O requests. We present the design of our FlashFQ

I/O scheduler that achieves fairness and high responsive-

ness for Flash-based SSDs. It enhances the classic fair

queueing approach with new techniques to address the

problems of restricted parallelism and deceptive idleness

described in the last section.

Practical systems may desire fairness and responsive-

ness for different kinds of resource principals. For exam-

ple, a general-purpose operating system desires the sup-

port of fairness and responsiveness for concurrent appli-

cations. A server system wants such support for simulta-

neously running requests from multiple user classes. A

shared hosting platform needs fairness and responsive-

ness for multiple active cloud services (possibly encap-

sulated in virtual machines). Our I/O scheduling design

and much of our implementation can be generally ap-

plied to supporting arbitrary resource principals. When

describing the FlashFQ design, we use the term task to

represent the resource principal that receives the fairness

and responsiveness support in a concurrent system.

4.1 Fair Queueing Preliminaries

As described in Section 2, a considerable number of

fair queueing schedulers have been proposed in the past.

Our FlashFQ design is specifically based on SFQ(D) [11]

for two reasons. First, it inherits the advantage of Start-

time Fair Queueing (SFQ) [8, 9] that the virtual time can

be computed efficiently. Second, it allows the simultane-

ous dispatch of multiple requests which is necessary for

exploiting the internal parallelism on Flash devices.

SFQ(D) maintains a system-wide virtual time v(t). It

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 71

uses the virtual time to assign a start and finish tag to each

arriving request. The start tag is the larger of the current

system virtual time (at the request arrival time) and the

finish tag of the last request by the same task. The finish

tag is the start tag plus the expected resource usage of

the request. Request dispatch is ordered by each pending

request’s start tag. Multiple requests (up to the depth D)

can be dispatched to the device at the same time.

A key issue with SFQ(D) is the way the virtual time

v(t) is advanced and the related treatment of lagging

tasks—those that are slower than others in utilizing al-

lotted resources. If v(t) advances too quickly, it could

artificially bring forward the request start tags of lag-

ging tasks such that their unused resources are forfeited

which leads to unfairness. On the other hand, if the vir-

tual time advances too slowly, it could allow a lagging

task to build up its unused resources and utilize them in a

sudden burst of request arrivals that cause prolonged un-

responsiveness to others. Three versions of the scheduler

were proposed [11], with different ways of maintaining

the system virtual time—

• Min-SFQ(D) assigns the virtual time v(t) to be the

minimum start tag of any outstanding request at

time t. A request is outstanding if it has arrived but

not yet completed. A key problem with Min-SFQ(D)

is that its virtual time advances too slowly which

makes it susceptible to unresponsiveness caused by

a sudden burst of requests from a lagging task de-

scribed above.

• Max-SFQ(D)1 assigns the virtual time v(t) to be the
maximum start tag of dispatched requests on or be-

fore time t. A drawback with this approach is that

its virtual time may advance too quickly and result in

unfairness as described above.

• 4-Tag SFQ(D) attempts to combine the above two

approaches to mitigate each’s problem. Specifically,

it maintains two pairs of start / finish tags for each

request according to Min-SFQ(D) and Max-SFQ(D)

respectively. The request dispatch ordering is primar-

ily based on the Max-SFQ(D) start tags while ties are

broken using Min-SFQ(D) start tags.

4.2 Min-SFQ(D) with Throttled Dispatch

The characterization in Section 3 shows that Flash-

based SSDs exhibit restricted parallelism—while paral-

lel executions can sometimes produce higher through-

put, simultaneously dispatched requests may also inter-

fere with each other on the Flash device. Utilizing such

restricted parallelism may lead to uncontrolled resource

usage under any version of the SFQ(D) schedulers de-

1This version is called SFQ(D) in the original paper [11]. We use a

different name to avoid the confusion with the general reference to all

three SFQ(D) versions.

scribed above. Consider two tasks running together in

the system and each task issues no more than one request

at a time. If the I/O scheduler depth D≥2, then requests

of both tasks will be dispatched to the device without

delay at the scheduler. Interference at the Flash device

often results in unbalanced resource utilization between

the two tasks.

While such unbalanced resource utilization affects all

three SFQ(D) versions, it is particularly problematic

for Max-SFQ(D) and 4-Tag SFQ(D) who advance the

system virtual time too quickly—any request dispatch

from an aggressive task leads to an advance of the sys-

tem virtual time, and consequently the forfeiture of un-

used resources by the lagging tasks. In comparison,

Min-SFQ(D) properly accounts for the unbalanced re-

source utilization for all active tasks. Therefore we em-

ploy Min-SFQ(D) as the foundation of our scheduler.

Proper resource accounting alone is insufficient for

fairness, we need an additional control to mitigate the im-

balance of resource utilization between concurrent tasks.

Our solution is a new throttled dispatch mechanism.

Specifically, we monitor the relative progresses of con-

currently active tasks and block a request dispatch if the

progress of its issuing task is excessively ahead of the

most lagging task in the system (i.e, the difference be-

tween those tasks’ progress exceeds a threshold). Under

SFQ(D) schedulers, the progress of a task is represented

by its last dispatched start tag—the start tag of its most

recently dispatched request. When requests from aggres-

sive tasks (using more resources relative to their shares)

are blocked, lagging tasks can catch up with less inter-

ference at the device. The blocking is relieved as soon

as the imbalance of resource utilization falls below the

triggering threshold.

4.3 Anticipation for Fairness

A basic principle of fair queueing scheduling is that

when a task becomes inactive (it has no I/O requests to is-

sue), its resource share is not allowed to accumulate. The

rationale is simple—one has no claim to resources when

it has no intention of using them. Even Min-SFQ(D)—

which, among the three SFQ(D) versions, advances the

system virtual time most conservatively—ignores tasks

that do not have any outstanding I/O requests. As ex-

plained in Section 3, this approach may mistakenly con-

sider an active task to be “inactive” due to deceptive idle-

ness in I/O—an active task that issues the next request a

short time after receiving the result of the previous one

may temporarily appear to be idle to the I/O scheduler.

Even during a very short period of deceptive idleness,

the system virtual time may advance with no regard to

the deceptively “inactive” task, leading to the forfeiture

of its unused resources.

72 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

The deceptive idleness was first recognized to cause

undesirable task switches on mechanical disks that re-

sult in high seek and rotation delays. It was addressed

by anticipatory I/O [10] which temporarily idles the disk

(despite the existence of pending requests) to hope for a

soon-arriving new request (typically issued by the pro-

cess that is receiving the result of the just completed re-

quest) with better locality. We adopt anticipatory I/O for

a different purpose—ensuring the continuity of a task’s

“active” status when deceptive idleness appears between

its two consecutive requests. Specifically, when a syn-

chronous I/O request completes, the task that will be

receiving the result of the just completed request is al-

lowed to stay “active” for a certain period of time. Dur-

ing this period, we adjust Min-SFQ(D) to consider the

anticipated next request from the task as a hypothetical

outstanding request in its virtual time maintenance. The

start tag for the anticipated request, if arriving before the

anticipation expires, should be the finish tag of the last

request by the task.

The “active” status anticipation ensures that an active

task’s unused resources are not forfeited during deceptive

idleness. It also enables the dispatch-blocking of exces-

sively aggressive tasks (described in Section 4.2) when

the lagging task is deceptively idle for a short amount

of time. While both goals are important, anticipation

for these two cases have different implications. Specif-

ically, the anticipation that blocks the request dispatch

from aggressive tasks is not work-conserving—it may

leave the device idle while there is pending work—and

therefore may waste resources. We distinguish these two

anticipation purposes and allow a shorter timeout for the

non-work-conserving anticipation that blocks aggressive

tasks.

4.4 Knowledge of Request Cost

Recall that the request finish tag assignment requires

knowledge of the resource usage of a request (or its cost).

The determination of a request’s cost is an important

problem for realizing our fair queueing scheduler in prac-

tice and it deserves a careful discussion.

A basic question on this problem is by what time a

request’s cost must be known. This question is relevant

because it may be easier to estimate a request’s cost after

its completion. According to our design, this is when the

request’s finish tag is assigned. In theory, for fair queue-

ing schedulers that schedule requests based on their start

tag ordering [8, 9, 11] (including ours), only the start tag

assignments are directly needed for scheduling. A re-

quest’s finish tag assignment can be delayed to when it

is needed to compute some other request’s start tag. In

particular, one request (r1)’s finish tag is needed to com-

pute the start tag of the next arriving request (r2) by the

same task. Since the two requests may be dispatched in

parallel, r2’s start tag (and consequently r1’s finish tag)

might be needed before r1’s completion.

Given the potential need of knowing request costs

early, our system estimates a request’s cost at the time

of its arrival. Specifically, we model the cost of a Flash

I/O request based on its access type (read / write) and its

data size. For reads and writes respectively, we assume

a linear model (typically with a substantial nonzero off-

set) between the cost and data size of an I/O request.

Our estimation model requires the offline calibration of

the Flash I/O time for only four data access cases—read

4KB, read 128KB, write 4KB, and write 128KB. In

general, such calibration is performed once for each de-

vice. Additional (but infrequent) calibrations can be per-

formed for devices whose gradual wearout affects their

I/O performance characteristics.

5 Implementation Issues

FlashFQ can be implemented in an operating system

to regulate I/O resource usage by concurrent applica-

tions. It can also be implemented in a virtual machine

monitor to allocate I/O resources among active virtual

machines. As a prototype, we have implemented our

FlashFQ scheduler in Linux 2.6.33.4. Below we describe

several notable implementation issues.

Implementation in Linux An important feature of

Linux I/O schedulers is the support of plugging and re-

quest merging—request queue is plugged (blocking re-

quest dispatches) temporarily to allow physically con-

tiguous requests to merge into a larger request before dis-

patch. This is beneficial since serving a single large re-

quest is much more efficient than serving multiple small

requests. Request merging, however, is challenging for

our FlashFQ scheduler due to the need of re-computing

request tags and task virtual time when two requests

merge. For simplicity, we only implemented the most

common case of request back-merging—merging a new

arriving request (r2) to an existing queued request (r1) if

r2 contiguously follows (on the back of) r1.

While the original anticipatory I/O [10] requires a sin-

gle timer, our anticipation support may require multiple

outstanding timers due to the nature of parallelism in

our scheduler. Specifically, we may need to track de-

ceptive idleness of multiple parallel tasks. To minimize

the cost of parallel timer management, our implementa-

tion maintains a list of pending timers ranked by their

fire time (we call them logical timers). Only the first log-

ical timer (with the soonest fire time) is supported by a

physical system timer. Most logical timer manipulations

(add / delete timers) do not involve the physical system

timer unless the first logical timer is changed.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 73

Our prototype implementation runs on the ext4 file

system. We mount the file system with the noatime op-

tion to avoid metadata updates on file reads. Note that the

metadata updates (on modification timestamps) are still

necessary for file writes. The original ext4 file system

uses very fine-grained file timestamps (in nanoseconds)

so that each file write always leads to a new modification

time and thus triggers an additional metadata write. This

is unnecessarily burdensome to many write-intensive ap-

plications. We revert back to file timestamps in the gran-

ularity of seconds (which is the default in Linux file

systems that do not make customized settings). In this

case, at most one timestamp metadata write per second

is needed regardless how often the file is modified.

Parameter Settings We describe important parameter

settings and their tuning guidelines in FlashFQ. The

depth D in SFQ(D) represents the maximum device dis-

patch parallelism. A higher depth allows the exploitation

of more parallel efficiency (if supported on the device)

while large parallel dispatches weaken the scheduler’s

ability to regulate I/O resources in a fine-grained fash-

ion. Our basic principle is to set a minimum depth that

can exploit most of the device-level I/O parallelism. Ac-

cording to the parallel efficiency of the three SSDs in

Figure 2, we set the depth D to 16 for all three SSDs.

For throttled dispatch, we set the task progress dif-

ference threshold that triggers the dispatch-blocking to

be 100millisecs. This threshold represents a tradeoff

between fairness and efficiency—how much temporary

resource utilization imbalance is tolerated to utilize re-

stricted device parallelism?

The “active” status anticipation timeout is set to

20millisecs—a task is considered to be continuously ac-

tive as long as its inter-request thinktime does not exceed

20millisecs. We set a shorter timeout (2millisecs) for

the anticipation that blocks aggressive tasks while leav-

ing the device idle. The latter anticipation timeout is

shorter because it may waste resources (as explained in

Section 4.3).

I/O Context Our FlashFQ design in Section 4 uses a

task to represent a resource principal that receives fair-

ness support. In Linux I/O schedulers, each resource

principal is represented by an I/O context. By default, a

unique I/O context is created for each process or thread.

However, it is sometimes more desirable to group a num-

ber of related processes as a single resource principal—

for instance, all httpd processes in an Apache web

server. In Linux, such grouping is accomplished for a set

of processes created by the fork() / clone() system

call with the CLONE IO flag. We added the CLONE IO

flag to relevant fork() system calls in the Apache

web server so that all httpd processes in a web server

share a unified I/O context. We also fixed a problem in

the original Linux that fails to unify the I/O context if

fork(CLONE IO) is called when the parent process has

not yet initialized its I/O context.

One problem we observed in our Linux/ext4-based

prototyping and experimentation is that the journaling-

related I/O requests are issued from the I/O context of the

JBD2 journaling daemon and they compete for I/O re-

sources as if they represent a separate resource principal.

However, since journaling I/O are by-products of higher-

layer I/O requests originated from applications, ideally

they should be accounted in the I/O contexts of respec-

tive original applications. We have not yet implemented

this accounting in our current prototype. To avoid re-

source mis-management due to the JBD2 I/O context in

Linux, we disabled ext4 journaling in our experimental

evaluation.

6 Experimental Evaluation

We compare FlashFQ against alternative fairness-

oriented I/O schedulers. One alternative is Linux CFQ.

The second alternative (Quanta) is our implementation

of a quanta-based I/O scheduler that follows the basic

principles in Argon [19]. Quanta puts a high priority on

achieving fair resource use (even if some tasks only have

partial I/O load). All tasks take round robin turns of I/O

quanta. Each task has exclusive access to the storage de-

vice within its quantum. Once an I/O quantum begins,

it will last to its end, regardless of how few requests are

issued by the corresponding task. However, a quantum

will not begin, if no request from the corresponding task

is pending. The third alternative is the FIOS I/O sched-

uler developed in our earlier work [17]. FIOS allows si-

multaneous request dispatches from multiple tasks to ex-

ploit Flash I/O parallelism, as long as the per-task times-

lice constraint is maintained. FIOS also prioritizes reads

over writes and it reclaims unused resources by inactive

tasks. The fourth alternative is 4-Tag SFQ(D) [11]. Fi-

nally, we compare against the raw device I/O in which

requests are always dispatched immediately (without de-

lay) to the storage device.

Three of the alternative schedulers (Linux CFQ,

Quanta, and FIOS) are timeslice-based. Timeslice pa-

rameters for these schedulers follow the default settings

for synchronous I/O operations in Linux. Specifically,

Linux tries to limit the epoch size and the maximum un-

responsiveness at 300millisecs. Therefore when multi-

ple (n) tasks compete for I/O simultaneously, the per-

task timeslice is set at 300

n
millisecs. This setting is sub-

ject to the lower bound of 16millisecs and the upper

bound of 100millisecs in Linux. To assess the effect

of timeslice scheduling with short timeslices, we include

a new setting that configures the per-task timeslice at
60

n
millisecs when n tasks compete for I/O simultane-

74 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

ously (with the goal of limiting the maximum unrespon-

siveness at 60millisecs). We also shorten the timeslice

lower bound to 1millisec. We include FIOS with such

short timeslice setting in our evaluation and we call it

FIOS-ShortTS.

Our experiments utilize the three Flash-based stor-

age devices (Intel 311, Intel X25-M, and OCZ Vertex 3

SSDs) that were described earlier in Section 3. On both

Intel SSDs, writes are substantially slower than reads (by

about 4-fold and 6-fold on Intel 311 and Intel X25-M

respectively). The Vertex drive employs a SandForce

controller which supports new write acceleration tech-

niques such as online compression. The Vertex write

performance only moderately lags behind the read per-

formance. For instance, a 4KB read and a 4KB write

take 0.18 and 0.22millisec respectively on the drive.

6.1 Evaluation on Task Fairness

Fairness is defined as the case that each task gains its

share of resources in concurrent execution. When n tasks

compete for I/O simultaneously, equal resource sharing

suggests that each task should experience a factor of n

slowdown compared to running-alone, or proportional

slowdown. This is our first fairness measure. We fur-

ther note that better performance for some tasks may be

achieved when others do not utilize all of their allotted

resource shares. Some tasks may also gain better I/O ef-

ficiency during concurrent runs by exploiting the device-

level I/O parallelism. When all tasks experience better

performance than the proportional slowdown, we further

measure fairness according to the slowdown of the slow-

est task. Specifically, scheduler S1 achieves better fair-

ness than scheduler S2 if the slowest task underS1 makes

more progress than the slowest task does under S2.

We use a variety of synthetic I/O benchmarks to eval-

uate the scheduling fairness in different resource compe-

tition scenarios. Each benchmark contains a number of

tasks issuing I/O requests of different types and sizes—

• a concurrent run with a reader continuously issuing

4KB reads and a writer continuously issuing 4KB

writes;

• a concurrent run with sixteen 4KB readers and six-

teen 4KB writers;

• a concurrent run with sixteen 4KB readers and six-

teen 128KB readers;

• a concurrent run with sixteen 4KB writers and six-

teen 128KB writers.

In order for these I/O patterns to reach the I/O scheduler

at the block device layer, we perform direct I/O to bypass

the memory buffer in these tests.

Figure 4 shows the fairness and performance under

different schedulers. The raw device I/O, Linux CFQ,

and 4-Tag SFQ(D) fail to achieve fairness by substan-

tially missing the proportional slowdown in many cases.

Specifically, lighter tasks (issuing reads instead of writes,

issuing smaller I/O operations instead of larger ones) ex-

perience many times the proportional slowdown while

heavy tasks experience much less slowdown in concur-

rent runs. Because raw device I/O makes no scheduling

attempt, I/O operations are interleaved as they are issued

by applications, severely affecting the response of light

requests. The Linux CFQ does not perform much bet-

ter because it disables I/O anticipation for non-rotating

storage devices like Flash. For instance, without antic-

ipation, two-task executions degenerate to one-request-

at-a-time alternation between the two tasks and therefore

poor fairness. 4-Tag SFQ(D) also suffers from poor fair-

ness since its unthrottled parallel dispatches make it be-

have like the raw device I/O in many cases.

Under the Quanta scheduler, tasks generally experi-

ence similar slowdown in most cases. But such “fair-

ness” is attained at substantial degradation of I/O ef-

ficiency due to its aggressive maintenance of per-task

quantum. Specifically, its strict quanta enforcement

throws away unused resources by some tasks. It also

fails to exploit device I/O parallelism, as demonstrated

by its poor performance in cases with large numbers of

concurrent tasks.

Both FIOS and FlashFQ maintain fairness (approx-

imately at or below proportional slowdown) in all the

evaluation cases. Furthermore, both FIOS and FlashFQ

can exploit the device I/O parallelism when available and

achieve the best performance in all evaluation cases.

FIOS-ShortTS achieves good fairness for the single

reader, single writer case (first row in Figure 4). How-

ever, it exhibits degraded fairness (compared to the orig-

inal FIOS and FlashFQ) in cases with large numbers of

concurrent tasks due to very short timeslices. In partic-

ular, it fails to maintain proportional slowdown for 16

4KB-writers, 16 128KB-writers on the two Intel SSDs

(substantially so on Intel X25-M). It also produces rela-

tively poor worst-task-slowdown compared to the origi-

nal FIOS and FlashFQ in some other cases (particularly

tests with 16 4KB-readers, 16 128KB-readers).

6.2 Evaluation on Responsiveness

The fairness evaluation shows that only FIOS and

FlashFQ consistently achieve fairness for a variety of

workload scenarios on the three SSDs. As a timeslice

scheduler, however, FIOS achieves fairness at the cost

of poor responsiveness. Even though FIOS allows si-

multaneous request dispatches from multiple tasks, the

timeslice constraint at the end of each epoch still leads to

long unresponsiveness for light tasks who complete their

timeslices early.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 75

0

2

4

6

8

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

1 4KB−reader, 1 4KB−writer on Intel 311

0

2

4

6

8

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

1 4KB−reader, 1 4KB−writer on Intel X25−M

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−reader I/O latency 4KB−writer I/O latency

0

2

4

6

8

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

1 4KB−reader, 1 4KB−writer on Vertex

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 4KB−writers on Intel 311

0

32

64

96

128

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 4KB−writers on Intel X25−M

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−reader I/O latency 4KB−writer I/O latency

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 4KB−writers on Vertex

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 128KB−readers on Intel 311

0

32

64

96

128

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 128KB−readers on Intel X25−M

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−reader I/O latency 128KB−reader I/O latency

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readrs, 16 128KB−readers on Vertex

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−writers, 16 128KB−writers on Intel 311

0

32

64

96

128

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−writers, 16 128KB−writers on Intel X25−M

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−writer I/O latency 128KB−writer I/O latency

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−writers, 16 128KB−writers on Vertex

Figure 4: Fairness and performance of synthetic benchmarks under different I/O schedulers. The I/O slowdown ratio

for a task is its average I/O latency normalized to that when running alone. For a run with multiple tasks per class

(e.g., 16 readers and 16 writers), we only show the performance of the slowest task per class (e.g., the slowest reader

and slowest writer). Results cover four workload scenarios (corresponding to the four rows) and three Flash-based

SSDs (corresponding to the three columns). For each case, we mark the slowdown ratio that is proportional to the total

number of tasks in the system.

76 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0

20

40

60

80

100

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 1 4KB−reader, 1 4KB−writer on Intel 311

0

20

40

60

80

100

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 1 4KB−reader, 1 4KB−writer on Intel X25−M

0

20

40

60

80

100

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 1 4KB−reader, 1 4KB−writer on Vertex

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 4KB−writers on Intel 311

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 4KB−writers on Intel X25−M

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 4KB−writers on Vertex

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 128KB−readers on Intel 311

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 128KB−readers on Intel X25−M

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 128KB−readers on Vertex

0

200

400

600

800

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−writers, 16 128KB−writers on Intel 311

0

200

400

600

800

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−writers, 16 128KB−writers on Intel X25−M

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−writers, 16 128KB−writers on Vertex

Figure 5: Worst-case (99.9-percentile) response time for four workload scenarios (rows) on three SSDs (columns)

under different I/O schedulers.

In a system with high responsiveness, no task should

experience prolonged periods of no response to its

outstanding requests. We use the worst-case (99.9-

percentile) I/O request response time during the execu-

tion as a measure of the system responsiveness. Figure 5

shows the responsiveness for our four workload scenar-

ios on the three SSDs. Results clearly show poor respon-

siveness for the three timeslice schedulers (Linux CFQ,

Quanta, and FIOS) in many of the test scenarios. In par-

ticular, they exhibit worst-case response time at half a

second or more in some highly concurrent executions.

In comparison, FlashFQ shows much better respon-

siveness than these approaches (reaching an order of

magnitude response time reduction in many cases). At

the same time, we observe that FlashFQ’s worst-case re-

sponse time is quite long for the case of 16 4KB-writers

and 16 128KB-writers on the two Intel drives (left two

plots in the bottom row). This is due to the long write

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 77

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

Quanta I/O scheduler

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

FIOS I/O scheduler

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

FIOS with short timeslices

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

FlashFQ I/O scheduler

Figure 7: Time of Apache request responses under Quanta, FIOS, FIOS-ShortTS, and FlashFQ I/O schedulers. Each

dot represents a request, whose X-coordinate indicates its timestamp in the execution while its Y-coordinate indicates

its response time.

0

2

10

20

R
e
q
u
e
s
t
s
lo

w
d
o
w

n
 r

a
ti
o

Apache web server and Kyoto Cabinet on Intel 311

29 24

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

Apache

Kyoto Cabinet

Figure 6: Fairness and performance of the read-only

Apache web server workload running with a write-

mostly Kyoto Cabinet key-value workload. The slow-

down ratio for an application is its average request re-

sponse time normalized to that when running alone.

time on these drives and the sheer amount of time to sim-

ply iterate through all 32 tasks while processing at least

one request from each. This is evidenced by the long

response time even under raw device I/O.

FIOS-ShortTS indeed exhibits much better respon-

siveness than the original FIOS. But this comes at the

cost of degraded fairness (as shown in Section 6.1). Fur-

thermore, FlashFQ still achieves better responsiveness

than FIOS-ShortTS as any timeslice maintenance (even

for very short timeslices) adds some scheduling con-

straint that impedes the system responsiveness.

6.3 Evaluation with the Apache Web Server
and Kyoto Cabinet

Beyond the synthetic benchmarks, we evaluate the ef-

fect of I/O schedulers using realistic data-intensive ap-

plications. We run the Apache 2.2.3 web server over a

set of HTTP objects according to the size distribution

in the SPECweb99 specification. The total data size is

15GB and the workload is I/O-intensive on a machine

with 2GB memory. As explained in Section 5, we at-

tached the CLONE IO flag to relevant fork() system

calls in the Apache web server so that all httpd pro-

cesses in the web server share a unified I/O context. Our

web server is driven by a client that issues requests back-

to-back (i.e., issuing a new request as soon as the previ-

ous one returns). The client runs on a different machine

in a low-latency local area network.

Together with the read-only web server, we run a

write-intensive workload on the Kyoto Cabinet 1.2.76

key-value store. In our workload, the value field of

each key-value record is 128KB. We pre-populate 1000

records in a database and our test workload issues “re-

place” requests each of which updates the value of a

randomly chosen existing record. Each record replace

is performed in a synchronous transaction supported

by Kyoto Cabinet. In our workload, eight back-to-

back clients operate on eight separate Kyoto Cabinet

databases. All databases belong to a single I/O context

that competes with the Apache I/O context.

Figure 6 illustrates the fairness under different I/O

schedulers on the Intel 311 SSD. Since the Kyoto Cab-

inet workload consists of large write requests at high

concurrency, it tends to be an aggressive I/O resource

consumer and the Apache workload is naturally suscep-

tible to more slowdown. Among the seven schedul-

ing approaches, only FlashFQ can approximately meet

the fairness goal of proportional slowdown for both ap-

plications. Among the alternatives, Quanta, FIOS and

FIOS-ShortTS exhibit better fairness than others. Specif-

ically, the Apache slowdown under Quanta, FIOS and

FIOS-ShortTS are 4.1×, 3.6×, and 4.6× respectively.

Among the four schedulers with best fairness (Quanta,

FIOS, FIOS-ShortTS, and FlashFQ), we illustrate the

timeline of Apache request responses in Figure 7. Un-

der Quanta, we observe periodic long responses (up to

200millisecs) due to its timeslice management. The

worst-case responses are around 100millisecs under

FIOS and FIOS-ShortTS. In comparison, FlashFQ

achieves the best responsiveness with all requests re-

sponded within 50millisecs.

78 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

7 Conclusion

This paper presents FlashFQ—a new Flash I/O sched-

uler that attains fairness and high responsiveness at

the same time. The design of FlashFQ is motivated

by unique characteristics on Flash-based SSDs—1) re-

stricted parallelism with interference on SSDs presents

a tension between efficiency and fairness, and 2) the di-

minished benefits of I/O spatial proximity on SSDs al-

low fine-grained task interleaving without much loss of

I/O performance. FlashFQ enhances the start-time fair

queueing schedulers with throttled dispatch to exploit re-

stricted Flash I/O parallelism without losing fairness. It

also employs I/O anticipation to minimize fairness viola-

tion due to deceptive idleness. We evaluated FlashFQ’s

fairness and responsiveness and compared against sev-

eral alternative schedulers. Only FIOS [17] achieves fair-

ness as well as FlashFQ does but it exhibits much worse

responsiveness. FIOS with short timeslices can improve

its responsiveness, but it does so at the cost of degraded

fairness.

Acknowledgments This work was supported in part

by the National Science Foundation grants CCF-

0937571, CNS-1217372, and CNS-1239423. Kai Shen

was also supported by a Google Research Award. We

thank Jeff Chase for clarifying the design of the SFQ(D)

scheduler. We also thank the anonymous USENIX ATC

reviewers and our shepherd Prashant Shenoy for com-

ments that helped improve this paper.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for SSD

performance. In USENIX Annual Technical Conf., pages

57–70, Boston, MA, June 2008.

[2] J. Axboe. Linux block IO — present and future. In Ot-

tawa Linux Symp., pages 51–61, Ottawa, Canada, July

2004.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-

berschatz. Disk scheduling with quality of service quar-

antees. In IEEE Int’l Conf. on Multimedia Computing and

Systems, pages 400–405, Florence , Italy, June 1999.

[4] F. Chen, D. A. Koufaty, and X. Zhang. Understanding

intrinsic characteristics and system implications of Flash

memory based solid state drives. In ACM SIGMETRICS,

pages 181–192, Seattle, WA, June 2009.

[5] H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-

structured Flash file system for micro sensor nodes. In

SenSys’04: Second ACM Conf. on Embedded Networked

Sensor Systems, pages 176–187, Baltimore, MD, Nov.

2004.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-

ulation of a fair queueing algorithm. In ACM SIGCOMM,

pages 1–12, Austin, TX, Sept. 1989.

[7] M. Dunn and A. L. N. Reddy. A new I/O scheduler for

solid state devices. Technical Report TAMU-ECE-2009-

02, Dept. of Electrical and Computer Engineering, Texas

A&M Univ., Apr. 2009.

[8] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair

queueing: A scheduling algorithm for integrated services

packet switching networks. IEEE/ACM Trans. on Net-

working, 5(5):690–704, Oct. 1997.

[9] A. G. Greenberg and N. Madras. How fair is fair queuing.

Journal of the ACM, 39(3):568–598, July 1992.

[10] S. Iyer and P. Druschel. Anticipatory scheduling: A disk

scheduling framework to overcome deceptive idleness in

synchronous I/O. In SOSP’01: 18th ACM Symp. on Oper-

ating Systems Principles, pages 117–130, Banff, Canada,

Oct. 2001.

[11] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional

sharing for a storage service utility. In ACM SIGMET-

RICS, pages 37–48, New York, NY, June 2004.

[12] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh.

Disk schedulers for solid state drives. In EMSOFT’09:

7th ACM Conf. on Embedded Software, pages 295–304,

Grenoble, France, Oct. 2009.

[13] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh. Parameter-

aware I/O management for solid state disks (SSDs). IEEE

Trans. on Computers, Apr. 2011.

[14] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The Linux implementation of a log-structured

file system. ACM SIGOPS Operating Systems Review,

40(3):102–107, July 2006.

[15] A. Leventhal. Flash storage memory. Communications of

the ACM, 51(7):47–51, July 2008.

[16] A. K. Parekh. A generalized processor sharing approach

to flow control in integrated services networks. PhD the-

sis, Dept. Elec. Eng. Comput. Sci., MIT, 1992.

[17] S. Park and K. Shen. FIOS: A fair, efficient Flash I/O

scheduler. In FAST’12: 10th USENIX Conf. on File and

Storage Technologies, San Jose, CA, Feb. 2012.

[18] P. J. Shenoy and H. M. Vin. Cello: A disk schedul-

ing framework for next generation operating systems. In

ACM SIGMETRICS, pages 44–55, Madison, WI, June

1998.

[19] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.

Ganger. Argon: Performance insulation for shared stor-

age servers. In FAST’07: 5th USENIX Conf. on File and

Storage Technologies, pages 61–76, San Jose, CA, Feb.

2007.

[20] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,

and E. Riedel. Storage performance virtualization via

throughput and latency control. ACM Trans. on Storage,

2(3):283–308, Aug. 2006.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 79

The Harey Tortoise:
Managing Heterogeneous Write Performance in SSDs

Laura M. Grupp†, John D. Davis‡, Steven Swanson†

†Department of Computer Science and Engineering, University of California, San Diego
‡Microsoft Research, Mountain View

Abstract
Recent years have witnessed significant gains in the
adoption of flash technology due to increases in bit den-
sity, enabling higher capacities and lower prices. Unfor-
tunately, these improvements come at a significant cost
to performance with trends pointing toward worst-case
flash program latencies on par with disk writes.

We extend a conventional flash translation layer to
schedule flash program operations to flash pages based
on the operations’ performance needs and the pages’ per-
formance characteristics. We then develop policies to im-
prove performance in two scenarios: First, we improve
peak performance for latency-critical operations of short
bursts of intensive activity by 36%. Second, we realize
steady-state bandwidth improvements of up to 95% by
rate-matching garbage collection performance and exter-
nal access performance.

1 Introduction
NAND flash memory can provide orders-of-magnitude
faster performance than traditional rotating media
(HDDs), albeit at the cost of reduced capacity. Push-
ing flash to higher densities, causes significant decline
in other metrics – like performance, endurance, and relia-
bility. Increasing flash’s capacity by storing an additional
bit per memory cell (1 to 2 bits, or 2 to 3 for example) re-
duces the chip’s lifetime by 5-10%, shrinks throughput
by 22% to 98% (55% on average) and increases latency
by 1.3× to 4.0× (2.3× on average) [14]. Increasing den-
sity via scaling leads to smaller, but still significant de-
clines.

Despite the disturbing trends resulting from increas-
ing the density of the underlying flash technology, flash
systems remain very promising. The chip-level trends
are driving the development of increasingly sophisticated
flash management techniques. For example, sophisti-
cated error coding techniques based on a deep under-
standing of flash’s behavior [12, 5] can bring triple-level
cell (TLC) bit error rates and performance in line with
multi-level cell (MLC 2-bit/cell) technology [1], and ag-

gressively exploiting parallelism can partially compen-
sate for increasing latencies.

This paper exploits another characteristic of high-
density flash devices to improve SSD performance. The
dominance of MLC over SLC devices leads to system-
atic variation in the program latency of different pages.
We have developed a flash translation layer (FTL) that
schedules programs to pages according to the program
operation’s purpose (e.g., internal garbage collection vs.
storing user data) and the speed of the page (i.e., faster
or slower). Our scheduling algorithm improves perfor-
mance without sacrificing capacity or endurance, provid-
ing speed of the hare (high performance) and the en-
durance of the tortoise (increased capacity and reduced
write amplification). In particular, we make the follow-
ing contributions:

• A flexible FTL which is aware of different page
types and can direct operations accordingly.

• A Many Write Point mechanism for increasing
scheduler flexibility and thereby enhancing the ef-
fect of scheduling policies.

• A scheduling policy that provides SLC performance
on an MLC device for performance-critical opera-
tions and bursty workloads.

• An analytical model of steady state SSD perfor-
mance that guides our access scheduler and suggests
some non-intuitive scheduling algorithms.

Our FTL architecture and multi-write point mecha-
nism allow the system to more readily access the array’s
variability. With this improved access and our policies,
our FTL improves burst bandwidth by up to 36% (equal
to the performance of an SLC array) with no increase in
wear, and improves performance of sustained traffic by
up to 95%.

First, we provide some background information on
NAND flash and SSDs. Section 3 follows with a descrip-
tion of our baseline architecture, simulation infrastruc-
ture and our methodology. Next, Section 4 describes our

80 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

enhancements to the FTL which efficiently leverage page
latency variation. We follow this with our evaluation in
Section 5, suggestions for applying the mechanisms in
Section 6, related work in Section 7, and conclusions in
Section 8.

2 Background
NAND flash memory is the driving force behind the on-
going success of solid-state drives (SSDs). This sec-
tion describes the basics of flash chip operation and the
source, magnitude and patterns of page latency variation.

2.1 Flash memory
The packages composing the flash array in an SSD each
contain one or more flash dies. Within a flash die, mul-
tiple (typically two) “planes” each contain several thou-
sand 128 kB to 3 MB blocks that, in turn, contain 64 to
384 2-8 kB pages. The chips perform reads and writes
on pages. However, before the chip can program (write)
new data to a page, it must first erase the parent block.
Further complicating writes, FTLs must write pages in
order within each block. The FTL may skip over a page,
but after doing so cannot write to it until after erasing it.

To represent the data, each memory element uses
charge stored on a floating gate between the control gate
and channel of a transistor. Varying amounts of charge on
the floating gate determine the effective threshold volt-
age (VTH) of the transistor, creating an analog range
which the chip interprets as two regions for a single bit.
Physically, a block comprises an array of “flash chains”
that each contain 32-128 floating gate transistors in se-
ries with each other. To a first order, the nth page in the
block comprises the nth bit in each of the block’s chains
(we discuss this more detail in Section 2.2).

Multi-level cell (MLC) flash stores multiple bits per
floating gate (usually 2 bits) to improve density by in-
terpreting the range of possible VTH as 4 regions. This
improved density (i.e., lower cost) makes MLC the dom-
inant type of flash. Single-level cell (SLC) devices are
less-dense, faster, and more expensive. TLC is in produc-
tion systems and Macronix recently demonstrated 6-bit-
per-cell technology [16]. We focus on the performance
of the write operation in MLC devices in this study, and
we discuss it in more detail in the next section.

Flash memories exhibit a well-known wear-out be-
havior which causes their data retention time to degrade
with increasing program-erase (PE) cycle counts. Man-
ufacturers rate current MLC devices for between 5,000
and 10,000 PE cycles, after which the data may be-
come unrecoverable without very aggressive ECC pro-
tection. While wear-out remains a first-class concern,
large over-provisioned flash arrays, common wear man-
agement techniques and recent advances in chip-level
technology [11] help.

E_SLC_51nm

B_MLC_72nm

B_MLC_34nm

D_MLC_50nm

E_MLC_51nm

F_MLC_41nm

C_MLC_43nm

B_TLC_25nm

C_TLC_43nm

Pr
og

ra
m

 L
at

en
cy

 (m
s)

0
1
2
3
4
5
6 First Bit

Second Bit
Third Bit

Figure 1: Chip Program Latency Multi-bit flash chips
retain single-bit performance in their fast pages. The in-
crease in latency is confined to the chips’ added capacity.

2.2 Flash Chip Performance Variability
The techniques we propose exploit systematic page-level
variation in write performance. This section describes the
source of this variation, magnitude of variation we have
measured in flash chips, the architectural lay-out of fast
and slow pages within each flash chip, and how the FTL
can non-destructively detect this pattern. Each of the 30
chip models (from 6 manufacturers) we have character-
ized show distinct groups of latencies in proportion with
the number of bits stored in each memory element.

The variation arises because, although MLC devices
store multiple bits on a single floating gate, those bits
map into different pages. As a result, the programming
operation for the first fast bit stored on the gate is much
faster than the programming operation for the second
slow bit, and so on for all additional bits stored in the
cell. We refer to individual pages as fast or slow depend-
ing on which kind of bits they contain.

Figure 1 shows the latency of a representative sample
of SLC, MLC and TLC chips. For each chip we mea-
sure the time to write random data to each page in 16
blocks. We divide these measurements into fast, slow
and (for TLC) medium page latencies. Slow pages from
the average MLC chip are 4.8× slower than fast pages,
with D MLC 50nm exhibiting the largest gap (6×) and
F MLC 41nm the smallest at 3.5×. Our data show that
fast page program latency is comparable to SLC pro-
gram latency in devices from similar technology gener-
ations [13].

Our previous work reveals two common organizations
for fast and slow pages within an MLC block. We now
extend those observations to TLC parts as well. With the
exception of one manufacturer, the chips exhibit the or-
ganization in Figure 2A. In MLC devices, the first four
pages are fast, the last four are slow and every pair of
pages mid-block alternate between fast and slow. TLC
devices cycle through the three latencies with pairs of

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 81

Fast Page Medium Page Slow Page

(A)
Common Pattern

(B)
Unique Pattern

. . .

. . .

. . .

. . .

MLC

MLC

TLC

TLC

Figure 2: Latency Pattern Pages’ read and write laten-
cies follow the same pattern within each block of a given
chip.

F = Fast Page M = Medium Page S = Slow Page

(A)
Common Pattern

(B)
Unique Pattern

TLCMLC
F S
0

2

6

4

8

12

1610

F S
0

2

6

10

16

24

3012

M
4

8

14

22

TLCMLC
F S
0

1

3

2

4

6

85

F S
0

1

3

5

8

11

146

M
2

4

7

10

Figure 3: Memory Cell Anatomy Fast pages consist of
each memory element’s first-written bit. In-order pro-
gramming causes the final bit of a memory cell to be
written after most programs to the surrounding cells.

pages as well. The unique manufacturer follows the
single-page alternating patterns in Figure 2B.

Figure 3 shows how a single bit from each page maps
to the chain of flash memory cells. The numbers corre-
spond to the page’s location within the block and are in
columns corresponding to the time required to program
the bit. Figure 3A shows the even-numbered NAND
chains from MLC and TLC parts made by most manu-
facturers (the corresponding odd chain is similar), and
Figure 3B shows the pattern used by the manufacturer
with a unique pattern.

Because of the in-order programming constraint, the
final program of a cell occurs after most of the program
operations to adjacent cells are complete. This reduces
the program disturb that is a major hindrance to enabling
multi-bit technology [21]. The blocks of most manu-
facturers alternate between page speeds in pairs because
they separate pages into even and odd chains, while the
unique manufacturer uses only one chain. Also, we ob-
serve most of the variation in the latency of slow pages
(indicated by the wide error bars in Figure 1) comes from
the even chain being slower than the odd chain, though
we are unfamiliar with the cause.

The techniques we develop in the following sections
depend on the FTL knowing the layout of fast and slow
pages within a block. Since the layout is consistent for a
given part number and does not vary over time, it is suf-
ficient for the manufacturer to detect this pattern using a
single block and configure the FTL accordingly. An FTL
could perform the measurement at initialization time by
monitoring the programming time of pages in a block,
reducing the cost of moving to a new type of flash chip in
an existing SSD design. There is also a non-destructive
technique for determining page type. Page read latencies
exhibit the same variation pattern. Furthermore, differen-
tiating between the small number of possible patterns (ei-

ther mentioned in the datasheets or derived empirically)
requires only a few page reads.

Overall, as shown in Figure 1, the dramatic differences
in page program latency provide a better opportunity to
exploit diversity to improve SSD performance. In Sec-
tion 4, we describe our extensions to the baseline FTL
(from Section 3) which leverage these variations in pro-
gram latency.

3 Baseline FTL
SSDs contain both an array of flash and a controller to
manage wear leveling and access requirements while pre-
senting a block interface. The following sections de-
scribe the basic algorithms needed in all FTLs, how we
structure the algorithms to isolate important policy deci-
sions, and our simulation infrastructure and array param-
eters.

3.1 FTL Basics
SSDs maintain a mapping between the logical block ad-
dresses (LBA) that the host system uses and the physi-
cal block addresses (PBA) that identify particular pages
within the flash array. The FTL maintains this map
with the goal of minimizing wear and maximizing per-
formance. FTLs fall into three broad categories based
on the granularity of this map – block-based, page-based
and hybrids of the two. Improving the FTL is the ob-
ject of intense work both in industry and academia (see
Section 7).

In this work, we study variability-aware enhancements
to a page-based FTL, but the concepts extend to other
designs as well. We begin with the parallelized FTL ar-
chitecture described in [7]. It uses log-structured write
operations, filling up one block before moving on to an-
other. To improve bandwidth, the FTL maintains one log
for each chip in the array. We refer to the head of each

82 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

log as a write point.
As the FTL writes new data at a write point, the old

version of the data for that LBA becomes invalid but re-
mains in the array. The effects of this copy-on-write pro-
cedure requires that we provide functionality to (1) re-
cover the physical-to-logical address mapping after un-
expected power failure and (2) convert pages contain-
ing stale data to erased flash through garbage collection
(GC).

First, for the FTL to recover from unexpected power
failure it must track each page’s logical address (LBA)
as well as which copy of data for a given LBA is most-
recent. With a single-write point array, a block sequence
number suffices. However, when the system contains
more than one write point, the FTL must use a page
sequence number to maintain strict ordering. (See [6]
and [7] for more details.)

Second, the FTL must remove the stale copies and
create room for new data by performing GC. GC algo-
rithms copy valid data from partially-invalid blocks to
write points on or off chip, and erase the now fully-
invalid blocks to make them ready for new write oper-
ations.

GC must constantly maintain a pool of erased blocks
on each chip. When a write point reaches the end of
a block, the block is full and the FTL must locate a
new, erased block for that write point to continue writing.
When a chip starts to run short on erased blocks, GC be-
gins to consolidate valid data to create additional erased
blocks for that chip. In the best case, garbage collection
makes use of idle periods to hide its impact on perfor-
mance. However, GC latencies are a significant source
of performance variability in SSDs.

Our FTL uses two thresholds as parameters for the GC
routines. The FTL maintains these thresholds on a per-
chip basis, so in the worst case, any single chip can free
up resources by taking itself off-line for cleaning. The
first threshold is the background (BG) threshold. When
the FTL finds any chip in the array idle, it performs GC
operations on that chip up to the BG threshold. If the
number of erased blocks on any chip drops below the
second, emergency threshold, GC becomes the FTL’s top
priority for that chip and it will divert all incoming traffic
to other chips or block entirely while GC proceeds. In
normal operation, the FTL should very rarely enter this
“emergency mode.”

3.2 Design for Flexible Policy Choices
Figure 4 shows the high-level structure of the FTL’s op-
eration scheduler. The FTL maintains three queues. The
queues hold write, erase, read and cleanup operations
waiting to execute. External accesses to the SSD enter
the external queue, background GC operations reside in
the background queue, and the emergency queue holds

External Queue

Background Queue

Emergency Queue

Op. Selection

Data Placement GC Op. Selection

Flash Array

Cleanup

Read
or Erase

Write

Move’s Write

Figure 4: Operation Flow Operations move through the
FTL’s queues and a series of policy decisions (the gray
boxes) before executing on a flash chip.

emergency GC operations. Emergency mode is a rare
occurrence.

Operations pass from the queues to the flash array via
three distinct policies, marked by the gray boxes in Fig-
ure 4:

Operation Selection Policy First, the FTL chooses
which operation to execute next. Operations in the emer-
gency queue have the highest priority. If the emergency
queue is empty, or contains operations that cannot yet ex-
ecute (for example, they must access a busy chip or wait
for data being read), then an operation is taken from the
external queue. Finally, operations are taken from the
background queue when the system is idle.

Data Placement Policy The second policy in the FTL
determines where to schedule writes. Because the physi-
cal address of an LBA changes with each write, the FTL
has the freedom to choose, for example, the fastest page
available. In our baseline design, the FTL follows a
round robin approach which avoids busy chips and seeks
to maintain a uniform number of valid LBAs on each
chip.

GC Operation Selection Policy
The third policy is critical to efficient and flexible op-

eration of GC. Rather than enqueue a list of move oper-
ations followed by one erase, we enqueue cleanup oper-
ations that represent one step in cleaning a block. The
“Cleanup Operation Selection” policy in Figure 4 deter-
mines whether to start a read, write or erase operation.
Delaying the choice of which page to move allows GC to
adapt as pages become invalid due to external writes.

With GC policy reduced to the decision of executing
one flash operation at a time, the particular algorithm is
simple. Erasing fully invalidated blocks is the best op-
tion. When no such blocks are available, we move a page
from a block with the least number of valid pages. A
move begins with a read operation which, once complete

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 83

Parameter Value

Channels 4 or 8
Dies per channel 2 or 16
Blocks per chip 2048
Pages per block 64 or 128
Bytes per page 4096
Fast Page Read Latency 27 µs
Slow Page Read Latency 40 µs
Fast Page Write Latency 253 µs
Slow Page Write Latency 1359 µs
Erase Latency 2871 µs

Table 1: SSD Configuration Architectural dimensions
of the flash array and operation latencies to the flash
chips.

pushes the paired write operation to the front of the queue
from where the cleanup operation originated.

We will use this platform to demonstrate how to more
effectively harness the variable performance available in
high density flash. Many of these concepts and algo-
rithms will transfer to the more memory-efficient hybrid
FTL designs.

3.3 Simulation Setup
To evaluate these alternative organizations, we have de-
veloped a detailed trace-driven flash storage system sim-
ulator. It supports parallel operations between flash de-
vices, models the flash buses and implements our FTL.

Table 1 details the array’s dimensions. We model two
moderately-sized SSDs – one to quickly simulate results
for our microbenchmarks and a larger configuration to
run the workloads. We also simulate an All Fast config-
uration, which models a half-capacity SLC-speed array
by (1) reducing block size from 128 to 64 pages and (2)
using only the fast read and write latencies.

Our SSD manages the array of flash chips and presents
a block-based interface. The controller in the SSD coor-
dinates 4 or 8 channels that each connect 2 chips to the
controller via a 400 MB/s bus. Larger SSD configura-
tions are possible, but the configurations we choose pro-
vide similar performance trends with much shorter simu-
lation times.

To ensure steady state behavior, we arrange all of the
LBAs randomly throughout the chips in the SSD be-
fore starting the simulations. We add enough invalidated
pages to fill all blocks to the background threshold. The
write points begin on a random page in the write point’s
assigned block.

4 Leveraging Variability
In this section, we describe our mechanisms for schedul-
ing flash operations based on flash page performance

variation. We demonstrate how careful, variation-aware
scheduling can improve performance under both bursty
and sustained workloads. With both mechanisms, we
show how increasing the number of write points on each
chip increases the FTL’s ability to leverage the variability
in its flash array.

4.1 Many Write Points for More Flexibility
Making good scheduling decisions requires the scheduler
to have multiple options available, and without multiple
options, no scheduling policy can have much impact on
performance. Since each write point is associated with
a single block, and the FTL must write to pages in the
block in order, a single write point offers limited options:
The FTL can either write to the next page (which may
not be the type of page it would prefer) or it can skip the
page, writing to the page of its choice, but wasting space.

Our baseline FTL maintains one write point per chip,
which can only provide multiple options under light load
(and some chips are idle). Under heavy load the FTL’s
only choice is to schedule an access to the most recently
idled chip. Even under light load, a large burst of write
traffic will use up the fast pages available on each write
point. Both of these scenarios force the FTL to choose
between the two undesirable options described above.

To provide flexibility, we extend the baseline FTL with
multiple write points per chip, ensuring that the FTL will
have choices and can make wise scheduling decisions. In
the following subsections, we demonstrate how increas-
ing the number of write points in the system and on each
chip increases the policies’ ability to access its desired
page type.

While additional write points provide the flexibility to
access fast and slow pages on demand, their number and
use constitute a trade-off with over-provisioned capacity
and data placement policies the FTL designer wishes to
incorporate. Because each write point requires an open
block, when the FTL maintains too many write points
the over-provisioned space becomes too fractured across
open blocks. In particular, the number of blocks between
the background and emergency thresholds (for the GC
routines described in section 3) provide a hard limit for
the possible number of write points in our design. The
FTL designer will also have to carefully weigh the value
of placing data to potentially improve the efficiency of
future GC with the effects of using a high or low latency
page.

4.2 Handling Bursty Workloads
In this section, we present a policy called Return
to Fast (RTF) that allows the FTL to service bursts
of performance-critical operations exclusively with fast
pages. The algorithm seamlessly provides nearly the
speed of SLC while using all of the MLC pages.

84 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

We can apply the RTF policy in a number of situations.
With an interface that passes information about the criti-
cality of writes to the device, the system could schedule
critical operations to fast pages. Such an interface could,
for example, enable fast distributed locking protocols that
require persistent writes for ordering via a log.

Even without changes to the interface, we can signif-
icantly enhance the performance of bursty workloads by
treating user accesses as performance critical and GC op-
erations as non-critical. In this case, we use fast pages
exclusively until we run out, and then return to our base-
line policy. We focus on this application in this paper.

RTF aims to service as many external writes as possi-
ble with fast pages. One approach is to skip over slow
pages in order to move write points to the fast pages, but
that would waste those skipped pages – reducing SSD
capacity, invoking GC sooner, and increasing wear and
potentially decreasing performance.

RTF avoids skipping pages by returning all write
points to fast pages during the idle periods through GC
writes. The FTL saves up a reserve of fast pages which it
can spend on performance-critical operations. The num-
ber of write points in the system controls the size of re-
serve of fast pages.

The most common pattern of fast and slow pages pro-
vides up to two fast pages per write point. The FTL can
fully exploit both pages in Strongly RTF, which ensures
the write points reach the first of the pair of fast pages.
The FTL can store an average of 1.5 writes per write
point in Weakly RTF, which returns the write points to
any fast page. Strongly RTF will give us the largest num-
ber of fast pages available after a large enough idle pe-
riod.

We can further enhance the FTL with preemptive GC.
During idle periods, the FTL continues to GC until each
write point points to a fast page. This runs the risk of in-
creased wear, when external writes or trims invalidate the
pre-emptively moved data. However, simulation results
show this is not a problem.

Increasing the number of write points in a system in-
creases the performance of the bursts, even when the
workload is a complex mix of reads, writes and poten-
tially short idle times. In order for the FTL to direct an
external write to a fast page, (1) there must be a write
point already pointing at a fast page and (2) this write
point must point to a chip which is not busy with another
operation. Under a complex workload, the number of
write points in the system is directly related to the likeli-
hood of both of these conditions. The more write points
there are, the more write points there will be pointing to
fast pages. So, even with very little idle time we have
increased the number of fast pages for the next burst.

A similar argument holds when you consider the con-
tention over access to chips in the system. Imagine all

 0

 20

 40

 60

 80

 100

 120

 0.25 1 4 16 64 256 1024

Bu
rs

t B
W

 (M
B/

s)

Burst Size (kB)

All Fast

 0

 20

 40

 60

 80

 100

 120

 0.25 1 4 16 64 256 1024

Bu
rs

t B
W

 (M
B/

s)

Burst Size (kB)

All Fast
32 WPs x 8
16 WPs x 8

8 WPs x 8
4 WPs x 8
2 WPs x 8
1 WPs x 8

 0

 20

 40

 60

 80

 100

 120

 0.25 1 4 16 64 256 1024

Bu
rs

t B
W

 (M
B/

s)

Burst Size (kB)

All Fast
32 WPs x 8
16 WPs x 8

8 WPs x 8
4 WPs x 8
2 WPs x 8
1 WPs x 8

Baseline

Figure 5: Performance of Weakly RTF The weakly
RTF policy maintains performance comparable to using
only fast pages for burst sizes up to the number of write
points before dropping to the performance of using all
page speeds.

but one of the chips in the array are blocked with oper-
ations. The single available chip is more likely to have
a fast page available if there are more write points (and
more possible pages available).

4.2.1 Evaluating RTF

We explore the potential of the RTF policy by studying
its behavior under a synthetic workload of page-sized
accesses to uniformly distributed LBAs, grouped into
bursts. The gap between bursts is sufficient to complete
all necessary GC and return all the write points to fast
pages, when applicable. Each trace uses a different burst
size from 4 kB to 4 MB (1 to 1024 pages) and writes a
total of 16 MB of data.

Figure 5 shows the performance of the Weakly RTF
policy for 1-32 write points per chip on an 8 chip array
(x8). For burst sizes less than 32 kB, the array is under-
used, but as the burst size reaches between one and two
pages per chip the performance increases significantly
for RTF and the All-Fast configuration. The baseline re-
mains low with a maximum performance of 39.4 MB/s
because it uses both fast and slow pages.

At burst sizes greater than 32kB, we observe the pos-
itive effect of additional write points in enabling RTF.
With one write point, the FTL can manage only short
bursts at high speed. Increasing the number of write
points per chip provides a larger reserve of fast pages
from which to draw and lets the scheduler make better de-
cisions. For weakly (strongly) RTF, the maximum burst
size serviced at high speed is equal to (2×) the number
of write points in the system times the page size.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 85

4.3 Sustained Write-Intensive Workloads
RTF provides an effective tool for selective performance
enhancement. However, under sustained write traffic, ex-
ternal operations must compete for resources with GC,
which eclipses the performance benefits of RTF.

In this section, we develop a rate matching technique
that allocates fast and slow SSD resources among GC and
external operations for the best performance during long
periods of sustained load. We begin with a variability-
informed analytical model of an FTL, its page schedul-
ing policy, and its GC. The model shows that in most
cases the intuitive choice for page variability will lead
to performance losses while the counter-intuitive choice
improves performance. Finally, we study the potential of
the FTL operating with these parameters.

4.3.1 Analyzing FTL Behavior Under Load

In order to maintain the erased block pool during periods
of sustained, heavy load, the FTL must match the rate at
which it erases pages with its external write rate. The per-
chip bandwidths for these two operations remains con-
stant, so the FTL matches these rates by establishing the
correct number of chips performing each of the two sets
of operations. Equations 1 and 2 describe the two per-
chip bandwidths. For Equation 2, we assume 20% over-
provisioning and include a parameter (pgsMvd) for the
number of page moves GC must perform on the average
block (which is determined by the workload’s locality).

ExternalWriteBW =
pageSize

wLat
(1)

GC BW =
0.2 ∗ blockSize

pgsMvd ∗ (mvLat) + eLat
(2)

With respect to write latency variability, we consider
two choices. The FTL could use slow pages to service
GC writes and fast pages to service user writes (SGC), or
vice versa (FGC).

Figure 6 plots the SSD’s bandwidth for these poli-
cies and a baseline, latency agnostic configuration over
a range of workload localities. Our model assumes the
FTL always has access to the preferred page speed with-
out skipping pages. For the FGC configuration, for ex-
ample, we determine the per-chip user write BW and the
cleaning BW using slow page write latency for Equa-
tion 1 and fast page write latency for Equation 2, re-
spectively. The ratio of the two yields the correct ratio
of chips to use for each operation. The chip counts are
averaged over time, so they do not need to be integers.
Ultimately these values yield the user-visible write band-
width.

Without the analytical model, our initial choice was to
accelerate external operations, corresponding to the SGC

0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0 20 40 60 80 100

N
or

m
al

iz
ed

 B
an

dw
id

th

Locality
(% of block invalidated by user writes)

Baseline
FGC
SGC

Figure 6: Design Space for Rate Matching Which con-
figuration to use under heavy load depends on the work-
load’s locality. If locality is low (less than 80% on this
graph), GC must move lots of data and prioritize those
writes to fast pages to improve overall performance.

configuration. However, as Figure 6 shows, the highest
performance configuration allocates fast pages to online
GC instead (FGC).

Scenarios with average to low page locality will do
best under FGC, because GC reclaims relatively few
erased pages for many moves. SGC experiences a disad-
vantage because fast user writes and slow GC writes ex-
acerbate the inherent slowness of GC. FGC, on the other
hand, uses the speed of fast pages to help GC to keep
pace with the user accesses. Because block erase is nec-
essary, and such a heavy weight process, the FTL does
best by completing it quickly.

The crossover point falls exactly at 80% locality be-
cause of the particular amount of over-provisioning in
our array (20%). The analytical model frees 20% of
the pages in a block for the average whole-block GC se-
quence. With 80% locality, the number of pages erased
per block GC equals the number of pages moved, and so
external write BW is the same as GC write bandwidth
for all configurations. As locality decreases from this
crossover point, GC requires more moves and higher-
performing writes (FGC).

In order to study FGC and SGC, we make two changes
to the baseline FTL. The first does not include knowledge
of page variability and is simply to maintain the pool un-
der sustained write traffic. To do this, we modify the
operation selection policy. We calculate the ratio of per-
chip GC bandwidth to per-chip external write bandwidth,
called the target ratio. The FTL maintains a chip use ra-
tio by monitoring the ratio of time spent on GC and ex-
ternal write operations for the recent history. The FTL
then chooses the next operation by attempting to match
the chip use ratio to the target ratio.

The second policy change accounts for page variability
in the data placement policy by directing pages to match

86 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

W
rit

es
 to

 P

re
fe

rre
d

Pa
ge

 (%
)

Write Points Per Chip

GC Writes, FGC
User Writes, SGC
User Writes, FGC
GC Writes, SGC

Figure 7: Page Preference Improvement Increasing the
number of write points per chip increases the availability
of the preferred page type when the SSD is under heavy
load.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1 2 4 8 16 32

N
or

m
al

iz
ed

 B
W

Write Points Per Chip

FGC
SGC

Figure 8: Sustained Performance Adding write points
allows fast online GC to improve SSD performance by
20%.

either the SGC or FGC configurations. We implement
a page preference policy whereby given the choice be-
tween several locations to write, the FTL prefers to direct
the previously chosen operation according to the SGC or
FGC configuration.

The baseline for studying the FTL under sustained
load includes the changes to the operation choice policy,
but retains the original round robin baseline for the write
point choice policy.

4.3.2 Evaluating FGC and SGC

To study rate matching with page preference under the
complex constraints imposed by a real FTL, we apply
a write-intensive synthetic load to our simulator. The
workload consists of 5 s pulses of infinite load followed
by 4 s of idleness. This cycles repeats 80 times, and
the load consists purely of writes with evenly distributed
LBAs.

Under such a load, all operations reach the Data Place-
ment policy with only one idle chip in the flash array. Be-
cause each chip only has one write point, the page prefer-
ence has no effect, and all operations have an equal prob-
ability of being written to fast or slow pages. Skipping
pages is not a good option because its negative effect on
performance overwhelms any advantage gained from us-
ing fast pages, due to the added GC.

Write points again provide the flexibility needed for
the FTL to leverage the fast pages in the FTL. With mul-
tiple write points on each chip, when the operation arrives
with only one idle chip from which to select, it still has
multiple options for where it can write.

Figure 7 shows how, as the number of write points in-
creases, the FTL can run operations on the desired pages
type more frequently. With one write point, both SGC
and FGC direct their operations to the two page speeds
with equal probability. As the number of write points

increases, a larger percentage of operations are sched-
uled to their preferred page speed. This is especially true
when that preferred page speed is fast.

Figure 8 shows the performance resulting from the
FTL accessing its preferred pages more often, normal-
ized to the baseline of no page preference. As more write
points allow the FTL to select its preferences, the perfor-
mance of FGC improves while the performance of SGC
declines.

These results verify that the optimal choice for page
preference under heavy write load is to save fast pages for
servicing online garbage-collecting moves (FGC), and
that increasing the number of write points on each chip
better enables the FTL to tap into that supply of fast
pages.

5 Results
In this section we evaluate the effectiveness of our vari-
ability aware FTL policies – RTF, FGC and SGC – on a
set of five benchmarks.

5.1 Workloads
Table 2 describes the five trace files we use to explore
our proposed FTL enhancements. Their burst sizes span
a range as do the idle times between each burst.

The conventional method of replaying traces does not
accurately retain fixed computation time (seen by the
SSD as idle time). This runs the risk of mixing the idle
and active parts of the workload which could both (1) eat
into the idle time needed for RTF and (2) lessen the load
FGC and SGC are intended to accommodate.

We pre-process our trace files to alleviate these prob-
lems. Instead of each trace line indicating what time it
arrives at the SSD, it indicates how much later than the
previous trace line it arrives. Then, if the delta is below a

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 87

Trace Min. ∆ Avg. Burst Avg. Idle
Name (Thresh.) Size (pgs) Time (s) Description

Build 0.087 s 3.56 1.74 Compilation of the Linux 2.6 kernel.
Financial 18 ms 0.140 0.0620 Live OLTP trace for financial transactions.
WebIndex 48 µs 212 0.000564 Indexing of webpages using Hadoop.
Swap 150 ms 0.0645 0.0218 Virtual memory trace for desktop applications.
DeskDev 0.7 s 4.48 3.82 24 hour trace of a software development work station.

Table 2: Workload Statistics Characteristics of the burstiness of our tracefiles and the idle times between the bursts.

particular per-trace threshold, we group that access in the
same burst with the previous access by setting the delta
to zero. In this way, we ensure the SSD experiences the
full brunt of the burst without added idle time.

We assume that a large enough idle period (i.e. that
greater than the threshold) indicates the program is exe-
cuting calculations using the previous burst’s data. We
also assume that the amount of time before issuing its
next burst will remain constant for a given processor ar-
chitecture. We then enforce the delta time between each
burst by issuing the first access of a given burst delta
seconds after the previous burst completes (i.e. after the
completion of the last access).

We set the delta threshold to be the average time be-
tween each trace line for a given file. Table 2 details the
delta threshold for each trace file as well as the average
size of the bursts and average amount of idle time be-
tween them.

Measuring the performance of an SSD running a trace
file that includes idle time requires some care. To fac-
tor out the effect of idle time in the trace file, we divide
the amount of data written in a given burst by the time it
takes to complete that burst (this is the burst’s write band-
width). We then report the average of these bandwidths
for each policy normalized to the baseline.

5.2 Return To Fast
Figure 9 shows the performance of the delta traces run-
ning under the Strongly RTF (sRTF) and weakly RTF
(wRTF) policies with 1, 8 and 32 write points per chip.
The All-Fast configuration shows a potential for 19%
to 62% increase in write performance (34% on average)
over the baseline and all traces realize at least a portion
of these gains. On average, traces realize a 9% perfor-
mance increase going from 1 to 32 write points per chip
and no increase in performance for using strongly RTF
rather than weakly RTF.

Financial (Fin. in the figures) works well with RTF – it
contains a significant amount of idle time between bursts
for recovery, and has very few reads which could block
and stall the burst. Financial also has very few writes
in each burst, so the SSD is able to realize the full po-
tential of the fast pages with very few write points. For

other workloads, added performance comes with more
write points because a larger pool of fast pages increases
the options for where to write, getting around the effect
of blocking reads. All workloads on both strongly and
weakly RTF achieve more than 24% of the All Fast con-
figuration’s gains and most see more than 64%.

While RTF consistently improves the write perfor-
mance, it has negligible effect on the read performance.
On average the RTF configurations gain less than 0.1%
in read bandwidth.

Figure 10 shows the wear out experienced by our SSD
under the different workloads and RTF configurations.
Trying to achieve high performance by using only the
fast pages significantly increases the wear – up to 2.0×,
and 1.7× on average. However, if we instead fill the slow
areas with garbage collected data we were planning on
moving anyway, our wear increases by 5% relative to the
baseline on average, and never more than 34%.

5.3 Rate Matching with FGC and SGC
Figure 11 shows the performance of the traces running
on the FGC and SGC rate matching policies using 1, 8
and 32 write points per chip. The All-Fast configuration
is able to realize much larger gains over the baseline, be-
cause the FTL makes use of all of the pages during ex-
ternal activity. Even so, the FGC configuration on most
workloads achieves a significant portion of these gains
while the more intuitive SGC configuration remains at
baseline levels. DeskDev reaches the highest perfor-
mance at 95% above baseline, and the average of all the
traces except for WebIndex reaches 65% over baseline.

The spacial locality in the WebIndex’s writes set this
workload apart – in this case the intuitive choice of di-
recting external operations to fast pages (SGC) provides
better performance. WebIndex exhibits an average of
31% fewer moves per erase, placing it in the right-most
region of Figure 6. The advantage of saving fast pages for
online operations in FGC is a result of completing GC
as fast as possible to match the rate of external writes.
However, when the access stream exhibits good spacial
locality, the act of writing external operations invalidates
pages on a small set of blocks, accelerating GC.

Increasing the number of write points on each chip al-

88 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Build
Fin.

WebInx

Swap
DeskDev

Avg.N
or

m
al

iz
ed

 W
rit

e
Ba

nd
w

id
th

0.0

0.5

1.0

1.5

2.0

Baseline
All_Fast

wRTF1
sRTF1

wRTF8
sRTF8

wRTF32
sRTF32

Figure 9: Performance of RTF More write points in the
flash array increases the reserve of fast pages the FTL
can build during idle periods, allowing the FTL to absorb
larger burst with only fast pages.

Build
Fin.

WebInx

Swap
DeskDev

Avg.N
or

m
al

iz
ed

 E
ra

se
 C

ou
nt

0.0

0.5

1.0

1.5

2.0

Baseline
All_Fast

wRTF1
sRTF1

wRTF8
sRTF8

wRTF32
sRTF32

Figure 10: Wear of RTF While RTF improves perfor-
mance, on average its wear is nearly that of the baseline.

lows each configuration to approach the predicted behav-
ior. SGC almost always performs on par or worse than
the baseline, often declining from baseline as the num-
ber of write points decreases. The opposite trend holds
for FGC, frequently beginning with a performance bet-
ter than baseline and increasing as the number of write
points increases. This makes sense because increas-
ing the number of write points increases the impact of
each policy. Since SGC hurts performance, adding write
points makes performance worse.

While FGC and SGC produce performance gains and
losses, respectively, in most cases they both perform a
number of erases on-par with the baseline (Figure 12).
Excluding WebIndex, the erase count declines by as
much as 32% for the SGC-32 configuration on DeskDev,
and increases by no more than 2% (Excluding Financial).
On average, FGC and SGC experience a 3% decline in
wear while the All-Fast configuration is 56% more wear
compared to the baseline.

6 Application
Although we propose distinct mechanisms for bursts and
heavy load, we discuss their coordination with other poli-
cies in the system to address a variety of workloads with
mixed access patterns. This section describes how this
could be done either through coordination with the oper-
ating system or by further enhancing the FTL.

OS Support Coordination with the operating system
constitutes one avenue of leveraging the Harey Tortoise
techniques. The OS could provide hints with the accesses
made to the SSD. For example, the FTL could use RTF
to service latency-critical accesses (marked as high prior-
ity), providing the functionality of the variability aware
FTL in [13] without the added wear. Alternately, the OS
could signal a course-grained switch between workload

style when, for example, a server transitions between
workloads or activities that change between peak and off-
peak periods. An enhanced interface, such as NVMe [2],
would facilitate these implementations.

Dynamic FTL Without hints from the OS, the FTL
could combine the Harey Tortoise’s policies to accom-
modate mixed workloads. It would adjust as a burst of
accesses of unknown length progresses – employing RTF
early in the burst before transitioning to RM techniques
as the “burst” lengthens to a sustained load. This tech-
nique would result in RTF accommodating small bursts
while the FTL treats long bursts with RM techniques.

For long bursts and sustained load, the FTL would step
through several phases combining our techniques pro-
posed in this work. For such a policy, GC during idle pe-
riod should employ RTF to return as many write points
as possible to fast pages. Then, when accesses arrive,
the FTL would achieve maximum possible performance
from using only fast pages under RTF, before gradually
transitioning to RM policies.

During the transition period the FTL would (1) adjust
the preference for fast or slow pages of the external and
GC writes and (2) tailor the use and cleaning rates to
use up the over-provisioned space and create a graceful
degradation of performance. The latter could be achieved
by relating the target and chip time ratios by some factor
which dynamically adjusts to one.

Finally, when the pool of erased blocks reaches a sus-
tainable minimum, the FTL would work exclusively with
the RM policies until an idle period allows for additional
GC. In this way, the FTL would provide high perfor-
mance to small bursts and gradually ramp down to a max-
imum, sustainable performance.

The inversion of preference (for RM) with good write
locality suggests another dimension for exploring how to
detect and adapt to the correct choice of page preference.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 89

Build
Fin.

Swap
DeskDev

Avg.
WebIdxN

or
m

al
iz

ed
 W

rit
e

Ba
nd

w
id

th

0.0

1.0

2.0

3.0

4.0

Baseline
All_Fast

FGC1
SGC1

FGC8
SGC8

FGC32
SGC32

Figure 11: Performance of FGC and SGC The counter
intuitive choice of servicing online operations with fast
pages (FGC) improves the performance, when spacial lo-
cality is low.

Build
Fin.

WebIdx

Swap
DeskDev

Avg.N
or

m
al

iz
ed

 E
ra

se
 C

ou
nt

0.0

0.5

1.0

1.5

2.0

Baseline
All_Fast

FGC1
SGC1

FGC8
SGC8

FGC32
SGC32

Figure 12: Wear of FGC and SGC Leveraging page
variability during heavy load does not effect device wear
out in most cases.

7 Related Work
There is a large body of flash-based storage research
spurred on by the promise of high performance, low en-
ergy, and the limitations imposed by its idiosyncrasies.
The research most closely related to our work falls in four
categories: Mode-switching Flash, FTL algorithms, SSD
interleaving, and write buffers. All of these topics try to
improve the performance, endurance and/or reliability of
the SSD, but do not leverage or address the variability
inherent in MLC flash. The final section of related work
discusses the emerging research that embraces flash page
variability.

Mode-Switching Flash: Changing the cell bit density
has been proposed in research [18] and implemented by
SSD vendors [24, 20] to improve reliability, endurance,
and performance. Switching between MLC mode and
SLC mode does have the drawback of sacrificing half of
the system capacity. In our work, by leveraging write la-
tency asymmetry across the pages, we are able to approx-
imate the performance of SLC without sacrificing device
capacity, the best of both worlds. Furthermore, because
we use all the pages in the block by not throwing away
the slow pages, we reduce the number of erase cycles,
improving overall system endurance and reliability.

FTL Algorithms: There is a large body of work fo-
cused on FTL optimizations to improve SSD perfor-
mance, endurance and reduce memory overhead based
on access pattern or application behavior. By using
an adaptive page- and block-level addressing mapping
scheme, KAST [17], ROSE [10] and WAFTL [27] are
able to improve performance, reduce garbage collection
overhead and reduce FTL address mapping table size.
DFTL [15] goes one step further by caching a portion
of the page-level address mapping table for reduced size
and fast translation. MNFTL [23] reduces the number of

valid page copies for garbage collection, explicitly tar-
geting MLC flash. Finally, CAFTL [9], removes un-
necessary duplicate writes and increases the lifespan of
the SSD. While some of these FTLs address workload
variability, none address the variability in the underlying
MLC flash.
SSD Interleaving: Intra-SSD parallelism has been ex-
plored by many groups [3, 7, 22, 28, 8, 25, 4]. By not
only issuing operations in parallel at the package-, die-,
and plane-level, others have also shown that reschedul-
ing operations can improve performance [28]. Our work
dives deeper into parallel data placement by providing
multiple write points for fast pages within the plane that
can adsorb burst and sustain high write performance, on
par with SLC devices.
Write Buffers: Historically, buffers have been used in
HDD to improve read and write performance. Likewise,
write buffers have been shown to improve random write
performance in SSDs [19]. These write buffers are also
sufficient for handling small burst sizes. More recently,
research has shown that per package queues and oper-
ation reordering provide more opportunities for parallel
operations and further improve performance over LRU-
based write buffer mechanisms [25]. Write points can
be used in conjunction with write buffers, providing the
FTL with more flexibility in data placement, in light of
the performance asymmetries that exist in MLC flash.
Variability: The quest for higher density flash has pro-
vided opportunities to exploit the variability in flash page
latency. Previous work [13] has exposed these asym-
metries and predicted their impact on future SSDs [14].
Other work has exploited the differences in the flash to
improve error correction [12] or guarantee other proper-
ties, like secure erasure [26]. We demonstrate that the
FTL can take advantage of flash variability to improve
performance while not sacrificing endurance or capacity.

90 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

8 Conclusion
In this paper, we developed an FTL that leverages sys-
tematic variability in flash memory to provide the speed
of the hare (SLC) with the capacity of the tortoise (MLC).
We propose increasing the number of write points on
each chip to increase the flexibility of the FTL to sched-
ule accesses to pages with a variety of latencies, and we
demonstrate how to use this flexibility to achieve up to
100% of the performance an SLC array (or an average
of 89%) by using MLC flash without additional wear.
Further, we show that the counterintuitive approach of
scheduling garbage collection operations on fast pages
improves performance by an average of 65% and as much
as 95% in workloads with little spacial locality.

Acknowledgements
We would like to thank the reviewers and shepherd of this
paper for their valuable input. This work was supported
by the NSF Variability Expedition under award number
1029783.

References
[1] Densbits technologies. memory modem: Technology

overview. April 2012.
[2] Nvm express. http://www.nvmexpress.org/. 2013.
[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX 2008 Annual Technical Confer-
ence on Annual Technical Conference, ATC’08, 2008.

[4] S. Bai and X.-L. Liao. A parallel flash translation layer
based on page group-block hybrid-mapping method. Con-
sumer Electronics, IEEE Transactions on, may 2012.

[5] A. Berman and Y. Birk. Constrained Flash memory pro-
gramming. In IEEE International Symposium on Infor-
mation Theory, pages 2128–2132, 2011.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks. Technical Report MSR-
TR-2005-176, Microsoft Research, December 2005.

[7] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gor-
don: using flash memory to build fast, power-efficient
clusters for data-intensive applications. In Architectural
Support for Programming Languages and Operating Sys-
tems, pages 217–228, 2009.

[8] F. Chen, R. Lee, and X. Zhang. Essential roles of ex-
ploiting internal parallelism of flash memory based solid
state drives in high-speed data processing. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, 2011.

[9] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-
Aware Flash Translation Layer Enhancing the Lifespan
of Flash Memory based Solid State Drives. In USENIX
Conference on File and Storage Technologies, pages 77–
90, 2011.

[10] M.-L. Chiao and D.-W. Chang. ROSE: A Novel Flash
Translation Layer for NAND Flash Memory Based on
Hybrid Address Translation. IEEE Transactions on Com-
puters, 60:753–766, 2011.

[11] H.-T. L. et. al. Radically extending the cycling endurance
of flash memory (to ¿100m cycles) by using built-in ther-
mal annealing to self-heal the stress-induced damage.
2012.

[12] R. Gabrys, E. Yaakobi, L. M. Grupp, S. Swanson, and
L. Dolecek. Tackling intracell variability in tlc flash

through tensor product codes. In International Sympo-
sium on Information Theory, ISIT, 2012.

[13] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing
flash memory: anomalies, observations, and applications.
In International Symposium on Microarchitecture, pages
24–33, 2009.

[14] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak
Future of NAND Flash Memory. In USENIX Conference
on File and Storage Technologies, 2012.

[15] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash trans-
lation layer employing demand-based selective caching of
page-level address mappings. In Architectural Support for
Programming Languages and Operating Systems, pages
229–240, 2009.

[16] K.-C. Ho, P.-C. Fang, H.-P. Li, C.-Y. Wang, and H.-C.
Chang. A 45nm 6b/cell Charge-Trapping Flash Memory
Using LDPC-Based ECC and Drift-Immune Soft-Sensing
Engine. In Solid-State Circuits IEEE International Con-
ference, 2013.

[17] H. jin Cho, D. Shin, and Y. I. Eom. KAST: K-associative
sector translation for NAND flash memory in real-time
systems. In Design, Automation, and Test in Europe,
pages 507–512, 2009.

[18] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash
based disk caches. In Computer Architecture, 2008. ISCA
’08. 35th International Symposium on, june 2008.

[19] H. Kim and S. Ahn. Bplru: a buffer management scheme
for improving random writes in flash storage. In Proceed-
ings of the 6th USENIX Conference on File and Storage
Technologies, FAST’08, 2008.

[20] G. e. a. Marotta. A 3bit/cell 32gb nand flash memory at
34nm with 6mb/s program throughput and with dynamic
2b/cell blocks configuration mode for a program through-
put increase up to 13mb/s. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 444 –445, feb. 2010.

[21] K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. Choi,
Y.-T. Lee, C. Kim, and K. Kim. A Zeroing Cell-to-Cell In-
terference Page Architecture With Temporary LSB Stor-
ing and Parallel MSB Program Scheme for MLC NAND
Flash Memories. IEEE Journal of Solid-state Circuits,
43:919–928, 2008.

[22] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung. Design
and analysis of flash translation layers for multi-channel
nand flash-based storage devices. Consumer Electronics,
IEEE Transactions on, august 2009.

[23] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan. Mnftl: An
efficient flash translation layer for mlc nand flash mem-
ory storage systems. In Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, 2011.

[24] D. Raffo. Fusionio builds ssd bridge between slc,mlc, july
2009.

[25] X. Ruan, Z. Zong, M. I. Alghamdi, Y. Tian, X. Jiang, and
X. Qin. Improving write performance by enhancing inter-
nal parallelism of solid state drives. In Performance Com-
puting and Communications Conference (IPCCC), 2012
IEEE 31st International, dec. 2012.

[26] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson. Re-
liably erasing data from flash-based solid state drives. In
Proceedings of the 9th USENIX conference on File and
stroage technologies, FAST’11, 2011.

[27] Q. Wei, B. Gong, S. Pathak, B. Veeravalli, L. Zeng, and
K. Okada. WAFTL: A workload adaptive flash translation
layer with data partition. In Symposium on Mass Storage
Systems, pages 1–12, 2011.

[28] S. yeong Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee.
Exploiting internal parallelism of flash-based ssds. Com-
puter Architecture Letters, jan. 2010.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 91

Janus: Optimal Flash Provisioning for Cloud Storage Workloads

Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji
François Labelle, Nate Coehlo, Xudong Shi, C. Eric Schrock

{calbrecht,aamerchant,mstokely}@google.com,mhwaliji@gmail.com
{flab,natec,xdshi,eschrock}@google.com

Google, Inc.

Abstract
Janus is a system for partitioning the flash storage tier
between workloads in a cloud-scale distributed file sys-
tem with two tiers, flash storage and disk. The file system
stores newly created files in the flash tier and moves them
to the disk tier using either a First-In-First-Out (FIFO)
policy or a Least-Recently-Used (LRU) policy, subject to
per-workload allocations. Janus constructs compact met-
rics of the cacheability of the different workloads, using
sampled distributed traces because of the large scale of
the system. From these metrics, we formulate and solve
an optimization problem to determine the flash allocation
to workloads that maximizes the total reads sent to the
flash tier, subject to operator-set priorities and bounds on
flash write rates. Using measurements from production
workloads in multiple data centers using these recom-
mendations, as well as traces of other production work-
loads, we show that the resulting allocation improves the
flash hit rate by 47–76% compared to a unified tier shared
by all workloads. Based on these results and an analysis
of several thousand production workloads, we conclude
that flash storage is a cost-effective complement to disks
in data centers.

1 Introduction

Disks are slow, and not getting much faster, even as their
capacities grow: the random I/O operations possible per
gigabyte stored on disk continues to decline. We can
compensate for this by adding flash storage, which sup-
ports a much higher I/O rate per byte of storage capacity.
Since flash is expensive per byte compared to disk, it is
best to provision a relatively small amount of flash to
store the most frequently accessed data.

Storage needs in a large cloud environment are of-
ten highly varied between different users and workloads
[15, 23]. Hence, distributing the available flash capacity
uniformly between the workloads is not ideal from either

a performance or a cost perspective. Instead, we seek
to leverage the differences between the competing users
and workloads to optimize the provisioning of flash.

Our system, Janus, provides flash provisioning and al-
location recommendations for both individual users and
system administrators of large cloud data centers, where
many users share the resources. Janus uses sparse traces,
such as Dapper traces [22], to build a compact charac-
terization of how effective flash storage is for different
workloads. Where flash provisioning decisions are made
by individual users, this characterization can be used to
determine how much flash storage is cost-effective to
purchase. For the case where resources are provisioned
and allocated centrally by a system operator, we set up
an optimization problem to partition the available flash
between workloads so as to maximize the overall reads
from flash and show how to solve it efficiently.

Janus recommendations are used by several produc-
tion workloads in our distributed file system, Colos-
sus [17]. We provide evaluations of the effectiveness
of the recommendations from measurements on some of
these workloads, and additional evaluations using traces
of other production workloads. Our workload character-
izations show that most I/O accesses are to recently cre-
ated files. Based on this observation, files are placed in
the flash tier upon creation and moved to the disk tier us-
ing FIFO or LRU eviction policies. Our results show that
the recommendations allow 28% of read operations to be
served from flash by placing 1% of our data on flash.

The three main contributions of this paper are:
• A characterization of storage usage patterns in a

large private cloud focusing on the age of data
stored and I/O rates to recently written data (§ 4).

• An optimization problem formulation for flash allo-
cation to groups of files to maximize read rates of-
floaded to flash weighted by priorities and bounded
by maximum flash write rates (§ 6).

• Experimental results from an implementation for
the Colossus file system (§ 8).

92 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

2 Related Work

Several types of multi-tier storage systems [16] have
been developed for memory, solid state drives, disk,
and tape. These include Hierarchical Storage Manage-
ment (HSM) [7, 12], multi-tier stores [24], multi-tier file
systems [2], hybrid disk/flash storage [19], and extent-
based enterprise volume management [24, 13]. Most
include automated methods for migrating data between
tiers based on I/O activity levels, performance require-
ments set by administrators, or explicit rules defined by
users or administrators. However, none of these have fo-
cused on a distributed, cloud-scale deployment, which
adds issues of provisioning policies and workload moni-
toring compatible with distributed management.

Several storage design tools, such as Minerva [3] and
DAD [4], advocate principled, automated approaches to
choose appropriate storage parameters for disk arrays
based on workloads and desired availability characteris-
tics. However, these tools typically provide only coarse-
grained recommendations about RAID levels for storage
volumes, unlike the data placement decisions for differ-
ent files in a multi-tiered cloud storage environment de-
scribed in this paper.

Studies on the distributed file system in Sprite [5] and
the local file system in 4.2 BSD [20] showed the utility of
characterizing user activity, access patterns, and file life-
times when evaluating caching strategies. Blaze [6] an-
alyzed access patterns affecting caching in a distributed
file system using traces of I/O activity obtained by mon-
itoring storage related remote procedure calls (RPCs).
We similarly monitor storage RPCs in our distributed file
system, but we also needed to use sampling and other sta-
tistical techniques due to the system scale.

TIP [21] used explicit hints of future I/O accesses pro-
vided by the application programmer to determine which
data to prefetch and when. Janus does not rely on the ex-
plicit programmer action of adding hints to the API us-
age of the system. Instead, we predict the cacheability of
different user workloads automatically from online mea-
surements of past usage. Kroeger [14] predicts file access
patterns in the context of prefetching at the Linux kernel
level by using the sequence of past accesses; however, it
is not clear how it could be extended to the distributed
case.

Our approach is most closely related to the work of
Narayanan et al. [18], which analyzed several enterprise
workload traces to evaluate the economic feasibility of
replacing disks with flash storage. We focus on a larger
cloud storage environment, develop an algorithm for
making good allocation choices between different work-
loads, and reach significantly different conclusions about
the effectiveness and economics of using flash in this
manner.

3 System Description

Janus provides flash storage allocation recommendations
for workloads in a distributed file system, such as Colos-
sus, in a large private cloud data center. The underly-
ing storage is a mix of disk and flash storage on distinct
chunkservers, structured as separate tiers. Upon creation,
files may be placed in the flash tier, and later moved to
disk using a FIFO or LRU policy. We use this insertion
on write mechanism rather than the insertion on read
used in most caches because it is more suitable for our
system. The distributed nature of file systems like GFS
and Colossus makes insertion on read policies more ex-
pensive than insertion on write for some metrics we in-
tend to optimize, in particular the volume of read activity.
Because data access occurs directly between chunkserver
nodes and clients, and not every chunkserver node con-
tains flash capacity, an insertion on read policy that does
not rely on the client for write back must perform an ad-
ditional read in order to populate the data into flash stor-
age. Additionally, the write back into flash storage can
not be assumed to be instantaneous as the operation re-
quires reading data from disk, transferring across a local
network link, and finally a write into the flash media.

Many users and applications may use this system, ei-
ther directly, or through higher level storage components
such as Bigtable [8]. The flash tier can be partitioned
between workloads. The main scenario we consider is
where the system operator has a fixed amount of total
flash available in the system, and wants to maximize the
fraction of reads offloaded to flash storage; however, in
some cases, it may be preferable to offload high-priority
workloads.

Workloads can correspond to users, applications, or
specified groups of files. For example, an application
may have separate logging, data, and metadata compo-
nents, and these could be different groups. In structured
data, a table or a set of columns may be a group. Exactly
how the workloads are formed is outside the scope of this
paper; we just assume that these groupings exist, perhaps
manually created. We may associate a priority weight
with each workload; the higher the priority weight, the
more important it is to accommodate its reads from flash
storage. The precise mechanism for choosing workload
weights is again outside the scope of this paper, but for
example, the administrator could assign different weights
to different workload types. Our goal is to determine au-
tomatically how to divide the available flash between the
workloads to optimize the reads from flash.

The allocation recommendations are made by an of-
fline optimization solver that runs periodically to adjust
to changes in the workload behaviors and the available
flash storage. A key input to the solver is a compact
representation of both the age of the data stored in each

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 93

0 5000 10000 15000

1 sec

1 min

1 hour
1 day

30 days
1 year

Job Number (sorted by y−axis)

M
ea

n
Ag

e
of

 B
yt

es
 R

ea
d

(lo
g)

Figure 1: Mean age of bytes read differs significantly by user.

workload group, and the read rate of the data by age.
These are obtained by scanning the file system metadata
and sampled traces of I/O activity.

The operation of Janus can be broken into three steps:
• Collection of input data about the age of bytes

stored and age of data accessed for different
workloads to generate a characterization of how
cacheable each workload is (§ 4).

• Solving an optimization problem to allocate flash
amongst the workloads (§ 6).

• Coordination with the distributed file system to
place data from different workloads on flash us-
ing the computed write probabilities and flash sizes
from the solver (§ 8).

4 Workload Characterization

Storage in our data centers is shared between thousands
of users and applications. Applications include content
indexing, advertisement serving, Gmail, video process-
ing, as well as smaller applications, such as MapReduce
jobs owned by individual users. A large application may
have many component jobs. The workload characteris-
tics and demands of jobs in data centers are typically
highly varied between users and jobs. Figure 1 shows the
variation of mean read age over different jobs in our data
centers. All read ages are well represented: there are jobs
accessing very young (1 minute old) to very old (1 year
old) data. However, different jobs also have very differ-
ent read hotness, as shown in Figure 4, so we cannot con-
clude that the aggregate reads are evenly distributed over
data of different ages. Instead, we need to define a metric
that lets us compare how many read operations would be
served by flash storage for a given flash allocation to that
workload.

4.1 Cacheability Functions

The cacheability function (which we define more for-
mally below) tells us the rate of read hits we are likely
to get for a workload if we allocate it a given amount of
flash. To compute this for FIFO eviction, we need two

1m 10m 1h 6h 1d 7d 30d 1y

0

4PiB

8PiB

12PiB

C
um

. R
ea

d
R

at
e

C
um

. B
yt

es
 S

to
re

d

Age (log)

0

0.2M/s

0.4M/s

0.6M/s

0.8M/s

1.0M/s
Bytes Stored
Read Operations

Figure 2: Cumulative distribution function of the bytes stored,
and read operations sorted by the (FIFO) age of the data for a
particular workload. These CDFs are a graphical representation
of the histograms collected as inputs to the cacheability curves,
which are different for each user and used in the optimization
formulation. 50% of the data stored by this particular user is
less than 1 week old, but that corresponds to over 90% of the
read activity.

inputs for each workload: how much data there is of a
given age, and how many reads there are to files of a
given age. For LRU eviction, the corresponding two in-
puts are the amount of data with a given temporal locality
and the rate of reads to files with that temporal locality.

We define two age metrics: FIFO age and LRU age,
which are used with the corresponding eviction policies
(although we will just say “age” where the disambigua-
tion is not needed). The FIFO age of a file (and of all
the data in the file) is the time since the file was created.
The LRU age of a file, which is a measure of the tempo-
ral locality of its reads, is approximately the maximum
time gap between reads to the file since it was created
(see Section 8.7 for a precise definition).

Obtaining the distribution of FIFO age is straightfor-
ward: we scan the file system metadata, which includes
the create time of each file, to build a histogram of the
FIFO age of bytes stored for each group. To build a his-
togram of the read rates of data by FIFO age, we need to
look at the read accesses, which we obtain from traces.
Since the read rate in the data centers is enormous, it is
not practical to consider every read to the data in each
workload. Instead, we sample the reads from every job
using Dapper [22, 9], an always-on system for distributed
tracing and performance analysis. Dapper samples a
fraction of all RPC traffic and, by looking at the age of
the requested data at the time of each RPC, we can popu-
late a second histogram of the number of read operations
binned by age of the data read. Crucially, each of these
two histograms has the same bucket boundaries for data
age, which later lets us join the histograms.

Computing the corresponding histograms for LRU age
is similar, except that computing the LRU age requires
the time-gaps between read operations to a file. Dapper
traces do not suffice in this case, since not every I/O to

3

94 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0k/s

200k/s

400k/s

600k/s

800k/s

0PiB 2PiB 4PiB
Data Sorted by Age

R
ea

d
O

ps

Figure 3: The number of read operations for a given amount of
the youngest data (by FIFO age) for a particular user.

a file is captured. We built instead a distributed tracing
mechanism that samples based on the file identifier and
captures every I/O for the files so selected.

The two input histograms of data age and read age for
a specific workload can then be combined to construct a
cacheability function.
Definition (Cacheability Function): For a workload the
cacheability function φ maps the amount of flash allo-
cated to the workload to the rate of reads absorbed by
the flash storage. In particular, φ(x) gives the number of
read operations that go to the youngest x bytes of data.

Figure 3 shows an example of a cacheability function
computed by joining the histograms of read rate and data
size by age in Figure 2. Joining the histograms is simple
because the age bins are the same. From the histograms
for a specified workload we derive the cumulative func-
tion f giving the amount of data younger than a certain
age, and the cumulative function g giving the read oper-
ations to files that are younger. Essentially, for each flash
allocation x, we can look up the age f−1(x) of the files
that can be stored (assuming the youngest are stored) and
then look up the rate of read hits for files of that age or
younger:

φ(x) = (g ◦ f−1)(x) = g(f−1(x))

We compute the cacheability function by linear in-
terpolation between the bins, and hence the function is
piecewise linear, a fact we later use in the optimization.
Assuming that these distributions are stationary, the com-
position gives us the read hit rate for the flash allocation.
Also, because of the way we separately defined file age
for FIFO and LRU eviction, this method works in both
cases.

5 Economics and Provisioning

Narayanan et al. [18] argued that replacing disk with
flash storage was not cost-effective. Prices for flash have
fallen considerably since then, but has this conclusion

IO
PS

�
�

1 GiB 1 TiB 1 PiB
1

10

100

1K

10K

100K

1M

2008−era IOPS/GiB Break−even Line for Flash
Current IOPS/GiB Break−even Line for Flash

Bytes Stored

Figure 4: Peak IOPS and capacity requirements for user work-
loads in a shared data center. IOPS is the 95th percentile
over 10 minute intervals. Workloads above the break-even line
would be cost-effective to store entirely on flash. The two filled
red dots are for the workloads in Table 1, and come from other
data centers. The lower dot is for the workload in Figure 3.

changed? To analyze this, following Narayanan, we find
the break-even point, which is the IOPS/GiB threshold
determining whether a workload would be cheaper on
flash storage or on disk. This threshold can be derived
from the IOPS/$ of disk, Id, and the GiB/$ of flash,
Gf , since a workload with I IOPS and G GiB will cost
G/Gf on flash and at least I/Id on disk (more for cold
data). Therefore, workloads with IOPS/GiB greater than
Id/Gf are better served from flash, and by using a disk
with high Id for this cutoff, we are being conservative in
recommending workloads to go entirely on flash.

For our example IOPS/$ efficient retail drive, we use
the Seagate Savvio 10K.3, which costs around $100. The
disk specifications [1] indicate an IOPS capacity around
150 ((seek time+avg latency)−1), or 1.5 IOPS per dollar
for disk. On the other hand, recent news reports [10]
indicate that we can get about 1 GiB of flash per dollar;
together these give a break even point of 1.5 IOPS per
GiB, which is much smaller than the 2008 value ≈ 60.
As displayed in Figure 4, we find that, at least for some
workloads, it is cost-effective to place all data in flash.
Even for other workloads close to the break-even point,
using flash may be justified by the resulting improvement
in latency.

In addition, many workloads could benefit from
putting their youngest data on flash using Janus. We now
consider how much flash is cost-effective for an individ-
ual workload. For a workload with read operations rate
rater, write operations rate ratew, capacity size c, and

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 95

Workload 1 2
Data size (PiB) 5.2 6.1
Access rate (k ops/sec) 1172 2214
Janus Savings (%) 29 12
Janus Flash (%) 0.42 2.1

Table 1: Storage demands and savings from a price optimiza-
tion using Janus, which correspond to solid red dots in Figure
4. The savings is over the best all-disk or all-flash solution. The
flash % is the percentage of the user data in flash.

cacheability function φ(), a disk (IOPS, GiBdisk) de-
mand of (rater + ratew, d), could be replaced with a
disk + flash (IOPSdisk, GiBdisk, GiBflash) demand of

(rater + ratew − φ(x), d− x, x)

To determine the amount of flash, x, that a user should
purchase, and their benefit from using the system, we
impose a pricing structure, then have each user purchase
flash to minimize costs. We avoid pricing complica-
tions arising from the balance of cold and hot data in
a shared storage system, and put ourselves in the IOPS
constrained framework where we sell disk based entirely
on IOPS, so that cost is determined by

cost(x) =
(rater + ratew − φ(x))

Id
+

x

Gf
(1)

and we note that the optimization of cost is simplified
by the fact that φ is piecewise linear between histogram
buckets.

In Table 1 we consider this optimization for some
workloads and display the price savings, along with the
percentage of data that goes on flash, in the optimal con-
figuration. We note that while workload 2 is hotter on
average, workload 1 gets a greater benefit from a smaller
amount of flash because of its steep cacheability curve
(Figure 3).

6 Optimizing the Flash Allocation for
Workloads

We now describe how we determine the best flash alloca-
tion for each workload, given the cacheability functions
derived in Section 4. Specifically, we seek to maximize
the aggregate rate of read operations served from flash
subject to a bound on the total available flash. The work-
loads may have different priority weights, in which case
we maximize the aggregate weighted rate of reads from
flash.

We assume that the cacheability functions are piece-
wise linear and concave. As mentioned previously, the
piecewise linear assumption always holds since we com-
pute the function by linearly interpolating between a fi-
nite number of points (corresponding to the bins of the

histogram from which we derive it). The concavity as-
sumption is equivalent to assuming that the read rates
for each workload’s data decrease monotonically with in-
creasing data age. This assumption holds usually, but not
always. We will show in the next section how to relax the
assumption where it matters.

Weighted Max Reads Flash Allocation Problem
Instance:
• A set of workloads; for each workload i is given the

total data di, the cacheability function as a piece-
wise linear function φi : [0, di] → R, and a priority
weight ρi.

• A bound on the total flash capacity F .
Task:

Find for each workload i the allocated flash capac-
ity xi, 0 ≤ xi ≤ di, maximizing the total priority
weighted flash read rate

∑
i ρi φi(xi), and subject to

the constraint of the total flash capacity
∑

i xi ≤ F .

Let the segments of the piecewise linear function ρi φi

be ai,j + bi,j x for j = 1, . . . , ni. Since φi is concave,
ρi φi can be expressed as the minimum of the functions
corresponding to its linear segments:

ρi φi(x) = min
1≤j≤ni

{ai,j + bi,j x}

By replacing ρi φi(x) with the variable yi, we transform
the task into a linear program:

max
∑
i

yi

s.t. yi ≤ ai,j + bi,j xi for each workload i
and each segment j∑

i

xi ≤ F

0 ≤ xi ≤ di for each workload i

(2)

This optimization problem can be solved with an LP
solver. We solve it directly as explained at the end of the
next section.

7 Optimization with Bounded Write Rates

Limiting flash write rate is important to avoid flash wear
out and also reduces the impact of flash writes (which are
slow) on read latencies. We now describe how to allocate
flash so as to maximize the reads from flash while limit-
ing the write rate to flash. We also show how to approxi-
mately relax the concavity assumption on the cacheabil-
ity function. The cacheability function for a workload
may be non-concave if the read rate increases some time
after it is created, for example, if there is a workload
that begins processing logs with some delay after they
are created.

5

96 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

30

15

0

20

10

30

Age
0

10

20

30

Total
read rate

30

15

45

Flash read
rate: 45

Flash read
rate: 60

Flash Allocation A
Write probability: 1

Flash Allocation B
Write probability: 2/3

Total flash size: 2

data in flash

Figure 5: Example for non-concave cacheability and fractional
write probability: Data blocks and read rates of a workload for
different age ranges are shown at steady state. The workload
has one block of data with age between 0 and 10 and a read
rate of 30, a second block of data with age between 10 and 20
and a read rate of 15, and a third block of data with age between
20 and 30 and a read rate of 45. Storing all data younger than
age 20 in flash (highlighted) gives a hit rate of 45 (left). With
a write probability of 2/3, we place less new data in the same
flash but keep it longer, until age 30 (right). This captures the
higher read rate for data between ages 20 and 30, for a total
flash hit rate of 90 * 2/3 = 60. The write rate to flash also
decreases by 1/3.

We only consider insertion into flash upon write, so
that the write rates per workload are independent of the
flash allocation. For simplicity, we also ignore priority
weights here, but this extension is straightforward.

The flash write rate can be controlled either by limit-
ing the workloads that have data in flash or by writing
only a fraction of each workload’s new data into flash.
We implement the latter by setting a write probability,
and for each new file, deciding randomly with that prob-
ability whether to insert it into flash. Figure 5 shows an
example with one workload where decreasing the write
probability decreases the flash write rate and increases
the flash read hits. This is only possible if the cacheabil-
ity function is non-concave.

In general, if the workload i has a flash capacity xi and
a write probability pi the data can stay in flash for as long
as if the workload has a flash capacity of xi

pi
but all new

data is written to flash. Hence, the flash read rate for the
workload i with cacheability function φi is pi φi(

xi

pi
).

Bounded Writes Flash Allocation Problem
Instance:
• A set of workloads; for each workload i is given

the total data di, a continuous piecewise linear
cacheability function φi : [0, di] → R, and a write
rate wi.

• A bound on the total flash write rate W .
• A bound on the total flash capacity F .

Task:
Find, for each workload i, the allocated flash capac-
ity xi, 0 ≤ xi ≤ di and the flash write probabil-
ity pi, 0 ≤ pi ≤ 1, maximizing the total flash read
rate

∑
i pi φi(

xi

pi
) and subject to the constraint of the

total flash write rate and total flash capacity. Formally:

max
∑
i

pi φi

(
xi

pi

)

s.t.
∑
i

pi wi ≤ W

∑
i

xi ≤ F

0 ≤ xi ≤ di for each workload i
0 ≤ pi ≤ 1 for each workload i

(3)

While the problem has linear constraints, the objective
is not linear. Our approach is to (a) relax the constraint
on the write rate via Lagrangian relaxation; (b) remove
the dependence on the write probability pi in the objec-
tive function; (c) linearize the objective; and (d) solve the
resulting linear program with a greedy algorithm.

We relax (remove) the write rate bound
∑

i piwi ≤
W and change the objective function by subtracting the
write rate with a write penalty factor λ ≥ 0:

∑
i

pi φi

(
xi

pi

)
− λ pi wi (4)

An optimal solution for the relaxed problem with a to-
tal write rate equal to the bound (i.e.,

∑
i piwi = W) is

an optimal solution of the original problem (3). Proof:
If there is a better solution for the original problem (3),
its read rate is higher but its write rate cannot be larger.
Hence, this solution is also a better solution for the re-
laxed problem, which contradicts the optimality.

Since the total write rate found by the relaxed opti-
mization decreases monotonically with increasing λ, we
can find the best λ, where the total write rate closely
matches the bound, using binary search.

Since the constraints on the write probabilities pi are
independent of the other variables, we can remove the de-
pendence on the write probabilities as follows. Let hλ

i (x)
represent the contribution of workload i with allocated
flash size x to the objective (4) when maximized. Then:

hλ
i (x) = max

0≤p≤1
p φi

(
x

p

)
− λ pwi

= max
z≥x

x

z
(φi(z)− λwi)

= x max
z≥x

φi(z)− λwi

z

Since the function φi is continuous and piecewise lin-
ear, (φi(z) − λwi)/z is monotonic with z in each seg-
ment. Hence the above maximum can be found by eval-
uating it only at the breakpoints of φi. By processing the
breakpoints of φi in decreasing x-coordinate the func-
tion hλ

i (x) can be computed in linear time.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 97

Next, we linearize the resulting objective
∑

i h
λ
i (xi).

hλ
i is concave if φi is, which is usually the case because

read rates decline with age. If not, we replace it with its
concave upper bound by removing some breakpoints of
the piecewise linear function. We argue later that this has
only a small impact on the optimality of the result. As in
the previous section, we rewrite hλ

i (x) as the minimum
of the linear functions corresponding to its segments and
get a linear program that has the same form as (2).

Finally, we solve this linear program with a greedy al-
gorithm. We start with the solution xi = 0, yi = 0
for each workload i and then successively increase the
allocated flash xi of the workload that has the highest
ratio of increase in the objective function to flash allo-
cation, as long as flash can be allocated. Except for the
last incremental allocation, the flash allocation to each
workload corresponds to a breakpoint of its cacheabil-
ity function. The algorithm has a runtime complexity of
O(nk log k) where n is the maximum number of pieces
of the piecewise linear functions φi and k is the number
of workloads.

The result is optimal if hλ
i is concave. If not, we can

show that the error in the objective value due to the con-
cave approximation is bounded by the objective incre-
ment of the last step. Hence, we are close to optimality if
the last incremental flash allocation is small. This is cer-
tainly the case if the workload is partitioned into many
small workloads, which is, in any case, preferable for
optimal allocation.

8 Evaluation

In this section, we evaluate the effectiveness of the algo-
rithms described in the previous sections on production
storage workloads in Google data centers. Section 8.1
describes the production environment, and Section 8.2
introduces the datasets and terminology used for the eval-
uation. The remainder of the section evaluates the rec-
ommendations produced by Janus both on production
workload deployments that used the recommendations
and on traces of other production workloads.

8.1 File Placement in Colossus

Colossus (the successor of GFS [11]) is a distributed
storage system with multiple master nodes and many
chunkservers that store the file data. File system clients
create new files by a request sent to a master node, which
allocates space for it on chunkservers it selects. We eval-
uated Janus in a Colossus system extended as follows.

When a file is created, a Colossus master node decides,
based on the amount of flash space available for the cor-
responding workload and the write probability assigned
to it, whether it should be placed on disk or on flash,

and accordingly allocates space. Eviction from flash is
designed to take advantage of the already existing file
maintenance scanner process. The file is tagged with an
eviction time (TTL), which is computed from the flash
allocated to that workload and the workload’s write rate.
The scanner process periodically checks whether the file
has exceeded its eviction time, and if so, moves it to
disk. The eviction time (TTL) in its current implemen-
tation is not updated after it is set, effectively producing
an approximate FIFO eviction policy. An arriving file
creation request sometimes finds the flash storage full;
in this case, the master will write it to disk, regardless
of whether it would otherwise have chosen to write it to
flash.

8.2 Datasets and definitions

In the remainder of Section 8, we evaluate Janus based
on several datasets.

A Colossus cell is a separate instance of the Colossus
system. Separate cells are typically located in different
facilities. Each cell has its own masters, chunkservers,
and files, and each cell independently manages user
quota.

The first three datasets come from multi-user cells,
with workloads corresponding to different users of the
cell.

Dapper A 37-day Dapper sample of read-write activity
over 10 cells. The first 30 days are used for training
(computing the cacheability functions), and the last
7 days are used for evaluation.

Janus Deployment Data from limited deployments of
production workloads using Janus recommenda-
tions in 4 cells. In these deployments, flash was
assigned only to a single workload. The training
period consisted of a 30 day of Dapper sample prior
to the deployment.

Multi-User Cell A 1-week trace of all read-write activ-
ity to a 1% sample of files in a single cell. The 6th
day is used for training, and the 7th day is used for
evaluation. The first 5 days are used in Section 8.7
to determine whether a file is cached by LRU. This
cell had 407 workloads.

The last dataset comes from a cell where all activity
comes through Bigtable. Files are separated into work-
loads based on tokens that Bigtable encodes in the file
name for different tables and columns.

Single-User Cell A full trace of read-write activity in a
single-user Colossus cell for 30 minutes. The first
15 minutes are used for training, and the second 15
minutes are used for evaluation. The cell had 541

7

98 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

workloads, and contained over 10,000 machines. A
configuration change was needed to collect the data,
leading to the short duration of the trace, but it con-
tains adequate data because of the size of the cell
and the fact that the trace is not sampled.

The read rate for each workload is the number of read
operations per second, excluding in-memory cache hits.
The flash read rate is the number of read operations per
second that is served from flash. The flash hit rate is
the flash read rate as a percent of the read rate. In some
cases, we report the normalized flash hit rate, which is
the flash read rate for a workload as a percent of the total
read rate among all workloads in the cell. In particular,
the cell-wide flash hit rate is the sum over all workloads
of the normalized flash hit rate.

The size of a workload is the logical number of bytes
stored, excluding overhead from replication or erasure
coding. Analogous to the terminology for read rates, we
also have flash size, flash size percentage and normalized
flash size percentage.

The write rate of a workload is the number of bytes per
second of new data written. Again, this excludes over-
head from replication or erasure coding. Again, we also
have flash write rate and flash write percentage.

Given a cell-wide flash size, or equivalently a flash
size percentage, we form an allocation of flash to dif-
ferent workloads using the optimization. The allocation
consists of a Flash Size and a Write Probability for each
workload in the cell. This allocation is used in the evalu-
ation period to compute various metrics of interest, such
as flash hit rates.

8.3 Does the Past Predict the Future?

Our optimization is based on sampled historical data.
Here, we investigate the stability of estimated per-
workload flash hit rates between training and evaluation
periods in the Dapper dataset. In Section 8.4, we will
consider how well estimated flash hit rates correspond
with values from an actual deployment.

We chose 10 cell-wide flash size percentages between
0.1% and 10%. For each flash size percentage and each
cell, we optimized the allocation of flash to workloads.
Figure 6 uses these allocations to plot per-workload flash
hit rates in the evaluation period against those in the
training period. The figure shows that flash hit rate dur-
ing evaluation is typically within 7% of the flash hit rate
during training. This range of variability is small enough
for the resulting system to be effective.

8.4 Janus Deployment

Due to the Colossus’s use of approximate FIFO (de-
scribed in Section 8.1), we must compute eviction TTLs

0 20 40 60 80 100

0

20

40

60

80

100

Flash Hit Rate (%), Training

Fl
as

h
H

it
R

at
e

(%
),

Ev
al

ua
tio

n

y = x
y = x ± 7

Figure 6: Flash hit rate during training and evaluation periods,
estimated from the Dapper dataset. Each point represents a sin-
gle workload in a single cell with a given cell-wide flash size
percentage.

from each workload’s allocation. Janus computes the
TTLs using file age histograms from the training period.
However, the file age distribution may change between
training and deployment. For example, a workload may
start writing new data at a high rate, or it may exhibit
peak-to-trough variability not captured in histograms av-
eraged over the 30-day training period. In these cases,
using fixed TTLs may cause the workload to exceed its
allocated flash size, and Colossus will write new files to
disk until flash usage decreases. Hence, a workload’s ac-
tual flash usage can fluctuate over time.

Figure 7 shows flash usage for a single workload over
two days in one cell. The workload’s allocated flash size
was 100 TiB. Each day, actual flash usage fluctuates from
45 TiB to 100 TiB due to peak-trough variations. We
accommodated this variation by decreasing the allocated
flash size so as not to exceed the actual allocation.

Figure 7 also shows the workload’s flash read rate dur-
ing the period. On average, we get around 30k flash read
ops/sec, with a peak of more than 40k flash read ops/sec.
From the 30 day training period, we predicted a flash
read rate of 33k flash read ops/sec.

Table 2 shows results for this workload over deploy-
ments in four different cells. The average of estimated
and measured flash hit rates over those cells were 22.8%
and 23.5% respectively, a 3% difference. For cell A, the
measured flash hit rate (27%) was significantly higher
than the estimated value (17%), partly because we manu-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 99

Wed Thu
0

20

40

60

80

100
Fl

as
h

U
sa

ge
 (T

iB
)

0

8k

16k

24k

32k

40k

Fl
as

h
R

ea
d

R
at

e
(o

ps
/s

)

Flash Usage
Flash Read Rate

Figure 7: Flash usage and Flash read rate for one workload over
two days after Janus deployment.

allocated average estimated measured
workload flash flash flash flash

Cell size size usage hit rate hit rate
A 3.26 PiB 80 TiB 62 TiB 17% 27%
B 3.34 PiB 100 TiB 72 TiB 29% 31%
C 3.47 PiB 60 TiB 50 TiB 19% 16%
D 3.26 PiB 100 TiB 63 TiB 26% 20%
Avg 3.33 PiB 85 TiB 62 TiB 22.8% 23.5%

Table 2: Janus performance with one workload in four cells.

ally adjusted the parameters to maximize the space usage
and allow the group to hit the quota.

8.5 Comparing Alternative Allocation Methods

In this section, we compare alternative methods for gen-
erating flash allocations. Optimized FIFO allocation
uses the methods described above. We can also set per-
workload flash size proportional to read rate or propor-
tional to size. Both read rate and size are the average
usages measured over the training period. Lastly, we can
assign flash size such that the eviction TTL is the same
for all workloads. This is effectively a single FIFO for
all workloads. These and all subsequent comparisons are
made using trace-based analysis rather than direct mea-
surement, since Janus was only deployed with optimized
FIFO eviction (denoted Opt FIFO in the tables).

Table 3 shows cell-wide flash hit rates for the single
and multi-user cells. In the multi-user cell, the flash hit
rate improves from 19% to 28% when changing from
single FIFO to optimized FIFO, representing a 47% im-
provement. In the single-user cell, the relative improve-
ment was even larger — from a 42% hit rate to 74%, a
76% relative improvement.

Especially in the single-user cell, optimized alloca-
tion outperforms the other methods. Table 4 shows that
the poor performance of non-optimized methods in the
single-user cell is due to allocating large amounts of flash
to workload 117. This workload comprises 10% of the
cell’s read rate, but 43% of the cell’s size. Optimized

Dataset Multi-User Single-User Single-User
Flash Size (%) 1.0% 5.3% 5.3%

Additional No flash for
Constraints workload 117

Opt FIFO 28% 74% 74%
Prop. Read Rate 26% 64% 64%

Single FIFO 19% 42% 45%
Prop. Size 14% 15% 21%

Table 3: Flash hit rates achieved by 4 different allocation meth-
ods for the single and multi-user cells. The cell-wide flash size
percentages were 5.3% for the single-user cell and 1.0% for the
multi-user cell.

allocation assigns no flash to this workload, since other
workloads provide a better read rate to size ratio.

The last column of Table 3 shows that the flash hit rate
under Single FIFO and Proportional to Size improves if
we constrain workload 117 to receive no flash. However,
Proportional to Read Rate does not improve, as removing
workload 117 exposes the next few workloads that have
a high read rate to older data.

The improvement between single FIFO and optimized
FIFO in the multi-user cell can also be attributed to a
single workload. This is discussed further in Section 8.7.

Normalized Flash Hit Rate (%)
Workload Opt FIFO Prop Reads FIFO Prop Size

1 11.8 10.8 8.1 3.5
2 7.9 7.9 4.2 1.3
3 7.7 5.5 6.0 2.2
4 7.4 7.4 3.8 1.1
5 5.7 5.7 2.2 0.5
9 4.0 4.0 4.0 0.3

10 3.9 4.2 4.2 0.3
117 0.0 0.6 0.9 1.0

Others 25.4 17.6 8.5 4.6
Total 73.7 63.8 41.9 14.7

Normalized Flash Size Percentage (%)
Workload Opt FIFO Prop Reads FIFO Prop Size

1 0.82 0.59 0.22 0.04
2 0.08 0.41 0.02 0.00
3 1.19 0.62 0.71 0.17
4 0.09 0.38 0.02 0.00
5 0.04 0.31 0.01 0.00
9 0.01 0.20 0.01 0.00

10 0.00 0.21 0.01 0.00
117 0.00 0.25 0.99 2.26

Others 3.02 2.27 3.26 2.77
Total 5.25 5.25 5.25 5.25

Table 4: Flash hit rates and size for selected workloads in the
single-user cell. Workloads are numbered in decreasing order
of flash read rate under optimized FIFO allocation.

9

100 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0 20 40 60 80 100
0

20

40

60

80

Flash Write Percentage (%)

Fl
as

h
H

it
R

at
e

(%
)

Cell 1
Cell 2
Cell 3
Cell 4

Figure 8: Flash hit rate for given bounds on the flash write
percentage for four cells in the Dapper dataset.

0 20 40 60 80 100

5

10

20

50

100

Flash Write Percentage (%)

TT
L

(h
ou

rs
)

Cell 1
Cell 2
Cell 3
Cell 4

Figure 9: Average TTL of data written to flash for given
bounds on the flash write percentage for four cells in the Dap-
per dataset.

8.6 Impact of Bounded Flash Write Percentage

In Section 7 we showed how the flash write percentage
can be bounded at the cost of a lower flash hit rate.

Figure 8 shows the optimized flash hit rate for vari-
ous bounds on the flash write percentage. The right-
most point on each curve corresponds to unbounded flash
write percentage. In each cell, the optimized unbounded
value is above 90%. As we decrease the bound, the flash
hit rate decreases slowly at first, and it decreases quickly
once the bound falls below 60%.

Figure 9 shows the average TTL of the new data writ-
ten to flash for the same cells and the same flash alloca-
tion solutions. As the bound on the write rate is tight-
ened, less data is written to flash but it stays there longer.

8.7 Evaluation of LRU Eviction

We have so far seen the performance of Janus with FIFO
eviction. We now turn to an evaluation with LRU evic-
tion.

LRU Cacheability Functions and Censoring

In Section 4, we briefly described cacheability functions
for LRU eviction. We make this description more formal
here.

A file will be in the cache if the maximum gap between
reads is lower than the TTL. We re-define the notion of
age to reflect this heuristic. The LRU age of a file at
time t is

Age(t) = max (t1 − t0, ..., tn − tn−1, t− tn)

where t0 is file creation time, and t1, ..., tn are the times
of the n reads in interval [t0, t). The smaller the LRU age
of a file is, the more temporal locality its reads have. The
cacheability function, φ(x), gives the flash read rate if
the x bytes with the lowest LRU age are placed on flash.

To compute the age of a file at t, we require a full
trace of read operations during [t0, t). In many cases, the
full trace is not available. Suppose the trace is available
only during [tS , t), with tS > t0. The resulting read age
measurement is censored.

We deal with censoring by considering the two ex-
tremes. Upper bound age assumes that there were no
reads between t0 and tS . Lower bound age assumes that
there was continuous read activity between t0 and tS , so
that Age(tS) = 0. The upper bound of the cacheability
function is obtained by using upper bound age for size
and lower bound age for read rates, and vice versa for
the lower bound of the cacheability function.

Evaluation of LRU using Multi-User Cell Dataset

Figure 10 shows the cacheability function for a single
FIFO / LRU. With 1% flash size percentage, the flash hit
rates are 19% for a single FIFO and 36%–40% for a sin-
gle LRU. The marked points allocate flash to workloads
using optimized FIFO / LRU. The flash hit rates are 28%
for optimized FIFO and 44%–48% for optimized LRU.

Table 5 shows normalized flash hit rates for various
workloads. Most of the improvement between FIFO and
LRU can be attributed to the cacheability of workload 1,
which is a Bigtable service shared by many users. LRU
assigns 3.4x–3.5x as much flash to workload 1, and ob-
tains 4.5x–5.1x as high a flash read rate as FIFO. This
accounts for a 14.4–16.7 percentage-point increase in the
cell-wide flash hit rate. Even optimized FIFO does not
achieve this high a flash read rate for workload 1, because
the workload’s cacheability function is much steeper for
LRU than for FIFO.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 101

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Flash Size (%)

Fl
as

h
H

it
R

at
e

(%
)

LRU (Upper Bound)
LRU (Lower Bound)
FIFO
Optimized Points

Figure 10: Cacheability curve for a single FIFO and single
LRU. The marked points represent optimized flash hit rates for
FIFO and LRU.

Table 5 also shows that workload 2 accounts for most
of the difference between optimized and single versions
of FIFO/LRU. In fact, both optimized FIFO and LRU
put the entire contents of workload 2 on flash, increasing
the cell-wide flash read hit by 7.3%. Workload 2 is a
Bigtable used to serve static webpage content.

These results are robust to adjusting the period used
for training. Of our 7-day dataset, we used the 7th day
for evaluation and the 6th day for training; the remaining
days were used only to compute the file ages. If the 5th
day is used instead for training, then the cell-wide flash
hit rate is 28.5% under optimized FIFO, and 44.4–49.1%
under optimized LRU. Using the 4th day, we get 27.0%
under optimized FIFO and 42.7–48.1% under optimized
LRU. These numbers are similar to those in Table 5.

While LRU eviction performs better than FIFO for
many workloads, there is a substantial associated over-
head. The LRU age of a file depends on accesses to
all its component chunks, and hence the eviction scan-
ner must gather information from multiple chunkservers
before determining whether a file should be evicted. By
comparison, computing the FIFO age is simple because
it depends only on the static creation time of the file.

9 Conclusions

The falling price of flash storage has made it cost-
effective for some workloads to fit entirely in flash. As
the I/O rate per byte supported by disks continues to de-
cline, flash storage also becomes a critical component
of the storage mix for many more workloads in modern
storage systems. However, because flash is still expen-
sive, it is best to use it only for workloads that can make
good use of it. With Janus, we show how to use long-
term workload characterization to determine how much

Normalized Flash Hit Rate (%)
Workload FIFO Opt FIFO LRU Opt LRU

1 4.1 5.3 18.5 – 20.8 15.8 – 16.9
2 0.0 7.3 0.0 – 0.0 7.3 – 7.3
3 0.1 0.9 1.3 – 2.1 1.6 – 6.1
4 3.0 1.9 5.6 – 6.1 4.9 – 5.3
5 6.4 5.7 4.6 – 4.7 6.8 – 5.2

Others 4.9 6.7 5.8 – 5.9 7.2 – 7.2
Total 18.5 27.8 35.9 – 39.5 43.6 – 47.9

Normalized Flash Size Percentage (%)
Workload FIFO Opt FIFO LRU Opt LRU

1 0.13 0.22 0.46 – 0.44 0.20 – 0.15
2 0.00 0.08 0.00 – 0.00 0.08 – 0.08
3 0.00 0.08 0.03 – 0.03 0.04 – 0.17
4 0.18 0.03 0.11 – 0.11 0.07 – 0.08
5 0.42 0.35 0.20 – 0.21 0.38 – 0.28

Others 0.25 0.22 0.18 – 0.19 0.22 – 0.21
Total 0.98 0.98 0.98 – 0.98 0.98 – 0.98

Table 5: Flash hit rate and size per workload assuming single
and optimized FIFO/LRU. Workloads are ordered in decreasing
order of flash read rate under Optimized LRU. The two num-
bers for LRU respectively use the lower and upper bounds of
the cacheability function. Assumes cell-wide flash size per-
centage of 1% during the training period, which became 0.98%
during evaluation since the amount of data increased slightly.

flash storage should be allocated to each workload in a
cloud-scale distributed file system.

Janus builds a compact representation of the
cacheability of different user I/O workloads based on
sampled RPC traces of I/O activity. These cacheabil-
ity curves for different users are used to construct a lin-
ear optimization problem to determine the flash alloca-
tions that maximize the read hits from flash, subject to
operator-set priorities and write-rate bounds.

This system has been in use at Google for 6 months.
It allows users to make informed flash provisioning deci-
sions by providing them a customized dashboard show-
ing how many reads would be served from flash for a
given flash allocation. Another view helps system ad-
ministrators make allocation decisions based on a fixed
amount of flash available in order to maximize the reads
offloaded from disk.

Based on evaluations from workloads using these rec-
ommendations and I/O traces of other workloads, we
conclude that the recommendation system is quite ef-
fective. In our trace-based estimates, flash hit rates us-
ing the optimized recommendations are 47-76% higher
than the option of using the flash as an unpartitioned tier.
We find that application owners appreciate learning how
much flash is cost-effective for their workload.

11

102 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Acknowledgments

Janus would not have been possible without the help of
many individuals and teams. We are especially grate-
ful to Jun Luo, Adam Gee, Denis Serenyi, and the en-
tire Colossus team for their early collaboration on this
project. Andy Chu, Herb Derby, Lawrence Greenfield,
Sean Quinlan, Paul Cychosz, Salim Virji, and Gang Ren
also contributed ideas or helped with the data collection
and analysis on which Janus is built. We are grateful
to John Wilkes, Florentina Popovici, our shepherd Kai
Shen, and our anonymous referees for their feedback on
improving the presentation.

References

[1] Retrieved 2013/01/09: http://www.
google.com/shopping/product/
7417866799343902880/specs.

[2] AGUILERA, M. K., ET AL. Improving recoverabil-
ity in multi-tier storage systems. In DSN (2007),
IEEE, pp. 677–686.

[3] ALVAREZ, G. A., ET AL. Minerva: An automated
resource provisioning tool for large-scale storage
systems. ACM Trans. Comput. Syst. 19, 4 (2001),
483–518.

[4] ANDERSON, E., ET AL. Quickly finding near-
optimal storage designs. ACM Trans. Comput. Syst.
23, 4 (2005), 337–374.

[5] BAKER, M., ET AL. Measurements of a distributed
file system. In SOSP (1991), ACM, pp. 198–212.

[6] BLAZE, M. A. Caching in large-scale distributed
file systems. PhD thesis, Princeton University,
1993.

[7] CANAN, D., ET AL. Using ADSM Hierarchical
Storage Management. IBM Redbooks. 1996.

[8] CHANG, F., ET AL. Bigtable: a distributed stor-
age system for structured data. In OSDI (2006),
USENIX, pp. 205–218.

[9] COEHLO, N., MERCHANT, A., AND STOKELY,
M. Uncertainty in aggregate estimates from sam-
pled distributed traces. In Workshop on Manag-
ing Systems Automatically and Dynamically (MAD
2012), USENIX.

[10] GASIOR, G. SSD prices down 38% in 2012,
but up in Q4, 2013. Retrieved 2013/01/29:
http://techreport.com/review/24216/ssd-prices-
down-38-in-2012-but-up-in-q4.

[11] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-
T. The Google file system. In SOSP (2003), ACM,
pp. 29–43.

[12] GRAY, J., AND PUTZOLU, F. The 5 minute rule for
trading memory for disc accesses and the 10 byte
rule for trading memory for CPU time. In SIGMOD
(1987), ACM, pp. 395–398.

[13] GUERRA, J., ET AL. Cost effective storage us-
ing extent based dynamic tiering. In FAST (2011),
USENIX, pp. 273–286.

[14] KROEGER, T., AND LONG, D. Design and imple-
mentation of a predictive file prefetching algorithm.
In ATC (2001), USENIX, pp. 105–118.

[15] LOBOZ, C. Z. Cloud resource usage: extreme dis-
tributions invalidating traditional capacity planning
models. In Workshop on Scientific Cloud Comput-
ing (ScienceCloud 2011), ACM, pp. 7–14.

[16] MASSIGLIA, P. Exploiting multi-tier file
storage effectively. Retrieved 2013/01/29:
https://snia.org/sites/default/
education/tutorials/2009/spring/
file/PaulMassiglia_Exploiting_
Multi-Tier_File_StorageV05.pdf,
2009.

[17] MCKUSICK, M. K., AND QUINLAN, S. GFS:
Evolution on fast-forward. Communications of the
ACM 53, 3 (2010), 42–49.

[18] NARAYANAN, D., ET AL. Migrating server storage
to SSDs: analysis of tradeoffs. In EuroSys (2009),
ACM, pp. 145–158.

[19] OH, Y., ET AL. Caching less for better perfor-
mance: Balancing cache size and update cost of
flash memory cache in hybrid storage filesystems.
In FAST (2012), USENIX.

[20] OUSTERHOUT, J. K., ET AL. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. In SOSP
(1985), ACM, pp. 15–24.

[21] PATTERSON, R. H., ET AL. Informed prefetching
and caching. In SOSP (1995), ACM, pp. 79–95.

[22] SIGELMAN, B. H., ET AL. Dapper, a large-scale
distributed systems tracing infrastructure. Tech.
rep., Google, Inc., 2010.

[23] STOKELY, M., ET AL. Projecting disk usage based
on historical trends in a cloud environment. In
Workshop on Scientific Cloud Computing (Science-
Cloud 2012), ACM, pp. 63–70.

[24] WILKES, J., GOLDING, R. A., STAELIN, C., AND
SULLIVAN, T. The HP AutoRAID hierarchical
storage system. ACM Trans. Comput. Syst. 14, 1
(1996), 108–136.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 103

Using One-Sided RDMA Reads to Build
a Fast, CPU-Efficient Key-Value Store

Christopher Mitchell Yifeng Geng∗ Jinyang Li
New York University ∗Tsinghua University

{cmitchell, ygeng, jinyang}@cs.nyu.edu

Abstract
Recent technological trends indicate that future datacen-
ter networks will incorporate High Performance Com-
puting network features, such as ultra-low latency and
CPU bypassing. How can these features be exploited
in datacenter-scale systems infrastructure? In this pa-
per, we explore the design of a distributed in-memory
key-value store called Pilaf that takes advantage of Re-
mote Direct Memory Access to achieve high perfor-
mance with low CPU overhead.

In Pilaf, clients directly read from the server’s mem-
ory via RDMA to perform gets, which commonly
dominate key-value store workloads. By contrast, put
operations are serviced by the server to simplify the
task of synchronizing memory accesses. To detect in-
consistent RDMA reads with concurrent CPU memory
modifications, we introduce the notion of self-verifying
data structures that can detect read-write races without
client-server coordination. Our experiments show that
Pilaf achieves low latency and high throughput while
consuming few CPU resources. Specifically, Pilaf can
surpass 1.3 million ops/sec (90% gets) using a single
CPU core compared with 55K for Memcached and 59K
for Redis.

1 Introduction
The network implementations found in High Perfor-
mance Computing (HPC) clusters have historically dif-
fered from those in datacenters in a few key aspects: low
latency, low CPU overhead, and high cost. Recent trends
in the networking world indicate that these distinctions
are beginning to disappear as HPC network prices drop
and datacenter network equipment begins to adopt fea-
tures previously found only in HPC clusters. Products
are already being offered that implement kernel or CPU
bypassing (two common HPC network features) over
10Gbps Ethernet [29, 23], while the prices for the pop-
ular Infiniband HPC interconnect have dropped dramat-
ically and are now competitive with 10Gbps Ethernet
hardware. For example, a Mellanox 40Gbps Infiniband
adapter costs ∼$500, while 10Gbps Ethernet cards range

in price from ∼$300 to $800. Surprisingly, low-latency
Infiniband switches are now less expensive than their
10Gbps Ethernet counterparts. Given these changes, it
is important that we understand how to leverage the
features of these high-performance networks to build
general-purpose applications. In this paper, we focus on
how to effectively use Remote Direct Memory Access
(RDMA), a common component of high performance
networking fabrics.

RDMA operations allow a machine to read (or
write) from a pre-registered memory region of another
machine without involving the CPU on the remote
side. Compared to traditional message passing, RDMA
achieves the smallest round-trip latency (∼3µs), high-
est throughput, and lowest (zero) CPU overhead. These
advantages are offset by the difficulty of incorporating
RDMA into distributed system designs. In a traditional
design, the server processes all service requests from
clients and thus acts as a single point of coordination for
memory accesses. With RDMA, clients can directly ac-
cess the server’s memory to implement a service request
without any involvement by the server. However, with-
out the server’s coordination, races in memory accesses
by different machines become a serious concern.

In this paper, we present Pilaf, a distributed in-
memory key-value store that leverages RDMA to
achieve high throughput with low CPU overhead. We ar-
gue that the sweet spot in the design space is to restrict
the use of RDMA to read-only service requests, namely
gets, while letting the server handle all other requests
via traditional messaging. As practical key-value work-
loads tend to be dominated by read operations [1], this
approach can capture most of RDMA’s performance
benefits while facilitating a much simpler design than
using RDMA for all types of requests. In particular, this
approach restricts the class of memory access races that
can occur: clients might read inconsistent data while the
server is concurrently modifying the same memory ad-
dresses.

We use self-verifying data structures to address read-
write races between the server and clients. A self-

1

104 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

verifying data structure consists of checksummed root
data objects as well as pointers whose values include a
checksum covering the referenced memory area. Start-
ing from a set of root objects with known memory loca-
tions, clients are guaranteed to traverse a server’s self-
verifying data structure correctly, because the check-
sums can detect any inconsistencies that arise due to
concurrent memory writes done by the server. When a
race is detected, clients simply retry the operation.

Other projects have also used RDMA to enhance the
performance of Memcached-like key-value stores [27,
13, 12]. In these designs, RDMA is treated simply as
a means for accelerating standard message-passing. For
example, each client sends a get request to the server
which retrieves the corresponding key-value pair and di-
rectly stores it in the client’s memory using RDMA. In
contrast, in Pilaf, clients can process get requests with-
out involving the server process at all, resulting in op-
timal (zero) CPU overhead. To the best of our knowl-
edge, Pilaf is the first system design where clients can
completely bypass the server’s CPU for processing read
requests.

We have implemented Pilaf on top of Infiniband, a
popular HPC network interconnect. Our experiments on
a cluster of machines equipped with 20Gbps Infiniband
cards show that Pilaf achieves high performance with
very low CPU overhead. In a workload consisting of
90% gets and 10% puts, Pilaf achieves 1.3 million
ops/sec while utilizing only a single CPU core, com-
pared to 55K for Memcached and 59K for Redis.

2 Opportunities and Challenges
This section gives an overview of RDMA and other HPC
networking features and discusses how they might im-
pact the design of distributed systems. Our discussion
of the performance implications is based on Infiniband,
a popular HPC interconnect.

Manufactured by Intel and Mellanox, Infiniband
hardware provides 10, 20, or 40 Gbps of bandwidth in
each direction. Applications running on top of Infini-
band have several communication options:

IP over Infiniband (IPoIB) emulates Ethernet over In-
finiband. As with normal Ethernet, the kernel pro-
cesses packets and copies data to application mem-
ory. IPoIB allows existing socket-based applica-
tions to run on Infiniband with no modification.

Send/Recv Verbs provide user-level message ex-
change: these Verbs messages pass directly
between user space applications and the network
adapter, bypassing the kernel. Send/Recv Verbs
are commonly referred to as two-sided operations
since each Send operation requires a matching
Recv operation at the remote process. Unlike

IPoIB, applications must be rewritten to use the
Verbs API.

RDMA allows full remote CPU bypass by letting one
machine directly read or write the memory of an-
other machine without involving the remote CPU.
Unlike Send/Recv Verbs, RDMA operations are
one-sided, since an RDMA operation can com-
plete without any knowledge of the remote process.
RDMA is technically a type of Verbs message. In
this paper, we use the term RDMA specifically to
refer to RDMA Verbs and the phrase verb messages
to refer to Send/Recv Verbs, both of which we use
in reliable mode.

We note that Infiniband is not the only network to
support RDMA and user-level networking. Similar fea-
tures have recently been made available in 10 Gbps Eth-
ernet environments. For example, both Myricom and
Solarflare offer 10GE adapters that support kernel by-
pass, and Intel offers 10GE iWARP adapters capable
of RDMA over Ethernet. Although it remains unclear
which specific hardware proposal will dominate the dat-
acenter market, one can realistically expect future data-
center networks to support some form of CPU bypass-
ing.

2.1 Performance Benefits of RDMA

How fast and efficient is RDMA? How does its perfor-
mance compare to alternatives such as verb messages or
traditional kernel-based TCP/IP transport? We answer
these questions by benchmarking the various Infiniband
communication options.

Our experiments were run on a small cluster of ma-
chines equipped with Mellanox ConnectX-2 20Gbps
Infiniband cards. For RDMA experiments, each client
node performs RDMA reads on the server. For verb
message experiments, each client node issues a request
(as a verb message in reliable mode) to which the server
responds immediately with a reply. The IPoIB and Eth-
ernet experiments are similar except that we use TCP/IP
for exchanging requests and replies. We vary the size of
the RDMA read or the request message while fixing the
reply size at 10 bytes.

Figure 1 shows the roundtrip latencies of different
communication methods. For small operations (< 1024
bytes), a verb message exchange takes less than 10µs,
while the RTT of IPoIB or Ethernet is over 60 µs. Our
Infiniband switch imposes a lower delay than our Eth-
ernet switch, but the IPoIB latency is similar to that
of Ethernet, suggesting that packet processing through
the kernel adds significant latency. RDMA achieves the
lowest RTT (∼3µs), half that of verb messages. This is
because the request/reply pattern of traditional messag-
ing involves two underlying Verbs exchanges. By con-
trast, an RDMA operation involves only one underlying

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 105

Verbs exchange, thereby reducing the latency by up to
half.

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

M
ed

ia
n

R
T

la
te

nc
y

(µ
s)

Operation size (bytes)

Ethernet (1Gbps)
IPoIB

Verb Msg
RDMA

Figure 1: Median round-trip latency. The error bars depict 1%
and 99% latency.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10 100 1000 10000 100000

Se
rv

er
 n

et
w

or
k

th
ro

ug
hp

ut
 (K

bp
s)

Operation size (bytes)

Ethernet (1Gbps)
IPoIB

Verb Msg
RDMA

Figure 2: Server’s network throughput under different com-
munication methods.

Throughput (M ops/sec)
Transport 16-byte 1024-byte 4096-byte
RDMA 2.449 1.496 0.472
Verbs Message 0.668 0.668 0.464
IPoIB 0.126 0.122 0.028
Ethernet (1Gbps) 0.120 0.068 0.029

Table 1: Throughput (in million operations/sec) for 16 byte,
1Kbyte and 4Kbyte operations.

Figure 2 shows the throughput (in Kbps) achieved by
the server. Since different communication methods in-
cur varying CPU overhead, we limit the server’s CPU
consumption to a single core (AMD Opteron 6272) in
all experiments. In Figure 2, large operations (>1024
bytes) over all communication methods except IPoIB
can saturate their respective network’s peak through-

put. For smaller operations, both RDMA and Verbs mes-
sages are able to saturate the Infiniband network card’s
capacity when running the server on a single CPU core.
By contrast, kernel-based transports require more than
one core to saturate the network card, hence the much
lower throughputs achieved in IPoIB and Ethernet ex-
periments.

RDMA not only incurs zero CPU overhead on the
server, it also saturates the network card at the high-
est throughput. As shown in Table 1, a server can
sustain 2.45 million operations/second with 16-byte
RDMA reads. By contrast, the server can only achieve
0.668 million operations/sec when exchanging Verbs re-
quest/reply messages. There are two reason for this per-
formance gap. First, each request/reply exchange uses
two underlying Verbs messages compared to one in
RDMA. Second, because there is less bookkeeping for
RDMA, our network card can perform RDMA at a
higher throughput (∼2.45 million reads) than sending
(∼700K) or receiving (∼1.5 million) Verbs messages per
second for short messages.

2.2 Opportunities for System Builders

As we have seen, bypassing the kernel and CPU allows
for reduced latency and CPU overhead. Of these two,
CPU bypass via RDMA is particularly powerful in that
it achieves the highest throughput while incurring zero
CPU overhead. As future datacenter networks embrace
RDMA, what will the implications be for the designs
of distributed systems infrastructure such as distributed
storage systems or computation frameworks? To better
understand the ensuing opportunities and challenges, we
have chosen to design a distributed key-value store to
exploit RDMA. We decided to use the key-value store
as a case study system because it is a popular infras-
tructural service with demanding performance require-
ments [20]. Key-value stores are also used as a building
block for other more sophisticated storage systems (e.g.
BigTable [2], Spanner [4], Cassandra [16]) or distributed
computation frameworks (e.g. Piccolo [22]).

Our experience in exploring the design space for a
key-value store leads to two observations, both of which
are applicable to other distributed systems besides key-
value stores.

High performance is feasible with fewer CPU re-
sources. With traditional Ethernet-based distributed
systems, the performance bottleneck is often the CPU
despite the availability of multiple cores [19]. With ker-
nel and CPU bypass, servers can saturate the network
using many fewer cores. The improvement in CPU effi-
ciency is particularly notable with RDMA, which poten-
tially allows clients to process service requests without
involving the server at all. Efficient CPU usage is crucial
in datacenters, which often operate a shared environ-

3

106 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

ment by running multiple applications on a single ma-
chine [6]. With less CPU overhead, one can pack more
applications onto each machine, use fewer machines,
rely on wimpier cores [27] and yet achieve the same or
better performance.

Multi-round operations are practical. Because the
roundtrip latency on Ethernet is substantial, traditional
systems designs aim to minimize the rounds of com-
munications required to complete an operation. For ex-
ample, existing key-value stores process each get or
put operations in one roundtrip. With RDMA’s ultra-
low latency, it becomes feasible to use multi-round pro-
tocols without adversely affecting end-to-end operation
latency. In particular, each get operation in Pilaf re-
quires at least two roundtrips.

Challenges. It is technically challenging to fully ex-
ploit RDMA’s performance advantage in a system de-
sign. The common existing practice is to use RDMA to
optimize verb message exchange [18, 13, 11]. Specif-
ically, in order to send (or receive) a large message,
a client first transmits some control information to the
server using a verb message. The server then performs
an RDMA read (or write) to the client to fetch (or
store) the actual payload. This design maintains the tra-
ditional request/reply communication pattern, but does
not fully exploit the benefits of RDMA since the over-
all latency and throughput is still bottlenecked by send-
ing/receiving verb messages.

A more efficient system design is one in which all
or a large fraction of the existing request/reply traffic
is replaced (instead of supplemented) by RDMA opera-
tions. However, letting clients directly perform RDMA
on the server’s memory introduces serious synchroniza-
tion problems: multiple concurrent RDMA accesses to
the same server can cause races, and the server may also
simultaneously perform local memory access that con-
flict with remote accesses. Unfortunately, there are lim-
ited hardware mechanisms for synchronizing multiple
RDMA accesses, and no efficient capability at all for
coordinating local and remote memory accesses.

3 Pilaf Design

This section traces the evolution of Pilaf’s design up
to its current form. We first motivate Pilaf’s overall
architecture, which processes write operations at the
server and uses RDMA for read-only operations (Sec-
tion 3.1). We then explain how clients perform gets us-
ing RDMA reads and discuss how Pilaf synchronizes
clients’ RDMA accesses with the server’s local memory
writes. Last, we describe the Cuckoo hashing optimiza-
tion that reduces the number of required roundtrips in
the worst case.

3.1 Overview

The most straightforward design would be to take a tra-
ditional key-value store and re-implement its messag-
ing layer using verb messages instead of TCP sock-
ets. However, this design fails to reap the benefits of
RDMA, which has much lower latency and CPU over-
head than verb messages. Therefore, our goal is to find
a system design that can exploit one-sided RDMA oper-
ations without adding too much complexity.

A key-value store has two basic operations: V ←
get(K) and put(K,V), where both the key K and value
V are strings of arbitrary length. In our initial design it-
erations, we tried to use one-sided RDMA operations
for both gets and puts. In other words, each client
performs RDMA reads to implement gets and RDMA
writes to implement puts.

We quickly discovered that using RDMA for all oper-
ations leads to complex and fragile designs. First, clients
must synchronize their RDMA writes so as not to cor-
rupt the server’s memory. The Infiniband card supports
atomic operations (such as compare-and-swap) on top
of which one could build an explicit locking mecha-
nism. However, locking over the network not only in-
curs a performance hit, but also introduces the com-
plication of clients failing while holding a lock. Sec-
ond, a put operation requires memory allocation to
store key-value strings of arbitrary length; such mem-
ory management becomes unwieldy in the presence of
remote writes. Having clients implement memory man-
agement remotely is expensive, with excessive lock-
ing and round-trips required. On the other hand, let-
ting the server perform memory management introduces
write-write races between the server and clients. Un-
fortunately, unlike synchronization among concurrent
clients, there exists no efficient hardware mechanism to
synchronize memory accesses initiated by the CPU and
the network card. Last but not least, by making all op-
erations transparent to the server, debugging becomes
a painstaking, as race conditions involving remote ac-
cesses are much more difficult to find and reproduce
than those involving local accesses.

Our first major design decision is to have the server
handle all the write operations (i.e. put and remove)
and have the clients implement read-only operations (i.e.
get and contains) using one-sided RDMA reads.
Since real-world workloads are skewed towards reads
(e.g., Facebook reported read-to-write ratios ranging
from 68%-99% for its active key-value stores [1]), this
design captures most of the performance benefits of
RDMA while drastically simplifying the problem of
synchronization. In fact, the beauty of this design is that
it incurs no write-write races, but only read-write races
between RDMA reads and the server’s local memory
writes, Write-write races are the main source of design

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 107

complexities since they must be avoided at all costs to
prevent memory corruption. In contrast, read-write races
can be made harmless by detecting the presence of such
races and re-trying the affected operation. Thus, no frag-
ile and expensive locking protocol is needed.

Figure 3 shows Pilaf’s overall architecture. Using
verb messages, clients send all put requests to the
server, which inserts them in its in-memory hashmap
before sending the corresponding replies. By contrast,
gets are transparent to the server in that the clients per-
form RDMA reads over multiple roundtrips to directly
fetch data from the server’s memory.

As in other key-value store designs [19, 24], the
server asynchronously logs updates to its local disk.

Verb
Messages

ReadRDMA
Read

Server
<put>

Client
ProcessClient

ProcessClient
<get>

Memory

Verb
Messages

Client
ProcessClient

ProcessClient
<put>

Read

Write

Infiniband HCA Infiniband HCA Infiniband HCA

RDMA read

put

Figure 3: Pilaf restricts the clients’ use of RDMAs to read-
only get operations and handles all puts at the server using
verb messages.

3.2 Basic get Operation Using RDMA

We first explain how Pilaf performs gets without in-
volving the server’s CPU. We defer the challenge of cop-
ing with concurrent puts and gets to Section 3.3.

To allow RDMA reads, the server must expose its data
structure for storing the hash table, as shown in Figure 4.
There are two logical memory regions: an array of fixed
size hash table entries and an extent area for storing the
actual keys and values, which are strings of arbitrary
length. The server registers both memory regions with
the network card, and clients obtain the corresponding
registration keys of these two memory regions (as well
as the size of the hash table array) when they first estab-
lish a connection to the server. Subsequently, clients can
issue RDMA requests to any memory address in these
two regions by specifying the memory’s registration key
and an offset.

In the basic design, a client looks up a key in the
hash table array using linear probing [25]. Each probe
involves two RDMA reads. The first read fetches the
hash table entry corresponding to the key. If the entry is
currently filled (indicated by an in use bit), the client
initiates a second RDMA read to fetch the actual key
and value strings from the extent region according to

the address information stored in the corresponding hash
table entry. The client checks whether the fetched key
string matches the requested key. If so, the get oper-
ation finishes. Otherwise, the client continues with the
next probe.

Client

server memory

hash entries key/value extent

"key1, value1"

"key2, value2"

1. read
the hash entry

2. read the
key value string

Figure 4: The memory layout of the Pilaf server’s hash ta-
ble. Two memory regions are used, one contains an array of
fixed-size hash table entries, the other is an extent storing vari-
able sized key-value extents. Clients perform get operations
in two RDMA reads, first fetching a hash table entry, then us-
ing the address information in that entry to fetch the associated
key-value string.

3.3 Coping with Read-Write Races

The Pilaf server handles all put operations. Thus, lo-
cal memory writes performed by the server’s CPU un-
avoidably create potential read-write races with concur-
rent RDMA reads done by clients. This is a challenge as
there exists no efficient hardware mechanism to coordi-
nate the CPU and the network card. To inhibit RDMA
reads during a write, the server could resort to reset-
ting all existing connections, or temporarily de-register
memory regions with the network card. However, both
mechanisms are far too expensive to be used for every
put operations.

To implement a read operation, clients need to tra-
verse the server’s data structure. The traversal starts
from a set of “root” objects with known memory loca-
tions and recursively follows pointers read previously. In
the context of Pilaf, we can view each hash table entry
as a “root” object which points to additional key-value
information. Read-write races introduce the possibility
that clients can traverse the server’s data structure incor-
rectly.

Two scenarios can result in incorrect traversal. First,
a root object can be corrupt. In Pilaf, this happens when
the server modifies a hash table entry while a client is
reading that entry. Consequently, the client will read
a partially-modified or corrupt hash table entry, poten-
tially causing it to read the key-value string from an in-
valid memory location. Second, a client’s pointer ref-
erence can become invalid. For example, in Pilaf, the
server may delete or modify an existing key/value pair
while a client is holding a pointer reference to the old
string from its first RDMA read of the hash table entry.

5

108 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Thus, during its second RDMA access, the client might
read garbage or an incorrect key-value string.

To permit correct traversal in the face of read-write
races, we introduce the notion of a self-verifying data
structure by making both root objects and pointers self-
verifying. For a root object, we append a checksum that
covers the object’s entire content. Thus, any ongoing
modification on the root object result in a checksum
failure. To make a pointer self-verifying, we store it as
a tuple combining a memory location, the size of the
memory chunk being referenced, and a checksum cov-
ering the content of the referenced memory. Therefore,
a client can detect the inconsistency between a pointer’s
intended memory reference and the actual memory con-
tent. For example, if the server de-allocates the memory
chunk being referenced and re-uses parts of it later while
a client is still holding a pointer to it, the client will fail
to verify the checksum when it retrieves the memory
content using the pointer. Figure 5 shows Pilaf’s self-
verifying hash table. As a root object, each hash table
entry contains a checksum covering the whole entry. The
pointer stored in each hash table entry contains a check-
sum verifying the key-value string being referenced.

Self-verifying data structures ensure correct traversal
starting from a set of known root object locations. On
rare occasions, the server may need to change the root
object locations. This can be accomplished correctly by
having the server reset all its existing RDMA connec-
tions to clients to inhibit clients from reading stale root
object locations. In Pilaf, whenever the server needs to
resize its hash table array, it resets connections so that
clients are prevented from performing RDMA reads un-
til the resize is complete. They are allowed to reconnect
once the resize operation is complete to obtain up-to-
date information about the location and size of the hash
table array. Since hash table resizing is infrequent, there
is a minimal performance penalty from resetting con-
nections.

A self-verifying data structure allows clients to per-
form consistent reads in the face of concurrent writes. In
addition, the Pilaf server uses a memory barrier to force
any updates from the CPU cache to the main memory
before replying to a put request. Doing so ensures that
a subsequent get always reads the effect of any com-
pleted puts. As a result, Pilaf provides the strongest
consistency semantics, i.e. linearizability [10].

3.4 Improving a Hash Table’s Memory Efficiency

In the basic design, a client performs linear probing to
look up a key in the server’s hash table array. This simple
hash scheme does not achieve a good tradeoff between
memory efficiency and operation latency. For example,
when the hash table is 60% full, the maximum number
of probes required can be as high as 70. To achieve good

hash table entry (root object)

in_use hash func
used

key/value
pointer checksum

key

key sizekey/value
size checksum

value

Figure 5: Self-verifying hash table structure. Each hash table
entry is protected by a checksum. Each entry stores a self-
verifying pointer (shown in shaded fields) which contains a
checksum covering the memory area being referenced.

memory efficiency with fewer probes, Pilaf uses n-way
Cuckoo hashing [21, 15]. This hashing scheme uses n
orthogonal hash functions, and every key is either at one
of n possible locations or absent. If all n possible loca-
tions for a new key are filled, the key is inserted anyway,
kicking the resident key-value pair to one of that key’s
alternate locations. That operation may in turn kick out
another pair, ad infinitum. The table is resized when a
limit is reached on the number of kicks performed or
when a cycle is detected.

The main challenge in using Cuckoo hashing for Pilaf
lies in the process of moving an existing entry to a differ-
ent hash table location. Ordinarily, bulk key movements
such as resizing the hash table requires that the server
reset all existing RDMA connections. This is not desir-
able, as the need to move a key occurs much more fre-
quently than table resizing with Cuckoo hashing. With-
out resetting connections, there is the danger that a key-
value pair might appear to be “lost” to the clients while
the server is moving it to a new location. To address this
issue, during a put operation the server first calculates
the new locations of every affected key without actu-
ally moving the keys. Then, starting from the last af-
fected key, the server shifts each key to its new location,
thereby ensuring that a key is always stored in at one
or two (instead of zero or one) hash table entries during
movement.

We explored different parameter values for n and de-
termined that 3-way Cuckoo hashing achieves the best
memory efficiency with few hash entry traversals per
read. As Figure 6 shows, at a fill ratio of 75%, the aver-
age and maximum number of probes in 3-way Cuckoo
hashing is 1.6 and 3, compared to 2.5 and 213 respec-
tively for linear probing.

4 Implementation
We implemented Pilaf in C++. Pilaf uses the
libibverbs library from the OpenFabrics Alliance,
which allows user-space processes to use verb messages
and RDMA directly. The Pilaf server continuously polls
the network card for new events, including the recep-
tion of verb messages or the completion of recently-sent

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 109

 1

 10

 100

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

R
ea

ds
 p

er
 K

ey

Load Factor

Linear Probing
3-Way Cuckoo Hashing

Figure 6: The average number of probes required during a
key lookup in 3-way Cuckoo hashing and Linear probing. The
error bars depict the median and maximum values.

RDMA operations or verb messages. Since Pilaf is able
to saturate the network card’s performance using a sin-
gle thread, our implementation uses the same polling
thread to process puts as well.

RDMA-Friendly Extents: The server must register
a region of memory and gives clients the registration
key for that memory before clients can perform RDMA
on the region. This process is relatively expensive and
should be made infrequent. Therefore, Pilaf allocates
and registers a large contiguous address space for the
key-value extents. We ported the mem5 memory man-
agement unit from SQLite to C++ to “malloc” and
“free” strings in the key-value extents. Whenever the
extents region becomes full, the server resets all exist-
ing connections, expands the extents, and then allows
clients to re-connect and obtain new registration keys.
As with hash table resizing, we expect and observe ex-
tents resizing to be an infrequent event.

Self-Verifying Data Structures: Our implementation
uses CRC64 as the checksum scheme for our self-
verifying data structures. CRCs are not effective for
cryptographic verification. Instead, they were originally
intended to detect random errors, making them ideal for
our application. The ideal n-bit CRC will fail to detect 1
in 2n message collisions. Although 32-bit CRC is popu-
lar (e.g. for Ethernet and SATA checksums), we believe
that CRC32 is insufficient for Pilaf. Every put incurs
two CRC updates, one on the hash table entry and one
on the key-value string. As will be shown in Section
5.2, Pilaf can process 663K puts per second. There-
fore, up to 1.326 million CRCs may be calculated per
second. Since each CRC32 incurs a collision with prob-
ability 1 in 232, we expect a collision once every 3239
seconds (54 minutes). We find this rate to be unaccept-
ably high. Using CRC64, we can expect a collision once

every 1.35 ∗ 1013 seconds, or once per 428 millenia.
CRC64 is fast. Our implementation consumes about

a dozen CPU cycles for each checksummed byte, and
incurs the same overhead as CRC32 when running on
64-bit CPUs.

Logging: By default, Pilaf server asynchronously logs
all put and delete operations to the local disk, sim-
ilar to the logging facility in other key-value stores in-
cluding Redis [24], Masstree [19] and LevelDB [8]. Us-
ing a single solid state disk, Pilaf is able to log 663K
(our peak put throughput) writes per second if the av-
erage key-value size is smaller than 500 bytes. Should
one desire a high logging capacity, multiple SSDs must
be used.

5 Evaluation
We evaluate the performance of Pilaf on our Infiniband
cluster. The highlights of our results are the following:

• Pilaf achieves high performance: its peak through-
put reaches 1.3 million ops/sec. The end-to-end
operation latency is very low with a 90-percentile
latency of ∼30µs.

• Pilaf is CPU-efficient. Even when running on a sin-
gle CPU core, Pilaf is able to saturate the network
hardware’s capacity to achieve 1.3 million ops/sec.
By comparison, Memcached and Redis achieve
less than 60K ops/sec per CPU core, so they require
at least 20× the CPU resource to match Pilaf’s per-
formance.

• Self-verifying data structures are effective at
detecting read-write races between the clients’
RDMA operations and the server’s local memory
accesses.

5.1 Experimental setup

Hardware and configuration. Our experiments are
run on a cluster of ten machines, each with two AMD or
Intel processors and 32GB of memory. Each machine is
equipped with a a Mellanox ConnectX-2 20 Gbps Infini-
band HCA as well as an Intel gigabit Ethernet adapter.
The machines run Ubuntu 12.10 with the OFED 3.2 In-
finiband driver.

For each experiment, we run a server process on
one physical machine, while the clients are distributed
among the remaining machines to saturate the server.
By default, we restrict the server process to run on one
CPU core. For Ethernet experiments, we configure the
kernel’s network interrupt processing to trigger on the
same core used by the server process.

We disable Pilaf’s asynchronous logging in the ex-
periments. With logging turned on, Pilaf incurs no mea-
surable reduction in achieved throughput for key-value

7

110 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

sizes less than 500 bytes. With larger operations, the I/O
bandwidth of the server’s single local SSD becomes the
bottleneck.

Workload. We use the YCSB [3] benchmark to gen-
erate our workloads. YCSB constructs key-value pairs
with variable key and value lengths, modelled on the sta-
tistical properties of real-world workloads. Furthermore,
with YCSB, the keys being accessed follow a long-tailed
zipf distribution. The original YCSB software is written
in Java. We ported it to C so that fewer client machines
are required to saturate the server.

In all experiments, we vary the size of the value string
from 16 to 4096 bytes while keeping the average key
size at 23 bytes, the default value in YCSB. We use two
mixed workloads, one consisting of 10% puts and 90%
gets, the other 50% puts and 50% gets. Since Face-
book has reported that most of their Memcached deploy-
ments are read-heavy [1], our mixed workloads give rea-
sonable representations of real workloads.

Points of comparison. We compare Pilaf against
Memcached [7] and Redis [24] (with logging disabled).
Additionally, we also compare Pilaf to an alternative im-
plementation of itself, which we refer to as Pilaf-VO
(short for Pilaf using Verb messages Only). In Pilaf-
VO, clients send all operations (including gets) to the
server for processing via verb messages. The perfor-
mance gap between Pilaf and Pilaf-VO demonstrates the
importance of bypassing the CPU using RDMA.

5.2 Microbenchmarks

The microbenchmarks measure the throughput and la-
tency of individual get and put operations.

Throughput: Figure 7 shows Pilaf’s peak operation
throughput, achieved with 40 concurrent clients. Pilaf
can perform 1.28 million get and 663K put opera-
tions per second for small key-values. Of note is that
Pilaf’s high throughput is achieved using a single CPU
core which saturate the Infiniband card’s performance
for in most cases.
Get operations via RDMA impose zero CPU over-

head on the server. Furthermore, get operations also
have the highest throughput. As shown in Table 1 (Sec-
tion 2), the network card’s achieved RDMA throughput
is much higher than that of verb message, especially for
small messages. In particular, the card can satisfy 2.45
million RDMA reads per second for small reads. Since
each get requires at least two RDMA reads, the over-
all throughput is approximately half of the raw RDMA
throughput at 1.28 million gets/sec. By contrast, the
peak verb throughput is 667K request/reply pairs/sec for
small messages, resulting in 667K ops/sec for puts.

For larger key-value pairs, the throughputs of get
and put converge as they both approach the network

bandwidth. For example, for 4096-byte key-values, Pilaf
consumes 11.7Gbps of the 16Gbps data bandwidth sup-
ported by the network card. Interestingly, we find that
when processing puts with large values, the Pilaf server
becomes CPU-bound when using a single core. Specifi-
cally, for 1024-byte value size, Pilaf achieves 75.4% of
its network-bound put throughput (500K ops/sec) with
one core and 100% (663K ops/sec) with two cores.

We also measure the throughput of Pilaf-VO’s get
operation, which is processed by the server using verb
messages instead of by the client using RDMA. As Fig-
ure 7 shows, the throughput of performing gets using
verb messages is similar to that of puts and is much
smaller than the throughput of gets done via RDMA
for small key-value pairs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

16 64 256 1024 4096

Se
rv

er
 T

hr
ou

gh
pu

t (
K

 o
ps

/s
ec

)

Value Size (Bytes)

Pilaf Get (RDMA)
Pilaf Put (Verb Msgs)

Pilaf-VO Get (Verb Msgs)

12
91

12
81

11
12

 9
55

 3
56

 6
63

 6
65

 6
63

 5
43

 3
09

 6
63

 6
63

 6
61

 6
62

 3
92

Figure 7: Server throughput for put and get operations as
the average value length is increased. All tests are performed
with 40 connected clients.

Latency: Figure 8 shows the latency of get and put
operations with 10 concurrent clients. With 10 concur-
rent clients performing operations as fast as possible,
queuing effects are minimized. With 40 or more clients,
the latency is mostly determined by queuing effects and
thus is much higher. With a single client (not shown
in the figure), the latency of get is slightly more than
2 RDMA roundtrips and is twice the latency of put.
With more clients and thus more load, we found that the
RDMA latency scales better than that of verb messages.
For small gets, the average latency is 12µs, while small
puts take around 15µs. For large key-values, the laten-
cies of get and put are similar and both bounded by
the packet transmission time.

5.3 Performance of self-verifying data structure

Pilaf uses a self-verifying hash table structure to detect
read-write races during concurrent gets and puts. We
expect such races to be rare in a normal workload. To
artificially vary the conflict rate, we inject the maximum
achievable get and put loads, simultaneously reading

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 111

 0

 10

 20

 30

 40

 50

 10 100 1000 10000

A
ve

ra
ge

 P
er

-C
lie

nt
 P

er
-O

pe
ra

tio
n

La
te

nc
y

(µ
s)

Value Length (bytes)

Pilaf Put (Verb Msgs)
Pilaf Get (RDMA)

Figure 8: Average operation latency for put and get oper-
ations as the average value size increases. All tests are per-
formed with 10 connected clients; though not pictured, we ob-
serve a linear relationship between the number of connected
clients and latency due to queuing effects.

and writing a varying number of unique key-value pairs.
Therefore, the probability of races increases as the gets
and puts are restricted to fewer and fewer unique keys.

Figure 9 shows the probability of detecting a read-
write race as measured by the fraction of gets that need
to be re-tried. The two lines in Figure 9 illustrate the
probabilities of a retry due to a race when reading the
hash table entry or when reading the key-value extent.
As we can see, there is non-negligible race rate only
when the hash table is extremely small. When the ta-
ble contains more than 20,000 keys, the probability of
racing is less than 0.01% even under peak put and get
loads.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

Pe
rc

en
t o

f g
et

 re
tri

es
 (%

)

Number of unique keys being accessed

Conflicts in key-value extent
Conflicts in hash table entries

Figure 9: Percentage of re-reads of extents and hash table en-
tries due to detected read-write races. We control the rate of
conflicts by varying the number of unique keys being read or
updated. The Pilaf server is operating under peak operation
throughput.

5.4 Pilaf versus Memcached and Redis

We compare Pilaf to two existing popular key-value sys-
tems, Memcached [7] and Redis [24]. Both systems are
widely deployed in the industry, including Facebook [1],
YouTube [5], and Instagram [14]. Memcached is com-
monly used as a database query cache or a web cache
to speed up the server’s generation of a result web page
and improve throughput. Low operation latency is vi-
tal in such a usage scenario: the faster the key-value
cache can fulfill each request, the faster a page involv-
ing many cache lookups can be returned to the client.
High throughput and low CPU overhead are also crucial,
since these properties allow more clients can be served
with fewer server resources.

Because Memcached and Redis are written to use
TCP sockets, we run them on our Infiniband network
using IPoIB. It’s important to note that we do not batch
requests for any of the systems, unlike in [19].

In our experiments, the peak throughput of each sys-
tem is achieved when running 40 concurrent client pro-
cesses. We use two mixed workloads, one containing
90% gets and 10% puts and the other containing 50%
gets and 50% puts.

Throughput Comparison: Figure 10 shows the
achieved operation throughput using a single CPU core
for various value sizes in a workload with 90% gets.
We can see that the performance of Pilaf far exceeds
that of Redis and Memcached running on top of IPoIB.
For small operations (64-byte values) Pilaf achieves 1.3
million ops/sec compared to less than 60 Kops/sec for
Memcached and Redis. Both Memcached and Redis are
bottlenecked by the single CPU core and are unable to
saturate the Infiniband card’s performance. Because of
the CPU bottleneck, their single core performance is the
same when running on 1 Gbps Ethernet. We elided those
numbers from Figure 10 for clarity.

The throughputs of Memcached and Redis can be
scaled by devoting more CPU cores to each system. For
example, both systems can saturate the 1Gbps Ethernet
card when running on four CPU cores. We were not able
to scale Memcached and Redis’ performance on IPoIB
using more CPU cores because the IPoIB driver is un-
able to spread network interrupts across multiple cores.
Nevertheless, even if we optimistically assume perfect
scaling, Memcached and Redis require 17× CPU cores
to match the performance of Pilaf running on a single
core for small key-values. In reality, these systems do
not exhibit perfect scaling. For example, [19] reported
a 11× throughput improvements for non-batched Mem-
cached puts when scaling from 1 core to 16 cores.

When comparing against Pilaf-VO, we see that Pilaf
also achieves substantially better throughput across all
operation sizes. In particular, the throughput of Pilaf is

9

112 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 256 1024 4096

Se
rv

er
 T

hr
ou

gh
pu

t (
K

 o
ps

 p
er

 se
c)

Value Size (Bytes)

Redis (IPoIB)
Memcached (IPoIB)

Pilaf-VO
Pilaf

 5
5

 5
4

 5
3

 2
6 5

9

 5
8

 5
8

 2
8

 6
62

 6
56

 5
82

 3
51

13
61

10
63

 9
80

 3
87

(a) Peak throughput (90% gets, 10% puts)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 256 1024 4096

Se
rv

er
 T

hr
ou

gh
pu

t (
K

 o
ps

 p
er

 se
c)

Value Size (Bytes)

Redis (IPoIB)
Memcached (IPoIB)

Pilaf-VO
Pilaf

 5
4

 5
4

 5
2

 2
5 5
7

 5
7

 5
4

 2
6

 6
60

 6
42

 5
34

 3
15

13
23

13
19

10
70

 5
49

(b) Peak throughput (50% gets, 50% puts)

Figure 10: Throughput achieved on a single CPU core for Pilaf, Pilaf-VO, Redis, and Memcached.

2.1× that of Pilaf-VO for 64-byte values and this perfor-
mance advantage decreases to 1.1× for 4096-byte val-
ues. The shrinking performance gap between Pilaf and
Pilaf-VO for larger values reflects the increasingly dom-
inant network transmission overhead for large messages.

Figure 10(b) shows the peak throughput of different
systems in a second workload with 50% gets and 50%
puts. Not surprisingly, the performance of Memcached
and Redis are similar under both workloads.

We were surprised to see that Pilaf achieves identical
and sometimes better throughput in the second workload
compared to the first. Since RDMA-based get opera-
tion has much higher performance than verb message-
based put (Figure 7), we initially expected the sec-
ond workload to achieve worse throughput since it con-
tains a larger fraction of puts. On further investigation,
we found that our Infiniband cards appear to be able
to process verb messages and RDMA operations some-
what independently. Quantitatively, the card can reach
∼80% of its peak RDMA throughput while simultane-
ously sending and receiving verb messages at ∼95% of
the peak verb throughput. This explains why the sec-
ond workload has better throughput. For example, with
256-byte values, the first workload achieves 0.9 mil-
lion gets/sec (80% of peak RDMA performance) and
0.1 million puts/sec (far less than the card’s verb mes-
sage sending capacity). By contrast, the second work-
load produces 0.65 million ops/sec for both get and
put which represents 60% of the card’s peak RDMA
performance and 94% of the card’s verb message perfor-
mance. Thus, the second workload has a total through-
put of 1.3 million ops/sec, better than that achieved by
the first workload.

Latency: Figure 11 shows the cumulative probability
distribution of operation latencies under different sys-
tems in the workload with 90% gets. The underlying

experiments involved 10 concurrent clients issuing op-
erations with 1024-byte values as fast as possible.

In Figure 11, Pilaf’s median latency 15µs which is de-
termined by the get operation latency. From the earlier
experiments in Section 2 (Figure 1), we know the aver-
age RDMA roundtrip latency is 4µs for 1024-byte reads
with a single client. With an average of 1.45 probes
(each involving two RDMA reads) to find a particular
key-value in a 65%-filled 3-way Cuckoo hash table, the
ideal get latency would be 11.2 µs. The extra 4µs re-
flects the overhead in calculating CRCs on the clients’
side plus the queuing effects incurred by having ten con-
nected clients. The latency tail in Figure 11 is very short.

As expected, IPoIB also maintains lower latency than
Ethernet for both Memcached and Redis. Median Eth-
ernet latency is 209µs for Redis and 230µs for Mem-
cached. Pilaf beats Redis’ and Memcached’s median
Ethernet latency by 14×-15×, and their median IPoIB
latency by 9×-11×. The experiments for Figure 11 in-
volve ten clients connected to a single server. In these
experiments, Pilaf-VO reaches 95% of its peak through-
put, Memcached is at 75% of its maximum throughput,
and Redis and Pilaf at half their peak throughput. There-
fore, queuing effects are uneven for these systems in
Figure 11. When tested under very light loads (e.g. a sin-
gle client), Pilaf-VO and Pilaf have similar latency while
Memcached and Redis running on IPoIB also have sim-
ilar latency.

6 Related Work
There has been much work in the HPC community
to exploit performance critical features like kernel
and CPU bypassing. Many MPI implementations, e.g.
MPICH/MVAPICH [17, 18] and OpenMPI [26], sup-
ports an Infiniband network layer, leveraging both verb
messages and RDMA to reduce latency and increase
bandwidth.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450
Latency (µs)

Pilaf
Pilaf-VO

Memcached (IPoIB)
Redis (IPoIB)

Redis (Eth.)
Memcached (Eth.)

Figure 11: CDF of Pilaf latency compared with Memcached,
Redis and Pilaf-VO in a workload consisting of 90% gets and
10% puts. The average value size is 1024 bytes. The experi-
ments involved 10 clients.

RDMA as a powerful HPC networking feature has
been recognized in the system community in several
works. Due to the perceived cost of specialized HPC
hardware, some have advocated software RDMA over
traditional Ethernet. Soft-iWARP is a version of the
iWARP protocol implemented entirely in software [28];
it reduces TCP latency by 5%-15% by minimizing data
copying and limiting the number of context switches re-
quired. Another project later used soft-iWARP to realize
a 20% reduction in per-get CPU load for Memcached
without Infiniband hardware [27].

Many have leveraged RDMAs to improve the
throughput and reduce the CPU overhead of existing
networked systems such as PVFS distributed filesys-
tem [30], NFS [9], Memcached [13, 12, 27], HBase [11].
All of these works port existing system designs to a
modified networking backend which utilizes RDMA
within traditional request/reply message exchange pat-
tern. In other words, RDMAs are used as a supple-
ment mechanism to optimize data transfers while verb or
other messaging mechanisms are required before each
RDMA to signal control information before the transfer.
As an example, a client sends a verb message to instruct
the server to perform an RDMA read (or write) to the
client. When the server completes the RDMA operation,
it replies with another verb message informing the client
that the transfer is complete. This strategy uses RDMA
effectively only for large messages since the through-
put and CPU overhead of processing small messages
are still bounded by the verb message performance. By
contrast, our work aims to replace a large fraction of
the request/reply message exchanges with RDMA reads
by the clients, thereby significantly reducing the server’s
CPU overhead.

The three projects that implement Memcached over

RDMA on Infiniband [13, 12] or soft-iWARP [27] also
adopt the usual combination of control messages plus
RDMAs write to process gets and puts at the server.
In [13], the client uses a verb message to send the server
a local buffer address, which the server then copies data
into using an RDMA write. Put operations also involve
two verb messages and one RDMA read, wherein the
client gives the server an address, from which the server
pulls a key-value pair via RDMA read. Both put and
get include short-operation optimizations that combine
the data normally read or written via RDMA into one of
the verb messages exchanged. Compared to Pilaf, this
design achieves much lower throughput. Their reported
performance in a Infiniband cluster similar to ours is
300 Kops/sec for small operations, significantly lower
than that achieved by Pilaf (1.3 million ops/sec). The
other Memcached over Infiniband project [12] combines
Infiniband’s Reliable Connection (RC, with guarantees
similar to TCP) and Unreliable Datagram (UD, resem-
bling UDP) modes. The resulting performance is also
lower than achieved by Pilaf, despite running on a QDR
Infiniband cluster which is twice as fast as ours (DDR).

7 Conclusion
As future datacenter networks move towards incorpo-
rating HPC network features, it is time to rethink net-
worked system designs that can fully exploit power-
ful features like RDMA. We have demonstrated such a
design by building a high-performance key-value store
with very low CPU overhead. Pilaf replaces the usual
request/rely messaging pattern for read-only operations
by having the clients directly read from the server’s
memory using RDMA. It uses self-verifying data struc-
tures to detect read-write races in the face of concurrent
RDMA reads done by the clients and the local memory
accesses done by the server. Pilaf is able to achieve a
peak throughput of over 1.35M read and 663K write op-
erations per second from a single CPU core, outperform-
ing existing systems running over Ethernet or IPoIB by
more than an order of magnitude.

Acknowledgements

Members of the NeWS group – Yang Zhang, Russell
Power, and Aditya Dhananjay – gave valuable feedbacks
that helped improve this work. Our special thanks go to
Yang Zhang, who first suggested using CRCs to check
for data inconsistency. Frank Dabek suggested useful
experiments to evaluate Pilaf’s self-verifying data struc-
ture. This work was partially supported by NSF Award
CSR-1065114 and a Google Research Award. Yifeng
Geng was supported by a Tsinghua visitor scholarship.

References
[1] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,

AND PALECZNY, M. Workload analysis of a large-scale

11

114 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems (2012), pp. 53–64.

[2] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W., WAL-
LACH, D., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems (TOCS) 26,
2 (2008), 4.

[3] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing (New York, NY, USA, 2010), SoCC ’10,
ACM, pp. 143–154.

[4] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner:
Google’s globally-distributed database. In Proceedings of the
10th USENIX conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2012), OSDI’12, pp. 251–
264.

[5] CUONG, C. Youtube scalability. In Google Seattle Conference
on Scalability (2007).

[6] DEAN, J. Software engineering advice from building large-scale
distributed systems. Slides.

[7] FITZPATRICK, B. Distributed caching with memcached. Linux
J. 2004, 124 (Aug. 2004), 5–.

[8] GHEMAWAT, S., AND DEAN, J. Leveldb, 2011.
[9] GIBSON, G., AND TANTISIRIROJ, W. Network file system (nfs)

in high performance networks. Tech. rep., Carnegie Mellon Uni-
versity, 2008.

[10] HERLIHY, M., AND WING, J. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 12, 3 (1990), 463–
492.

[11] HUANG, J., OUYANG, X., JOSE, J., UR RAHMAN, M. W.,
WANG, H., LUO, M., SUBRAMONI, H., MURTHY, C., AND
PANDA, D. K. High-performance design of HBase with rdma
over infiniband.

[12] JOSE, J., SUBRAMONI, H., KANDALLA, K., WASI-UR RAH-
MAN, M., WANG, H., NARRAVULA, S., AND PANDA, D. K.
Scalable memcached design for infiniband clusters using hybrid
transports. In Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (2012).

[13] JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J.,
WASI-UR RAHMAN, M., ISLAM, N. S., OUYANG, X., WANG,
H., SUR, S., AND PANDA, D. K. Memcached design on high
performance rdma capable interconnects. In Proceedings of the
2011 International Conference on Parallel Processing (2011).

[14] KRIEGER, M. What powers instagram: Hundreds of instances,
dozens of technologies.

[15] KUTZELNIGG, R., AND DRMOTA, M. Random bipartite graphs
and their application to Cuckoo Hashing. PhD thesis, PhD the-
sis, Vienna University of Technology, 2008.

[16] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (Apr.
2010), 35–40.

[17] LIU, J., JIANG, W., WYCKOFF, P., PANDA, D., ASHTON, D.,
BUNTINAS, D., GROPP, W., AND TOONEN, B. Design and im-
plementation of mpich2 over infiniband with rdma support. In
Parallel and Distributed Processing Symposium, 2004. Proceed-
ings. 18th International (april 2004), p. 16.

[18] LIU, J., WU, J., KINI, S., BUNTINAS, D., YU, W., CHAN-
DRASEKARAN, B., NORONHA, R., WYCKOFF, P., AND
PANDA, D. Mpi over infiniband: Early experiences. In Ohio
State University Technical Report (2003).

[19] MAO, Y., KOHLER, E., AND MORRIS, R. Cache craftiness for
fast multicore key-value storage. In Proceedings of the 7th ACM
european conference on Computer Systems (2012), pp. 183–196.

[20] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcached at facebook. In Proceedings of USENIX

NSDI 2013 (2013).
[21] PAGH, R., AND RODLER, F. Cuckoo hashing. Journal of Algo-

rithms 51, 2 (2004), 122–144.
[22] POWER, R., AND LI, J. Piccolo: building fast, distributed pro-

grams with partitioned tables. In Proceedings of the 9th USENIX
conference on Operating Systems Design and Implementation
(OSDI) (2010).

[23] RASHTI, M., AND AFSAHI, A. 10-gigabit iwarp ethernet:
comparative performance analysis with infiniband and myrinet-
10g. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International (2007), pp. 1–8.

[24] SANFILIPPO, S., AND NOORDHUIS, P. Redis.
[25] SEDGEWICK, R., AND WAYNE, K. Algorithms. Addison-

Wesley, 2011.
[26] SHIPMAN, G., WOODALL, T., GRAHAM, R., MACCABE, A.,

AND BRIDGES, P. Infiniband scalability in open mpi. In Paral-
lel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International (2006), pp. 10–pp.

[27] STUEDI, P., TRIVEDI, A., AND METZLER, B. Wimpy nodes
with 10gbe: leveraging one-sided operations in soft-rdma to
boost memcached. In Proceedings of USENIX Annual Technical
Conference (2012).

[28] TRIVEDI, A., METZLER, B., AND STUEDI, P. A case for rdma
in clouds: turning supercomputer networking into commodity.
In Proceedings of the Second Asia-Pacific Workshop on Systems
(2011), p. 17.

[29] VIENNE, J., CHEN, J., WASI-UR-RAHMAN, M., ISLAM, N.,
SUBRAMONI, H., AND PANDA, D. Performance analysis
and evaluation of infiniband fdr and 40gige roce on hpc and
cloud computing systems. In High-Performance Interconnects
(HOTI), 2012 IEEE 20th Annual Symposium on (aug. 2012),
pp. 48 –55.

[30] WU, J., WYCKOFF, P., AND PANDA, D. Pvfs over infiniband:
Design and performance evaluation. In Parallel Processing,
2003. Proceedings. 2003 International Conference on (2003),
pp. 125–132.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 115

Lightweight Memory Tracing

Mathias Payer
ETH Zurich

Enrico Kravina
ETH Zurich

Thomas R. Gross
ETH Zurich

Abstract
Memory tracing (executing additional code for every memory
access of a program) is a powerful technique with many
applications, e.g., debugging, taint checking, or tracking
dataflow. Current approaches are limited: software-only
memory tracing incurs high performance overhead (e.g., for
Libdft up to 10x) because every single memory access of the
application is checked by additional code that is not part of
the original application and hardware is limited to a small set
of watched locations.

This paper introduces memTrace, a lightweight memory
tracing technique that builds on dynamic on-the-fly cross-ISA
binary translation of 32-bit code to 64-bit code. Our software-
only approach enables memory tracing for unmodified, binary-
only x86 applications using the x64 extension that is available
in current CPUs; no OS extensions or special hardware is re-
quired. The additional registers in x64 and the wider memory
addressing enable a low-overhead tracing infrastructure that is
protected from the application code (i.e., uses disjunct registers
and memory regions). MemTrace handles multi-threaded ap-
plications. Two case studies discuss a framework for unlimited
read and write watchpoints and an allocation-based memory
checker similar in functionality to memgrind.

The performance evaluation of memTrace shows that
the time overhead is between 1.3x and 3.1x for the SPEC
CPU2006 benchmarks, with a geometric mean of 1.97x.

1 Introduction

Analyzing memory accesses in large applications is a hard
problem due to limitations of the current tracing infrastructure
and hardware. Dynamic program instrumentation that naively
instruments every memory access results in high execution
overhead (20x for Valgrind’s memcheck [18], up to 10x for
libdft [14], up to 21.1x for compression for PTT [9], and up
to 40x for taintcheck [19]), and the execution overhead makes
it often impossible to execute large instrumented applications
up to the point where a specific bug is triggered. Hardware
watchpoints are limited to a small set of memory locations
but allow tracing at native performance.

Memory tracing allows the execution of memlets for every
memory access of the instrumented application. Memlets are
code sequences that are woven into the executed application
code. These memlets can execute additional code for each
memory access depending on: (i) the data value that is read
or written, (ii) the address that is read from or written to,
or (iii) the state associated with the address that is read or

written (the tracing infrastructure may provide additional
state – a shadow value – for every memory location that is
used in an application). Memory tracing is lightweight if the
overall performance overhead added through the memlets is
low. Memlets can use the state and the value of each memory
location to implement high-level functionality like (unlimited)
watchpoints, dataflow tracking, or taint checking.

This paper presents memTrace, a framework for lightweight
memory tracing for single-threaded and multi-threaded 32-bit
applications. MemTrace combines an API to set and check
shadow values for every byte used in the application with an
interface to implement different user-defined memlets. We
present two example memlets that (i) support an unlimited
number of memory watchpoints and (ii) enforce explicit
safety regions around every memory allocation for C/C++
applications to find memory corruption bugs like buffer
overwrites and buffer underwrites, and these memlets handle
arbitrary unmodified 32-bit binary applications.

Current memory tracing systems use software binary
translation to instrument all memory accesses of an application
with a pre-determined set of instructions (i.e., current systems
do not support user-configurable memlets). Some systems
reuse “unused” registers (e.g., minemu [4] uses the SSE
registers and therefore only supports applications that do not
use SSE instructions, LIFT [23] uses x64 registers) while other
systems (e.g., PIN [15], or Valgrind [18]) reallocate registers
during the binary translation process. Unused registers speed
up memory tracing because the memlets and the memory
checks use these registers, and no spill code is needed.

All recent Intel and AMD x86 CPUs are x64 capable, on
the other hand most applications are based on the 32-bit x86
ISA (e.g., the recommended Ubuntu end-user image uses only
32-bit applications, and all Windows and MacOS operating sys-
tem images exist in a 32-bit and a 64-bit version). A drawback
of x64 is the increased memory usage due to the 64-bit pointer
width and the larger page tables. Most applications fit well into
a 32-bit memory space. MemTrace enables lightweight mem-
ory tracing for these common x86 applications and uses the
available features of the already dominant x64 hardware. The
combination of free registers to implement the lookup checks
and a data structure that supports fast and efficient lookup for
individual memory locations is key to low execution overhead.

MemTrace uses cross-ISA translation for 32-bit applications
to a 64-bit ISA to offer both a wider address space and
additional registers to user-defined memlets. The memTrace

1

116 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

prototype implementation leverages the x641 ISA to implement
efficient memory tracing for unmodified x86 applications. The
x86 code is dynamically translated to x64 code. The x64 ISA
is the 64-bit extension of x86. Most instructions are available
in both ISAs and can be translated easily. The cross-ISA trans-
lation provides 8 additional registers that can be used for the
memlets. A shadow memory area above the 4GB limit of the
32-bit x86 application (i.e., application code uses only 32-bit
pointers and is therefore unable to interfere with the shadow
memory area) is used to store the data used by the memlets.
Our prototype implementation of memTrace supports all x86
instructions, including all FPU and SSE extensions.

The flexible implementation of memlets combined with
shadow data enables additional fine-grained operations that
build on top of memory tracing like dataflow tracking or taint
checking. The memlets update the data or taint information
for each memory location and check the integrity of the data
upon every memory access.

A key observation of Greathouse et al. [12] is that a fast
memory tracing framework needs some form of additional
hardware extensions to achieve low overhead. This paper
shows that low overhead memory tracing can be achieved
in software by using additional hardware resources (more
registers and a wider address space) that are available through
dynamic cross-ISA translation. The memTrace memory
tracing technique offers new opportunities for debugging,
dataflow tracking, or other user-defined memlets that evaluate
fine-grained memory access.

The memTrace prototype implementation supports arbitrary
applications like the OpenOffice office suite or the Apache
webserver. A performance evaluation of the memTrace pro-
totype implementation for x64 Linux kernels with the SPEC
CPU2006 benchmarks shows low overhead with a geometric
mean of 1.97x. The contributions of this paper are as follows:

1. The architecture of memTrace, a lightweight memory
tracing technique for binary-only 32-bit applications that
supports user-defined memlets and leverages cross-ISA
translation.

2. A case study that shows two memlets: one that supports
unlimited watchpoints and a second one that checks
an application for memory allocation errors (allocation
over-writes and under-writes).

3. An evaluation and discussion of a prototype implemen-
tation of the memory tracing technique for x86/x64 and
the corresponding memlets.

The rest of the paper is organized as follows: Section 2
lists requirements for lightweight memory tracing; Section 3
describes cross ISA binary translation; Section 4 shows two
case studies that use memory tracing; Section 5 presents the
memTrace implementation; Section 7 discusses related work;
and Section 8 concludes.

1Multiple different names are used for the 64-bit extension of x86: x64,
EM64T, AMD64, IA-32e, and x86-64. This paper uses x64.

2 Requirements for lightweight memory tracing

MemTrace is a technique for lightweight memory tracing that
builds on dynamic cross-ISA binary translation. Dynamic
binary translation keeps the overhead low and cross-ISA
translation from 32-bit to 64-bit enables the memlets to access
a broader memory space than the original ISA permits. This
paper discusses 32-bit programs running on a 64-bit ISA. Other
combinations work analogously, e.g., 16-bit code running on
a 32-bit ISA, as long as the address space of the target ISA is
a super-set of the source ISA. A lightweight memory tracing
technique must fulfill the following requirements:

Unchanged application address space: the 32-bit applica-
tion has access to the full 4GB memory space. The larger
target address space allows memTrace to hide the binary
translation framework and all the data structures needed
by the memlets from the application. Neither the binary
translator nor the memlets store any internal state in the
application memory space. The memlets may change
application memory values as part of their functionality.
This requirement ensures that the binary translator does not
interfere with the original memory layout of the application
and, e.g., the placement of shared libraries.

Unmodified execution: the translated application follows
the same control flow pattern as the original application.
The application uses the original return addresses on the
stack, the original function pointers, and the original targets
for indirect jumps. The translated code executes additional
lookups in a mapping table to transparently map from
translated to untranslated code targets. This requirement
ensures that the application can use original addresses, e.g.,
as control flow targets.

Full isolation: the application has no access to data of
the binary translator or to data of the memlets. The
translated application cannot access any data above the
original application segment (due to the restriction of 32-bit
pointers). This requirement ensures that the application
cannot modify any internal data.

Flexible memlets: the memory tracing technique enables
the implementation of flexible memlets that use shadow
memory or registers as state. MemTrace allows the
implementation of any memlet that needs one or more bytes
of state for each byte that the application uses. The memlets
can use additional available free registers in the target ISA.

Low overhead: the overall overhead of the memory tracing
technique must be low, and the other requirements must
not preclude a fast implementation.

The technique for lightweight memory tracing presented
in this paper fulfills the criteria above.

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 117

3 Cross-ISA binary translation

Cross-ISA binary translation takes a program written in a
source ISA and executes the program on a different target
ISA. Multiple reasons for cross-ISA translation exist, e.g.,
program portability, or additional resources in the target ISA.
Depending on the differences between the two ISAs the
translation is non-trivial.

This paper discusses two different architectures that are
both extended from 32-bit to 64-bit, namely the Intel x86
platform and the ARM platform. The first example covers
the x86 ISA. The x86 ISA evolved over more than 20 years
and was extended multiple times. 32-bit x86 and the 64-bit
extension x64 are closely related. x64 widens the registers and
the address size to 64-bit, adds 8 general purpose registers, and
introduces new instructions. Some instructions are removed as
well: 16 one-byte x86 instructions are replaced and reused as
prefixes for the new x64 instructions. The original 16 instruc-
tions are no longer available on x64 and must be emulated
using longer instructions. Additional changes include (i) the
limitation of segmentation which makes binary translation
for x64 harder [27] and (ii) the way system calls are executed.

A second example is binary translation for the ARM
platform. The ARMv8-A architecture supports two ISAs: the
AArch64 ISA is a 64-bit extension of the 32-bit AArch32
ISA. Similar to the x64 extension of x86 AArch64 supports
a wider address space and a wider register file. The prototype
implementation focuses on x86/x64 but the design of the
memTrace technique is applicable to AArch64/AArch32 as
well because our technique relies on a wider address space
and similar instructions between the two ISAs. A notable
difference between x86 and ARM is that the instruction pointer
(EIP) cannot be accessed directly on x86 while it is a regular
register on ARM. The binary translator modifies the EIP to
execute translated code from the code cache but emulates all
instructions that indirectly use the EIP to keep up the illusion
of an unmodified application (e.g., call foo is translated
into push orig eip; jmp transl foo. In contrast to
x86, an ARM implementation must emulate all instructions
that use the program instruction counter directly as well.

There are two problems that must be solved for binary
translation for 32-bit x86 programs: register pressure and loca-
tion of internal data structures of the binary translator. Register
allocation on x86 is a hard problem [1, 2, 29] and register
reallocation in a binary translator without type information and
control-flow information is even more complex. Translating
32-bit x86 applications to x64 code solves the register pressure
problem. The 8 additional registers are used by both the
dynamic binary translator to implement the translation process
and the memlets to implement the memory tracing. The
translated application uses the unchanged original registers
except for the program counter. Same-ISA binary translators
modify the original memory address space of an application
by placing internal data structures somewhere into the existing

Translator

Opcode
table

1'

2'

3'

Code cache

0

1

2 3

4

Application code

3 3'
1 1'
2 2'

Mapping tableApplication data Shadow memory

32bit address space

64bit address space

Figure 1: Binary translator runtime layout. Basic blocks
are translated and placed in the code cache using opcode
tables. The mapping table maps addresses in the program to
translated addresses. Trampolines invoke the translator for
untranslated basic blocks.

memory space. Cross-ISA translation from x86 to x64 enables
a wider address space. Consequently, the translated application
uses the low 4GB of memory and the binary translator and
the memlets place their data in the upper memory areas. The
translated application keeps using 32-bit pointers and cannot
access the memory of the binary translator.

To summarize, the advantages of cross-ISA binary
translation are: (i) additional registers available for the
instrumentation, (ii) memory separation as translated x86
code cannot access the code of the translator, and (iii) full
encapsulation of the translated application.

A possible disadvantage is that some hardware features
like segmentation are limited. Fortunately segmentation is
not used in user-space applications except for thread local data.
Segmentation for thread local data is still supported on x64.

3.1 Dynamic binary translation

Dynamic binary translation instruments a user-space appli-
cation on the fly. Figure 1 shows the design of the dynamic
binary translator and the memory layout. The translator com-
piles individual basic blocks of the original x86 application on
demand and places the translated code in a code cache. Trans-
lated control flow transfers use the mapping table to translate
targets in the original application to targets in the code cache.
Untranslated target fall back to the translator. All executed
code is either a part of the translator or of the generated code.

Instructions are translated using a table-based translation
scheme as described in libdetox [21]. Most instructions are
copied verbatim. For cross-ISA translation some instructions
must be adapted due to different memory encodings or
addressing schemes, other instructions are emulated by
the translation layer. In addition, all instructions that alter
control flow (e.g., jump instructions, call instructions, return
instructions, system calls, or interrupts) are adapted so that the
binary translator keeps control of the translated application.

3

118 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

3.2 Memory layout

The x64 ISA uses 64-bit wide pointers (whereas the physical
memory bus is up to 48bit wide). The binary translator maps
the original application to the low 4GB. The binary translator
library, the code cache, the mapping table, and all shadow mem-
ory are placed above the 4GB limit of the translated application.

The translated application still uses 32-bit pointers and
32-bit registers and has therefore no access to any data of the
binary translator. This enables hardware enforced protection
of the internal data from the translated application as the
application is not able to generate a memory access to that
region due to the 32-bit wide pointers used in the source ISA.
In addition, the application has exclusive access to the original
32-bit address space; the binary translator keeps all data in
higher memory areas.

3.3 MemTrace design summary

All state for the memlets and the internal data for the binary
translator are stored in the area of the 64-bit address space
above the first 4GB. The wider address space of a 64-bit ISA
like x64 in comparison to a 32-bit address space allows the
binary translator to place the shadow memory data structure
and all binary translator data structures into an address area
that is not accessible from the original application. The
translated application uses the low 4 GB of the 64-bit address
space that overlaps with the complete 4 GB address space
of a 32-bit application. The binary translator is completely
concealed; translated code is put in a code cache and every
control flow transfer uses a mapping table to map the original
target in the application memory space to the translated target
in the binary translator space. The application is fully isolated
from the binary translator: all pointers in the application
domain are 32-bit; the application has no access to any data
of the binary translator. The evaluation of the prototype
implementation shows low performance overhead with a
geometric mean of 1.97x for the SPEC CPU2006 benchmarks.

4 Memory tracing case studies

This section presents two case studies that use the lightweight
memory tracing technique. The first case study designs a
memlet for unlimited watchpoints. The memlet for unlimited
watchpoints supports both read and write watchpoints and
can be used to overcome the hardware limitation of 4 write
watchpoints on current x86 platforms.

The second case study implements a memory allocation
checker. Upon every allocation in a C or C++ program
the memory checker adds additional safe zones around the
allocated memory region. Any out-of-bounds reads and writes
are detected and stop the program.

4.1 Case study: a memlet for unlimited watchpoints

Watchpoints are used to debug applications and enable the
inspection of specific memory addresses. Read watchpoints
are triggered whenever the location is read and write

/* check */
lea 0x3d(%edx, %ecx, 4), %r8
cmpl (%r15, %r8), %r12w
jnz handler_92746
/* translated instruction */
addl 0x3d(%edx, %ecx, 4), %eax

addl 0x3d(%edx, %ecx, 4), %eax

Original 32bit instruction
64bit instructions with monitor

Figure 2: Translation of a memory accessing instruction.

watchpoints are triggered whenever the location is written.
For example, if a certain address is read or written by a bug
in the application then a watchpoint can be used to find the
code location and context where that read or write access is
executed. x86 supports up to 4 (up to 8 byte wide) hardware
watchpoints that can be set using debug registers. For many
use cases 4 watchpoints are not enough as a wider memory
region must be protected to find a specific bug.

The lightweight memory tracing technique facilitates
the design of a simple watchpoint memlet that implements
unlimited read and write watchpoints with constant overhead.
The overhead is constant for every memory access and does
not increase with the number of watchpoints.

The watchpoint memlet uses a shadow memory segment
of the same size as the original application. The shadow
memory is mapped with a 4GB offset (i.e., the address
0xdeadbeef is shadowed at 0x1deadbeef). Every byte
in shadow memory is either 0 (if no watchpoint should be
triggered) or non-0 if either a read or write watchpoint is
set. Figure 2 shows the translation of a sample instruction
that reads a memory address. The instruction is translated to
64-bit by expanding all pointers in the instruction. MemTrace
adds the memlet before the memory-accessing instruction and
checks if the shadow data is 0. The register %r15 holds the
constant offset 0x100000000, %r12 keeps the value 0, and
%r13 is used to store the watchpoint information.

The memlet is optimized for fast execution: the instruction
cache (i-cache) pressure is reduced by using shorter instruction
encodings for memlets and moving the watchpoint handler
(the cold path) out into a trampoline. The memlet uses
two registers (%r12 and %r15) to store constants. Each
replacement of a constant with a register saves 8 bytes in the
instruction length. In addition, the translator generates a cold
path trampoline for each instruction that accesses memory.
The trampoline stores the context (i.e., original IP of the
instruction that triggered the watchpoint) and transfers control
to the general watchpoint handler.

An interesting feature of the shadow memory segments
is that unaligned multi-byte memory accesses are supported.
If an instruction accesses a multi-byte value then the shadow
bytes of all bytes are combined. The memlet checks for non-0
and detects with a single check if a watchpoint is set for at
least a single byte of the multi-byte access.

The watchpoints can either be used by a debugging
script/program or can be used as regular watchpoints in GDB.
GDB allows remote stubs as backends with the standard GDB

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 119

frontend using a remote serial protocol [10]. The backend
implements a simple protocol to, e.g., read registers, set
breakpoints, and to set watchpoints. The remote stub starts
the application under the control of the lightweight memory
tracing prototype implementation. Watchpoints are forwarded
from the GDB frontend and activated using the watchpoint
memlets in translated code.

4.2 Case study: safe heap memory allocator

Ptmalloc2 [11], the standard allocator for C and C++ is
an in-place memory allocator that stores information about
each allocated memory block before and after the block.
This information may be overwritten by buffer overflows or
random memory writes. Such bugs are hard to find because
memory corruption bugs might only cause a segmentation
fault when the block is reused the next time.

This case study uses the watchpoint memlet to set watch-
points before and after every allocated memory block. Calls to
the memory allocator are intercepted by the binary translation
framework and new watchpoints are added dynamically. If
a block is collected (freed) then the watchpoints are removed.

If a bug in the application writes to a watchpoint or reads
a watchpoint (i.e. the application accesses an illegal memory
region) then the application is either terminated with an
information message or a debugger is attached dynamically
so that a programmer can analyze the problem.

5 Implementation

The prototype implementation of memTrace extends the
libdetox [21] binary translation platform. The libdetox
platform is a table-based x86 to x86 binary translator. Our
prototype implementation extends the translator with a
cross-ISA translation module that transforms x86 instructions
to equivalent x64 instructions. The complete prototype
implementation is released as open source.

The prototype implementation maps the 32-bit version of
the standard loader ld.so into the 32-bit address space and
prepares the application stack with the correct parameters that
ld.so expects for the initialization of a 32-bit application.
Next the binary translator starts translation and execution of
the loader code which loads and initializes all needed shared
libraries and starts the execution of the application.

The following sections discuss the translation of individual
instructions, present how the memory layout of a translated
application looks, and focus on specific translation details.

5.1 Instruction translation

Due to the similarity of the two ISAs the encoding of most
instructions is similar as well, the translation is straight-forward
and follows the concept of other table-based translators. For
most instructions the available encodings on x64 are a super-set
of the available encodings of x84. The binary translator uses
linked instruction tables to decode the current instruction. If
the instruction accesses memory then the pointers are zero

expanded to 64-bit memory addresses and the memlet is emit-
ted before the translated instruction. The binary translator uses
one of the following translation schemes for each instruction:

Emulation: instructions that are not available on x64 (e.g.,
pusha, or popa) are replaced by a sequence of instructions
that emulates the removed instruction transparently.

Exception: instructions that are no longer used (e.g., aaa,
or aad) raise an exception. The binary translator fails
gracefully and prints an error message. An emulation of
these instructions can be added if needed.

Encoding: some instructions are encoded differently on x64
(e.g., inc, or dec). These instructions are replaced during
the translation process.

Addressing mode: x64 uses an instruction pointer relative
addressing mode instead of an absolute addressing mode.
Absolute references are translated dynamically to absolute
addresses during code generation.

Different semantics: some instructions change their
semantics (e.g., push, or pop) and operate on quadwords
on x64. These instructions are translated to operate on
doublewords during the translation.

Rep prefix: the handling of the rep prefix changes for x64.
String operations (e.g., rep stosb) that use the rep prefix
are translated to loops during the translation process.

On x64 segment-based addressing is restricted compared
to x86. Current user-space x86 applications use segmenting
only for thread local storage in current applications. The x64
ISA supports segmentation for thread local storage and the
prototype implementation support 32-bit thread local storage
in a 64-bit environment.

5.2 Shadow memory

The 64-bit address space enables the implementation to use
address regions that cannot be encoded using 32-bit memory
pointers. The application uses the low 4GB of the 64-bit
address space and no data in that region is changed through
the binary translator (the data may be changed as a function of
the memlets). Figure 3 shows the memory layout of a running
application under the control of memTrace.

The next 4GB are used as shadow memory of the
application memory at offset 0x100000000. The memlets
store information about the corresponding memory addresses
of the application in the shadow memory. The shadow
memory regions are mapped at the same time when the
application memory is mapped. Virtual memory allocates
physical pages only if the page is accessed by a memlet
(e.g., code regions are not accessed by our memlets and the
physical pages are therefore not allocated). An upper bound
for the memory consumption for the shadow memory is 1x the

5

120 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Translator memoryShadow memory
(used by monitors)

Application memory

C
o

d
e
 &

 d
a
ta

H
e

a
p

S
ta

c
k

C
o
d

e
 c

a
c
h

e
 &

tra
n
s
la

t o
r d

a
ta

T
ra

n
s
la

to
r c

o
d
e

C
o
d

e
' &

 d
a
ta

'

H
e

a
p
'

S
ta

c
k
'

T
ra

n
s
la

to
r s

ta
c
k

0x0'FFFF'FFFF (4GB) 0x1'FFFF'FFFF (8GB)0x0'0000'0000

Figure 3: Memory layout of the translated application.

memory that the application uses. Memlets may use multiple
shadow memory regions to store additional information (i.e.,
at offsets 0x200000000, 0x300000000, and so on).

5.3 Register allocation

The x64 ISA offers 8 additional general registers (%r8 to
%r15) that can be used by the lightweight memory tracing
technique. The binary translator component is compiled for the
x64 ISA and uses all available registers during the translation
of x86 code. The transition between translator and translated
application code saves and restores all general purpose registers.
The memlets are native x64 code and can use the 8 additional
x64 registers during the execution of the translated code.

Both memlets discussed here use registers %r8 and %r9

as temporary scratch registers. The memory watchpoint
memlet uses three registers %r10, %r11, and %r13 to track
usage of the eflags register. Saving and restoring the
eflags register before and after the execution of a memlet
adds overhead, therefore reducing the number of save and
restore operations is important.

The register %r12 holds the constant 0x0 and the
register %r15 holds the constant offset to the shadow
memory (0x100000000). Using registers to hold constants
instead of encoding constants in the instruction itself saves
8 bytes per used constant in the emitted code. If needed, these
registers may be used for other purposes.

5.4 String instructions

String instructions use the rep prefix to repeat a single
instruction n times. String instructions access multiple memory
locations in a sequence of incrementing or decrementing
addresses.

MemTrace replaces string instructions with a short loop
that first checks the source address and the destination address,
executes a single instruction with the current parameters, and
increments or decrements the source and target registers.

5.5 System calls, signals, and threads

An x86 application requests system calls either using interrupts
(int $0x80) or using the sysenter instruction. On x64
the application uses the syscall instruction. The mapping
between system call and system call number is different

between x86 and x64. The parameters of individual system
calls can change as well (i.e., 64-bit wide addresses instead
of 32-bit wide addresses).

MemTrace uses a mapping table to map between x86 and
x64 system calls. Most system calls can be mapped easily.
For system calls that access memory, pointers are dynamically
extended to 64-bit and returned pointers from the kernel
are truncated to 32-bit. All memory management system
calls (mmap, munmap, mremap, and brk) are redirected to
a special handler function that checks and adapts the specified
parameters and manages the shadow memory as well.

Signals are handled in the binary translator as well. The bi-
nary translator intercepts all system calls that install signals and
replaces the signal handlers with its own internal signal handler.
This signal handler then handles the switch to the application
stack if the signal was caught while in the translator and ex-
ecutes the corresponding translated application signal handler.

The cross-ISA binary translator supports Linux pthreads
by translating thread-related system calls of the application
into the necessary 64-bit system calls. Thread support is
a difficult problem for memory tracing due to possible
synchronization issues. Two threads may concurrently modify
the same memory address and the corresponding memlets
may therefore access the same shadow value. As long as the
application synchronizes access to the memory location the
access to the shadow value is implicitly synchronized as well.
If the original program has a data-race then the memlets must
synchronize concurrent writes, e.g., by using regional locks.
Simply adding a lock prefix to the original memory access
is not enough as the memlet will access a second memory
location. Adding explicit locks for each memory access adds
high overhead and is currently not implemented.

The accesses of the memlets to the shadow table follow the
same pattern as the memory accesses in the original application.
If the application locks the memory region for a specific thread
then the corresponding shadow memory region is implicitly
locked as well. No other application thread can access the
original memory region, therefore no memlet of another thread
will access the implicitly locked shadow memory region. This
implicit locking approach only works if the application has
no data races between threads. User-defined memlets that
analyze inter-thread behavior, e.g., to check for data races,
must lock the shadow memory themselves.

5.6 Flag tracking optimizations

This section presents two optimizations for the binary
translator that help lowering the overhead for memory tracing.
The first optimization tracks the usage of the eflags register
and allows the memlets to change the eflags register if the
eflags register is not used between instructions that affect
the flags. The second optimization stores the operands of
the relevant arithmetic instruction in two free registers and
reexecutes the instruction with a bogus target.

A big advantage of the cross-ISA translation is that

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 121

addl %ebx , %eax # sets flags , unused

subl %ecx , %eax # sets flags , used

movl (0 xdeadbeef), %ebx # mem. read

movl %eax , (0 xdeadbeef) # mem. write

jnz next_block # uses flag

Listing 1: Example of a basic block in an application

memTrace can use additional free registers without the need
for register reallocation. Unfortunately one register is shared
between the binary translator, the memlets, and the translated
application code: the eflags register. The situation is
worsened by the fact that access to this register is very slow
when using pushf and popf instructions. Instead of using
pushf and popf instructions we use a short sequence of
instructions (lahf and seto to save and addb and sahf

to restore) to handle the eflags register.
On x86 all arithmetic instructions, the “compare” instruc-

tion, and the “test” instructions set the eflags register.
But the eflags register is only read after a subset of the
instructions. Table-based binary translators do not build an
intermediate representation (IR) which makes eflags-usage
tracking more complicated. MemTrace uses a triple-pass
approach to track usage of the eflags register in each basic
block. The first two passes decode all instructions and analyze
which instructions use the eflags register. The third pass
emits translated instructions (including the memlets which
change the application-set eflags register) but inserts code
that saves the eflags register only when necessary.

The second optimization saves the operands of the
eflags-relevant arithmetic instruction in two x64 registers
(%r10, and %r11). In front of the instruction that reads
the eflags register the arithmetic instruction is executed
again (with the saved operands) to reproduce the state of the
eflags register. This optimization reduces the overhead of
saving and restoring the eflags register in tight loops.

Listing 1 shows an example of a basic block. The first two
instructions set the eflags registers, but only the result of
the subl instruction is used. The two movl instructions
execute memory accesses and the memlets in the instrumented
code overwrite the status of the subl instruction. MemTrace
restores the status of the eflags register of the last
arithmetic instruction before the jnz instruction.

6 Evaluation

The prototype implementation is stable and runs applications
like, e.g., the parsec benchmarks, OpenOffice, gedit, and
the complete set of SPEC CPU2006 benchmarks. The
evaluation uses the SPEC CPU2006 benchmarks to evaluate
the performance of the memTrace prototype implementation,
including two different user-defined memlets.

This evaluation uses all SPEC CPU2006 benchmarks
except 481.wrf which no longer compiles on modern systems.

This is not a limitation of our prototype implementation but
a limitation of the SPEC CPU2006 benchmarks.

All benchmarks are executed on a 64-bit version of Ubuntu
12.04. The machine uses an Intel Core i7-2640M CPU with
2 cores at 2.80 GHz with 4 GB of memory. The benchmarks
are compiled using gcc version 4.6.3 and use the glibc version
2.15. The benchmarks are compiled for 32-bit.

6.1 SPEC CPU2006

This section evaluates the performance of memTrace, our
prototype implementation, using the SPEC CPU2006 version
1.0.1 benchmarks using the flags -O3 -m32. We evaluate
different configurations of memTrace to show the overall
overhead and relative performance changes for individual
optimizations. The evaluations use the runspec script to
produce reproducible runs with 3 iterations.

We perform the measurements on both the reference dataset
and on the test dataset. The test dataset is used to evaluate
the overhead for short running programs while the reference
dataset shows the overhead for long running benchmarks. The
following configurations are used:

NAT: A native configuration that runs without binary
translation or memory tracing.

ID: The benchmarks execute with binary translation.

EFL: This configuration measures the overhead for storing
and restoring the eflags register for memory tracing.
Code that saves and restores the eflags register is added
before as if memory tracing is executed but no memlets
are added. All optimizations discussed in Section 5.6 are
enabled.

MT: This configuration shows the performance of the
baseline memory tracing framework. MT extends the EFL
extension and measures the impact of reading the shadow
memory address for each memory access.

WP: This configuration executes full memory tracing using
the watchpoint memlets (without any active watchpoints).

Table 1 shows the overhead of the four different memTrace
configurations compared to native execution of the 32-bit bina-
ries. Most benchmarks exhibit moderate overhead for the dif-
ferent memTrace configurations. The overhead is always below
3.11x and for 16 of 28 applications the overhead is below 2x.

The ID configuration measures the overhead for cross-ISA
translation. The overhead for cross-ISA binary translation is
low, 15% on average with a geometric mean of 17%. The usual
culprits 400.perlbench, 403.gcc, 445.gobmk, 458.sjeng, and
453.povray result in an overhead of more than 40% for binary
translation due to the high number of indirect control flow
transfers. The ID configuration shows that the binary translator
is a reasonable baseline to implement memory tracing.

7

122 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Benchmark NAT [s] ID EFL MT WP
400.perlbench 324.00 1.74 2.10 2.60 2.82
401.bzip2 498.00 1.08 1.28 1.91 1.97
403.gcc 305.00 1.40 1.65 2.08 2.20
429.mcf 278.00 1.10 1.10 2.00 2.21
445.gobmp 434.00 1.49 1.85 2.26 2.74
456.hmmer 433.00 1.01 1.43 2.63 2.63
458.sjeng 485.00 1.56 1.99 2.35 2.72
462.libquantum 543.00 1.01 1.03 1.23 1.24
464.h264ref 609.00 1.22 1.42 2.71 2.86
471.omnetpp 308.00 1.37 1.44 1.89 1.94
473.astar 412.00 1.09 1.25 1.60 1.62
483.xalancbmk 252.00 1.90 2.23 2.68 2.99
410.bwaves 405.00 1.01 1.20 1.96 1.97
416.gamess 760.00 1.09 1.57 2.30 2.43
433.milc 441.00 1.00 1.06 1.32 1.34
434.zeusmp 540.00 1.02 1.22 1.69 1.72
435.gromacs 658.00 1.01 1.15 1.43 1.49
436.cactusADM 1120.00 0.99 1.24 2.21 3.11
437.leslie3d 447.00 1.02 1.11 1.44 1.44
444.namd 412.00 1.02 1.23 1.61 1.63
447.dealII 318.00 1.35 1.56 2.08 2.13
450.soplex 298.00 1.07 1.23 1.46 1.51
453.povray 181.00 1.49 2.05 2.62 2.78
454.calculix 696.00 1.03 1.21 1.55 1.59
459.GemsFDTD 503.00 1.04 1.14 1.61 1.66
465.tonto 559.00 1.15 1.35 1.71 1.81
470.lbm 440.00 1.00 1.02 1.13 1.14
482.sphinx3 521.00 1.05 1.23 1.59 1.61
Average 470.71 1.15 1.36 1.90 2.06
Geo. mean 439.54 1.17 1.37 1.86 1.97

Table 1: Performance evaluation using the SPEC CPU
2006 benchmarks (reference dataset). NAT shows native
execution in seconds, the remaining columns show memTrace
configurations relative to NAT.

The EFL configuration measures the performance overhead
induced by eflags tracking, saving, and restoring needed
if additional code is executed for every memory-accessing
instruction. No memlet code is executed for this configuration.
The average performance overhead for this configuration is
36% and the geometric mean is 37%. Different benchmarks
show different increase in the performance overhead. These
differences hint at the number of memory-accessing instruc-
tions that are executed for each benchmark. If the overhead
increases over-proportional, then the benchmark executes more
memory accessing instructions than the average benchmark.

The MT configuration extends the EFL configuration
by reading the shadow value for each accessed memory
location. No additional computation is executed. The
performance difference between EFL shows the impact of one
additional mov instruction per memory-accessing instruction

Benchmark NAT [s] ID EFL MT WP VAL VMEM
400.perlbench 3.57 1.67 1.75 1.88 1.95 6.53 err
401.bzip2 5.79 1.10 1.30 2.09 2.16 4.40 16.29
403.gcc 1.00 2.01 2.27 2.74 3.07 11.42 err
429.mcf 1.69 1.15 1.19 2.17 2.27 3.44 10.00
445.gobmk 15.00 1.49 1.85 2.26 2.71 8.07 31.20
456.hmmer 2.51 1.10 1.49 2.37 2.39 5.66 28.53
458.sjeng 3.39 1.53 1.87 2.25 2.58 7.73 31.27
462.libquantum 0.05 1.40 1.56 2.01 2.01 8.30 17.35
464.h264ref 12.30 1.24 1.59 2.60 2.72 4.73 34.47
471.omnetpp 0.31 3.66 4.33 4.90 5.92 18.15 73.25
473.astar 7.93 1.08 1.23 1.54 1.59 2.86 11.92
483.xalancbmk 0.08 4.36 4.52 5.39 5.79 22.93 65.79
410.bwaves 5.13 1.02 1.21 2.03 2.05 5.85 61.79
416.gamess 0.33 1.47 1.79 2.40 2.58 11.23 43.69
433.milc 5.06 1.12 1.34 1.77 1.77 6.52 31.03
434.zeusmp 13.80 1.01 1.24 1.64 1.64 err err
435.gromacs 1.37 1.11 1.25 1.52 1.60 5.64 20.44
436.cactusADM 2.47 1.02 1.44 3.00 4.66 6.15 err
437.leslie3d 11.50 1.02 1.13 1.48 1.48 4.83 12.00
444.namd 11.10 1.05 1.26 1.63 1.65 7.09 23.78
447.dealII 13.20 1.42 1.58 2.20 2.24 err err
450.soplex 0.03 2.57 2.79 3.03 3.19 err err
453.povray 0.50 1.62 2.11 2.68 2.88 11.15 52.52
454.calculix 0.05 2.38 2.75 3.24 3.22 16.57 44.01
459.GemsFDTD 2.10 1.32 1.45 2.00 2.07 5.62 17.14
465.tonto 0.80 1.43 1.71 2.10 2.25 8.39 31.54
470.lbm 3.27 1.00 1.02 1.10 1.11 3.24 11.77
482.sphinx3 1.45 1.30 1.49 1.84 2.00 8.90 34.69
Average 4.49 1.22 1.45 1.98 2.12 5.24 24.30
Geo. mean 1.68 1.43 1.67 2.21 2.36 7.13 26.39

Table 2: Performance evaluation using the SPEC CPU2006
benchmarks (test dataset). NAT shows native execution in
seconds, the next four columns compare different memTrace
configurations to NAT. The last two columns compare
Valgrind nullgrind (VAL) and memcheck (VMEM) to NAT.

combined with additional cache pressure for accessing twice
as many memory locations in hot code regions. Several
benchmarks exhibit a performance impact of 2.0x to 2.7x
for this configuration. The average overhead is 1.90x with
a geometric mean of 1.86x. This configuration shows the
overhead for memory tracing without executing any memlets.

The WP configuration extends the MT configuration with
the memlet for unlimited watchpoints. No watchpoints are set
in this configuration, but the difference in execution time be-
tween configurations with set watchpoints and configurations
without set watchpoints is negligible if no watchpoints are
taken. If watchpoints are taken then the execution time of the
watchpoint handlers must be added to the overhead as well. We
measure the highest performance impact for the cactusADM
benchmark with 3.11x performance impact compared to native
execution due to the high frequency of memory accesses.
The average overhead is 2.06x and the geometric mean is
1.97x. These two values show that the additional overhead

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 123

for the user-defined memlet is low compared to the execution
overhead of the baseline memory tracing framework.

The performance analysis shows that the overall overhead
for the prototype of the lightweight memory tracing framework
using cross-ISA translation (the MT configuration) is
below 2.0x and that the additional performance impact for
the execution of user-definable memlets is low (the WP
configuration). Lightweight memory tracing is a technique
that can be used in practice to trace every single memory
access of an application using user-definable memlets with
tolerable execution overhead.

6.2 Comparison to other systems

This section evaluates the prototype implementation of the
memTrace technique with other, similar software products
that are capable of memory tracing. We tried running the
minemu 0.8 open-source version on a 64-bit Ubuntu 12.04
system. Unfortunately the current version of minemu crashes
during the initialization of thread local storage of the SPEC
CPU2006 benchmarks when running 32-bit x86 binaries on
an x64 system.

6.2.1 Valgrind

We evaluate valgrind [18] version 3.7.0-0ubuntu3 as the second
system in two configurations: nullgrind (VAL) to evaluate
the Valgrind overhead and (VMEM) to evaluate Valgrind’s
memcheck overhead. Table 2 shows the timings of the SPEC
CPU2006 benchmarks and compare different configurations
against the native execution of the test dataset. The test dataset
uses shorter input files and simpler problems. This comparison
uses only the test dataset due to the higher translation overhead
of Valgrind. The 434.zeusmp, 447.dealII, and 450.soplex
benchmarks did not complete under Valgrind’s nullgrind
configuration and the 400.perlbench, 403.gcc, 434.zeusmp,
436.cactusADM, 447.dealII, and 450.soplex benchmarks
did not complete under Valgrind’s memcheck configuration.
MemTrace uses the same configurations as in Section 6.1.

The evaluation for memTrace shows a similar picture like
the performance analysis of the ref dataset. In general the
overhead increases due to the fact that translated code in the
code cache is reused less often. The geometric mean for the
MT configuration is 2.21x and the average overhead is 1.98x
(compared to a geometric mean of 1.86x and an average of
1.90 for the ref dataset).

Valgrind on the other hand exhibits an average overhead
of 5.24x and a geometric mean of 7.13x for the test dataset
in the nullgrind configuration. The nullgrind configuration is
comparable to the ID configuration of memTrace and does not
execute any memlets or other user-defined code. The mem-
check configuration of Valgrind results in an average overhead
of 24.3x and a geometric mean of 26.4x. The memcheck
configuration is comparable to memTrace’s WP configuration.

1 WP [s] 10 WP [s] 100 WP [s]
GDB SW WP 180 330 1670
memTrace 0.01 0.01 0.01

Table 3: Evaluation of the microbenchmark in with the first
watchpoint at the 1,000 element.

6.2.2 GDB

We use a CPU-bound microbenchmark to evaluate the
performance of the watchpoint memlet compared to GDB.
The microbenchmark sets W consecutive watchpoints in a
large array and processes the array in multiple passes, where
the nth pass accesses the first n elements of the array. In
each pass, the elements are accessed using several patterns:
a forward linear sweep, a convolution, and a sparse backward
sweep. The microbenchmark measures the time until the first
watchpoint is hit and handled by the debugger.

To compare memTrace performance with hardware
watchpoint performance we configure the microbenchmark
with the first watchpoint at the 500,000 array element (i.e.,
memTrace needs to execute a large amount of memlets that
do not trigger a watchpoint). With one active watchpoint
the hardware watchpoint configuration executes in 52.8
seconds while the memTrace implementation uses 80.5
seconds, resulting in 52% overhead compared to the hardware
implementation. While hardware watchpoints support only up
to 4 simultaneous watchpoints memTrace supports unlimited
watchpoints at a constant overhead (104 watchpoints in 80.5
seconds and 108 watchpoints in 81.5 seconds). Even at 108

watchpoints the performance of memTrace remains stable.
Table 3 compares memTrace performance with the

performance of GDB software watchpoints with the first
watchpoint at the 1,000 array element. Even for 1 GDB
software watchpoint memTrace is 18,000x faster than software
watchpoints. For 100 GDB software watchpoints memTrace
is 167,000x faster. The prototype implementation of the
memTrace watchpoint memlet fully supports the remote serial
protocol of GDB and works as a fast drop-in replacement for
the GDB software watchpoints.

6.3 Memory overhead

Table 4 presents an analysis of the memory overhead for the
SPEC CPU2006 benchmarks when run natively and under the
control of the memTrace prototype implementation. The table
shows the peak amount of mapped memory of the benchmark.
This benchmark measures the number of mapped memory
pages, not the number of allocated memory pages. The allo-
cated memory pages are a subset of the mapped memory pages.

The memory overhead for binary translation only is low
with an average of 9.2 MB and a maximum of 12.7 MB.
Binary translation only needs few data structures (8 MB for
the mapping table plus data structures for the code cache,
signal handlers, and trampolines). These numbers show that

9

124 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Benchmark NAT [MB] ID [MB] Ovhd. WP [MB] Ovhd.
400.perlbench 565.24 574.92 1.7% 1142.16 102.1%
401.bzip2 628.27 636.76 1.4% 1265.34 101.4%
403.gcc 84.05 96.74 15.1% 186.92 122.4%
429.mcf 856.22 864.64 1.0% 1721.12 101.0%
445.gobmk 38.66 48.66 25.9% 89.76 132.2%
456.hmmer 21.07 29.61 40.5% 51.11 142.6%
458.sjeng 192.09 200.64 4.4% 393.17 104.7%
462.libquantum 114.02 122.44 7.4% 236.78 107.7%
464.h264ref 81.00 89.97 11.1% 172.15 112.5%
471.omnetpp 119.57 129.02 7.9% 250.28 109.3%
473.astar 140.52 149.00 6.0% 289.96 106.3%
483.xalancbmk 329.77 340.42 3.2% 673.82 104.3%
410.bwaves 891.57 900.11 1.0% 1792.19 101.0%
416.gamess 655.31 665.31 1.5% 1323.43 102.0%
433.milc 687.87 696.41 1.2% 1384.78 101.3%
434.zeusmp 1136.98 1146.00 0.8% 2284.24 100.9%
435.gromacs 34.60 43.39 25.4% 78.87 127.9%
436.cactusADM 1017.70 1026.80 0.9% 2045.81 101.0%
437.leslie3d 141.02 149.68 6.1% 291.39 106.6%
444.namd 63.85 72.52 13.6% 137.12 114.7%
447.dealII 501.38 510.89 1.9% 1014.33 102.3%
450.soplex 509.26 518.04 1.7% 1028.18 101.9%
453.povray 21.84 31.10 42.4% 54.44 149.3%
454.calculix 179.23 188.73 5.3% 369.89 106.4%
459.GemsFDTD 845.69 855.01 1.1% 1702.32 101.3%
465.tonto 53.91 64.46 19.6% 122.37 127.0%
470.lbm 426.93 435.35 2.0% 862.53 102.0%
482.sphinx3 57.81 66.59 15.2% 125.16 116.5%
Average 371.27 380.47 2.5% 753.20 102.9%
Geo. mean 201.55 219.56 8.9% 413.58 105.2%

Table 4: Memory consumption in megabytes of the SPEC
CPU2006 benchmarks (NAT) and additional memory
consumption of different configurations of the memTrace
prototype implementation. ID represents a binary translation
only configuration.

the memory overhead for cross-ISA binary translation is low.
The last column of Table 4 shows the memory overhead

of the WP configuration. The amount of mapped memory
is roughly doubled due to the shadow memory region.

7 Related work

There are several areas of related work that are relevant for
lightweight memory tracing. Binary translation is needed to
dynamically weave the memlets into the executed application
code. The following sections discuss different systems for
binary translation and different systems that implement some
forms of memory tracing.

7.1 Binary translation

Binary translation enables late code modification to, e.g.,
instrument a binary application, to offer late code optimization,
or to execute an application on a different ISA than it was
originally compiled for.

Full-ISA emulation is too slow for real-world scenarios and
mostly used for evaluation of new hardware features. Efficient
binary translation is implemented using either table-based
approaches or IR-based approaches.

Same-ISA binary translation translates an application to the
same ISA (x86 to x86). A drawback of same-ISA translation
is the register pressure on x86. Only 8 general purpose
registers are available for x86 applications and only 6 or 7
registers are available for general computation (depending
on the calling conventions). Memlets used for memory tracing
need to execute additional computation for each memory
access, starving the register allocator even further.

IR-based binary translators translate the application by
using a traditional compiler approach. The binary translator
transforms code into an IR, adds the desired instrumentation,
and generates machine code for the desired platform.
Translation is either dynamic like in a just-in-time compiler or
static ahead-of-time. DynamoRIO [5], PIN [15], QEMU [3],
and Valgrind [18] are dynamic IR-based binary translators.
The IR-based approach enables compiler optimization to
produce high-quality code at some translation cost.

Dynamic table-based binary translators (e.g., HDTrans [25],
fastBT/libdetox [20, 21], or StarDBT [28]) use translation
tables to decode original instructions and to generate translated
instructions. The advantage is the low-overhead translation
speed combined with reasonable code quality.

StarDBT [28] and QEMU [3] are two binary translation
systems that support cross-ISA translation. StarDBT translates
x86 code to x64 code and QEMU translates (almost) any ISA
to (almost) any other ISA.

MemTrace is a cross-ISA table-based dynamic binary
translator that translates user-space applications from x86
to x64. The binary translator component offers near-native
performance. The StarDBT binary translator is similar
to our binary translator but uses two compilation stages
(baseline and optimized) while memTrace uses only one fast
table-based translation scheme. In addition, memTrace allows
the definition of user-defined memlets that may use fixed
registers to speed up memlet execution.

7.2 Memory tracing and watchpoints

Memory tracing allows the execution of memlets for each
memory access. A baseline memory tracing infrastructure
is needed to implement higher-level memlets like watchpoints,
or taint checking.

Greathouse et al. [12] present a case for unlimited
watchpoints and light-weight, hardware-assisted memory
tracing. They reason that additional hardware is needed to
achieve low overhead for unlimited watchpoints. MemTrace
shows that cross-ISA translation realizes low-overhead
memory tracing (and watchpoints) for x86 applications when
executed on modern processors that support x64 extensions.

Metric [16] is a memory tracing framework that collects
and stores selected memory access traces. Memcheck [17],

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 125

System Arch. Underlying BT Shadow memory Overhead
memTrace x86 to x64 libdetox 1 byte per byte 2.0x for SPEC CPU2006
Libdft [14] x86 to x86 PIN flexible 1.14x to 10x slowdown SPEC CPU2000
Minemu [4] x86 to x86 dynamic BT, no SSEa 1 byte per byte 2.4x for SPEC INT2006
PTT [9] x86 to x86 QEMU 32-bit vector per byte 21.1x for compression benchmark
Saxena et al. [24] x86 to x86 static BT 1 bit per byte 1.9x (stack only) to 2.8x (SPEC INT95 subset)
Panorama [30] x86 to x86 QEMU 4 byte pointer per byte 20x on selected benchmarks
Dytan [7] x86 to x86 static BT 1 bit vector per byte 30x to 50x for gzip
LIFT [23] x86 to x64 StarDBT 1 bit per byte 1.7-7.9x, 3.6x for SPEC INT2000
Argos [22] x86 to x86 QEMU 1 bit per byte (phys. mem) “at least 16x overhead”
Xentaint [13] x86 to x86 Xen and QEMU 1 bit per byte 61.5x to 88.4x for micro-benchmarks
Vigilante [8] x86 to x86 static BT on start-up 1 bit per 4k page no numbers on performance overhead reported
Taintcheck [19] x86 to x86 Valgrind 4 byte pointer per byte 1.5x to 40x
Suh et al. [26] Alpha HW extension 1 bit per page/quad word/byte 1.44% for SPEC CPU2000

aMinemu internally uses the SSE registers and cannot support any SSE instructions in applications. Modern compilers use SSE instructions to speed up
memory transfers, for vectorization, and for floating point computation.

Table 5: Comparison of different taint checking and dataflow analysis systems.

Umbra [31], EDDI [32], and Dr. Memory [6] are four
frameworks for memory tracing that use same-ISA binary
translation to add hard-coded memlets for watchpoints.
Memcheck builds on Valgrind and reports an overhead of
22.2x for the SPEC CPU2000 benchmarks. Umbra, EDDI,
and Dr. Memory build on DynamoRIO. Umbra reports an
overhead of 2.33x for SPEC CPU2006 for memory tracing of
an x64 application; an example tool that extends Umbra with
a memlet that monitors thread’s memory accesses imposes
a 6.49x overhead for a set of benchmarks. EDDI reports an
overhead of 2.59x for 0 watchpoints and 3.68x for watching
the complete data region on the SPEC CPU2000 benchmarks
in the FI configuration. The PI configuration of EDDI only
reports on a subset of the SPEC CPU2000 benchmarks. Dr.
Memory reports a slowdown of 10.2x for the SPEC CPU2006
benchmarks. Umbra implements memory tracing without
additional memlets; memcheck, EDDI, and Dr. Memory add
hard-coded instructions into the executed application code
to check memory accesses for validity.

MemTrace improves on related work by offering
user-definable memlets that implement high-level memory
checkers and offers better performance than previous solutions:
memTrace reports an average overhead of 2.06x and a
geometric mean of 1.97x for tracing all memory accesses of
all SPEC CPU2006 benchmarks.

7.3 Taint checking and dataflow analysis

Taint checking and data flow analysis extend memory tracing
and analyse the flow of data inside an application. Every
memory cell and every register has an associated tag. Taint
checking uses a single taint bit per address while dataflow
analysis supports multiple different tags. Compared to
single-threaded approaches of other related work memTrace
fully supports memlets for concurrent threads.

Some of the systems in the following list use taint checking

or dataflow analysis as a technique in their system. Table 5
focuses on the taint checking or dataflow analysis component
of the presented systems.

MemTrace does not change the address space layout of
the original application, all data of the memlets is stored at
a higher location in the 64-bit memory space. This design
decision solves the problem of accesses to the shadow memory
by the application. For the shadow memory itself memTrace
uses 1 byte per byte, enabling threads to update the (shared)
shadow memory data structure concurrently without locking.
Only if memlets rely on bit-granularity then the programmer
must add a locking scheme to ensure correctness.

8 Conclusion

This paper presents memTrace, a technique for dynamic
lightweight memory tracing for unmodified binary applica-
tions. This technique adds shadow memory and state for each
memory address of an application and allows the execution
of user-defined memlets to inspect memory accesses.

The practical value of memTrace is demonstrated by the
implementation of two memlets: a memory checking memlet
that allows the debugging of memory errors and a memlet
that allows an unlimited number of watchpoints in a running
application. We evaluated the prototype implementation and
show that the overhead for SPEC CPU2006 is low with a
geometric mean of 1.97x and an average of 2.05x.

The open source release of the memTrace prototype is avail-
able at http://nebelwelt.net/projects/memTrace

and can be used to implement other memlets, e.g., for taint
checking, dataflow analysis, or control flow integrity checks.

Acknowledgments

We thank the anonymous reviewers for their comments,
Albert Noll for his comments on an early draft of this paper,
and Jonas Pfefferle and Tobias Hartmann for working on a
same-ISA version of a simple memory tracing infrastructure.

11

126 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

References

[1] ADL-TABATABAI, A.-R., CIERNIAK, M., LUEH, G.-Y.,
PARIKH, V. M., AND STICHNOTH, J. M. Fast, effective code
generation in a just-in-time java compiler. In PLDI’98 (1998),
pp. 280–290.

[2] ALPERN, B., BUTRICO, M. A., COCCHI, A., DOLBY, J.,
FINK, S. J., GROVE, D., AND NGO, T. Experiences porting
the jikes rvm to linux/ia32. In Java Virtual Machine Research
and Technology Symposium (2002), pp. 51–64.

[3] BELLARD, F. QEMU, a fast and portable dynamic translator.
In Proc. USENIX ATC (2005), pp. 41–41.

[4] BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: the
world’s fastest taint tracker. In RAID’11: Proc. 14th conf. on
Recent Advances in Intrusion Detection (2011), pp. 1–20.

[5] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
infrastructure for adaptive dynamic optimization. In CGO ’03
(2003), pp. 265–275.

[6] BRUENING, D., AND ZHAO, Q. Practical memory checking
with dr. memory. In CGO’11 (2011), pp. 213–223.

[7] CLAUSE, J. A., LI, W., AND ORSO, A. Dytan: a generic
dynamic taint analysis framework. In Intl. Symp. on Software
Testing and Analysis (2007), pp. 196–206.

[8] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.
I. T., ZHOU, L., ZHANG, L., AND BARHAM, P. Vigilante:
End-to-End Containment of Internet Worms. In SOSP’05
(2005), vol. 39, pp. 133–147.

[9] ERMOLINSKIY, A., KATTI, S., SHENKER, S., FOWLER,
L. L., AND MCCAULEY, M. Towards practical taint tracking.
Tech. Rep. UCB/EECS-2010-92, EECS Department, Univer-
sity of California, Berkeley, Jun 2010.

[10] GDB. GDB remote serial protocol. http://sourceware.
org/gdb/onlinedocs/gdb/Remote-Protocol.html,
2010.

[11] GLOGER, W. Dynamic memory allocator implementa-
tions in linux system libraries. http://www.dent.med.

uni-muenchen.de/~wmglo/malloc-slides.html, May
1997.

[12] GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T.
A case for unlimited watchpoints. In ASPLOS’12 (2012),
pp. 159–172.

[13] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A.,
AND HAND, S. Practical taint-based protection using demand
emulation. In EuroSys’06 (2006), pp. 29–41.

[14] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND

KEROMYTIS, A. D. libdft: practical dynamic data flow track-
ing for commodity systems. In VEE’12 (2012), pp. 121–132.

[15] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI’05 (2005), pp. 190–
200.

[16] MARATHE, J., MUELLER, F., MOHAN, T., MCKEE, S. A.,
DE SUPINSKI, B. R., AND YOO, A. Metric: Memory tracing

via dynamic binary rewriting to identify cache inefficiencies.
ACM Trans. Program. Lang. Syst. 29, 2 (Apr. 2007).

[17] NETHERCOTE, N., AND SEWARD, J. How to shadow every
byte of memory used by a program. In VEE’07 (2007), pp. 65–
74.

[18] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In PLDI’07
(2007), pp. 89–100.

[19] NEWSOME, J., AND SONG, D. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In NDSS’05 (2005).

[20] PAYER, M., AND GROSS, T. R. Generating low-overhead
dynamic binary translators. In Proc. 3rd Annual Haifa Experi-
mental Systems Conf. (2010), SYSTOR ’10, ACM, pp. 22:1–
22:14.

[21] PAYER, M., AND GROSS, T. R. Fine-grained user-space
security through virtualization. In VEE’11: Proc. 7th Int’l Conf.
Virtual Execution Environments (2011), pp. 157–168.

[22] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos:
an emulator for fingerprinting zero-day attacks. In EuroSys’06
(2006).

[23] QIN, F., WANG, C., LI, Z., KIM, H.-S., ZHOU, Y., AND WU,
Y. Lift: A low-overhead practical information flow tracking
system for detecting security attacks. In MICRO’06 (2006),
pp. 135–148.

[24] SAXENA, P., SEKAR, R., AND PURANIK, V. Efficient
fine-grained binary instrumentationwith applications to taint-
tracking. In CGO’08 (2008), pp. 74–83.

[25] SRIDHAR, S., SHAPIRO, J. S., AND BUNGALE, P. P. HD-
Trans: a low-overhead dynamic translator. SIGARCH Comput.
Archit. News 35, 1 (2007), 135–140.

[26] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure program execution via dynamic information flow tracking.
In ASPLOS’04 (2004), pp. 85–96.

[27] VMWARE. Software and hardware techniques for x86
virtualization. http://www.vmware.com/files/pdf/

software_hardware_tech_x86_virt.pdf, 2009.
[28] WANG, C., HU, S., KIM, H.-S., NAIR, S., BRETERNITZ, M.,

YING, Z., AND WU, Y. Stardbt: An efficient multi-platform
dynamic binary translation system. In Advances in Computer
Systems Architecture, vol. 4697. 2007, pp. 4–15.

[29] WIMMER, C., AND FRANZ, M. Linear scan register allocation
on ssa form. In CGO’10 (2010), pp. 170–179.

[30] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS’07 (2007), pp. 116–
127.

[31] ZHAO, Q., BRUENING, D., AND AMARASINGHE, S. Umbra:
efficient and scalable memory shadowing. In CGO’10 (2010),
pp. 22–31.

[32] ZHAO, Q., RABBAH, R., AMARASINGHE, S., RUDOLPH, L.,
AND WONG, W. How to do a million watchpoints: Efficient
debugging using dynamic instrumentation. In CC’08.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 127

Flash Caching on the Storage Client

David A. Holland, Elaine Angelino, Gideon Wald, Margo I. Seltzer
Harvard University

Abstract

Flash memory has recently become popular as a caching
medium. Most uses to date are on the storage server side.
We investigate a different structure: flash as a cache on
the client side of a networked storage environment. We
use trace-driven simulation to explore the design space.
We consider a wide range of configurations and policies
to determine the potential client-side caches might offer
and how best to arrange them.

Our results show that the flash cache writeback policy
does not significantly affect performance. Write-through
is sufficient; this greatly simplifies cache consistency
handling. We also find that the chief benefit of the flash
cache is its size, not its persistence. Cache persistence of-
fers additional performance benefits at system restart at
essentially no runtime cost. Finally, for some workloads
a large flash cache allows using miniscule amounts of
RAM for file caching (e.g., 256 KB) leaving more mem-
ory available for application use.

1 Introduction

Recently flash memory has become popular not only as
a storage medium but also as a caching layer in high-end
storage systems. The typical scenario has been to com-
bine flash with disks, either locally or on a file server.
We look at the opposite case: flash combined with the
operating system’s buffer cache, on the client side of a
networked storage system.

We consider compute servers running storage-
intensive workloads that are themselves clients in a net-
worked storage environment. There are many examples
of such servers: application servers in three-tier web ap-
plications, compute servers in data centers, render farms
used in animation, and compute nodes in scientific com-

putation clusters all fit this model. Our analysis explores
a range of design issues arising from this configuration:

• Must the flash cache be managed together with the
file system RAM cache or can it act as an indepen-
dent layer below it?

• Should the RAM cache be a proper subset of the
flash cache or should the two caches be treated as a
single unified cache to avoid duplication?

• How large must the flash cache be relative to RAM?
• What writeback policies should be used from RAM

to flash and from flash to the file server?
• Should a flash cache be persistent and recoverable?
• How critical is consistency across multiple caches?

This design space is already enormous, so we put aside
other relevant but secondary considerations, such as
cache replacement policy (we use LRU) and wear lev-
eling algorithms. We assume our flash device comes
equipped with a flash translation layer that handles wear
leveling, erase cycles, and other considerations that arise
if one uses raw flash chips directly.

We explore this design space via trace-driven simula-
tion, which allows us to examine the behavior of an ex-
tensive range of configurations and cache sizes. We vali-
dated our simulator and traces against actual workloads,
but use stochastically generated workloads for our anal-
ysis, because we could not find real-world traces with
workloads large enough to stress the flash.

Our results show that all simple writeback policies,
short of synchronously writing from RAM all the way
through to the file server, produce comparable results.
This means that flash caches can be write-through, which
simplifies cache consistency handling. We also find the
primary benefit of flash caching comes from its density.
A volatile cache medium available for a reasonable price
in similar sizes would also be attractive.

128 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

In the next section, we briefly discuss the various ways
flash is being used to boost storage performance. We then
outline the flash cache design space in Section 3. We de-
scribe our traces in Section 4 and our simulator in Sec-
tion 5. We discuss how we validated our tools and models
in Section 6 and then present the results of our simulation
study in Section 7. Our conclusions are in Section 8.

2 Related Work

Flash is widely used in high end storage servers [2, 3]
and more recently in hybrid drives that package flash and
spinning media inside a single device [18, 20]. The Net-
App FlashCache[17] is a device that transparently sits in
front of a storage server, using the persistent cache to
reduce latency. FlashTier [19] is a disk controller with
an on-board persistent flash cache. It explores the pos-
sibilities of using a custom flash translation layer opti-
mized for caching rather than storage. All of these so-
lutions place flash on the storage side of a network (or
local SATA), combining flash with disk drives. Our work
examines flash on the client side, combining flash with
the operating system buffer cache.

NetApp’s Project Mercury [6] is a client-side flash
cache that avoids explicit integration with the operating
system. It is a block-level cache that can be deployed
in various ways: a hypervisor filter driver, an OS filter
driver, an application cache, or a proxy cache for net-
work storage protocols. Mercury is one point in the de-
sign space this study explores. In Mercury, RAM stores
a proper subset of the data stored in the flash cache, the
writeback policy from RAM is the operating system’s,
and the writeback policy from flash is write-through.

Microsoft’s ReadyBoost [15] is a software solution in
recent Windows releases that uses a standard flash de-
vice as an extension to memory for random read caching.
Windows gradually fills the flash cache with data and
then services random reads from that cache, when doing
so improves performance.

Recently, Koller et al. [11] experimented with a range
of more sophisticated writeback policies for a flash
cache. They found (as we did) that synchronous write-
through all the way to disk is slow. Their work is oth-
erwise complementary to ours as it explores write-back
policies more sophisticated than those we considered.
(They found, for example, that their policies can increase
write throughput by improving the batching of back-end
write requests; our simulator does not model this effect.)
One key difference is that they were working in an envi-
ronment where applications wait until writes propagate
all the way to disk. We concentrate on a more conven-

tional environment where writes return to the application
once the data is written into the operating system’s buffer
cache. As we will see, this hides the write latency of the
underlying storage tiers except under heavy write traffic.
We also assume a high-performance filer with sophis-
ticated read-ahead, nonvolatile cache, and large server
memory at the back end, rather than a simple disk array.

3 Flash Cache Design Space

We model an application server environment consist-
ing of one or more compute servers (“hosts”) and a file
server (“filer”) connected by private network segments.
Each host runs one or more applications, involving one
or more threads of execution. Each host has cache space
that is partially RAM and partially flash. As previously
mentioned this environment reflects a number of real-life
situations. We consider storage-intensive workloads.

We now address the design issues from Section 1.

3.1 Flash-RAM Integration
We begin by asking whether flash cache support should
be integrated into the operating system’s buffer manager
or if it performs acceptably as an independent entity, as
in Mercury. The former case requires substantial kernel
modifications. The latter case allows deploying the flash
cache in (or as) a self-contained device driver.

The need for integration depends on the level of co-
ordination required between the RAM and flash caches.
If accessing the flash via ordinary block reads and writes
performs adequately, the flash cache can be independent.
On the other hand, if special policies are required, or ex-
tra metadata must be provided to the flash cache, then
kernel support is required.

3.2 Placement
Our second design question is whether the RAM cache
can be a subset of the flash cache. This is effectively
a choice of block placement policy. The straightfor-
ward approach is to structure the flash cache as an addi-
tional independent tier of cache below the RAM cache.
The flash cache services the RAM cache and the file
server services the flash. Newly referenced blocks are
first placed in flash, then into RAM; the RAM cache is
always a subset of the flash cache. This policy wastes
some of the capacity of the flash, but is relatively simple.

Alternatively, one could use two separate layers of
cache, but choose some more elaborate policy; for ex-
ample, one might place blocks initially into RAM and

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 129

then migrate less recently (or less frequently) used blocks
down to flash. Another option is to treat the two stores as
a single unified cache and come up with some policy for
initial placement and perhaps also internal migration.

The basic question is whether the simple approach is
good enough. We would also like to estimate how much
better (if at all) an alternate placement scheme performs.

3.3 Cache Architecture
We handle integration and placement as a single choice
of cache architecture. Because the number of possible
fill and migration policies is near infinite, we chose three
simple alternatives to implement and test. Other options
are certainly possible and may be a worthwhile subject
of future research. These are the three architectures:

• Naive. The flash cache is treated as an indepen-
dent cache layer beneath the RAM cache; the RAM
cache is always a subset of the flash cache, requiring
no integrated management.

• Lookaside. Based on Mercury [6], writes go di-
rectly from RAM to the file server instead of being
routed through the flash. The flash is updated after
the file server and never contains dirty data. Appli-
cations see persistence guarantees identical to a sys-
tem without flash. The RAM cache is a subset of the
flash cache, requiring no integrated management.

• Unified. RAM and flash are managed together using
a single LRU chain. Data blocks are placed into the
least recently used buffer, whether RAM or flash,
and are never migrated. No attempt is made to prefer
RAM to flash. Here the RAM cache is not a subset
of the flash, so integrated management is needed.

3.4 Relative Size
What size does the flash cache need to be relative to the
RAM cache to be effective? We use 8 GB as the baseline
RAM size and examine flash sizes ranging from 8 GB to
128 GB (1x to 16x RAM). We use 64 GB as the baseline
flash size based on the old rule of thumb that each succes-
sive layer of cache should be roughly an order of mag-
nitude larger. (Note that the RAM size actually reflects
the amount of RAM available for file system caching.
For many real-life workloads this is substantially smaller
than the total amount of RAM in the machine.)

3.5 Flash Writeback Policy
We next consider the question of when dirty blocks move
from flash to the file server. We chose four policies:

• write-through - data is immediately written to the
server, blocking the requester until completion.

• asynchronous write-through - data is immediately
written to the server without blocking the requester.

• periodic - dirty data remains in the cache until a
syncer thread flushes the data back to the server.

• none - dirty data remains in the cache until evicted
for capacity reasons.

We run the periodic case with syncer periods of 1, 5,
15, and 30 seconds, resulting in seven different policies.

3.6 RAM Writeback Policy
We now consider RAM writeback policies. Since (at
least for the naive architecture) these writebacks go to
the flash cache, it does not necessarily follow that the
standard behavior of file system RAM caches is correct.

We tested the same seven writeback policies that we
used for flash writeback, yielding 49 different policy con-
figurations for each of the three architectures.

We did not try other more elaborate policies (such as
trickle-flushing, writing back asynchronously after a de-
lay, etc.) for either flash or RAM, because we found that
nearly all the policy combinations perform identically.

3.7 Cache Persistence
Volatile RAM caches are emptied by system restart and
are typically left to refill naturally. However, a cache kept
in persistent memory can potentially be recovered after
a crash, to avoid the performance degradation that oc-
curs when refilling the cache [12]. The Rio File Cache
research prototype demonstrated the potential of such ap-
proaches as early as 1996 [7]. Today, the NetApp Mer-
cury cache exploits persistence to avoid performance
degradation after reboot [6], and high end file servers
typically use battery-backed memory similarly to accom-
plish such warm restarts [1, 2]. With flash caches, cached
data can survive a restart, but the system must take pre-
cautions to ensure that the data is valid.

Our results show that the price/performance of flash
makes it attractive simply as a larger cache. However,
taking advantage of its persistence can provide additional
benefit. There are three chief obstacles: First, cache con-
sistency needs to be maintained; this is discussed in the
next section. Second, the cache indexing structures must
themselves be kept in the flash and kept up to date and
consistent with the data blocks in the flash. This creates
additional flash traffic and additional overhead. A naive
implementation adds an additional flash write latency ev-
ery time the flash cache is updated; a clever implementa-

130 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

tion can batch those writes. Third, if the crash was caused
by corruption in the flash itself, a simple reboot may not
be sufficient to restore the system to a running state.

In the lookaside architecture blocks in the flash are
never dirty, so the system cannot crash with dirty blocks
that must be recovered and written back to the file server.

3.8 Cache Consistency

Normally one writes updated blocks in the RAM cache
back to the file server quickly, because RAM is volatile.
This motivation disappears with a persistent cache. If the
flash cache is recoverable, as discussed in the previous
section, cache writebacks can be delayed. Some writes
will then die in the cache, reducing network contention.

However, for shared data, it also complicates cache
consistency handling. Data not written back to the file
server right away must still be reported back to the
server so other hosts do not read stale versions. And, of
course, unmodified data retained in the cache must also
be tracked in case some other host updates it.

Cache consistency is not a new problem [9, 16, 21] and
does not need a new solution; however, two new issues
arise. The size of flash caches may affect the scalability
of consistency protocols; detailed modeling of this effect
is beyond the scope of our work. Furthermore, a recover-
able cache is unavailable during a reboot; it cannot flush
dirty data or participate in cache consistency protocols
until afterwards. As reboots typically take at least min-
utes, this may induce unacceptable delays.

We concentrate primarily on non-shared data, e.g.,
disk images provided to clients over a SAN. We touch
briefly on cache consistency only to quantify the mag-
nitude of the problem. The simulator invalidates stale
copies of blocks instantly (using global knowledge)
when a new version is first written into a cache. This
exposes the overhead caused when these blocks must
be fetched again later. However, we only count invali-
dations; we do not model the overhead of cache consis-
tency traffic, nor do we adopt any particular real-world
cache consistency model. This information gives design-
ers a basic overview of the circumstances that arise with
the much larger caches that flash allows.

4 Traces

For our trace-driven simulation, we use block-level
traces containing read and write operations. Each oper-
ation identifies a file and a range of blocks within that
file. Each operation also carries a thread ID and host ID.

During development and validation, we used traces
from the SNIA repository and the Mercury traces, but
for our analysis we use synthetic traces. Adequately large
real traces are, by and large, not available; when working
with a 128GB flash device, we need a trace that churns
through enough data to fill it and then work with it for
long enough to access plenty of data that both is and is
not in the original fill. The largest trace for which we
present results moves roughly 2.5 TB of data, all told;
we were unable to locate any real traces this large.

We wrote a trace generator to produce large traces with
characteristics similar to real traces. The trace generator
starts from a list of files and file sizes from the Impres-
sions file system generator [4]. It samples this file server
model to produce working sets, then samples these to
produce I/O requests. A portion of the I/O requests are
sampled instead from the whole file server. The distri-
bution of I/Os among hosts and threads is uniform; the
distribution of I/Os among files (and selection of files
for working sets) is weighted by popularity, where small
integer popularities are generated from a Zipfian distri-
bution. The distribution of I/O sizes (and selection of
file subregions for working sets) is Poisson, modified by
clamping to the filesize. The distribution of I/O starting
points (and file subregion starting points) is uniform.

All traces used in the results presented are based on
the same 1.4 TB file server model we generated with Im-
pressions. (This is larger than any of the cache sizes we
use.) They use 4K blocks and have 80% of the I/Os com-
ing from the working set. They also use eight threads per
host. They grind through a total volume of data that is, in
all cases, four times the working set size, half of it being
devoted to a warmup period for which statistics are not
collected. This ensures the cache fills thoroughly. (We
checked the results of changing the working set percent-
age and the number of threads; these did not affect the
conclusions about our key questions.)

The two traces we use as a baseline use one host, one
working set, working set sizes of 60 and 80 GB (for use
with a 64 GB flash), and 30% writes. For many of the
experiments we vary one or more of these parameters.

5 Simulator

As discussed earlier, we model an environment where
some number of computation servers (“hosts”) share a
single networked file server. We wrote a trace-driven
simulator for this environment.

The simulator issues I/O requests from the trace as
quickly as possible given that each application thread can
have only one I/O in progress. I/O requests may stall at

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 131

various points in the system; all executions are fully in-
terleaved. We do not try to produce realistic application-
level I/O schedules; not only is scheduling I/O traces
a known hard problem [10, 14, 22], but flash substan-
tially changes the timing. Timestamps taken from envi-
ronments without flash would have dubious value.

We model the caches in detail; each is a single LRU
chain of blocks. We treat the flash itself as a block device;
that is, we write blocks to it and read them back. We as-
sume a flash translation layer but do not model it directly.
We use average per-block access times derived from test-
ing real flash devices. (See Sections 6.1 and 6.2.)

The network is modeled less exactly: each segment
can carry one packet at a time, and each I/O request uses
one packet in each direction. Each packet is assumed to
incur a fixed latency (for headers, block information, and
so forth) plus a small amount of additional time per bit
of block data transferred.

We do not attempt to model the caches or prefetch-
ing behavior of the filer directly. Many man-years of ef-
fort have gone into providing high-end file servers with
clever and aggressive caching logic, and modeling this is
irrelevant to the main goals of this work. Instead we use
a simple model: a “fast” latency for cache hits, a “slow”
latency for misses, and a prefetch success rate that deter-
mines what fraction of reads are fast. (Which reads are
fast is random. Writes are buffered and always fast.)

We do not model application overhead, user-kernel
transitions, hypercall delays, processing latency in the
nework stack, etc. Most of these are invariant under
caching or can be incorporated elsewhere.

6 Validation

We validate two parts of our system that could produce
fallacious results if not done properly. First, we validate
our simulator against data using NetApp’s Mercury flash
cache. Second, we validate that average read/write laten-
cies for our device reasonably approximate actual flash
latencies.

6.1 Simulator Validation
We validated our simulator against NetApp’s Mer-
cury [6], a hardware implementation of a client-side
flash cache. Working with the Mercury group, we took
four days of traces from a NetApp Windows laptop and
played them back both on their hardware and on our sim-
ulator. These traces were collected below the file system,
i.e., under the buffer cache, so we played them back di-
rectly through a 32GB flash cache. (In our simulator, that

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

L
a

te
n

c
y
 (

in
 u

s
)

Cumulative I/Os performed (millions)

SSD access latency as a function of time

Read latency
Write latency

Figure 1: Flash device read (top) and write (bottom) latency;
60GB working set workload on a 58GB device. Each point is
the average of 10,000 block I/Os.

means we set the RAM cache size to zero.)
We debugged the simulator and adjusted our timing

models as necessary until the I/O throughput and laten-
cies seen above and below the flash cache, as well as
accessing the flash device, plus the cache hit rates, all
or nearly all matched within 10%. Many of the statistics
matched more closely. A perfect alignment is not possi-
ble, because (besides the inherent limitations of simula-
tors) Mercury is not structured identically to the simula-
tor. The simulator also does not account for an additional
application-level or other systemic overhead of roughly
10% seen in the end-to-end run times.

These measurements gave us confidence that the sim-
ulator accurately models the system behavior and that its
results are meaningful.

6.2 Flash Modeling Validation

We worried that average write latencies might not ade-
quately model the behavior of a real device in the pres-
ence of flash erase cycles. We bought two low-end con-
sumer grade SSDs and evaluated their latency behavior.

We modified the simulator to log I/Os to the flash as
it ran and captured the results for a variety of workloads.
Then we replayed these I/Os to the SSDs and recorded
the actual read and write latencies. We also tried fully
random reads and writes with a read/write mix similar to
that found in the simulator logs.

We found three things of possible interest. First, while
both devices exhibited high variance in their access la-
tency, this variance is short-term; across a group of
10,000 to 100,000 block accesses (much less than the
length of our traces) the variance is high, but from group

132 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

to group the average behavior is quite reasonable. Sec-
ond, and perhaps of more interest, both devices main-
tained a single average write latency from beginning to
end across essentially all the workloads. This included
workloads with up to 90% (application) writes. Only
the read latency fluctuated significantly over time as
the device filled. We observed a weak relationship be-
tween higher write volumes and worse read performance;
whether this is due to erase cycles or caching or some
other internal phenomenon is anyone’s guess.

Third, the read performance replaying the simulator
logs is much better than the read performance doing
purely random I/Os. Caching workloads are not random.

Figure 1 shows a scatter plot of the read and write
latencies against time for a typical workload run. Each
point is the average of 10,000 block I/Os.

Our conclusion was that a single average access la-
tency is fine for modeling writes, and viable, though not
ideal, for reads. However, our experience with flash de-
vices is that each model is different, exhibiting its own
average latencies and behavioral quirks. Fortunately the
system performance does not appear to be highly sensi-
tive to flash performance; see Section 7.7.

7 Results

We chose a per-block RAM access time of 400 ns, corre-
sponding to roughly 10 GB/sec memory bandwidth. An
internal limitation of the simulator restricts it to integer
multiples of 100 ns, so this speed roughly reflects the 10-
12 GB/s expected (and observed on an Intel Core i7 [13])
bandwidth of DDR3 RAM.

We used the performance data from validating against
Mercury to choose timing models for the flash and the
combined network and file server accesses. We then
picked latencies loosely corresponding to a gigabit net-
work for the network and attributed the rest of the com-
bined network and file server times to the file server. Ta-
ble 1 summarizes the timing parameters.

In evaluating possible configurations, we use the la-
tency experienced by the application as the governing
metric. Although the simulator captures a variety of other
metrics (including throughput and latencies at every level
of the stack), we use those only to explain behavior rather
than to evaluate policies.

7.1 Architecture and Writeback Policy
We begin our analysis by evaluating our naive, looka-
side, and unified architectures and how they are affected
by the 49 combinations (seven each for RAM and flash)

Parameter Value
RAM read 400 ns / 4K block
RAM write 400 ns / 4K block
Flash read 88 µs / 4K block
Flash write 21 µs / 4K block
Network base latency 8.2 µs / packet
Network data latency 1 ns / bit
File server fast read 92 µs / 4K block
File server slow read 7952 µs / 4K block
File server write 92 µs / 4K block
File server fast read rate 90%

Table 1: Timing Model Parameters

of writeback policies. Identifying the promising config-
urations from among the 147 possibilities allows for a
more focused comparison in the rest of the evaluation.

We used the two baseline traces described in Section 4.
We ran these traces on the corresponding baseline simu-
lator configuration: 8 GB of RAM and 64 GB of flash.

Figure 2 shows the average read and write latency seen
by the application across all 49 policies for the three dif-
ferent architectures. We show the 80 GB workload; the
60 GB graphs are nearly identical.

Cursory inspection of the figures reveals the first
important result: excepting policies that result in syn-
chronous writes to the filer (synchronous or none) the
writeback policy does not matter. The “none” policy
leads to synchronous evictions once the cache fills. When
the RAM policy allows this effect in the flash cache to
show through to the application, as seen in the front left
and right corners of the write latency graph, multiple
threads doing evictions contend for the network, convoy,
and slow down to (less than) the speed of the file server.

While this result initially surprised us, it is entirely
reasonable: flash caches are so large that any reason-
able writeback policy maintains an ample supply of clean
blocks to evict and replace; the latency exposed above the
flash cache is never greater than the flash write latency.

For the application to observe greater latency, it would
have to sustain a write bandwidth greater than the write-
back bandwidth to the file server for sufficiently long
to fill many gigabytes of flash with dirty blocks. While
workloads exhibiting this behavior probably exist, we ex-
pect them to be rare. Furthermore, upon filling the flash,
write latency will largely revert to that of the file server.
This produces the same effect as having no flash cache.

Based on this exploration, we use one policy combi-
nation for most of the remaining analysis: a one-second
periodic RAM writeback policy (as this most closely
matches real system behavior) and asynchronous write-

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 133

s
a

p1
p5

p15
p30

n s
a

p1
p5

p15
p30

n

 0

 100

 200

 300

 400

L
a

te
n

c
y
 (

in
 u

s
)

Read Latency (80 GB)

naive
lookaside

unified

RAM Policy

Flash Policy

L
a

te
n

c
y
 (

in
 u

s
)

s
a

p1
p5

p15
p30

n s
a

p1
p5

p15
p30

n

 0

 100

 200

L
a

te
n

c
y
 (

in
 u

s
)

Write Latency (80 GB)
naive

lookaside
unified

RAM Policy

Flash Policy

L
a

te
n

c
y
 (

in
 u

s
)

Figure 2: Application read and write latency on the 80 GB working set as a function of RAM and flash writeback policies.

through for the flash cache. Asynchronous write-through
seems like the best overall choice for the flash, as it
is equivalent to synchronous write-through for consis-
tency and integrity purposes. Meanwhile it avoids expos-
ing synchronous file server writes if the RAM cache be-
comes synchronous through dysfunction, e.g., thrashing.

Figure 2 also shows the unified architecture produces
the lowest read latencies while the naive and lookaside
architectures produce the lowest write latencies. The read
latency results are unsurprising, because the effective ca-
pacity of the unified architecture is greater: it is the sum
of the RAM and flash sizes (72 GB) instead of just the
flash size (64 GB). When the working set fits in the
flash (60 GB), the difference is tiny, only 3.5%. How-
ever, when the working set falls out of the flash (80 GB),
we see that the larger effective cache size produces a sig-
nificant benefit, improving read latency by as much as

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

L
a

te
n

c
y
 (

in
 u

s
)

Working Set Size (in GB)

Read Latency as a function of Working Set Size

8G RAM, 64G flash, Naive
8G RAM, 64G RAM, Naive

8G RAM, 56G RAM, Unified

Figure 3: Application read latencies comparing effective cache
sizes. See discussion in text.

20%. Figure 3 illustrates in more detail how the effective
total cache size affects performance. For two of the cases
in this graph we pretended that the flash has the same
access latency as RAM. This allows distinguishing the
structural effects from the latency properties of the cache
materials. Although it is difficult to see in the graph, the
performance of the RAM-only unified architecture with
8 and 56 GB caches is identical to that of the RAM-only
naive architecture with 8 and 64 GB caches. The differ-
ence between that line and the one above it reflects the
effect the slower flash has on read latency.

Returning to the policy comparison in Figure 2, on the
write side, the naive and lookaside architectures perform
at RAM speed, because all writes go directly to RAM
(except for very high write rates). The unified architec-
ture also exposes flash latency by nature; since only 1/9
of the data is placed in RAM and the rest in flash, on
average we see 8/9 of the 21 µs flash latency.

Stepping back, these results suggest that for read per-
formance, bigger is better and that for write performance,
the key is to avoid exposing applications to the flash tim-
ing. If we assume a given cost budget, an attractive strat-
egy is to use only enough RAM to act as an effective
write buffer and then buy as much flash as the budget al-
lows. We explore this option in Section 7.5. Unless oth-
erwise specified, we use the naive architecture in the re-
maining analyses, as it hides the flash write latency and
offers the simplest implementation alternative.

7.2 Flash vs. No Flash
Having settled on policies, we now investigate the ad-
vantage the flash cache offers. To this end we ran a range
of working set sizes, ranging from 5 GB to 640 GB, on
three sizes of flash cache (32 GB, 64 GB, and 128 GB)

134 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600

L
a

te
n

c
y
 (

in
 u

s
)

Working Set Size (in GB)

Read Latency as a function of Working Set Size

No flash
32 GB flash
64 GB flash

128 GB flash

Figure 4: Read latencies as a function of working set size
across a variety of flash sizes. As expected, when the work-
ing set fits in the flash, read latency improves dramatically over
a RAM-only system.

as well as with no flash cache. The RAM cache size is 8
GB. The working set sizes range from smaller than RAM
to substantially larger than the largest flash cache.

Figure 4 shows that even when the working set far ex-
ceeds the flash size, the flash improves performance sig-
nificantly, because the difference between flash perfor-
mance and filer performance is substantial. In all con-
figurations, the RAM hit rate is only 3.4%, but the flash
hit rate varies from 0 (with no flash) to 47% in the 128
GB configuration. Although the filer fast read time (92
µs) is quite close to that of flash (88 µs), the two orders
of magnitude difference between fast and slow filer read
times is significant, even with the 90% fast filer read rate.
As we shall see in the next section, the filer’s ability to
read ahead is critical in any configuration. The write la-
tency figures from this experiment are not interesting: all
writes see the RAM write latency of 0.4 µs.

7.3 Filer Read-Ahead

An effect observed in Mercury [6] suggests that a large
cache reduces the file server’s ability to prefetch data. We
cannot yet quantify this effect, but we can bound it. In
Figure 5 we show the spread between an 80% prefetch
rate, which we believe to be a reasonable lower bound,
and a 95% prefetch rate, which serves as a plausible up-
per bound. The graph shows the spread for the 64 GB
flash, as well as for no flash, using the same range of
working set sizes used in the previous section.

The application read latency is dominated by the cost
of file server misses, which cost milliseconds. In an ideal
world, installing the flash cache would not affect the file

 0

 400

 800

 1200

 1600

 2000

 2400

 0 100 200 300 400 500 600

L
a

te
n

c
y
 (

in
 u

s
)

Working Set Size (in GB)

Read Latency as a function of Working Set Size

No flash; 80% prefetch rate
No flash; 95% prefetch rate

64 GB flash; 80% prefetch rate
64 GB flash; 95% prefetch rate

Figure 5: Application-level read latency for different workload
sizes and two filer prefetch rates. Comparing the lines of similar
shape demonstrates the dramatic effect that filer prefetching has
on the resulting latency.

server’s prefetch ability. Then the flash cache is bene-
ficial for almost all workload sizes, as can be seen in
the figure. In a pessimal world, the prefetch rate might
drop substantially; in this case the cache is beneficial for
a much narrower range of workloads: those that fit in
flash but not in RAM. This can be seen in Figure 5 as
the pocket between the lower (better) no-flash curve and
the upper (worse) with-flash curve.

Avoiding the pessimal world is an engineering chal-
lenge and a critical issue for the adoption of flash
caching. In the presence of a flash cache, the filer cache
transitions from a second level cache to a third level
cache; its prefetching and replacement policies must
therefore adapt accordingly [5, 8, 23].

However, in environments where the back end is not a
filer but a plain disk array [11], the prefetch rate will be
negligible and a flash cache is a huge win.

7.4 Flash Cache Size

We next examined the converse case: given a fixed work-
load, what happens as we increase the flash cache size.
As expected, the read latency decreases as a greater por-
tion of the working set falls in the cache until the flash
cache is large enough to capture the entire working set,
at which point the read latency is that of flash. As there
is nothing unexpected in these results, we have omitted
the corresponding graphs.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 135

 0

 5

 10

 15

 20

 25

 30

0 64K 1M 16M 256M 4G
 0

 50

 100

 150

 200

 250

 300

W
ri
te

 L
a

te
n

c
y
 (

in
 u

s
)

R
e

a
d

 L
a

te
n

c
y
 (

in
 u

s
)

RAM Size (log scale, except for 0 which really means 0)

Read and Write Latency as a function of RAM Size (60 GB working set)

Read (p1)
Read (a)

Write (p1)
Write (a)

 0

 5

 10

 15

 20

 25

 30

0 64K 1M 16M 256M 4G
 0

 100

 200

 300

 400

 500

W
ri
te

 L
a

te
n

c
y
 (

in
 u

s
)

R
e

a
d

 L
a

te
n

c
y
 (

in
 u

s
)

RAM Size (log scale, except for 0 which really means 0)

Read and Write Latency as a function of RAM Size (80 GB working set)

Read (p1)
Read (a)

Write (p1)
Write (a)

Figure 6: Application read and write latencies with small RAM
cache sizes. The (a) and (p1) notations in both graphs refer to
the RAM write-back policy: asynchronous write-through and
1-second periodic respectively. Surprisingly, a small (256 KB)
cache achieves performance comparable to much larger ones.

7.5 No RAM Cache

One intriguing possibility suggested by the previous re-
sults is to dispense with the RAM cache entirely. We run
the baseline workloads with a fixed 64 GB flash cache
and RAM cache sizes ranging from zero to the baseline
8 GB. We run these with both the asynchronous write-
through RAM policy (a) as well as the default 1-second
periodic writeback (p1) we chose above.

Figure 6 shows the application read and write latencies
for the 60 GB and 80 GB working sets, respectively. The
X axis is the base 2 log of the RAM size or zero for none.

The no-RAM configuration does not work well, but it
is surprising how well a relatively small (e.g., 64 MB)
RAM cache performs. If we use the asynchronous write-
through policy, a tiny 256 KB is sufficient as a write
buffer. For the smallest caches the periodic syncer does
not run often enough, so the RAM cache fills with dirty

 0

 5

 10

 15

 20

 25

 30

0 64K 1M 16M 256M 4G
 0

 50

 100

 150

 200

 250

 300

W
ri
te

 L
a

te
n

c
y
 (

in
 u

s
)

R
e

a
d

 L
a

te
n

c
y
 (

in
 u

s
)

RAM Size (log scale, except for 0 which really means 0)

Read and Write Latency as a function of RAM Size (5 GB working set)

Read (p1)
Read (a)

Write (p1)
Write (a)

Figure 7: Application read and write latencies with small RAM
cache sizes and a small workload.

blocks and performance drops.
The somewhat startling conclusion is that with a large,

cheap flash cache, and a workload much larger than
RAM, we can allocate minimal RAM (large enough to
act as a speed-matching buffer) to file system caching,
leaving the rest of memory available for application or
operating system use!

This was tantalizing, so we tried the small RAM con-
figuration on RAM-sized workloads. Figure 7 shows the
latencies for a workload with a 5GB working set. As seen
at the right, this configuration carries a 25-30% penalty,
which is noticeable but far less than the factor of five or
so seen without the flash cache. It may be an acceptable
tradeoff in some circumstances.

7.6 Read-mostly vs. Write-mostly
The previous results all assumed a 30% write percent-
age. We next investigate the sensitivity of our results to
the write percentage. We use our baseline working set
sizes (60 GB and 80 GB) and cache sizes (8 GB RAM
cache and 64 GB flash cache), while varying the per-
centage of writes in the trace from 0% to 100%. Figure 8
shows the application-level read and write latencies. As
expected, read latency remains stable. The write latency
is also unaffected except at very high write rates, where
we start seeing synchronous writebacks from the RAM
cache that expose the flash’s write latency. As the pro-
portion of writes increases, the trace runs faster, because
writes are faster than reads. At very high write rates the
1-second RAM-to-flash syncer starts to fall behind. Sev-
eral other effects come into play as well, such as network
saturation, resulting in complex behavior that may be im-
perfectly modeled. The portion of the graphs above 90%

136 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90
 0

 2

 4

 6

 8

 10

 12

 14

R
e

a
d

 L
a

te
n

c
y
 (

in
 u

s
)

W
ri
te

 L
a

te
n

c
y
 (

in
 u

s
)

Percent Write Operations

Read/Write Latency as a function of the % Write Operations

Read (80 GB)
Read (60 GB)
Write (80 GB)
Write (60 GB)

Figure 8: Application read and write latencies (in seconds) as
a function of write percentage. As long as the write percent-
age remains below 90%, avoiding synchronous RAM evictions,
performance is independent of the write rate.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

L
a

te
n

c
y
 (

in
 u

s
)

Flash read time (in us)

Read Latency as a function of the flash read time

Read lookaside (80 GB)
Read naive (80 GB)

Read unified (80 GB)
Read lookaside (60 GB)

Read naive (60 GB)
Read unified (60 GB)

Figure 9: Application read latencies (in µs) for a range of flash
read latencies (shown) and write latencies (proportional), in µs.

writes should be taken with a grain of salt.
The benefit of flash caching increases with write ratio

because writes never incur a file server latency by miss-
ing in the cache: they always go straight to cache and are
written back in the background.

7.7 Flash Timings

As flash devices vary a good deal in performance, we
wanted to test a variety of flash timing configurations.
Once again, the results were as expected: where the flash
latencies appear directly, they scale with the flash speed;
where they are hidden, changing the flash speed has no
effect; and where they participate in the total latency, the
overall latency scales linearly.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600

L
a

te
n

c
y
 (

in
 u

s
)

Working Set Size (in GB)

Read Latency as a function of Working Set Size

No flash warmed
64 GB flash, not warmed

64 GB flash warmed

Figure 10: Effect of persistence. The not-warmed case is
equivalent to having a non-persistent cache and crashing at the
beginning of the simulator run. The no flash case is provided
for comparison.

Figure 9 shows the application-level read latency for
a range of flash timings for both standard traces and all
three cache architectures. The leftmost point represents
the potential performance of phase-change memory.

When the working set fits in flash, the architecture
makes little difference, but when it falls out, we see the
benefit of the larger effective sizes of the unified archi-
tecture. In all cases, however, application latency scales
linearly with the flash latency, so improvements in flash
timings are readily visible to the application.

7.8 Persistence
We approximated the cost making the flash persistent by
doubling the flash write latency to model performing two
flash writes per block, one of the data and one for the
meta-data describing the block. (We did not attempt to
simulate the recovery phase.) We investigated the ben-
efit by skipping the warming phase of our traces; this
is equivalent to having a non-persistent flash cache and
crashing at the start of the simulator run.

The result is that the increased flash write latency as-
sociated with persistence is invisible to the application.
This is consistent with our other results where the flash
write latency is also invisible. However, the benefit of
persistence, or rather the potential cost of not providing
persistence, is substantial, as shown in Figure 10.

7.9 Cache Consistency
As discussed in Section 3.8, flash caches introduce two
problems related to consistency: their larger size, and,

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 137

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

In
v
a

lid
a

ti
o

n
s
 (

%
 o

f
b

lo
c
k
s
 w

ri
tt

e
n

)

Percent Write Operations

Invalidations as a function of % Write Operations

No flash (80 GB)
No flash (60 GB)

64 GB flash (80 GB)
64 GB flash (60 GB)

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

R
e

a
d

 L
a

te
n

c
y
 (

in
 u

s
)

Percent Write Operations

Read Latency as a function of % Write Operations

No flash (80 GB)
No flash (60 GB)

64 GB flash (80 GB)
64 GB flash (60 GB)

Figure 11: Invalidations required, and read latency, as a func-
tion of write percentage.

for recoverable caches, that the cache is offline during
reboots. These may affect cache consistency protocols.

We generated two additional families of traces, using
two hosts, to investigate the effect of size on consistency
control. As a worst-case scenario we make the two hosts
share one working set. In the first family, we examine
varying write percentages; in the second, we examine
a range of working set sizes. Writing a new version of
a block into a cache must invalidate all copies in other
caches. We measure the fraction of (application-level)
block writes that require invalidations.

Figure 11 shows the percentage of blocks written re-
quiring invalidation and application read latency, as a
function of the write percentage. The write latencies (for
the 64 GB flash) are comparable to those in Figure 8.

Figure 12 shows, for the baseline setting of 30%
writes, the percentage of invalidations and the applica-
tion read latency as a function of the working set size.
The write latency results are uniform and are not shown.

The primary finding is that for workloads that fit in
flash, the percentage of writes requiring invalidation is

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

In
v
a

lid
a

ti
o

n
s
 (

%
 o

f
to

ta
l
b

lo
c
k
s
)

Working Set Size (in GB)

Invalidations as a function of Working Set Size

No flash
64 GB flash

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700

R
e

a
d

 L
a

te
n

c
y
 (

in
 u

s
)

Working Set Size (in GB)

Read Latency as a function of Working Set Size

No flash
64 GB flash

Figure 12: Invalidations required, and read latency, as a func-
tion of working set size.

high, even relative to workloads that fit in RAM with
no flash. The invalidation rate drops off for out-of-cache
workloads, but neither as quickly nor as significantly
as with the smaller RAM cache. This has implications
for read performance as well. Comparing the application
read latency graphs (Figure 11 to Figure 8 and Figure 12
to Figure 4), we see that while the flash provides an ad-
vantage, read latency increases with the fraction of in-
validations, because invalidated blocks must be reread
from the filer. Although this is a worst case analysis (both
servers share the entire working set), these results high-
light critical areas in cache management design.

8 Conclusions

The results of our simulations show that even in its sim-
plest implementation, a client-side flash cache provides
significant benefits to applications. We now review our
findings regarding the design questions from Section 1.

The flash cache does not need to be integrated with the

138 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

file system. While doing so increases the effective size of
the cache, given the relative sizes (and prices) of RAM
and flash this effect is fairly small and may not justify the
implementation complexity.

The flash cache can be as large relative to RAM as
desired. In fact, except for workloads that fit entirely into
RAM, it makes sense to limit the RAM cache to the space
needed to buffer writes, keeping the cache only in flash.

Any writeback policy that avoids synchronous writes
and does not allow the cache to become full of dirty
data produces good performance. Prompt writeback from
flash exposes cache consistency events at no cost, and
these cache consistency events are potentially important.

It is not necessary to make the cache persistent (that is,
recoverable) to benefit from it. However, doing so offers
significant additional benefit.

Cache consistency is a serious issue when multiple
hosts actively modify a shared working set. Even with
a write-through flash cache, such workloads cause sub-
stantially higher invalidation traffic than we see with tra-
ditional RAM-based caches. Also, traditional cache con-
sistency protocols may not be able to cope with a recov-
erable cache being offline while recovering.

There is much follow-on work to be done. The most
important area of further research is adapting file servers
to these larger caches, ensuring that we can retain excel-
lent read-ahead behavior when we do miss in the flash. In
the presence of data shared among multiple hosts, each
with its own flash cache, it is necessary to explore the
details of maintaining cache consistency among the mul-
tiple caches. Finally, flash caching is a good candidate
for a custom flash translation layer [19] – exploring ap-
proaches and algorithms as well as establishing satisfac-
tory lifetime for this application remains as future work.

9 Acknowledgements

This work was supported by NetApp. In addition, James
Lentini, Keith Smith, and Chris Small, all of NetApp,
were tremendously helpful in providing us with the
means and expertise to validate our simulator.

References
[1] Smart Array technology: Advantages of battery-backed

cache. http://h10032.www1.hp.com/ctg/Manual/
c00257513.pdf, 2002.

[2] Oracle, Sun launch high-end OLTP server. PCWorld, Sep 2009.

[3] EMC outlines strategy to accelerate flash adoption. In EMCWorld
2011 (May 2011), http://www.emc.com/about/news/
press/2011/20110509-05.htm.

[4] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. Trans. Storage 5 (December 2009), 16:1–16:30.

[5] BUTT, A. R., GNIADY, C., AND HU, Y. C. The performance
impact of kernel prefetching on buffer cache replacement algo-
rithms. In Proc. SIGMETRICS 2005 (Banff, Alberta, Canada,
2005), ACM, pp. 157–168.

[6] BYAN, S., ET AL. Mercury: Host-side flash caching for the data
center. In 28th IEEE Symposium on Mass Storage Systems and
Technologies (MSST 2012) (April 2012), pp. 1 –12.

[7] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C., RA-
JAMANI, G., AND LOWELL, D. The Rio file cache: Surviving
operating system crashes. In Proc. ASPLOS (October 1996).

[8] FORNEY, B. C., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Storage-aware caching: revisiting caching for
heterogeneous storage systems. In Proc. FAST (Monterey, CA,
2002), USENIX Association, pp. 5–5.

[9] HOWARD, J. H., ET AL. Scale and performance in a distributed
file system. ACM Trans. Comput. Syst. 6 (February 1988), 51–81.

[10] JOUKOV, N., WONG, T., AND ZADOK, E. Accurate and efficient
replaying of file system traces. In Proc. FAST (San Francisco,
CA, 2005), USENIX Association, pp. 25–25.

[11] KOLLER, R., ET AL. Write policies for host-side flash caches. In
Proc. FAST (San Jose, CA, 2013), USENIX Assoc., pp. 45–58.

[12] KOURAI, K. CacheMind: Fast performance recovery using a
virtual machine monitor. In Dependable Systems and Networks
Workshops (DSN-W) (July 2010), pp. 86 –92.

[13] MCCALPIN, J. D. Stream: Sustainable memory bandwidth in
high performance computers. Tech. rep., University of Virginia,
Charlottesville, Virginia, 1991-2011. A continually updated tech-
nical report. http://www.cs.virginia.edu/stream/.

[14] MESNIER, M. P., ET AL. Trace: parallel trace replay with ap-
proximate causal events. In Proc. FAST (San Jose, CA, 2007),
USENIX Association, p. 24.

[15] MICROSOFT. ReadyBoost. http://windows.
microsoft.com/en-US/windows7/products/
features/readyboost, 2009.

[16] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K.
Caching in the Sprite network file system. ACM Trans. Comput.
Syst. 6 (February 1988), 134–154.

[17] NETAPP. Flash Cache. http://www.netapp.com/us/
products/storage-systems/flash-cache/.

[18] RAIDON. HyBrid RunneR iH2420-2S-S2 data sheet.
http://www.raidon.com.tw/content.php?sno=
0000462&p_id=113, 2010.

[19] SAXENA, M., SWIFT, M. M., AND ZHANG, Y. FlashTier: a
lightweight, consistent and durable storage cache. In Proc. Eu-
roSys (Bern, Switzerland, 2012), ACM, pp. 267–280.

[20] SEAGATE. Momentus XT product data sheet. http:
//www.seagate.com/docs/pdf/datasheet/disc/
ds_momentus_xt_retail.pdf, 2009.

[21] SHEPLER, S., ET AL. NFS version 4 protocol. http://www.
ietf.org/rfc/rfc3530.txt, April 2003.

[22] VIJAYAKUMAR, K., MUELLER, F., MA, X., AND ROTH, P. C.
Scalable I/O tracing and analysis. In Proc. Workshop on Petascale
Data Storage (Portland, Oregon, 2009), ACM, pp. 26–31.

[23] YADGAR, G., FACTOR, M., AND SCHUSTER, A. Karma: know-
it-all replacement for a multilevel cache. In Proc. FAST (San Jose,
CA, 2007), USENIX Association, pp. 25–25.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 139

Practical and effective sandboxing for non-root users

Taesoo Kim and Nickolai Zeldovich
MIT CSAIL

Abstract
MBOX is a lightweight sandboxing mechanism for non-
root users in commodity OSes. MBOX’s sandbox usage
model executes a program in the sandbox and prevents
the program from modifying the host filesystem by layer-
ing the sandbox filesystem on top of the host filesystem.
At the end of program execution, the user can examine
changes in the sandbox filesystem and selectively com-
mit them back to the host filesystem. MBOX implements
this by interposing on system calls and provides a variety
of useful applications: installing system packages as a
non-root user, running unknown binaries safely without
network accesses, checkpointing the host filesystem in-
stantly, and setting up a virtual development environment
without special tools. Our performance evaluation shows
that MBOX imposes CPU overheads of 0.1–45.2% for var-
ious workloads. In this paper, we present MBOX’s design,
efficient techniques for interposing on system calls, our
experience avoiding common system call interposition
pitfalls, and MBOX’s performance evaluation.

1 Introduction
In this paper, we present MBOX, a lightweight sandbox-
ing mechanism for non-root users in commodity OSes.
MBOX provides two attractive benefits as a sandbox; first,
protection of the host filesystem from modifications by
sandboxed programs; and second, flexibility in control-
ling the execution of the sandboxed program.

To protect the host system, MBOX overlays the host
filesystem with a sandbox filesystem and confines all mod-
ifications made by the sandboxed program to the sandbox
filesystem. As MBOX stores the sandbox filesystem as
a regular directory in the host filesystem, users can use
standard Unix tools to examine the modifications, commit
them back to the host filesystem, or even archive them
for later use as a layered sandbox filesystem for other
programs.

MBOX implements the layered sandbox filesystem with
system call interposition. By interposing on system calls,
MBOX can provide additional features missing from com-
modity OSes, which are useful to non-root users in a
variety of real-world scenarios: enabling non-root users
to install system packages with standard package man-
agers, checkpointing the whole filesystem instantly, run-
ning unknown binaries safely without network access,
and setting up virtual development environments without

special tools. More importantly, all use cases neither re-
quire root privilege nor require modification to the OS
kernel and applications.

Overview MBOX aims to make running a program in a
sandbox as easy as running the program itself. For exam-
ple, one can sandbox a program (say wget) by running as
below:

$ mbox -- wget google.com
...
Network Summary:
> [11279] -> 173.194.43.51:80
> [11279] Create socket(PF_INET,...)
> [11279] -> a00::2607:f8b0:4006:803:0
...
Sandbox Root:
> /tmp/sandbox-11275
> N:/tmp/index.html
[c]ommit, [i]gnore, [d]iff, [l]ist, [s]hell, [q]uit ?>

wget is a utility to download files from the web. In
the above example, MBOX prevents wget from writing
the downloaded index.html to the host filesystem, and
instead redirects it to the sandbox filesystem (stored at
/tmp/sandbox-11275). Since the sandbox filesystem is
just a regular directory in the host filesystem, the user can
use standard Unix tools to perform operations on the files
modified by the program. For example, the user can com-
mit the index.html file back to the place where wget
would have downloaded the file if it was not sandboxed.

The advantages of using MBOX come from the fact that
we can restrict the sandboxed program or change its be-
havior while protecting the host filesystem. For example,
we can enable interesting use cases like monitoring where
wget connects to and what it downloads, or restricting its
remote network accesses (see §2).

Contributions In this paper, we

• describe the MBOX abstraction, usage model, and a
wide range of use cases.

• present seccomp/BPF as an efficient system call inter-
position technique, and our experience with avoiding
common system call interposition mistakes [4].

• implement and evaluate these ideas in MBOX, a Linux-
based open source tool that requires no changes to the
OS kernel or applications.

Outline §2 provides practical use cases of MBOX. §3
describes its design. §4 explains MBOX’s interposition

1

140 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

technique. §5 discusses its implementation, §6 evaluates,
§7 compares MBOX with related work, and §8 concludes.

2 Use cases
We motivate the usefulness of MBOX by describing five
real-world use cases that are difficult to achieve in com-
modity OSes as a non-root user.

2.1 Installing packages without root access
$ mbox -R -- apt-get install git
(-R: emulate a fakeroot environment)

Installing packages requires root privilege in Linux be-
cause normal users do not have write access to system
directories such as /bin and /lib; so, to install a pack-
age, non-root users need to perform tedious jobs like
resolving dependencies manually and compiling source
code, even though package managers already perform
these jobs. With MBOX, users can instead install pack-
ages with standard package managers by running them in
a sandbox with a writable sandbox filesystem. As package
managers often check for root privilege, MBOX optionally
emulates a root-like environment (fakeroot) so users can
execute them without any modification. After installing
a package with MBOX, the sandbox filesystem contains
not only newly installed files, but also the correspond-
ing package databases, separate from the host filesystem.
Users, therefore, can even install or remove packages by
reusing the same sandbox filesystem (see §2.4). We tested
that MBOX supports Ubuntu’s apt-get, Debian’s dpkg,
and Python’s pip package managers.

2.2 Running unknown binary safely
$ mbox -n -- wget google.com
(-n: disable remote network accesses)

When running unknown binaries, users can protect the
host filesystem from modification by running them with
MBOX. However, if these binaries misbehave or are com-
promised, they still can access a user’s private data and
disclose it to attackers. To prevent this, MBOX provides
a way to restrict or monitor remote network accesses of
sandboxed processes. If users want to restrict network
accesses, MBOX blocks all socket-related system calls;
for example, the above command kills wget at the first
socket() system call. However, by default, MBOX inter-
prets socket-related system calls and summarizes network
activity, as in the wget example in §1.

2.3 Checkpointing filesystem
$ mbox -i -- sh
(-i: enable interactive commit-mode)

Using MBOX, one can instantly branch out a new filesys-
tem from the current host filesystem by running a new
shell. The shell and all subsequent processes created from
the shell run in the same sandbox, and share the same

layered filesystem view. For example, editing emacs con-
figuration files often requires killing and rerunning emacs
to check if it works with the new configuration. When it
fails with an error, we might need to run vanilla emacs
to continue fixing the error. With MBOX, one can check-
point the host filesystem and edit configuration files with
emacs running in the sandbox; emacs instances on the
host system still function correctly, even if the edited file
has an error. When done with editing, users can commit
the modified configuration files to the host filesystem, re-
vert them by discarding changes, or stash them for later
use. These workflows are what make users feel comfort-
able when using SCM tools like Git; with MBOX, users
get similar safety and convenience for filesystem data.

2.4 Build/development environment
$ mbox -r outdir -- make
(-r dir: specify a sandbox directory)

When building a project’s source tree, we often see the
directory entangled with both original source files and
generated object files. By running a build script with
MBOX, we can redirect all generated object files to the
sandbox filesystem; also, cleaning up the project directory
(say make clean) becomes a simple rm -rf outdir.
Combined with package installations (§2.1), any user can
conveniently setup a development environment that is
safely separated from the system libraries. For example,
without using virtualenv for Python and cabal-dev
for Haskell, we can create virtual environments with the
pip and cabal tools that major distributions come with.

2.5 Profile-based sandbox
$ mbox -p build.prof -- ./configure
(-p prof: enable profile-based policy)

MBOX supports another important use case poorly sup-
ported by commodity OSes. In Unix-like OSes, a process
created by a user runs with that user’s privilege, and can
access the user’s private files. In some cases, the pro-
cess needs access to the user’s files to do useful work;
however, often there are cases where the user does not
want to expose sensitive data to the process. For example,
when a user executes a ./configure script, she does
not want the script to read her private ssh key stored in
the $HOME/.ssh directory. With MBOX, users can easily
hide private directories, and allow access to only the nec-
essary parts of a filesystem by describing them as below.

build.prof
[fs]

allow: .
hide: ~

If a user runs the ./configure script with the above
profile, MBOX hides the user’s home directory yet allows
access to the current working directory. Therefore, the
script cannot steal the user’s private files, but can still

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 141

Sandbox FS

Logs

Sandbox

Program

Host FS

System call interposition

Record logs
(e.g., network)

Read

Read/Write

System calls

Layered FS
view

- Restrict network accesses
- Emulate a fakeroot environment

- Redirect file read/write to sandbox

Figure 1: Overview of MBOX’s design. MBOX interposes on a sand-
boxed program’s system calls to provide a sandbox filesystem overlaid
on the host filesystem; to restrict network accesses; and to emulate a
fakeroot environment.

configure properly by accessing the system libraries and
header files. In addition, for scripts that are never expected
to access the network, users can additionally specify an
option to restrict network accesses (§2.2).

3 MBOX abstraction
When a user runs a program with MBOX, MBOX creates
a layered sandbox filesystem, where all modifications by
the program take place, on top of the host filesystem. The
host filesystem remains intact and is never modified by the
sandboxed program. When the sandboxed program ter-
minates, users can examine modified files in the sandbox
filesystem, and commit them back to the host filesystem
if they want. Since the sandbox filesystem is stored in
persistent storage, users have complete control over files
and directories afterward, and can even reuse them later
as a sandbox layer of other programs. We call this us-
age model the MBOX abstraction. Figure 1 provides an
overview of the MBOX design.

3.1 Layered filesystems
Unlike traditional filesystems in which every process has
the same namespace, MBOX needs to provide a private
filesystem to each process running in different sandboxes.
MBOX stacks a private filesystem layer on top of the host
filesystem, and provides a logically unified view of both
filesystems to a sandboxed program. We call the private
filesystem layer, where all modification happens by the
program, the sandbox filesystem, and call both the sand-
box and host filesystems together the layered filesystem.
To provide a layered filesystem, MBOX interposes on sys-
tem calls of a sandboxed program. On every system call
entry, MBOX decides which system call arguments should
be rewritten so that changes by the system call redirect
to the sandbox filesystem, rather than affecting the host
filesystem.

Copy-on-write The sandbox filesystem is created with
no content when a user executes a program with MBOX.
Since the sandbox filesystem is empty, all reads by the pro-
gram will be forwarded to the host filesystem. Once the
sandboxed program writes to a file, the sandbox filesystem
will contain the modified file and subsequent reads will be
redirected to the sandbox filesystem. Thus, the application
running inside the sandbox is able to access the modified
file and works as it would without the sandbox. The
layered filesystem in effect implements copy-on-write:
MBOX duplicates the file into the sandbox filesystem and
protects the original file from modifications.

Persistent storage The sandbox filesystem is not a
filesystem, but is a regular directory in the host filesystem,
so it can persist even after the sandboxed program termi-
nates. The persistent sandbox gives users more freedom to
examine, archive, and even duplicate the sandbox filesys-
tem, as normal files and directories, with familiar utilities.
Also, users can reuse the previous sandbox filesystem as
a sandbox layer of any other program, so that users can
consider the layered filesystem persistently branched out
of the host filesystem, yet easy to discard.

3.2 Committing changes
When a sandboxed program terminates, users can commit
modified files back to the host filesystem with tools that
MBOX provides. To help users decide what files to com-
mit, MBOX allows the user to check the differences of
files in host and sandbox filesystems before committing.

When committing a modified file back to the host
filesystem, the original file that the sandbox branched
out from might have been changed by programs running
on the host filesystem. Faced with such concurrent modi-
fications to the same file in both the host and the sandbox
filesystem, MBOX flags a conflict, and requires the user to
decide how to merge the changes, much like any version
control system.

To detect conflicts, MBOX records a hash of the orig-
inal file contents when creating a copy of the file in the
sandbox filesystem, and checks if the contents of the file
in the host filesystem still match the hash before com-
mitting any changes from the sandbox. For conflicts in
text files, standard Unix tools like diff and patch can
often resolve the conflict, but in other cases like custom
or binary files, users should manually merge them with
application-specific tools.

4 Interposing system calls
In this section, we describe the recently introduced
seccomp/BPF [1] as a means for interposing system calls;
common pitfalls of using ptrace and seccomp/BPF for
sandboxing; and how to use them to restrict network ac-
cesses and construct a fakeroot environment.

3

142 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

TracerProgram (tracee)

System calls enter
(e.g., open("/a", rw))

seccomp/BPF

Ptrace
Send ptrace event

wait() ptrace(GET/SETREGS)

ptrace(SYSCALL, ...)

process_vm_readv/writev()
(e.g., "/a" "/sboxfs/a")

�

Run BPF�
�

� ��

�

- Invoke the program (tracee)
- Setup ptrace (TRACEME ...)
- Install seccomp/BPF (FILTER)

Kernel

User space

BPF_STMT(LD, OFF_SYSCALL)

BPF_JUMP(#open, 0, 1)

BPF_STMT(RET)

....

exit

(EVENT_SECCOMP)

Figure 2: Interposing a system call with seccomp/BPF and ptrace. At startup, the tracer invokes the tracee, sets up ptrace and installs a BPF
program. When the tracee generates a system call 1 , the BPF program runs and decides whether to intercept or not 2 . If the system call needs to be
handled by MBOX, BPF will send a seccomp event 3 to the tracee waiting for a ptrace event 4 . Then, the tracer queries the states of the tracee via
the ptrace interface 5 , or overwrites the tracee’s memory with the process_vm_writev() system call 6 . To continue the tracee, but stop at the
exit of the current system call, the tracer needs to invoke ptrace with SYSCALL.

4.1 Using seccomp/BPF
seccomp [2] is a mechanism for isolating a process by
allowing only a certain set of system calls. Linux 3.5
further introduced support for using Berkeley Packet Fil-
ter (BPF) bytecode to examine system calls when using
seccomp [1]; for example, the BPF bytecode can decide
whether the process can invoke the socket() system
call. In seccomp/BPF, the input to the BPF program is
the system call number, its arguments, and the instruction
pointer, and it is invoked on every entry and exit of a
system call. The BPF program decides whether to allow
the system call to proceed or not; an additional option
is to generate a ptrace event to the tracer, if the cur-
rent process has one. Using seccomp/BPF, the tracer can
download a BPF program and wait for a ptrace event, as
described in Figure 2, instead of stopping on every tracee
system call. This allows MBOX to interpose on just the
necessary system calls, improving overall performance,
as we show in §6.

4.2 Avoiding common pitfalls
It is easy to make mistakes when implementing a sandbox
mechanism, making the resulting implementation vulner-
able to adversaries due to minor mistakes. In particular,
ptrace and seccomp/BPF are difficult to use correctly
for interposing on system calls. We will now describe our
experience in trying to avoid some of the pitfalls in using
ptrace and seccomp/BPF for system call interposition.

4.2.1 Time-of-check-to-time-of-use (TOCTTOU)

Using ptrace to intercept system call entry allows us to
examine, sanitize, and rewrite the system call’s arguments.
If an argument points to process memory, we can read
remote memory and interpret it as the system call handler
does. However, the read value can be different from what
the system call handler will see in the kernel. For example,
an adversary’s thread can overwrite the memory that the
current argument points to, right after the tracer checks
the argument. Even verifying that sanitized arguments

still point to the right value at system call exit does not
help, because an adversary can restore it by that time.

To avoid TOCTTOU problems in rewriting memory
arguments, MBOX takes advantage of two properties of
ptrace. First, system call arguments examined using
PTRACE_GETREGS are the actual values that the handler
will see, because x86-64 uses registers to pass system
call arguments, and copies them to kernel space when
entering the system call handler. Second, ptrace allows
the tracer to write to read-only memory in the tracee with
PTRACE_POKEDATA.

MBOX avoids TOCTTOU problems by mapping a page
of read-only memory in the tracee process. When MBOX
needs to examine, sanitize, or rewrite an in-memory data
structure, such as a path name, used as a system call ar-
gument, MBOX copies the data structure to the read-only
memory (using PTRACE_POKEDATA or the more efficient
process_vm_writev()), and changes the system call
argument pointer to point to this copy. For example, at
the entry of an open(path, O_WRONLY) system call, the
tracer first gets the system call’s arguments, rewrites the
path argument to point to the read-only memory, and up-
dates the read-only memory with a new path pointing to
the sandbox filesystem. Since no other threads can over-
write the read-only memory without invoking a system
call (e.g., mprotect()), MBOX avoids TOCTTOU prob-
lem when rewriting path arguments. To ensure that the
sandboxed process cannot change this read-only virtual
memory mapping (e.g., using mprotect(), mmap(), or
mremap()), MBOX intercepts these system call and kills
the process if it detects an attempt to modify MBOX’s
special read-only page.

4.2.2 Replicating OS state

Another common mistake is to improve performance by
replicating some state of the tracee process in the tracer.
For example, in handling an openat(fd, . . .) system
call, one might think that keeping track of a path for
fd whenever opening a path can improve performance,
instead of reading the actual path for fd. However, it is

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 143

impractical to correctly emulate in userspace all subtle
system calls that can change the state of a file descriptor.
In MBOX, we design a set of stateless rules for deciding
whether to rewrite a path argument of the current system
call, by paying the cost of examining states at its entry.
By controlling how a process can obtain a file descriptor
in the first place, MBOX does not need to interpose on
system calls that take only file descriptor arguments.

Rules for rewriting path arguments MBOX rewrites
a path argument as follows:

• If path exists in the sandbox filesystem, then it was
already modified by previous write operations. MBOX
rewrites path to point at the sandbox filesystem, so
that subsequent read/write should see the one in the
sandbox filesystem.

• If path was deleted before, then to pretend that path
in the host filesystem is deleted, path is rewritten to
the non-existent path in the sandbox filesystem.

• If the current system call will modify the host filesys-
tem, then, since path does not exist in the sand-
box filesystem, MBOX copies the file from the host
filesystem to the sandbox filesystem. The subsequent
read/write will see the duplicated copy in the sandbox
filesystem, by the first rule.

As one example, at the entry of an open(path, O_RDWR)
system call, if path does not exists in the sandbox filesys-
tem and was not deleted before, MBOX will copy the
file from the host filesystem to the sandbox filesystem by
the last rule, and rewrite the path to point to the sandbox
filesystem, where any later write()s will be reflected.
Any subsequent open(path, O_RDONLY) on the same
path will also be rewritten to access the sandbox filesys-
tem, by the first rule.

5 Implementation
We implemented a prototype of MBOX for Linux by ex-
tending strace 4.7, which is a system utility to trace
system calls. To improve performance, we modified
strace to use seccomp/BPF. For OSes that do not
support seccomp/BPF yet, MBOX falls back to using
ptrace as the main system call interposition mechanism
(seccomp/BPF is supported on Linux 3.5 and above).
MBOX has been tested on the x86-64 Arch distribution
with the 3.8.10 Linux kernel, and the Ubuntu 12.04.1-LTS
distribution with the 3.2.0-36 Linux kernel.

6 Evaluation
To analyze the performance characteristics of MBOX, we
ran benchmarks used in Apiary [10] in three environ-
ments: without a sandbox, with MBOX using ptrace,
and with MBOX using seccomp/BPF to intercept system
calls. We carried out all experiments on a system with

an Intel Core i7-2640M CPU, using one core with hyper-
threads disabled, and 16GB RAM, running Arch Linux
with kernel 3.8.10, if not stated specifically. Table 1 sum-
marizes the results.

6.1 End-to-end performance overhead
In the computation-heavy Octave benchmark, Octave [6]
in Table 1, MBOX exhibits negligible performance over-
heads, 0.1%, because it spends 98% of its execution time
in userspace, with few system calls. However, when
compressing files (Zip), decompressing files (Untar) or
building the Linux kernel (Build Linux), MBOX incurs
more significant overheads, 12.0%–20.9%, because these
benchmarks invoke a lot of file-related system calls.

6.2 Interposing system calls
In the Zip and Untar benchmarks in Table 1, using
seccomp/BPFwas a lot more efficient than using ptrace.
With seccomp/BPF, MBOX can intercept just the system
calls that it needs to examine, and skip system calls such
as read() and write() that take a file descriptor as an
argument. Untar generates a total of 543k system calls,
out of which 330k (60.8%) are read() and write().
Using seccomp/BPF, MBOX interposes on just 90k sys-
tem calls (16.5%). These results show that seccomp/BPF
helps MBOX reduce interposition overhead.

6.3 Concurrency
With seccomp/BPF, we can improve concurrency by
avoiding unnecessary serialization of system calls, which
enables each process to invoke system calls without being
interleaved by the tracer. For example, ptrace imposed
110.1% overhead when building the Linux kernel in par-
allel, but using seccomp/BPF incurred 45.2% overhead,
because the tracer interposed only on the necessary system
calls, thereby allowing multiple system calls to execute
simultaneously.

7 Related work
Layered filesystems UnionFS [8, 11] strongly influ-
enced the design of MBOX; we follow its namespace
unification rules and strategies for copy-on-write. How-
ever, MBOX enables them for non-root users by using
seccomp/BPF in Linux, and also provides a variety of
applications without requiring any modification of exist-
ing software. Cowdancer [12] and FL-COW [7] similarly
provide a way to redirect modifications by a process, but
since they use LD_PRELOAD, they cannot isolate a mali-
cious process, unlike MBOX. Apiary [10] confines appli-
cations using UnionFS, but its main purpose of using the
layered filesystem is to save storage by sharing package
dependencies of confined applications.

5

144 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Task Normal Sandbox DescriptionPtrace Seccomp/BPF

Zip 15.6s 21.2s 36.5% 17.4s 12.0% Compressing all files of linux-3.8
Octave 2.1s 2.1s 0.1% 2.1s 0.1% Octave Benchmark [6] calculating matrix
Untar 13.6s 19.0s 40.3% 16.4s 20.9% Decompressing linux-3.8 source files
Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9% Compiling linux-3.8 kernel

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 45.2% Compiling linux-3.8 kernel with 4 parallel jobs

Table 1: Performance benchmark results. Following the benchmark from Apiary [10], we measure the total execution time of each benchmark in
normal execution, and in the sandbox using either ptrace and seccomp/BPF; for sandbox execution times, we also report the percent overhead on
top of normal execution. We used two cores with hyperthreads enabled for the last benchmark, building the Linux kernel with 4 parallel jobs.

System call interposition Garfinkel used the system
call interposition technique for enforcing security policies
in Ostia [5], and studied common mistakes and pitfalls
when using it for implementing a security tool [4]. In this
paper, we summarized our experiences of avoiding those
mistakes, especially the TOCTTOU attack, when using
seccomp/BPF as a means for rewriting system calls.

Namespace The effectiveness of MBOX comes from
the fact that every process can have a private namespace,
detached from the host filesystem. Plan9 [9] originally
proposed this idea; MBOX implements private names-
paces by using ptrace, which commodity OSes provide
to all users for debugging. MBOX, therefore, can use
private namespaces for sandboxing without changing the
kernel or applications. Docker [3] provides a container
for applications by using namespaces, newly introduced
in Linux 3.8, as a means to migrate processes transpar-
ently between OSes. We expect that the mnt, net and
ipc namespaces, combined with Aufs [8], can be used for
implementing an efficient layered filesystem, but without
enabling all applications that MBOX provides with system
call interposition.

8 Summary
We presented MBOX, a lightweight sandboxing mecha-
nism for non-root users in commodity OSes. MBOX pro-
tects the host filesystem by layering the sandbox filesys-
tem on top of it using efficient system call interposition
based on seccomp/BPF. We showed that MBOX is ef-
fective in a variety of applications, and incurs reason-
able CPU overhead. MBOX is available for download at
http://pdos.csail.mit.edu/mbox/.

Acknowledgments
We thank Silas Boyd-Wickizer, Ramesh Chandra, Cody
Cutler, Kavya Joshi, Meelap Shah, Keith Winstein, the
anonymous reviewers, and our shepherd, David Presotto,
for their feedback. This research was supported by the
DARPA Clean-slate design of Resilient, Adaptive, Secure
Hosts (CRASH) program under contract #N66001-10-2-
4089, and by NSF award CNS-1053143.

References
[1] Dynamic seccomp policies (using BPF filters). http:
//lwn.net/Articles/475019, January 2012.

[2] A. Arcangeli. Seccomp: secure computing mode. http:
//en.wikipedia.org/wiki/Seccomp. January 2013.

[3] dotCloud. Docker: The Linux container engine. http:
//www.docker.io, 2013.

[4] T. Garfinkel. Traps and pitfalls: Practical problems in sys-
tem call interposition based security tools. In Proceedings
of the Network and Distributed System Security Sympo-
sium (NDSS), February 2003.

[5] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A del-
egating architecture for secure system call interposition.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), February 2004.

[6] P. Grosjean. Octave benchmark 2: speed comparison of
various number crunching packages (version 2). http:
//sciviews.org/benchmark. January 2013.

[7] D. Libenzi. FL-COW 0.10. http://xmailserver.org/
flcow.html. January 2013.

[8] J. R. Okajima. Aufs3: Advanced multi layered unification
filesystem version 3.x. http://aufs.sf.net. January
2013.

[9] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan
9 from Bell Labs. In Proceedings of the Summer 1990
UKUUG Conference, pages 1–9, 1990.

[10] S. Potter and J. Nieh. Apiary: Easy-to-use desktop appli-
cation fault containment on commodity operating systems.
In Proceedings of the Annual USENIX Technical Confer-
ence, pages 103–116, June 2010.

[11] D. Quigley, J. Sipek, C. Wright, and E. Zadok. Unionfs:
User-and community-oriented development of a unifica-
tion filesystem. In Proceedings of the 2006 Linux Sympo-
sium, volume 2, pages 349–362, 2006.

[12] J. Uekawa. Cowdancer: copy-on-write data access
completely in userland. http://www.netfort.gr.
jp/~dancer/software/cowdancer.html.en. Jan-
uary 2013.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 145

TABLEFS: Enhancing Metadata Efficiency in the Local File System

Kai Ren, Garth Gibson
Carnegie Mellon University
{kair, garth}@cs.cmu.edu

Abstract

File systems that manage magnetic disks have long rec-
ognized the importance of sequential allocation and large
transfer sizes for file data. Fast random access has dom-
inated metadata lookup data structures with increasing
use of B-trees on-disk. Yet our experiments with work-
loads dominated by metadata and small file access in-
dicate that even sophisticated local disk file systems like
Ext4, XFS and Btrfs leave a lot of opportunity for perfor-
mance improvement in workloads dominated by meta-
data and small files.

In this paper we present a stacked file system,
TABLEFS, which uses another local file system as an ob-
ject store. TABLEFS organizes all metadata into a sin-
gle sparse table backed on disk using a Log-Structured
Merge (LSM) tree, LevelDB in our experiments. By
stacking, TABLEFS asks only for efficient large file al-
location and access from the underlying local file sys-
tem. By using an LSM tree, TABLEFS ensures metadata
is written to disk in large, non-overwrite, sorted and in-
dexed logs. Even an inefficient FUSE based user level
implementation of TABLEFS can perform comparably to
Ext4, XFS and Btrfs on data-intensive benchmarks, and
can outperform them by 50% to as much as 1000% for
metadata-intensive workloads. Such promising perfor-
mance results from TABLEFS suggest that local disk file
systems can be significantly improved by more aggres-
sive aggregation and batching of metadata updates.

1 Introduction

In the last decade parallel and Internet service file sys-
tems have demonstrated effective scaling for high band-
width, large file transfers [48, 13, 17, 25, 38, 39]. The
same, however, is not true for workloads that are domi-
nated by metadata and tiny file access [34, 49]. Instead
there has emerged a class of scalable small-data stor-
age systems, commonly called key-value stores, that em-

phasize simple (NoSQL) interfaces and large in-memory
caches [2, 24, 33].

Some of these key-value stores feature high rates
of change and efficient out-of-memory Log-structured
Merge (LSM) tree structures [8, 23, 32]. An LSM tree
can provide fast random updates, inserts and deletes
without scarificing lookup performance [5]. We be-
lieve that file systems should adopt LSM tree techniques
used by modern key-value stores to represent metadata
and tiny files, because LSM trees aggressively aggregate
metadata. Moreover, today’s key-value store implemen-
tations are “thin” enough to provide the performance lev-
els required by file systems.

In this paper we present experiments in the most ma-
ture and restrictive of environments: a local file sys-
tem managing one magnetic hard disk. We used a Lev-
elDB key-value store [23] to implement TABLEFS, our
POSIX-compliant stacked file system, which represents
metadata and tiny files as key-value pairs. Our results
show that for workloads dominated by metadata and tiny
files, it is possible to improve the performance of the
most modern local file systems in Linux by as much as
an order of magnitude. Our demonstration is more com-
pelling because it begins disadvantaged: we use an in-
terposed file system layer [1] that represents metadata
and tiny files in a LevelDB store whose LSM tree and
log segments are stored in the same local file systems we
compete with.

2 Background

Even in the era of big data, most things in many file
systems are small [10, 28]. Inevitably, scalable sys-
tems should expect the numbers of small files to soon
achieve and exceed billions, a known challenge for both
the largest [34] and most local file systems [49]. In this
section we review implementation details of the systems
employed in our experiments: Ext4, XFS, Btrfs and Lev-
elDB.

1

146 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

2.1 Local File System Structures

Ext4[26] is the fourth generation of Linux ext file sys-
tems, and, of the three we study, the most like traditional
UNIX file systems. Ext4 divides the disk into block
groups, similar to cylinder groups in traditional UNIX,
and stores in each block group a copy of the superblock,
a block group descriptor, a bitmap describing free data
blocks, a table of inodes and a bitmap describing free
inodes, in addition to the actual data blocks. Inodes con-
tain a file’s attributes (such as the file’s inode number,
ownership, access mode, file size and timestamps) and
four extent pointers for data extents or a tree of data ex-
tents. The inode of a directory contains links to a HTree
(similar to B-Tree) that can be one or two levels deep,
based on a 32 bit hash of the directory entry’s name. By
default only changes to metadata are journaled for dura-
bility, and Ext4 asynchronously commits its journal to
disk every five seconds. When committing pending data
and metadata, data blocks are written to disk before the
associated metadata is written to disk.

XFS[47], originally developed by SGI, aggressively
and pervasively uses B+ trees to manage all file struc-
tures: free space maps, file extent maps, directory entry
indices and dynamically allocated inodes. Because all
file sizes, disk addresses and inode numbers are 64 bits
in XFS, index structures can be large. To reduce the size
of these structures XFS partitions the disk into alloca-
tion groups, clusters allocation in an allocation group and
uses allocation group relative pointers. Free extents are
represented in two B+ trees: one indexed by the start-
ing address of the extent and the other indexed by the
length of the extent, to enable efficient search for an ap-
propriately sized extent. Inodes contain either a direct
extent map, or a B+ tree of extent maps. Each allocation
group has a B+ tree indexed by inode number. Inodes
for directories have a B+ tree for directory entries, in-
dexed by a 32 bit hash of the entry’s file name. XFS also
journals metadata for durability, committing the journal
asynchronously when a log buffer (256 KB by default)
fills or synchronously on request.

Btrfs[22, 36] is the newest and most sophisticated
local file system in our comparison set. Inspired by
Rodeh’s copy-on-write B-tree[35], as well as features
of XFS, NetApp’s WAFL and Sun’s ZFS[3, 18], Btrfs
copies any B-tree node to an unallocated location when
it is modified. Provided the modified nodes can be allo-
cated contiguously, B-tree update writing can be highly
sequential; however more data must be written than is
minimally needed (write amplification). The other sig-
nificant feature of Btrfs is its collocation of different
metadata components in the same B-tree, called the FS
tree. The FS tree is indexed by (inode number, type, off-
set) and it contains inodes, directory entries and file ex-

tent maps, distinguished by a type field: INODE ITEM
for inodes, DIR ITEM and DIR INDEX for directory en-
tries, and EXTENT DATA REF for file extent maps. Di-
rectory entries are stored twice so that they can be or-
dered differently: in one the offset field of the FS tree
index (for the directory’s inode) is the hash of the en-
try’s name, for fast single entry lookup, and in the other
the offset field is the child file’s inode number. The lat-
ter allows a range scan of the FS tree to list the inodes of
child files and accelerate user operations such as ls+stat.
Btrfs, by default, delays writes for 30 seconds to increase
disk efficiency, and metadata and data are in the same de-
lay queue.

2.2 LevelDB and its LSM Tree

Inspired by a simpler structure in BigTable[8], LevelDB
[23] is an open-source key-value storage library that fea-
tures an Log-Structured Merge (LSM) tree [32] for on-
disk storage. It provides simple APIs such as GET, PUT,
DELETE and SCAN (an iterator). Unlike BigTable, not
even single row transactions are supported in LevelDB.
Because TABLEFS uses LevelDB, we will review its de-
sign in greater detail in this section.

In a simple understanding of an LSM tree, an mem-
ory buffer cache delays writing new and changed entries
until it has a significant amount of changes to record
on disk. Delay writes are made more durable by re-
dundantly recording new and changed entries in a write-
ahead log, which is pushed to disk periodically and asyn-
chronously by default.

In LevelDB, by default, a set of changes are spilled
to disk when the total size of modified entries exceeds
4 MB. When a spill is triggered, called a minor com-
paction, the changed entries are sorted, indexed and writ-
ten to disk in a format known as SSTable[8]. These en-
tries may then be discarded by the memory buffer and
can be reloaded by searching each SSTable on disk, pos-
sibly stopping when the first match occurs if the SSTa-
bles are searched from most recent to oldest. The number
of SSTables that need to be searched can be reduced by
maintaining a Bloom filter[7] on each, but with increas-
ing numbers of records the disk access cost of finding
a record not in memory increases. Scan operations in
LevelDB are used to find neighbor entries, or to iterate
through all key-value pairs within a range. When per-
forming a scan operation, LevelDB first searches each
SSTable to place a cursor; it then increments cursors
in the multiple SSTables and merges key-value pairs in
sorted order. Compaction is the process of combining
multiple SSTables into a smaller number of SSTables by
merge sort. Compaction is similar to online defragmen-
tation in traditional file systems and cleaning process in

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 147

L0

L1

L2

Disk

RAM

…..

BF #SSTables <4 BF

BF BF BF <10 MB

<102 MB BF BF

BF F BF

Compaction

….

Mem-Table

Dump

BF = Bloom Filter

Figure 1: LevelDB represents data on disk in multiple SSTables
that store sorted key-value pairs. SSTables are grouped into
different levels with lower-numbered levels containing more re-
cently inserted key-value pairs. Finding a specific pair on disk
may search up to all SSTables in level 0 and at most one in each
higher-numbered level. Compaction is the process of combin-
ing SSTables by merge sort into higher-numbered levels.

LFS [37].
As illustrated in Figure 1, LevelDB extends this simple

approach to further reduce read costs by dividing SSTa-
bles into sets, or levels. Levels are numbered starting
from 0, and levels with a smaller number are referenced
as “lower” levels. The 0th level of SSTables follows a
simple formulation: each SSTable in this level may con-
tain entries with any key/value, based on what was in
memory at the time of its spill. LevelDB’s SSTables
in level L > 0 are the results of compacting SSTables
from level L or L− 1. In these higher levels, LevelDB
maintains the following invariant: the key range span-
ning each SSTable is disjoint from the key range of all
other SSTables at that level and each SSTable is limited
in size (2MB by default). Therefore querying for an en-
try in the higher levels only need to read at most one
SSTable in each level. LevelDB also sizes each level dif-
ferentially: all SSTables have the same maximum size
and the sum of the sizes of all SSTables at level L will
not exceed 10L MB. This ensures that the number of lev-
els, that is, the maximum number of SSTables that need
to be searched in the higher levels, grows logarithmically
with increasing numbers of entries.

When LevelDB decides to compact an SSTable at level
L, it picks one, finds all other SSTables at the same level
and level L+ 1 that have an overlapping key range, and
then merge sorts all of these SSTables, producing a set
of SSTables with disjoint ranges at the next higher level.
If an SSTable at level 0 is selected, it is not unlikely that
many or all other SSTables at level 0 will also be com-
pacted, and many SSTables at level 1 may be included.
But at higher levels most compactions will involve a
smaller number of SSTables. To select when and what
to compact there is a weight associated with compacting
each SSTable, and the number of SSTables at level 0 is
held in check (by default compaction will be triggered if

FUSE lib

Large File Store

Metadata Store

VFS

FUS

File

FUSE Kernel Module

Benchmark
Process

FUS

TableFS

Kernel

User Space

User Space

Kernel VFS

Local File System

(a)

(b)

LevelDB

tem

evelFile Stor

Metadataa Store

LevelDre

data

Benchmark
Process

Local File System

Figure 2: (a) The architecture of TABLEFS. A FUSE kernel
module redirects file system calls from a benchmark process to
TABLEFS, and TABLEFS stores objects into either LevelDB or
a large file store. (b) When we benchmark a local file system,
there is no FUSE overhead to be paid.

there are more than four SSTables at level 0). There are
also counts associated with SSTables that are searched
when looking for an entry, and hotter SSTables will be
compacted sooner. Finally, only one compaction runs at
a time.

3 TABLEFS

As shown in Figure 2(a), TABLEFS exploits the FUSE
user level file system infrastructure to interpose on top
of the local file system. TABLEFS represents directo-
ries, inodes and small files in one all-encompassing ta-
ble, and only writes large objects (such as write-ahead
logs, SSTables, and large files) to the local disk.

3.1 Local File System as Object Store
There is no explicit space management in TABLEFS. In-
stead, it uses the local file system for allocation and stor-
age of objects. Because TABLEFS packs directories, in-
odes and small files into a LevelDB table, and LevelDB
stores sorted logs (SSTables) of about 2MB each, the lo-
cal file system sees many fewer, larger objects. We use
Ext4 as the object store for TABLEFS in all experiments.

Files larger than T bytes are stored directly in the ob-
ject store named according to their inode number. The
object store uses a two-level directory tree in the lo-
cal file system, storing a file with inode number I as
“/LargeFileStore/J/I” where J = I ÷ 10000. This is to
circumvent any scalability limits on directory entries in
the underlying local file systems. In TABLEFS today,
T , the threshold for blobbing a file is 4KB, which is the
median size of files in desktop workloads [28], although
others have suggested T be at least 256KB and perhaps
as large as 1MB [41].

3

148 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

3.2 Table Schema
TABLEFS’s metadata store aggregates directory entries,
inode attributes and small files into one LevelDB table
with a row for each file. To link together the hierar-
chical structure of the user’s namespace, the rows of the
table are ordered by a variable-length key consisting of
the 64-bit inode number of a file’s parent directory and its
filename string (final component of its pathname). The
value of a row contains inode attributes, such as inode
number, ownership, access mode, file size and times-
tamps (struct stat in Linux). For small files, the file’s
row also contains the file’s data.

Figure 3 shows an example of storing a sample file
system’s metadata into one LevelDB table.

All entries in the same directory have rows that share
the same first 64 bits of their table key. For readdir oper-
ations, once the inode number of the target directory has
been retrieved, a scan sequentially lists all entries hav-
ing the directory’s inode number as the first 64 bits of
their table key. To resolve a single pathname, TABLEFS
starts searching from the root inode, which has a well-
known inode number (0). Traversing the user’s directory
tree involves constructing a search key by concatenating
the inode number of current directory with the hash of
next component name in the pathname. Unlike Btrfs,
TABLEFS does not need the second version of each di-
rectory entry because the entire attributes are returned in
the readdir scan.

3.3 Hard Links
Hard links, as usual, are a special case because two or
more rows must have the same inode attributes and data.
Whenever TABLEFS creates the second hard link to a
file, it creates a separate row for the file itself, with a
null name, and its own inode number as its parent’s in-

Key Value
<0, “home”> 1, struct stat

<1, “foo”> 2, struct stat

<1, “bar”> 3, struct stat

<2, “apple”> 4, hard link

<2, “book”> 5, struct stat,
inline small file(<4KB)

<3, “pear”> 4, hard link

<4, null> 4, struct stat, large file
pointer (> 4KB)

Le
xi

co
gr

ap
hi

c
or

de
r

bar

pear
book

bar

pe
book

/

home

foo

apple

0

32

1

45

Figure 3: An example illustrates table schema used by
TABLEFS’s metadata store. The file with inode number 4 has
two hard links, one called “apple” from directory foo and the
other called “pear” from directory bar.

ode number in the row key. As illustrated in Figure 3,
creating a hard link also modifies the directory entry such
that each row naming the file has an attribute indicating
the directory entry is a hard link to the file object’s inode
row.

3.4 Scan Operation Optimization

TABLEFS utilizes the scan operation provided by Lev-
elDB to implement readdir() system call. The scan op-
eration in LevelDB is designed to support iteration over
arbitrary key ranges, which may require searching SSTa-
bles at each level. In such a case, Bloom filters cannot
help to reduce the number of SSTables to search. How-
ever, in TABLEFS, readdir() only scans keys sharing the
common prefix — the inode number of the searched di-
rectory. For each SSTable, an additional Bloom filter is
maintained, to keep track of all inode numbers that ap-
pear as the first 64 bit of row keys in the SSTable. Before
starting an iterator in an SSTable for readdir(), TABLEFS
can first check its Bloom filter to find out whether it con-
tains any of the desired directory entries. Therefore, un-
necessary iterations over SSTables that do not contain
any of the requested directory entries can be avoided.

3.5 Inode Number Allocation

TABLEFS uses a global counter for allocating inode
numbers. The counter increments when creating a new
file or a new directory. Since we use 64-bit inode num-
bers, it will not soon be necessary to recycle the inode
number of deleted entries. Coping with operating sys-
tems that use 32 bit inode numbers may require frequent
inode number recycling, a problem beyond the scope of
this paper and addressed by many file systems.

3.6 Locking and Consistency

LevelDB provides atomic insertion of a batch of writes
but does not support atomic row read-modify-write op-
erations. The atomic batch write guarantees that a se-
quence of updates to the database are applied in order,
and committed to the write-ahead log atomically. Thus
the rename operation can be implemented as a batch
of two operations: insert the new directory entry and
delete the stale entry. But for operations like chmod and
utime, since all of an inode’s attributes are stored in a sin-
gle key-value pair, TABLEFS must read-modify-write at-
tributes atomically. We implemented a light-weight lock-
ing mechanism in the TABLEFS core layer to ensure cor-
rectness under concurrent access.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 149

VFS

User Space

(a)

Application

Kernel
TableFS bleF

Disk

(b)

FUSE Object Store
(e.g. Ext4) g. E

TableFS

Disk
Object Store
(e.g. Ext4)

(c)

Application

TableFS

Disk

Object Store
(e.g. Ext4)

Application plica

ect S
g. Ex

Figure 4: Three different implementations of TABLEFS:
(a) the kernel-native TABLEFS, (b) the FUSE version of
TABLEFS, and (c) the library version of TABLEFS. In the fol-
lowing evaluation section, (b) and (c) are presented to bracket
the performance of (a), which was not implemented.

3.7 Journaling
TABLEFS relies on LevelDB and the local file system
to achieve journaling. LevelDB has its own write-ahead
log that journals all updates to the table. LevelDB can
be set to commit the log to disk synchronously or asyn-
chronously. To achieve a consistency guarantee similar
to “ordered mode” in Ext4, TABLEFS forces LevelDB
to commit the write-ahead log to disk periodically (by
default it is committed every 5 seconds).

3.8 TABLEFS in the Kernel
A kernel-native TABLEFS file system is a stacked file
system, similar to eCryptfs [14], treating a second local
file system as an object store, as shown in Figure 4(a). An
implementation of a Log-Structured Merge (LSM) tree
[32] used for storing TABLEFS in the associated object
store, such as LevelDB [23], is likely to have an asyn-
chronous compaction thread that is more conveniently
executed at user level in a TABLEFS daemon, as illus-
trated in Figure 4(b).

For the experiments in this paper, we bracket the
performance of a kernel-native TABLEFS (Figure 4(a)),
between a FUSE-based user-level TABLEFS (Figure
4(b)) with no TABLEFS function in the kernel and all
of TABLEFS in the user level FUSE daemon) and an
application-embedded TABLEFS library, illustrated in
Figure 4(c).

TABLEFS entirely at user-level in a FUSE daemon
is unfairly slow because of the excess kernel crossings
and scheduling delays experienced by FUSE file systems
[6, 45]. TABLEFS embedded entirely in the benchmark
application as a library is not sharable, and unrealistically
fast because of the infrequency of system calls. We ap-
proximate the performance of a kernel-native TABLEFS

using the library version and preceding each reference to
the TABLEFS library with a write(“/dev/null”, N bytes)
to account for the system call and data transfer overhead.
N is chosen to match the size of data passed through each
system call. More details on these models will be dis-
cussed in Section 4.3.

4 Evaluation

4.1 Evaluation System
We evaluate our TABLEFS prototype on Linux desktop
computers equipped as follows:

Linux Ubuntu 12.10, Kernel 3.6.6 64-bit version
CPU AMD Opteron Processor 242 Dual Core
DRAM 16GB DDR SDRAM
Hard Disk Western Digital WD2001FASS-00U0B0

SATA, 7200rpm, 2TB
Random Seeks 100 seeks/sec peak
Sequential Reads 137.6 MB/sec peak
Sequential Writes 135.4 MB/sec peak

We compare TABLEFS with Linux’s most sophisti-
cated local file systems: Ext4, XFS, and Btrfs. Ext4 is
mounted with “ordered” journaling to force all data to be
flushed out to disk before its metadata is committed to
disk. By default, Ext4’s journal is asynchronously com-
mitted to disks every 5 seconds. XFS and Btrfs use simi-
lar policies to asynchronously update journals. Btrfs, by
default, duplicates metadata and calculates checksums
for data and metadata. We disable both features (un-
available in the other file systems) when benchmarking
Btrfs to avoid penalizing it. Since the tested filesystems
have different inode sizes (Ext4 and XFS use 256 bytes
and Btrfs uses 136 bytes), we pessimistically penalize
TABLEFS by padding its inode attributes to 256 bytes.
This slows down TABLEFS doing metadata-intensive
workloads significantly, but it still performs quite well.
In some benchmarks, we also changed the Linux boot
parameters to limit the machines’ available memory be-
low certain threshold, in order to test out-of-RAM per-
formance.

4.2 Data-Intensive Macrobenchmark
We run two sets of macrobenchmarks on the FUSE ver-
sion of TABLEFS, which provides a full featured, trans-
parent application service. Instead of using a metadata-
intensive workload, emphasized in the previous and later
sections of this paper, we emphasize data-intensive work
in this section. Our goal is to demonstrate that TABLEFS
is capable of reasonable performance for the traditional
workloads that are often used to test local file systems.

5

150 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Kernel build is a macrobenchmark that uses a Linux
kernel compilation and related operations to compare
TABLEFS’s performance to the other tested file systems.
In the kernel build test, we use the Linux 3.0.1 source
tree (whose compressed tar archive is about 73 MB in
size). In this test, we run four operations in this order:

• untar: untar the source tarball;

• grep: grep “nonexistent pattern” over all of the
source tree;

• make: run make inside the source tree;

• gzip: gzip the entire source tree.

After compilation, the source tree contains 45,567 files
with a total size of 551MB. The machine’s available
memory is set to be 350MB, and therefore compilation
data are forced to be written to the disk.

Figure 5 shows the average runtime of three runs of
these four macro-benchmarks using Ext4, XFS, Btrfs
and TABLEFS-FUSE. For each macro-benchmark, the
runtime is normalized by dividing the minimum value.
Summing the operations, TABLEFS-FUSE is about 20%
slower, but it is also paying significant overhead caused
by moving all data through the user-level FUSE daemon
and the kernel twice, instead of only through the kernel
once, as illustrated in Figure 4. Table 5 also shows that
the degraded performance of Ext4, XFS, and Btrfs when
they are accessed through FUSE is about the same as
TABLEFS-FUSE.

Postmark was designed to measure the performance
of a file system used for e-mail, and web based services
[20]. It creates a large number of small randomly-sized
files between 512B and 4KB, performs a specified num-
ber of transactions on them, and then deletes all of them.

44 sec

12 sec

9182 sec

358 sec

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

Untar Grep Make Gzip

N
or

m
al

iz
ed

 D
ur

at
io

n

Ext4 Btrfs XFS TableFS-FUSE Ext4+FUSE Btrfs+FUSE XFS+FUSE

Figure 5: The normalized elapsed time for unpacking, search-
ing building and compressing the Linux 3.0.1 kernel package.
All elapsed time in each operation is divided by the minimum
value (1.0 bar). The legends above each bar show the actual
minimum value in seconds.

��������� ���������

����������
���������

��������� ���������
��������� ���������

������

���������

���������

���������

���������

����������

����������

������ �����
�	������

��
�
��
��
��
��

��
��

����� ����� ���� �������������

Figure 6: The elapsed time for both the entire run of Postmark
and the transactions phase of Postmark for the four tested file
systems.

 9,259

22 22

 547

 4,000

10 10

 141

 5,555

22 22

 1,069 4,037

29 29

 3,848

 1

 10

 100

 1,000

 10,000

 100,000

Create Read Append Deletion
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)

Ext4 Btrfs XFS TableFS-FUSE

Figure 7: Average throughput of each type of operation in Post-
mark benchmark.

Each transaction consists of two sub-transactions, with
one being a create or delete and the other being a read
or append. The configuration used for these experiments
consists of two million transactions on one million files,
and the biases for transaction types are equal. The ex-
periments were run with the available memory set to be
1400 MB, too small to fit the entire datasets (about 3GB)
in memory.

Figure 6 shows the Postmark results for the four tested
file systems. TABLEFS outperforms other tested file sys-
tems by at least 23% during the transctions phase. Fig-
ure 7 gives the average throughput of each type of oper-
ations individually. TABLEFS runs faster than the other
tested filesystems for read, append and deletion, but runs
slower for the creation. In Postmark, creation phase
is to create files in the alphabatical order of their file-
names. Thus the creation phase is a sequential insertion
workload for all file systems, and Ext4 and XFS perform
very efficiently in this workload. TABLEFS-FUSE pays
for the overhead from FUSE and writing file data at least
twice: LevelDB first time writes it to the write-ahead log,
and second time to an SSTable during compaction.

4.3 TABLEFS-FUSE Overhead Analysis
To understand the overhead of FUSE in TABLEFS-
FUSE, and estimate the performance of an in-
kernel TABLEFS, we ran a micro-benchmark against

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 151

TABLEFS-FUSE and TABLEFS-Library ((b) and (c) in
Figure 4). This micro-benchmark creates one million
zero-length files in one directory starting with an empty
file system. The amount of memory available to the
evaluation system is 1400 MB, almost enough to fit the
benchmark in memory.

Figure 8 shows the total runtime of the experiment.
TABLEFS-FUSE is about 3 times slower than TABLEFS-
Libary.

120 120

40

0

50

100

150

Time (seconds)

Ti
m

e
(s

ec
on

ds
)

TableFS-FUSE TableFS-Sleep TableFS-Library

Figure 8: The elapsed time for creating 1M zero-length files on
three versions of TABLEFS (See Figure 4)

.

Figure 9 shows the total disk traffic gathered from the
Linux proc file system (/proc/diskstats) during the test.
Relative to TABLEFS-Library, TABLEFS-FUSE writes
almost as twice as many bytes to the disk, and reads al-
most 100 times as much. This additional disk traffic re-
sults from two sources: 1) under a slower insertion rate,
LevelDB tends to compact more often; and 2) the FUSE
framework populates the kernel’s cache with its own ver-
sion of inodes, competing with the local file system for
cache memory.

������ ������
���������� �� ����

������ ������

������

�������

��� ��
��

�����
�����
�����
�����

������
������
������
������

������������� �������������� ���������������

��
��
��
��
�
��
��
��

��
��

��
�
��
�

�	��������������
�	��������������

�	�������������
�	�������������

Figure 9: Total disk traffic associated with Figure 8

To illustrate the first point, we show LevelDB’s com-
paction process during this test in Figure 10. Figure 10
shows the total size of SSTables in each Level over time.
The compaction process will move SSTables from one
level to the next level. For each compaction in Level
0, LevelDB will compact all SSTables with overlapping

(a) TABLEFS-FUSE

(b) TABLEFS-Library

(c) TABLEFS-Sleep

Figure 10: Changes of total size of SSTables in each level
over time during the creation of 1M zero-length files for three
TABLEFS models. TABLEFS-Sleep illustrates similar com-
paction behavior as does TABLEFS-FUSE.

ranges (which in this benchmark will be almost all SSTa-
bles in level 0 and 1). At the end of a compaction,
the next compaction will repeat similar work, except the
number of level 0 SSTables will be proportional to the
data insertion rate. When the insertion rate is slower
(Figure 10(a)), compaction in Level 0 finds fewer over-
lapping SSTables than TABLEFS-Library (Figure 10(b))
in each compaction. In Figure 10(b), the level 0 size
(blue line) exceeds 20MB for much of the test, while
in 10(a) it never exceeds 20MB after the first com-
paction. Therefore, LevelDB does more compactions to
integrate the same arriving log of changes when insertion
is slower.

To negate the different compaction work, we deliber-
ately slow down TABLEFS-Library to run at the same

7

152 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

speed as TABLEFS-FUSE by adding sleep 80ms ev-
ery 1000 operations (80ms was empirically derived to
match the run time of TABLEFS-FUSE). This model of
TABLEFS is called TABLEFS-Sleep and is shown in Fig-
ure 9 and 10 (c). TABLEFS-Sleep causes almost the same
pattern of compactions as does TABLEFS-FUSE and in-
duces about the same write traffic (Figure 9). But un-
like TABLEFS-FUSE, TABLEFS-Sleep can use more of
the kernel page cache to store SSTables than TABLEFS-
FUSE. Thus, as shown in Figure 9, TABLEFS-Sleep
writes the same amount of data as TABLEFS-FUSE but
does much less disk reading.

To estimate TABLEFS performance without FUSE
overhead, we use TABLEFS-Library to avoid double
caching and perform a write(“/dev/null”, N bytes) on
every TABLEFS invocation to model the kernel’s system
call and argument data transfer overhead. This model
is called TABLEFS-Predict and is used in the follow-
ing sections to predict metadata efficiency of a kernel
TABLEFS.

4.4 Metadata-Intensive Microbenchmark
Metadata-only Benchmark

In this section, we run four micro-benchmarks of the
efficiency of pure metadata operations. Each micro-
benchmark consists of two phases: a) create and b) test.
For all four tests, the create phase is the same:

• a) create: In “create”, the benchmark application
generates directories in depth first order, and then
creates one million zero-length files in the appropri-
ate parent directories in a random order, according
to a realistic or synthesized namespace.

The test phase in the benchmark are:

• b1) null: In test 1, the test phase is null because
create is what we are measuring.

• b2) query: This workload issues one million read or
write queries to random (uniform) files or directo-
ries. A read query calls stat on the file, and a write
query randomly does either a chmod or utime to up-
date the mode or the timestamp attributes.

• b3) rename: This workload issues a half million re-
name operations to random (uniform) files, moving
the file to another randomly chosen directory.

• b4) delete: This workload issues a half million
delete operations to randomly chosen files.

The captured file system namespace used in the ex-
periment was taken from one author’s personal Ubuntu

65
23 31 26

156

53
29

46

191

49 33 47

469

85 80 105

541

91 99
116

0

100

200

300

400

500

600

Create Query
(50%R+50%W)

Rename DeleteTh
ro

ug
hp

ut
 (o

ps
/s

ec
on

d)

Workloads

Ext4 Btrfs XFS TableFS-FUSE TableFS-Predict

Figure 11: Average throughput during four different workloads
for five tested systems.

71

93

284

456

512

2,096

2,122

3,039

2,817

8,725

0 4000 8000

TableFS-Predict

TableFS-FUSE

Btrfs

XFS

Ext4

Number of Disk Requests (Thousands)

Disk Read Disk Write

Figure 12: Total number of disk read/write requests during
50%Read+50%Write query workload for five tested systems.

desktop. There were 172,252 directories, each with 11
files on average, and the average depth of the namespace
is 8 directories. We also used the Impressions tool [4] to
generate a “standard namespace”. This synthetic names-
pace yields similar results, so its data is omitted from this
paper. Between the create and test phase of each run,
we umount and re-mount local filesystems to clear ker-
nel caches. To test out-of-RAM performance, we limit
the machine’s available memory to 350MB which does
not fit the entire test in memory. All tests were run for
three times, and the coefficient of variation is less than
1%.

Figure 11 shows the test results averaged over three
runs. The create phase of all tests had the same per-
formance so we show it only once. For the other tests,
we show only the second, test phase. Both TABLEFS-
Predict and TABLEFS-FUSE runs are almost 2 to 3 times
faster than the other local file systems in all tests.

Figure 12 shows the total number of disk read and
write requests during the query workload, the test in
which TABLEFS has the least advantage. Both versions
of TABLEFS issue many fewer disk writes, effectively
aggregating changes into larger sequential writes. For
read requests, because of bloom filtering and in-memory

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 153

indexing, TABLEFS issues fewer read requests. There-
fore TABLEFS’s total number of disk requests is smaller
than the other tested file systems.

Scan Queries

In addition to point queries such as stat, chmod and
utime, range queries such as readdir are important meta-
data operations. To test the performance of readdir, we
modify the micro-benchmark to perform multiple read-
dir operations in the generated directory tree. To show
the trade-offs involved in embedding small files, we cre-
ate 1KB files (with random data) instead of zero byte
files. For the test phase, we use the following three oper-
ations:

• b5) readdir: The benchmark application performs
readdir() on 100,000 randomly picked directories.

• b6) readdir+stat: The benchmark application per-
forms readdir() on 100,000 randomly picked direc-
tories, and for each returned directory entry, per-
forms a stat operation. This simulates “ls -l”.

• b7) readdir+read: Similar to readdir+stat, but for
each returned directory entry, it reads the entire file
(if returned entry is a file) instead of stat.

Figure 13 shows the total time needed to complete
each readdir workload (the average of three runs). In the
pure readdir workload, TABLEFS-Predict is slower than
Ext4 because of read amplification, that is, for each read-
dir operation, TABLEFS fetches directory entries along
with unnecessary inode attributes and file data. How-
ever, in the other two workloads when at least one of the
attributes or file data is needed, TABLEFS is faster than
Ext4, XFS, and Btrfs, since many random disk accesses
are avoided by embedding inodes and small files.

1050

2230
33902965

5970
6820

1600

3320

8120

1830 2140 2470

1190 1640 1950

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

readdir readdir+stat readdir+read

To
ta

l R
un

tim
e

(S
ec

on
ds

)

Workloads

Ext4 Btrfs XFS TableFS-FUSE TableFS-Predict

Figure 13: Total run-time of three readdir workloads for five
tested file systems.

Figure 14: Throughput of all four tested file systems while cre-
ating 100 million zero-length files. TABLEFS-FUSE is almost
10× faster than the other tested file systems in the later stage
of this experiment. The data is sampled in every 10 seconds
and smoothed over 100 seconds. The vertical axis is shown on
a log scale.

Benchmark with Larger Directories

Because the scalability of small files is of topical interest
[49], we modified the zero-byte file create phase to create
100 million files (a number of files rarely seen in the local
file system today). In this benchmark, we allowed the
memory available to the evaluation system to be the full
16GB of physical memory.

Figure 14 shows a timeline of the creation rate for
four file systems. In the beginning of this test, there is
a throughput spike that is caused by everything fitting in
the cache. Later in the test, the creation rate of all tested
file systems slows down because the non-existence test
in each create is applied to ever larger on-disk data struc-
tures. Btrfs suffers the most serious drop, slowing down
to 100 operations per second at some points. TABLEFS-
FUSE maintains more steady performance with an aver-
age speed of more than 2,200 operations per second and
is 10 times faster than all other tested file systems.

All tested file systems have throughput fluctuations
during the test. This kind of fluctuation might be caused
by on disk data structure maintenance. In TABLEFS, this
behavior is caused by compactions in LevelDB, in which
SSTables are merged and sequentially written back to
disk.

Solid State Drive Results

TABLEFS reduces disk seeks, so you might expect it
to have less benefit on solid state drives, and you’d be
right. We applied the “create-query” microbenchmark
to a 120GB SATA II 2.5in Intel 520 Solid State Drive
(SSD). Random read throughput is 15,000 IO/s at peak,
and random write throughput peaks at 3,500 IO/s. Se-
quential read throughput peaks at 245MB/sec, and se-

9

154 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

5747

186

3802

1477

3698

1063

3125

935

5249

1242

0
1000
2000
3000
4000
5000
6000
7000

Create Query

Th
ro

ug
hp

ut
 (o

ps
/s

ec
on

d)
 Ext4 Btrfs XFS TableFS-FUSE TableFS-Predict

Figure 15: Average throughput in the create and query work-
loads on an Intel 520 SSD for five tested file systems.

quential write throughput peaks at 107MB/sec. Btrfs has
a “ssd” optimization mount option which we enabled.

Figure 15 shows the throughput averaged over three
runs of the create and query phases. In comparison to
Figure 11, all results are about 10 times faster. Although
TABLEFS is not the fastest, TABLEFS-Predict is com-
parable to the fastest. Figure 16 shows the total number
of disk requests and disk bytes moved during the query
phase. While TABLEFS achieves fewer disk writes, it
reads much more data from SSD than XFS and Btfs. For
use with solid state disks, LevelDB can be further opti-
mized to reduce read amplification. For example, using
SILT-like fine-grained in-memory indexing [24] can re-
duce the amount of data read from SSD, and using VT-
Tree compaction stitching [45] can reduce compaction
works for sequential workloads.

5 Related Work

File system metadata is structured data, a natural fit for
relational database techniques. However, because of
their large size, complexity and slow speed, file sys-
tem developers have long been reluctant to incorpo-
rate traditional databases into the lower levels of file
systems [31, 46]. Modern stacked file systems often
expand on the limited structure in file systems, hid-
ing structures inside directories meant to represent files
[6, 14, 15, 21], even though this may increase the number
of small files in the file system. In this paper, we return
to the basic premise, file system metadata is a natural
fit for table-based representation, and show that today’s
lightweight data stores may be up to the task. We are con-
cerned with an efficient representation of huge numbers
of small files, not strengthening transactional semantics
[16, 19, 40, 45, 50].

Early file systems stored directory entries in a linear
array in a file and inodes in simple on-disk tables, sep-
arate from the data of each file. Clustering within a file
was pursued aggressively, but for different files cluster-
ing was at the granularity of the same cylinder group. It

32

34

425

434

490

2,035

2,075

1,751

2,382

35,578

0 10000 20000 30000 40000

TableFS-Predict

TableFS-FUSE

XFS

Btrfs

Ext4

Number of Disk Requests

DiskReadRequests DiskWriteRequests

(a) Disk Requests

4,457

4,445

3,717

3,223

3,910

132,873

162,167

10,815

9,304

139,142

0 50000 100000 150000 200000

TableFS-Predict

TableFS-FUSE

XFS

Btrfs

Ext4

Total Disk Traffic (MB)

DiskReadBytes(MB) DiskWriteBytes(MB)

(b) Disk Bytes

Figure 16: Total number of disk requests and disk bytes moved
in the query workload on an Intel 520 SSD for five tested file
systems.

has long been recognized that small files can be packed
into the block pointer space in inodes [29]. C-FFS [12]
takes packing further and clusters small files, inodes and
their parent directory’s entries in the same disk reada-
head unit, the track. A variation on clustering for effi-
cient prefetching is replication of inode fields in direc-
tory entries, as is done in NTFS[9]. TABLEFS pursues
an aggressive clustering strategy; each row of a table is
ordered in the table with its parent directory, embedding
directory entries, inode attributes and the data of small
files. This clustering manifests as adjacency for objects
in the lower level object store if these entries were cre-
ated/updated close together in time, or after compaction
has merge sorted them back together.

Beginning with the Log-Structured File System
(LFS)[37], file systems have exploited write alloca-
tion methods that are non-overwrite, log-based and de-
ferred. Variations of log structuring have been imple-
mented in NetApp’s WAFL, Sun’s ZFS and BSD UNIX
[3, 18, 44]. In this paper we are primarily concerned
with the disk access performance implications of non-
overwrite and log-based writing, although the potential
of strictly ordered logging to simplify failure recovery in
LFS has been emphasized and compared to various write
ordering schemes such as Soft Updates and Xsyncfs
[27, 30, 43]. LevelDB’s recovery provisions are con-

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 155

sistent with delayed periodic journalling, but could be
made consistent with stronger ordering schemes. It is
worth noting that the design goals of Btrfs call for non-
overwrite (copy-on-write) updates to be clustered and
written sequentially[36], largely the same goals of Lev-
elDB in TABLEFS. Our measurements indicate, how-
ever, that the Btrfs implementation ends up doing far
more small disk accesses in metadata dominant work-
loads.

Partitioning the contents of a file system into two
groups, a set of large file objects and all of the meta-
data and small files, has been explored in hFS[51]. In
their design large file objects do not float as they are
modified, and hFS uses modified log-structured file sys-
tem approach and an in-place B-Tree to manage meta-
data, directory entries and small files. TABLEFS has this
split as well, with large file objects handled directly by
the backing object store, and metadata updates approxi-
mately log structured in LevelDB’s partitioned LSM tree.
However, TABLEFS uses a layered approach and does
not handle disk allocation, showing that metadata perfor-
mance of widely available and trusted file systems can
be greatly improved even in a less efficient stacked ap-
proach. Moreover, hFS’s B-Tree layered on LFS ap-
proach is similar to Btrfs’ copy-on-write B-Tree, and our
experiments show that the LSM approach is faster than
the Btrfs approach.

Log-Structured Merge trees [32] were inspired in part
by LFS, but focus on representing a large B-tree of small
entries in a set of on-disk B-trees constructed of recent
changes and merging these on-disk B-trees as needed for
lookup reads or in order to merge on-disk trees to re-
duce the number of future lookup reads. LevelDB [23]
and TokuFS [11] are LSM trees. Both are partitioned in
that the on-disk B-trees produced by compaction cover
small fractions of the key space, to reduce unneces-
sary lookup reads. TokuFS names its implementation
a Fractal Tree, also called streaming B-trees[5], and its
compaction may lead to more efficient range queries
than LevelDB’s LSM tree because LevelDB uses Bloom
filters[7] to limit lookup reads, a technique appropriate
for point lookups only. If bounding the variance on in-
sert response time is critical, compaction algorithms can
be more carefully scheduled, as is done in bLSM[42].
TABLEFS may benefit from all of these improvements to
LevelDB’s compaction algorithms, which we observe to
sometimes consume disk bandwidth injudiciously (See
Section 4.3).

Recently, VT-trees [45] were developed as a modifica-
tion to LSM trees to avoid always copying old SSTable
content into new SSTables during compaction. These
trees add another layer of pointers so new SSTables can
point to regions of old SSTables, reducing data copying
but requiring extra seeks and eventual defragmentation.

6 Conclusion

File systems for magnetic disks have long suffered low
performance when accessing huge collections of small
files because of slow random disk seeks. TABLEFS
uses modern key-value store techniques to pack small
things (directory entries, inode attributes, small file data)
into large on-disk files with the goal of suffering fewer
seeks when seeks are unavoidable. Our implementation,
even hampered by FUSE overhead, LevelDB code over-
head, LevelDB compaction overhead, and pessimisti-
cally padded inode attributes, performs as much as 10
times better than state-of-the-art local file systems in ex-
tensive metadata update workloads.

Acknowledgment

This research is supported in part by The Gor-
don and Betty Moore Foundation, National Sci-
ence Foundation under awards, SCI-0430781, CCF-
1019104, CNS-1042537 and CNS-1042543 (PRObE
http://www.nmc-probe.org/), Qatar National Re-
search Foundation 09-1116-1-172, DOE/Los Alamos
National Laboratory, under contract number DE-AC52-
06NA25396/161465-1, by Intel as part of ISTC-CC. We
thank the member companies of the PDL Consortium for
their feedback and support.

References
[1] FUSE. http://fuse.sourceforge.net/.

[2] Memcached. http://memcached.org/.

[3] ZFS. http://www.opensolaris.org/os/community/zfs.

[4] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. In Proccedings of the 7th conference on file and
storage technologies (2009).

[5] BENDER, M. A., FARACH-COLTON, M., FINEMAN, J. T., FO-
GEL, Y. R., KUSZMAUL, B. C., AND NELSON, J. Cache-
oblivious streaming B-trees. In Proceedings of annual ACM sym-
posium on parallel algorithms and architectures (2007).

[6] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE,
M. PLFS: a checkpoint filesystem for parallel applications. In
Proceedings of the ACM/IEEE conference on Supercomputing
(2009).

[7] BLOOM, B. Space/time trade-offs in hash coding with allow-
able errors. Communication of ACM 13, 7 (1970).

[8] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (2006).

[9] CUSTER, H. Inside the windows NT file system. Microsoft Press
(1994).

[10] DAYAL, S. Characterizing HEC storage systems at rest. In
Carnegie Mellon University, CMU-PDL-08-109 (2008).

11

156 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

[11] ESMET, J., BENDER, M., FARACH-COLTON, M., AND KUSZ-
MAUL, B. The TokuFS streaming file system. Proceedings of the
USENIX conference on Hot Topics in Storage and File Systems
(2012).

[12] GANGER, G. R., AND KAASHOEK, M. F. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files. In
Proceedings of the annual conference on USENIX Annual Tech-
nical Conference (1997).

[13] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proceedings of the 19th ACM symposium on Op-
erating systems principles (2003).

[14] HALCROW, M. A. eCryptfs: An Enterprise-class Encrypted
Filesystem for Linux. Proc. of the Linux Symposium, Ottawa,
Canada (2005).

[15] HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A file is not a file: un-
derstanding the I/O behavior of Apple desktop applications. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011).

[16] HASKIN, R., MALACHI, Y., SAWDON, W., AND CHAN,
G. Recovery management in quicksilver. In Proceedings of
the Eleventh ACM Symposium on Operating System Principles
(1987).

[17] HDFS. Hadoop file system. http://hadoop.apache.org/.

[18] HITZ, D., LAU, J., AND MALCOLM, M. File system design
for an NFS file server appliance. In USENIX Winter Technical
Conference (1994).

[19] KASHYAP, A. File system extensibility and reliability using an
in-kernel database. Master Thesis, Computer Science Depart-
ment, Stony Brook University (2004).

[20] KATCHER, J. Postmark: A new file system benchmark. In Ne-
tApp Technical Report TR3022 (1997).

[21] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In Proceedings of the 10th USENIX
conference on File and Storage Technologies (2012).

[22] KRA, J. Ext4, BTRFS, and the others. In Proceeding of Linux-
Kongress and OpenSolaris Developer Conference (2009).

[23] LEVELDB. A fast and lightweight key/value database library.
http://code.google.com/p/leveldb/.

[24] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
SILT: a memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011).

[25] LUSTRE. Lustre file system. http://www.lustre.org/.

[26] MATHUR, A., CAO, M., AND BHATTACHARYA, S. The new
Ext4 lesystem: current status and future plans. In Ottawa Linux
Symposium (2007).

[27] MCKUSICK, M. K., AND GANGER, G. R. Soft updates: A tech-
nique for eliminating most synchronous writes in the fast filesys-
tem. Proceedings of the annual conference on USENIX Annual
Technical Conference, FREENIX Track (1999).

[28] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-
plication. In Proceedings of the 9th USENIX conference on File
and Storage Technologies (2011).

[29] MULLENDER, S. J., AND TANENBAUM, A. S. Immediate files.
SoftwarePractice and Experience (1984).

[30] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. ACM Transactions on Com-
puter Systems, Vol.26, No.3 Article 6 (2008).

[31] OLSON, M. A. The design and implementation of the Inversion
file system. In USENIX Winter Technical Conference (1993).

[32] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica (1996).

[33] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J., AND ROSENBLUM, M. Fast crash recovery in RAM-
Cloud. In Proceedings of the 23rd ACM symposium on Operating
systems principles (2011).

[34] PATIL, S., AND GIBSON, G. Scale and concurrency of GIGA+:
File system directories with millions of files. In Proceedings of
USENIX Conference on File and Storage Technologies (2011).

[35] RODEH, O. B-trees, shadowing, and clones. Transactions on
Storage (2008).

[36] RODEH, O., BACIK, J., AND MASON, C. BRTFS: The Linux B-
tree Filesystem. IBM Research Report RJ10501 (ALM1207-004)
(2012).

[37] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. In Proceedings of
the thirteenth ACM symposium on Operating systems principles
(1991).

[38] ROSS, R., AND LATHAM, R. PVFS: a parallel file system. In
Proceedings of the ACM/IEEE conference on Supercomputing
(2006).

[39] SCHMUCK, F. B., AND HASKIN, R. L. GPFS: A shared-disk
file system for large computing clusters. In Proceedings of the
1st USENIX conference on file and storage technologies (2002).

[40] SEARS, R., AND BREWER, E. A. Stasis: Flexible transactional
storage. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (2006).

[41] SEARS, R., INGEN, C. V., AND GRAY, J. To BLOB or Not
To BLOB: Large Object Storage in a Database or a Filesystem?
Microsoft Technical Report (2007).

[42] SEARS, R., AND RAMAKRISHNAN, R. bLSM: a general purpose
log structured merge tree. Proceedings of the ACM SIGMOD
International Conference on Management of Data (2012).

[43] SELTZER, M., GANGER, G., MCKUSICK, K., SMITH, K.,
SOULES, C., AND STEIN, C. Journaling versus soft updates:
Asynchronous meta-data protection in file systems. Proceedings
of the annual conference on USENIX Annual Technical Confer-
ence (2000).

[44] SELTZER, M. I., BOSTIC, K., MCKUSICK, M. K., AND
STAELIN, C. An implementation of a log-structured file system
for UNIX. USENIX Winter Technical Conference (1993).

[45] SHETTY, P., SPILLANE, R., MALPANI, R., ANDREWS, B.,
SEYSTER, J., AND ZADOK, E. Building workload-independent
storage with VT-Trees. In Proccedings of the 11th conference on
file and storage technologies (2013).

[46] STONEBRAKER, M. Operating System Support for Database
Management. Commun. ACM (1981).

[47] SWEENEY, A. Scalability in the XFS file system. In Proceedings
of the 1996 USENIX Annual Technical Conference (1996).

[48] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. Scal-
able performance of the panasas parallel file system. In Proceed-
ings of the 6th USENIX conference on File and Storage Technolo-
gies (2008).

[49] WHEELER, R. One billion files: pushing scalability limits of
linux filesystem. In Linux Foudation Events (2010).

[50] WRIGHT, C. P., SPILLANE, R., SIVATHANU, G., AND
ZADOK, E. Extending ACID Semantics to the File System.
ACM Transactions on Storage (2007).

[51] ZHANG, Z., AND GHOSE, K. hFS: A hybrid file system proto-
type for improving small file and metadata performance. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (2007).

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 157

Characterization of Incremental Data Changes for Efficient Data Protection

Hyong Shim, Philip Shilane, and Windsor Hsu

Backup Recovery Systems Division

EMC Corporation

Abstract

Protecting data on primary storage often requires cre-

ating secondary copies by periodically replicating the

data to external target systems. We analyze over 100,000

traces from 125 customer block-based primary storage

systems to gain a high-level understanding of I/O char-

acteristics and then perform an in-depth analysis of over

500 traces from 13 systems that span at least 24 hours.

Our analysis has the twin goals of minimizing overheads

on primary systems and improving data replication effi-

ciency. We compare our results with a study a decade

ago [20] and provide fresh insights into patterns of incre-

mental changes on primary systems over time.

Primary storage systems often create snapshots as

point-in-time copies in order to support host I/O while

replicating changed data to target systems. However,

creating standard snapshots on a primary storage system

incurs overheads in terms of capacity and I/O, and we

present a new snapshot technique called a replication

snapshot that reduces these overheads. Replicated data

also requires capacity and I/O on the target system, and

we investigate techniques to significantly reduce these

overheads. We also find that highly sequential or ran-

dom I/O patterns have different incremental change char-

acteristics. Where applicable, we present our findings as

advice to storage engineers and administrators.

1 Introduction

Protecting data on primary storage systems often re-

quires periodically creating secondary copies by trans-

ferring changed data to external target systems, which

may be in the same facility or remotely located. How-

ever, as the size of data to be protected continues to grow

exponentially, the traditional approach to data protection,

e.g., copying all the data on the primary storage system

to a target system (such as backup servers) at regular in-

tervals, is fast becoming infeasible. A better approach

is to only copy the data blocks that have been modified

since the last transfer, unlike standard backup software

that copies modified files or whole directories. So, un-

derstanding how data changes on primary storage over

time is key to both improving existing data protection

solutions and enabling new solutions.

Specifically, we analyzed the size, rate, and pattern of

data changes over time under various host I/O access pat-

terns on EMC Symmetrix VMAX systems [8], a tier-1

block-based primary storage system. We analyzed over

100,000 traces from 125 enterprise systems from some

of the world’s largest corporations to gain high-level in-

sights into storage characteristics. We then selected over

500 traces that spanned at least 24 hours from 13 systems

to analyze various incremental transfer intervals. We be-

lieve the number of traces and systems used for analysis

is substantially larger than in previously published stud-

ies and our results are of value to any organization de-

signing or configuring data protection architectures.

Replicating changed data from a primary system to a

target system may take a substantial amount of time, de-

pending on the change rate and transfer throughput. Dur-

ing the transfer period, the primary system must main-

tain the point-in-time version of storage until the transfer

completes, even while hosts write to the primary system.

Snapshots [2, 5, 10, 22] are a general purpose mecha-

nism to capture the point-in-time view of data, and trans-

ferring snapshots to target storage is one technique for

data protection [20]. As two examples, snapshots kept

within primary storage allow a user to recover acciden-

tally deleted files, and snapshots are increasingly used

to maintain a consistent state of the system to be copied

to target storage while a primary system continues oper-

ation. We have focused our analysis on snapshot over-

heads when used for replication.

We found that using standard snapshots for replica-

tion incurs significant overhead in terms of space usage

and I/O. We observe that only the point-in-time state of

the changed blocks (instead of all of the blocks) needs

to be maintained, so we can relax the semantics of snap-

shots, which we call a replication snapshot. A repli-

cation snapshot protects the changed blocks that need to

be replicated without necessarily maintaining the values

of blocks that do not need to be copied to target storage.

Typical snapshot implementations are designed to cre-

ate semi-persistent versions, while replication snapshots

are designed specifically to support periodic replication

and are then released. Also, implementing replication

snapshots along with a replication protocol allows sepa-

rate primary storage and target storage vendors to jointly

support efficient replication.

Storage overheads on primary storage can be avoided

when host writes are protected with a synchronous re-

mote mirroring mechanism [14], in which host writes

are, in effect, sent to both primary and target storage.

158 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

1. 8% of capacity needs to be reserved for snapshot overheads to support incremental transfers every 12 hours. The reserve is as low as

2% of capacity with replication snapshots.

2. Primary I/O should be over-provisioned by 100% to support copy-on-write related write-amplification of host writes during replication.

The over-provision can be as low as 20% with a replication snapshot.

3. Having a write buffer effectively decreases snapshot I/O overheads but has little impact on storage overheads.

4. The daily transfer size with small blocks is generally 40% of what hosts write.

5. Scheduling at least 6 hours between transfers allows blocks to achieve nearly peak dirtiness.

6. Scheduling at least 12 hours between transfers drastically reduces peak network bandwidth requirements.

Volume capacity is not predictive of bandwidth requirements.

7. Target storage must support as much as 20% of the I/O per second capabilities of primary storage when the replication interval

is at least one hour.

Table 1: Rules-of-thumb from our analysis

Such a mechanism, however, typically requires that tar-

get system have storage capacity and I/O performance

similar to those of the primary system, which does not

scale well to transferring data changes over a long dis-

tance to protect against site disasters. Our analysis fo-

cuses on data-protection cases where target systems have

larger capacity but potentially lower I/O capabilities than

primary systems. This is because data protection systems

must be large enough to hold multiple versions of pri-

mary storage such as daily copies for a month or longer.

As guidance to storage engineers and administrators, we

summarize our findings in a set of rules-of-thumb, which

are presented in Table 1. Our contributions include: a de-

tailed analysis of data change characteristics for a large

set of traces collected from deployed systems, a design

for replication snapshots to reduce overheads on primary

storage, and an evaluation of overheads on primary and

target storage to guide design and configuration.

A related study by Patterson et al. [20] investigated

how to efficiently create primary system snapshots at re-

mote systems. The main differences between the present

work and Patterson’s include our investigation of using

various units of data aggregation to transport changed

data and their impact on the size of transferred data and

I/O rate on the target system. We also investigate how

incremental data changes are impacted by different host

write I/O patterns used to produce the data change. Im-

portantly, it has been a decade since the earlier study,

and it is worth revisiting this analysis to understand how

I/O properties have changed using a newer, larger set of

traces.

2 Collected Traces

We collected I/O traces from over 100,000 logical vol-

umes from 125 EMC Symmetrix VMAX [8] systems in-

stalled at enterprise customer sites. The number of log-

ical volumes captured for each primary storage system

ranged from 12 to over 14,000. These systems supported

database, email, file system, and other business applica-

tions. Unfortunately, no other information is available re-

garding which applications wrote to and read from which

logical volumes. While such information would have

been useful, enterprise primary storage systems should

be designed to support a wide range of applications.

Traced data includes sector-level read/write I/O re-

quests received by primary storage systems as applica-

tions performed I/O operations on their hosts connected

to the primary systems in, for example, storage area net-

works (SANs). Traced data was collected into a trace file

per volume. The trace file (or simply trace) contains a

number of records, each of which contains the following

data fields: timestamp from the beginning of the trace,

read/write command, port at which I/O is received, logi-

cal volume number, logical sector address (ranging from

0 to largest address), and number of sectors to read or

write.

Table 2 and Table 3 summarize I/O activities, rate, and

throughput in the traced systems. See the captions of

the tables for the descriptions of analyzed I/O properties.

Each row of the tables corresponds to a subset of logi-

cal volumes that share some common properties and are

analyzed together. The trace sets are:

1hr 1Wrt: logical volumes traced for at least 1 hour and

that received at least 1 write I/O

1hr 1GBWrt: a subset of 1hr 1Wrt, which includes

volumes traced for at least 1 hour and that received

at least 1GB worth of writes

24hr 1GBWrt a subset of 1hr 1GBWrt, which in-

cludes volumes traced for at least 24 hours and that

received at least 1GB worth of writes

24hr 1GBWrt Random: a subset of 24hr 1GBWrt,

which includes volumes that received largely ran-

dom write I/O requests (See Section 2.1)

24hr 1GBWrt Sequential: a subset of 24hr 1GBWrt,

which includes volumes that received largely se-

quential write I/O requests (See Section 2.1)

The 24hr 1GBWrt* trace sets were selected for de-

tailed analysis because they provide a consistent basis for

a wide range of simulations across replication intervals.

As the large standard deviations in the tables indicate,

the traced volumes widely vary in host I/O activities they

supported. The tables do confirm the long-held view that

hosts issue more read I/O requests than write I/O requests

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 159

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 4 8 16 32 64 128
256

512
1024

P
e
rc

e
n
ta

g
e
 o

f
V

o
lu

m
e
s

Size (GB)

capacity estimated with largest address
write footprint

Figure 1: Storage capacity estimates and write footprint

for 1hr 1GBWrt.

and (not surprisingly) read more data than they write.

Note in the W rlen column of Table 2 that the average

run length of dirty data written after a random seek is

much longer for 1hr 1Wrt and 1hr 1GBWrt trace sets

than for the 24hr 1GBWrt sets. This is because a small

fraction of volumes included in these sets received long

bursts of sequential writes that skewed the average values

for the entire sets. This can be seen in the standard de-

viations, which are 10 times the corresponding averages.

Such volumes are excluded from the 24hr 1GBWrt sets

as their trace periods are shorter than 24 hours.

We do not have access to the configured volume size,

so the storage capacity of each volume is estimated with

the largest logical address found in the corresponding

trace. Figure 1 shows the estimated storage capacity dis-

tribution for the 16,100 volumes in the 1hr 1GBWrt set.

For comparison, we also show the write footprint distri-

bution as percentage of volumes. The write footprint is

the number of unique sectors written converted to bytes.

Most volumes only had a few gigabytes of unique writes,

though volumes were estimated as hundreds of gigabytes

in capacity.

2.1 Sequential vs Random I/O

To determine if host I/O pattern has any significant im-

pact on our major findings, we further distinguish traces

in the 24hr 1GBWrt set into sequential and random.

Intuitively, a sequential trace is the result of a host writ-

ing data to consecutive locations. From surveying the

literature, we have found multiple definitions of sequen-

tial I/O (e.g., [1, 4, 12, 17, 21, 23, 24]). For our metric,

we measure how much data are written, on average, after

seeking to a random sector. By random sector, we mean

a sector that is not consecutive with the last sector written

based on logical address.

Figure 2 shows the average sequential write size

after a random seek for >500 logical volumes in

24hr 1GBWrt. The volumes are arranged on the x-

axis in increasing order of the average sequential write

size. Towards the right end of the x-axis, hosts write

>102KB of data in sequence after making a random

seek in 11% of the volumes. Towards the left end of

 8
 32

 128

 256

 1 50 100 150 200 250 300 350 400 450 500

A
v
e
ra

g
e
 W

ri
te

 S
iz

e
 p

e
r

R
a
n
d
o
m

 S
e
e
k
 (

K
B

)

Logical Volumes

< >

< Random
> Sequential

Figure 2: Average write size per random seek. We define

random and sequential volumes as having <8.5KB and

>102KB average writes per seek, respectively.

the x-axis, hosts write <8.5KB of data in sequence af-

ter making a random seek in 11% of the volumes. Un-

fortunately, there is not a clear division between se-

quential and random host I/O shown in the figure, so

for the purpose of our analysis, we use the average se-

quential write sizes of >102KB and <8.5KB as thresh-

old values in determining sequential volumes and ran-

dom volumes respectively. The sequential and ran-

dom volumes are denoted as 24hr 1GBWrt Sequential

and 24hr 1GBWrt Random in Table 2. In the re-

mainder of the paper, the 24hr 1GBWrt trace set is re-

ferred to as All, 24hr 1GBWrt Sequential as Seq and

24hr 1GBWrt Random as Random.

One drawback of our definition of sequential access

is that it does not account for interleaving writes from

different hosts because our tracing was lower in the stor-

age system. Nevertheless, we have adopted this approach

based on our observation that sequential write I/O re-

quests often appear together in sequence in trace files.

Another potential weakness of our trace analysis is that

we have not specifically analyzed time-of-day effects.

Partly, this is an artifact of our trace collection process

that has retained relative, not absolute time stamps, so

our replication intervals begin at the start of each trace.

Since we have a relatively large number of traces, such

effects are likely averaged out, but a future analysis could

clarify the impact by comparing results after offsetting

the start time.

3 Analysis Methodology

While analyzing logical volume traces, we have tracked

incremental changes over time and measured various

statistics. Our simulation entails three main components:

replication intervals, blocks, and transfer throughput.

The top half of Figure 3 illustrates host I/O as a sequence

of writes and reads, and the bottom half shows affected

sectors and blocks in a logical volume.

A replication interval simulates the fact that data pro-

tection mechanisms in primary systems often keep track

of dirty data for a user-defined period of time and repli-

cates dirty data to target storage at the end of each pe-

3

160 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Trace Set #Vol. #Sys. Dur.

(hrs)

Est.Cap.

(GB)

#W reqs

(1000s)

W size

(GB)

W fp

(GB)

W rlen

(KB)

#R reqs

(1000s)

R size

(GB)

R fp

(GB)

R rlen

(KB)

1hr 1Wrt 109263 125 30.4

[78.3]

71

[203]

72.2

[510.4]

1.7

[31.0]

0.7

[11.2]

947.0

[9230.3]

166.5

[1962.8]

5.2

[65.7]

2.2

[18.9]

667.0

[11301.9]

1hr 1GBWrt 16100 120 7.7

[6.7]

132

[262]

429.0

[1270.7]

10.7

[80.1]

4.6

[28.9]

948.5

[9270.8]

796.0

[4986.7]

24.9

[166.3]

9.8

[45.0]

491.2

[11065.7]

24hr 1GBWrt

All

508 13 24.4

[1.2]

318

[439]

1802.8

[4838.7]

51.1

[337.6]

19.9

[103.7]

284.6

[256.1]

7824.3

[23875.4]

241.5

[763.2]

91.3

[172.1]

132.7

[3078.8]

24hr 1GBWrt

Random

58 9 24.2

[0.8]

238

[328]

1365.5

[1819.7]

9.9

[13.8]

7.2

[12.1]

8.1

[0.4]

5677.1

[8587.6]

97.0

[111.2]

66.5

[84.2]

35.6

[27.3]

24hr 1GBWrt

Sequential

54 9 24.9

[1.4]

343

[591]

2542.1

[7567.2]

280.2

[993.9]

102.6

[301.8]

461.4

[193.4]

2292.1

[7533.8]

247.8

[963.5]

64.1

[191.3]

687.9

[9118.1]

Table 2: Summary of I/O activities. The first four columns denote the number of logical volumes in a trace set, the

number of primary systems, the average trace period, and the average estimated storage capacity. The rest of the

columns show average I/O requests the host has issued. Footprint (fp) is the sum of unique sectors written or read at

least once, while run length (rlen) indicates the average size of data accessed in sequence after a random seek. The

values in square brackets are standard deviations for the corresponding averages.

I/O Request Rate (1000s/sec) I/O Request Throughput (MB/sec)

Trace Set Avg.

W rate

Peak

W rate

1 sec

Peak

W rate

10 ms

Avg

R rate

Peak

R rate

1 sec

Peak

R rate

10 ms

Avg.

W tput

Peak

W tput

1 sec

Peak

W tput

10 ms

Avg.

R tput

Peak

R tput

1 sec

Peak

R tput

10 ms

1hr 1Wrt 0.0007

[0.008]

0.2

[0.6]

1.8

[2.6]

0.002

[0.03]

0.3

[0.8]

1.7

[2.5]

0.02

[0.4]

6.5

[26.0]

64.0

[1669.7]

0.05

[0.8]

10.5

[85.5]

107.3

[8089.5]

1hr 1GBWrt 0.02

[0.04]

0.9

[1.3]

4.4

[4.4]

0.03

[0.1]

0.9

[1.4]

3.6

[4.1]

0.4

[1.8]

30.2

[60.6]

224.1

[4342.7]

0.9

[3.7]

32.8

[216.2]

359.7

[21K]

24hr 1GBWrt

All

0.02

[0.06]

1.5

[1.8]

9.0

[8.2]

0.09

[0.3]

2.0

[2.5]

5.6

[7.0]

0.6

[3.9]

44.3

[76.7]

325.0

[460.7]

2.8

[8.8]

122.42

[1188.2]

5644.6

[119K]

24hr 1GBWrt

Random

0.02

[0.02]

1.6

[1.4]

6.8

[5.6]

0.07

[0.1]

1.3

[1.0]

4.2

[3.9]

0.1

[0.2]

15.9

[13.5]

143.4

[326.6]

1.1

[1.3]

32.5

[50.0]

166.5

[316.9]

24hr 1GBWrt

Sequential

0.03

[0.08]

1.2

[1.7]

5.3

[4.9]

0.03

[0.08]

1.5

[2.0]

4.3

[4.3]

3.2

[11.4]

98.1

[121.1]

584.7

[817.4]

2.8

[11.1]

70.4

[107.1]

517.6

[880.5]

Table 3: Summary of I/O rate and throughput. The peak values for each volume are selected by considering every

10ms and 1 second period. The peak values for a given set are the average of peak values of individual volumes.

riod. In our trace analysis, we model how host write I/O

requests are collected for a given replication interval, and

one or more dirty sectors are determined from those re-

quests. Reads are ignored. We have used the following

replication intervals for analysis in this paper: 24 hours,

12 hours, 6 hours, 3 hours, 1 hour, 30 minutes, and 15

minutes. We have performed some analysis down to 1

minute replication intervals, though to simplify figures,

we generally do not show the intervals below 15 minutes.

Organizations typically select a replication interval based

on their recovery point objective, which defines the time

period for which they can tolerate losing data changes

due to a disaster. Organizations would like to shrink the

replication interval to as short as possible while consid-

ering the cost and infrastructure requirements.

In addition, as shown in Figure 3, dirty sectors are

mapped to a larger unit, called a block in our model. A

block is a sequence of n consecutive sectors in logical

volume space, where n >= 1. Blocks simulate the fact

that many storage systems and data protection mecha-

nisms aggregate dirty sectors into a larger unit and copy

those units when replicating modified data to target stor-

age. They do so to reduce memory and storage resources

r w ww w r w wr w r w wr r w r ww w r r w …

…

…

…

Replication Interval 1

Transfer

Period

may cause snapshot storage and I/O

Trace Timeline (w = Write I/O, r = Read I/O)

Logical Volume
Block Sectors

Replication Interval 2

Block …

Figure 3: Example of processing a logical volume trace

by removing read requests and recording affected sectors

and blocks. The red ’w’ indicates overwriting requests.

required to maintain, for example, a map of dirty sectors.

Block sizes around 128KB are common in some storage

systems [26]. For a 1TB volume, the memory require-

ments for bit vector tracking are: 512B blocks require

256MB of RAM, 128KB blocks require 1MB of RAM,

and 1MB blocks require 128KB of RAM.

A block is called ’dirty’ if it has one or more dirty sec-

tors, and the figure shows dirty blocks in a darker shade

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 161

for Replication Interval 1. When determining the number

of dirty sectors (and blocks) during a replication inter-

val, over-writes to a given sector (and block) are counted

once. For space and figure clarity reasons, we only show

the results for extreme block-size values of 512B and

1MB, unless otherwise noted, because results changed

in a gradual manner with block size.

We also consider the impact of transfer throughput

within our model, which we define very broadly as the

throughput from reading dirty blocks on the primary sys-

tem, transferring across a network (LAN or WAN), and

storing on a target system. Based on the transfer through-

put and amount of data to transfer, we can determine the

transfer period (see Figure 3) during which a primary

system must maintain a consistent view of dirty blocks

until transfer completes. I/O from the host during the

transfer period may cause snapshot I/O (shown in the fig-

ure), and those modifications will be recorded and trans-

ferred at the end of Replication Interval 2. Note that all

modified blocks will be transferred, but because of the

point-in-time nature of transferring a snapshot, we have

to carefully manage which version of a block exists when

a snapshot is created. Managing multiple block versions

causes snapshot I/O and storage overheads.

We have analyzed throughputs between 1.5Mb/s (T1)

and 40Gb/s and typically discuss results for 1.5Mb/s (T1)

and 1Gb/s representing WAN and LAN scenarios, re-

spectively. Note that this throughput is per volume, and

storage systems can have over 10,000 volumes. If all

10,000 volumes were replicated at T1 bandwidth indi-

vidually, this would require 15Gb/s, which is impractical

for many customers. Even with that consideration, our

analysis provides general results for volumes selected for

replication.

With the described trace analysis methodology and

storage system model, we can determine how much data

should be copied to a target system at the end of each

replication interval. To determine the number of write

I/O requests needed to copy the data, we assume the

underlying data transfer protocol has an upper limit on

transfer size, which is assumed to be 1MB, so a larger

data run is split.

4 Findings for Primary Storage

At the end of a replication interval, the primary system

begins transferring changed blocks to the target, which

can take seconds to hours depending on the replica-

tion interval, the number of changed blocks, and trans-

fer throughput. During that time, the primary system

must maintain an accurate point-in-time representation

of those changed blocks, while also supporting incoming

host writes that may be directed at blocks that are in the

process of being transferred as well as blocks not being

transferred. In this section, we characterize storage and

I/O overheads for primary storage while changed blocks

are transferred to target storage under a variety of config-

urations.

For a logical volume, snapshots are a general pur-

pose technique to preserve the values for all sectors,

usually with a mapping from logical to physical sec-

tor addresses [2, 5, 10, 22]. Snapshots are often used

to preserve copies on a primary system but are also in-

creasingly being leveraged indirectly for data protection.

While there are multiple ways snapshots could be im-

plemented, copy-on-write and redirect-on-write are two

prevalent implementations. Suppose snapshot st is cre-

ated at time t. A host write to the volume at time t + 1

causes the version of the block at time t to be copied

into the snapshot (copy-on-write) or the write at t + 1 is

redirected to a snapshot (redirect-on-write). Snapshot st

has meta data indicating whether the appropriate version

of a block is in the main volume or exists in a snapshot

region.

Depending on how sectors are modified, both snap-

shots techniques could be close to empty (no modified

sectors) or as large as the active volume (all modified

blocks). In terms of I/O, copy-on-write requires I/O to

perform the read and write of the earlier block value.

Redirect-on-write may require I/O for read-modify-write

when a write is less than the block size, and redirect-on-

write affects data locality. Creating a clone is an alter-

native to creating a snapshot, but a clone is less space

efficient because it is a full point-in-time copy.

4.1 Replication Snapshot

While this paper focuses on transferring changed blocks,

standard snapshot functionality is not designed for this

purpose in that any incoming write I/O causes a copy-

on-write or redirect-on-write. For replication snapshots,

we finely track which blocks need to be transferred for a

given replication interval (those that have changed since

the last transfer). Only application writes to those blocks

cause copy-on-write or redirect-on-write during the time

it takes for a transfer to complete. Application writes to

non-tracked blocks can happen normally, and all modifi-

cations will be transferred in the next replication interval.

We present results from the baseline snapshot approach

as well as from two versions of replication snapshots,

which relax some of the requirements for generic snap-

shots such that only data that needs to be transferred are

tracked.

When describing snapshot techniques, we refer to an

example volume shown in Figure 4. Blocks shaded in

blue are changed at the end of a replication interval and

need to be transferred. Also, their values need to be pre-

served until replication completes while allowing host

I/O to continue.

5

162 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0
Logical volume state before transfer takes place

1 2 3 4Block:

= Modified block to be transferred

Figure 4: Changed blocks 0, 1, and 4 are transferred to

target storage at the end of a replication interval, and a

snapshot maintains their state while host I/O continues.

Baseline Snapshot: The standard approach performs

snapshot I/O for all incoming host writes regardless of

whether the affected block is being transferred or not.

In Figure 4, host writes to any block (0 − 4) result in

snapshot I/O the first time. All blocks are released from

snapshot protection once the three changed blocks are

transferred.

Changed Block Replication Snapshot (CB): Only the

changed blocks being transferred at the end of a replica-

tion interval are tracked, so host write I/O to these blocks

causes snapshot I/O. Importantly, host write I/O to clean

blocks is processed without snapshot I/O. In our exam-

ple, host writes to blocks 0, 1, and 4 cause snapshot I/O,

but writes to blocks 2 and 3 do not. All blocks are re-

leased from snapshot protection once the three changed

blocks are transferred.

Changed Block with Early Release Replication Snap-

shot (CBER): Similar to the previous version, only

changed blocks are tracked, but a block is released

from replication snapshot tracking immediately once it

is transferred, instead of waiting for the entire transfer to

complete. In the figure, host writes to blocks 0, 1, and 4

will cause a snapshot I/O only if those blocks have not

yet been transferred based on block-by-block tracking of

transfer status.

Note that for all three snapshot versions, repeated host

I/O to the same block only causes a single snapshot I/O.

Also, the amount of data transferred is identical for all

three snapshot techniques. The only difference is the

overhead for snapshot I/O and storage. A property af-

fecting snapshot performance is the transfer throughput,

which affects how long a snapshot persists. In simula-

tion, we have explored a range of throughputs described

in Section 3 but only present a subset of results due to

space limitations.

While CBER has lower overheads than CB in our ex-

periments, there is extra tracking information required.

There is also more communication with target storage

to confirm when individual blocks have been transferred

so that blocks can be released from replication snapshot

tracking. We leave such analysis to future work. De-

pending on specific storage system implementations, one

type of replication snapshot may be more appropriate

than another.

4.2 Storage Overhead

We performed experiments to measure the amount of ex-

tra storage space required for blocks written due to snap-

shots, which is the same for copy-on-write and redirect-

on-write. This storage overhead is required to maintain

block values while changed blocks are transferred to a

target system. Figure 5 shows results for a throughput

of 1.5Mb/s for block sizes of 512B and 1MB and three

snapshot alternatives for Random 5a, All 5b, and Se-

quential 5c hosts.

For all configurations, as the replication interval in-

creases on the horizontal axis from 15 minutes to 12

hours, the average fraction of capacity required for snap-

shots increases. For Figure 5b, we see an average stor-

age overhead of 8% for the Baseline approach with 1MB

blocks at 12 hours, and we have even found a peak over-

head of 100% in some traces. Unsurprisingly, we see

a consistent pattern that the storage overhead is larger

for 1MB blocks than 512B blocks. Replication snapshot

techniques such as CB and CBER reduce storage over-

head because of finer-grained tracking of block transfer

state. Considering 1MB blocks at 12 hours, storage over-

heads decrease from 8% to 4% to 2% respectively, and

we see the same trend for 512B blocks.

Our general conclusions hold for Random and Se-

quential traces, though there are several interesting dif-

ferences. For Random traces, 512B blocks have very low

capacity overheads because of the lower change rate for

Random traces. For Sequential traces, the block size has

little impact because blocks tend to be fully dirty.

Although not shown for space reasons, the trends are

identical at a higher throughput of 1Gb/s. Larger blocks

require more capacity overheads than smaller blocks, and

finer-grained snapshots reduce overhead. Because of the

higher throughput, transfer time is shorter (seconds ver-

sus minutes or hours), and storage overhead is a few per-

cent on average for every configuration.

Rule-of-thumb 1: 8% of capacity needs to be re-

served for snapshot overheads to support incremental

transfers every 12 hours. The reserve is as low as 2%

of capacity with replication snapshots.

4.3 I/O Overhead

We have further analyzed the I/O overhead for snapshots

by measuring the fraction of host write I/O that causes

a snapshot I/O during the transfer period. This can be

thought of as I/O amplification because a host write can

cause a read and second write for copy-on-write. For

redirect-on-write, there may be a read-modify-write due

to writes smaller than the block size as well as decreased

data locality.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 163

 0

 2

 4

 6

 8

 10

 12

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 2

 4

 6

 8

 10

 12

%
 V

o
lu

m
e
 C

a
p
a
c
it
y

 f
o
r

S
n
a
p
s
h
o
t

Replication Interval

Storage Overhead
 Tput=1.5Mb/s(T1)

 0

 2

 4

 6

 8

 10

 12

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 2

 4

 6

 8

 10

 12

%
 V

o
lu

m
e
 C

a
p
a
c
it
y

 f
o
r

S
n
a
p
s
h
o
t

Replication Interval

Storage Overhead
 Tput=1.5Mb/s(T1)

512B Baseline
1MB Baseline

512B CB
1MB CB

512B CBER
1MB CBER

 0

 2

 4

 6

 8

 10

 12

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 2

 4

 6

 8

 10

 12

%
 V

o
lu

m
e
 C

a
p
a
c
it
y

 f
o
r

S
n
a
p
s
h
o
t

Replication Interval

Storage Overhead
 Tput=1.5Mb/s(T1)

a. Random b. All c. Sequential

Figure 5: Snapshot storage overhead due to host write I/O for Random, All, and Sequentially written systems.

 0

 20

 40

 60

 80

 100

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 20

 40

 60

 80

 100

%
 W

ri
te

 I
/O

 C
a
u
s
in

g
C

o
p

y
-O

n
-W

ri
te

 I
/O

Replication Interval

Copy-On-Write I/O Overhead
 Tput=1Gb/s

512B Baseline
1MB Baseline

512B CB
1MB CB

512B CBER
1MB CBER

Figure 6: Fraction of host write I/O that causes copy-on-

write I/O during the transfer period. The plotted lines are

for 24hr 1GBWrt All.

As shown in Figure 6, copy-on-write I/O can be al-

most 100% of the host I/O for 512B blocks and Baseline

snapshots. In general, we find that smaller blocks cause a

larger number of copy-on-write I/Os than larger blocks,

though transferring larger blocks will include sectors that

were not modified. This is because host write I/O tends

to be at least somewhat sequential, and only the first I/O

to a block causes a copy-on-write I/O. We also find a con-

sistent pattern, in which improving the replication snap-

shot technique decreases the copy-on-write I/O overhead

across block sizes and replication intervals.

In contrast, redirect-on-write has different patterns

than copy-on-write, because redirect-on-write can cause

read-modify-write operations as shown in Figure 7. We

analyzed 4KB blocks instead of 512B blocks since there

is never a read-modify-write for 512B blocks. We find

that 1MB blocks have a higher fraction of read-modify-

write I/O because host I/O sizes tend to be kilobytes.

These results presented for 1Gb/s throughput are qual-

itatively similar to results for lower transfer through-

puts. One difference is that I/O overheads are larger for

high throughput than low throughput, which may seem

counter-intuitive. We present a representative transfer

period with the Baseline snapshot technique in Figure 8

for one trace (System 1799). The horizontal axis shows

 0

 10

 20

 30

 40

 50

 60

15 m
in

1 hr
3 hr

6 hr
12 hr

 0

 10

 20

 30

 40

 50

 60

%
 W

ri
te

 I
/O

 C
a
u
s
in

g
R

e
a

d
-M

o
d

if
y
-W

ri
te

 I
/O

Replication Interval

Read-Modify-Write I/O Overhead
 Tput=1Gb/s

4KB Baseline
1MB Baseline

4KB CB
1MB CB

4KB CBER
1MB CBER

Figure 7: Fraction of host write I/O that causes read-

modify-write I/O during the transfer period. The plotted

lines are for 24hr 1GBWrt All.

 0
 20
 40
 60
 80

 100

 10 20 30 40 50 60 70 80 90 100
 0
 20
 40
 60
 80
 100

C
um

ul
at

iv
e

%
 H

os
t W

rit
e

I/O

 C
au

si
ng

 S
na

ps
ho

t I
/O

% Transfer Period

Sys=1799, Block=512B

Tput = 1Gb/s, Transfer Time = 8sec
Tput = 1.5Mb/s, Transfer Time = 1hr 40min

Figure 8: For high throughput, most host write I/Os

cause a copy-on-write I/O, while at lower throughputs,

there is less I/O overhead.

transfer time normalized to 100%, and the vertical axis

shows the cumulative fraction of host I/O that causes a

copy-on-write I/O for both 1.5Mb/s and 1Gb/s through-

puts. For the 1Gb/s result, each mark represents a single

I/O, while for 1.5Mb/s, each mark represents 1,000 I/Os.

Transfer periods can be quite short with 1Gb/s

throughputs (8 seconds in this example) such that there

are few I/Os during that time and those I/Os tend to be

to unique blocks, which causes a copy-on-write I/O. At

1Gb/s throughput, 12-19% of systems did not experience

7

164 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

any host I/O during the transfer period for block sizes of

512B-1MB respectively. For slower throughputs, trans-

fer time is longer (1 hour and 40 minutes for the T1 ex-

ample), there are more I/Os, and many I/Os affect the

same block. Over 99% of systems had at least some host

write I/O during transfer at 1.5Mb/s.

Rule-of-thumb 2: Primary I/O should be over-

provisioned by 100% to support copy-on-write re-

lated write-amplification of host writes during repli-

cation. The over-provision can be as low as 20% with

a replication snapshot.

4.4 Analysis with Write Buffers

Our analysis thus far has not included the impact of

buffering host write I/O on the primary storage server

during incremental transfer. Write-buffering is common

in practice [3], with flushes to disk either scheduled peri-

odically or triggered through a storage API. To simulate

the impact of buffering host write I/O, we have added

a FIFO queue to our analysis throughout the replication

interval. As host writes take place during transfer time,

the corresponding blocks are added to the queue. When

our queue fills, the oldest block is evicted from the queue

and is written to storage, which causes a copy-on-write

or redirect-on-write (for the first write to a block) with

related snapshot I/O and storage overheads.

Snapshot I/O overhead for 1.5Mb/s throughput and a

12 hour replication interval is shown in Figure 9. Snap-

shot I/O overhead decreases rapidly as the write buffer

increases from 0% to 1% of the volume’s estimated ca-

pacity. Increasing the write buffer would further decrease

overheads, but write buffers are typically much less than

1% of storage capacity due to differences in cost between

memory and persistent storage. In contrast to snapshot

I/O, we found that storage overhead for snapshots was

nearly unaffected by buffer size because only the first

write to a block requires snapshot storage space. We

did find that both I/O and storage overheads decrease

with improved replication snapshot techniques. A stor-

age overhead figure is not shown due to space limitations.

Rule-of-thumb 3: Having a write buffer effectively

decreases snapshot I/O overheads but has little im-

pact on storage overheads.

5 Findings for Target Storage

Besides improving storage overheads for primary sys-

tems, we can also analyze how target data protection

storage is impacted. How frequently can replication run?

How much data will be stored? How much bandwidth

is required? Answering these questions will guide the

design of future data protection systems.

5.1 Transfer Size Analysis

We first investigate the amount of data to be transferred

and stored for each replication interval. We investigate

 0

 5

 10

 15

 20

 25

 30

0% 0.1% 0.5% 1%
 0

 5

 10

 15

 20

 25

 30

%
 H

o
s
t

W
ri
te

 I
/O

 C

a
u
s
in

g
 S

n
a
p
s
h
o
t

I/
O

Write-Buffer Size (% Volume Capacity)

I/O Overhead
 Repl.Interval=12hrs, Tput=1.5Mb/s(T1)

512B Baseline
1MB Baseline

512B CB
1MB CB

512B CBER
1MB CBER

Figure 9: Snapshot I/O overhead decreases rapidly as

write buffer size increases.

10

50

100

500

1000

5000

15 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

10

50

100

500

1000

5000

D
a

ta
 T

ra
n

s
fe

rr
e
d
 /

D
a

ta
 W

ri
tt
e

n
 (

%
)

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 10: Data transferred as a fraction of data written

gradually decreases as the replication interval increases.

the size of data transferred in Figure 10. Note that the

vertical axis shows the normalized data transferred (log

scale). For normalization, we divide the dirty blocks to

be transferred by the amount of data written by the host

to the primary system. Values will be less than 100%

when a host writes to the same block multiple times, and

the block only has to be transferred once because of write

collapsing.

For a block size of 512 bytes across all volumes (the

512B All line overlaps with Seq), the data transferred

starts at about 100% of the data written with the inter-

val of 15 minutes and gradually decreases to about 40%

with a 24-hour interval. For sequentially accessed logical

volumes (Seq), results are consistent across block sizes:

data transferred is >=100% of the data written when the

interval is 15 minutes and gradually reaches about 40%

of the data written at 24 hours. This is because sequen-

tial host write I/O tends to produce more completely dirty

blocks than other I/O patterns.

Data transferred can be more than 100% because all of

the sectors in a dirty block are transferred even if only a

single sector in the block is actually dirty. As the inter-

val increases, blocks are ’filled up’ with more dirty data.

Figure 11 shows that 512B blocks are always fully dirty

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 165

 0

 20

 40

 60

 80

 100

15 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

 0

 20

 40

 60

 80

 100
A

v
g
.

B
lo

c
k
 D

ir
ti
n
e
s
s
 (

%
)

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 11: Except for the block size of 512B, dirty blocks

are likely to contain various amounts of ’clean data,’ with

larger blocks more so than smaller blocks.

(line across the top). On the other hand, 1MB blocks be-

come dirtier as the time between transfers increases, with

most of the change in the first six hours. As expected,

sequentially written volumes have much more fully dirty

blocks than randomly written volumes, and block dirti-

ness is related to the reduction in normalized data trans-

ferred. Though not shown due to space limitations, we

also found a distinct pattern that blocks were either fully

dirty or dirty in multiples of 4KB or 8KB, likely due to

file system and database allocation units.

These results suggest that using a large block size with

a short interval can incur a significant overhead in trans-

ferring changed data to target storage. Even for small

block sizes, >40% of data written daily is transferred to

external systems.

Rule-of-thumb 4: The daily transfer size with small

blocks is generally 40% of what hosts write.

Rule-of-thumb 5: Scheduling at least 6 hours be-

tween transfers allows blocks to achieve nearly peak

dirtiness.

Comparison to previous study

A previous study in the SnapMirror system [20] of 12

file system servers examined reduction in data size to be

transferred to a remote mirroring site over a range of

replication intervals. In their study, the block size was

fixed at 4KB. In Figure 12, our result for over 500 log-

ical volumes (500 Avg (New)) with a 4KB block size is

plotted along with a reproduction of their figure.

We find the reduction in data size to be much smaller

than the SnapMirror results for intervals between 1

minute and 6 hours. Specifically, the SnapMirror study

reports that all 12 systems achieve at least 30% reduction

by 1 hour, while the average reduction for our traces is

less than 20%. At longer intervals, our results are closer.

For example, SnapMirror found a reduction in data size

 0

 20

 40

 60

 80

 100

1 m
in

1 hr
6 hr

12 hr

24 hr

 0

 20

 40

 60

 80

 100

D
a
ta

 T
ra

n
s
fe

rr
e
d
 /

D
a
ta

 W
ri
tt

e
n
 (

%
)

Replication Interval

500 Avg (New)
Build1

Cores1
Bench

Cores2

Cores3
Build2
Pubs

Users1
Bug

Source
Users2
Users3

Figure 12: The 500 Avg (New) line plots the data trans-

ferred normalized to data written by the host for each

replication interval with our traces, while the other lines

are reproduced from Patterson et al. [20]. All results are

with 4KB blocks.

at 24-hour intervals to be between 53% and 98%, while

we observe an average reduction of 60%.

In summary, our results are qualitatively similar, with

transfer savings increasing with replication interval. The

observed discrepancies are most likely due to different

workloads used for analysis. The smaller number of sys-

tems studied for SnapMirror mostly supported software

development and related applications, e.g., source code

tree, bug tracking database, and engineer home direc-

tories, while the systems in our study support a mix of

business and consumer applications and file systems.

5.2 Bandwidth Requirements

Transferring data requires sufficient bandwidth for the

transfer to complete before the next replication interval

or a cascade of failures occurs. Peak bandwidth was

calculated for each trace, and the 90th percentile across

traces is plotted in Figure 13. Results are per volume,

so bandwidth for a storage system with many volumes

would be higher. Logical volumes supporting sequen-

tial hosts require the most network bandwidth across all

replication intervals. For replication interval > 6hours,

the required bandwidth for the logical volumes in the

Random set is similar to that for the volumes in the All

set. For sequential hosts, the number of logical volumes

that can simultaneously transfer changed data is largely

bound by network bandwidth, while for the other vol-

umes, the choice of block size has a significant impact.

Based on the results from Figure 10, storage administra-

tors can calculate how much bandwidth they will need

to transfer changed data, which is a sizable fraction (ap-

proximately 40%) of what hosts write to primary storage.

There is clearly a relationship between the amount

of data written by the host to primary storage and the

9

166 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

1 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

R
e
q
u
ir
e
d

 N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
M

b
/s

)

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 13: 90th-percentile peak network bandwidth

needed to successfully transfer dirty blocks. Bandwidth

is per logical volume, and the y-axis has a log scale of

base 2.

amount transferred to target storage, and analyzing 512B

blocks shows a 99% correlation up to 30 minutes. The

correlation is lower (62-85% depending on replication

interval) for 1MB blocks, likely due to clean data also

transferred in large blocks. We found a fairly low corre-

lation (30-53%) between estimated volume capacity and

transferred data, so capacity is less predictive of band-

width requirements than other properties such as host

write throughput.

Rule-of-thumb 6: Scheduling at least 12 hours

between transfers drastically reduces peak network

bandwidth requirements. Volume capacity is not pre-

dictive of bandwidth requirements.

5.3 I/O Analysis

A significant difference between primary storage and tar-

get storage designed for data protection is the I/O re-

quirements of each system. Primary storage is designed

to optimize for host I/O requirements related to email or

web servers, shared file systems, or databases. While

capacity matters, I/O per second is often a more critical

feature. In comparison, target storage is designed for ca-

pacity and high throughput [26], so I/O per second may

be of lower priority.

Figure 14 shows how the replication interval affects

I/O per second requirements for target storage that is not

log structured. The vertical axis is normalized relative to

host I/O rates. Specifically, it shows the number of write

I/O requests needed to transfer dirty blocks to the target

as a percentage of the number of host write I/O requests

for the same period in the original trace. See Section 3

for detailed information on how we compute write I/O to

target storage.

For even a fifteen minute interval, the transfer I/O rate

drops to between 10% and 40% of the host I/O rate, de-

pending on the block size and write pattern. This sharp

drop for a short interval is because we first order the dirty

 0

 10

 20

 30

 40

 50

15 m
in

1 hr
3 hr

6 hr
12 hr

24 hr

 0

 10

 20

 30

 40

 50

T
a
rg

e
t

w
ri
te

 I
O

P
S

 /
 H

o
s
t

W
ri
te

 I
O

P
S

Replication Interval

512B Random
1MB Random

512B All
1MB All

512B Seq
1MB Seq

Figure 14: Ratio of target write IOPS to host write IOPS.

sectors accumulated over the interval by their logical ad-

dresses to compute write I/O needed for transfer to target

storage. This ordering results in longer runs of sequential

dirty sectors than created by original host write I/O re-

quests (up to the assumed maximum 1MB transfer size).

I/O savings continue up to 24 hours measured, though

there is little change between 6 hours and 24, and the

I/O rate for a larger block size is consistently lower than

that of a smaller block size. Collecting host I/Os for a

period of time is a well studied technique to reduce I/O

requirements [3].

For sequentially accessed logical volumes, the trans-

fer I/O rates for different block sizes are almost indis-

tinguishable across all the intervals. This is because se-

quential host write I/O, along with our ordering of dirty

sectors, produces runs of sequential dirty sectors that are

>> 1MB in size, so the 1MB network transfer size lim-

itation becomes the dominating factor. For randomly ac-

cessed logical volumes, block size has a large impact on

I/O requirements, requiring from 12% to 40% at 1 hour.

These results indicate that it is worthwhile to configure

block sizes and replication intervals for mixed and ran-

domly accessed volumes.

While our work focuses on asynchronous replication

to reduce I/O and storage requirements for target sys-

tems, an alternative is to consider synchronous replica-

tion. Synchronous replication requires a target system to

have 100% of the I/O capabilities of the primary system,

which would be a horizontal line added to Figure 14 at

100% on the vertical axis. Asynchronous replication can

be more efficient than synchronous replication for two

reasons: collapsing multiple writes to the same block be-

fore replication to reduce transferred data and reordering

writes to reduce random I/O. We leave it as future work

to explore the impact of each reason.

Rule-of-thumb 7: Target storage must support as

much as 20% of the I/O per second capabilities of pri-

mary storage when the replication interval is at least

one hour.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 167

6 Related Work

Over the years, there have been many studies of storage

workloads in various computing environments including

aspects of file access and caching [3, 4, 11, 19, 23]. Le-

ung et al. [17] analyzed I/O trace data collected from

networked file servers deployed in a data center. An-

derson [1] presented new techniques for collecting large,

detailed traces. Analysis of high performance comput-

ing (i.e. supercomputing) workloads focused on band-

width, I/O request inter-arrival times, idle time, and ac-

cess rates [6, 7, 15, 16, 18]. Gulati et al. [9] studied

characteristics and consolidation strategies for virtual-

ized systems. Analysis for database workloads [12] has

shown qualitatively similar properties to file systems.

Numerous studies have measured disk access prop-

erties including block lifetimes, access rates, response

time, sequential patterns, and caching [23, 24]. Riska

and Riedel [21] analyzed how I/O workloads on disk

drives change depending on applications and computing

environments, e.g., enterprise servers vs. desktop com-

puters vs. consumer electronics.

Unlike these earlier works, we specifically focus on

characterizing the overheads and I/O properties in trans-

ferring incremental changes on primary storage to tar-

get storage. Specifically, we analyze data changes at the

physical (block) level, in part, because creating backups

at the physical level is more efficient than doing so at

the logical (file) level [13]. Roselli et al. [23] studied

block lifetimes but not in the context of data protection.

A study a decade ago by Patterson et al. [20] character-

ized changed data at the block level for a similar goal; see

Section 5.1. Wallace et al. [26] described backup work-

load characteristics, though they intermixed full and in-

cremental workloads.

Snapshots are a common technique to create a point-

in-time version of data. WAFL [10], ZFS [5] and

BTRFS [22] all natively support snapshots with copy-

on-write as means of ensuring data consistency on disk

and enabling fast restart after system crash. In these sys-

tems, snapshots are first-class objects that can be named

and accessed by the end user. In the case of ZFS and

BTRFS, snapshots are writable and can be updated in-

dependently from the original. In addition, snapshots

are taken at the logical level, e.g., the entire file system,

directories, and/or individual files. In contrast, a repli-

cation snapshot is mainly comprised of blocks written

since the last transfer, is not writable, and does not per-

sist; once the transfer is completed, the space allocated

for copied-on-write blocks is reclaimed for use by pri-

mary storage or later snapshots.

There are several publications on snapshot overheads.

Azagury et al. [2] and Shah [25] both report up to 7%

degradation in I/O rate due to copy-on-write. We an-

alyzed replication snapshots as a technique to reduce

overheads of standard snapshots during replication. Our

two versions of replication snapshots can be classified as

write-coalescing batches with atomic update in a tax-

onomy for remote mirroring defined by Ji et. al. [14],

with the batch size determined by replication intervals.

Our asynchronous technique allows for write coalescing

to reduce write size and I/O rate on target storage.

Synchronous remote mirroring [14] can also be used

for protection of data changes, especially when the

change rate is low and/or the geographical distance be-

tween primary and target systems is relatively short,

e.g., [27, 28]. In this paper, we analyze an asynchronous

approach to allow target systems whose I/O performance

and storage capacity are characteristically different from

primary storage, e.g., purpose-built backup appliances.

7 Discussion and Conclusion

In this paper, we have analyzed I/O traces from over

100,000 logical volumes in customer block-based pri-

mary storage systems to understand I/O characteristics

and performed a detailed analysis of over 500 traces

spanning at least 24 hours to gain a better understanding

of incremental change patterns. New insights can help

data protection expand from the realm of daily backups

to more frequent updates.

Our analysis has uncovered several new findings for

both primary and target storage. Overheads on pri-

mary storage due to snapshots can require both capacity

and I/O to preserve point-in-time copies, though a write

buffer decreases I/O requirements. For target storage,

storage requirements depend on the write patterns of the

host and can vary from 40% for most hosts to 100% for

hosts that write sequentially. Replication requires band-

width, which we have shown grows proportionally with

the write-throughput of hosts. We have found that access

patterns can change from highly sequential to highly ran-

dom across different replication intervals, with a large

change in data transfer characteristics. Given that the

transfer interval is often statically configured by the tar-

get system administrator, our observations argue for dy-

namically changing block sizes and replication intervals

at run time based on the host I/O access pattern.

Many findings about data patterns align with previous

results: dirty blocks tend to be overwritten again within

minutes or hours, the change rate grows less rapidly with

longer replication intervals, and volumes tend to be mod-

ified in multiples of 4KB or 8KB. From the analysis of

over 100,000 traces, we found that there is great diversity

in storage requirements in terms of capacity, numbers of

writes and reads, as well as average and peak throughput

and I/O per second.

11

168 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Acknowledgments
We would like to thank Fred Douglis, Kadir Ozdemir,

Steve Smaldone, Grant Wallace, Ian Wigmore, and our

reviewers for their feedback. We also thank Bill Glynn

and the EMC VMAX team for providing the traces.

References

[1] E. Anderson. Capture, conversion, and analysis of an in-

tense NFS workload. In Proc. of the 7th USENIX Conf.

on File and Storage Tech., 2009.

[2] A. Azagury, M. E. Factor, J. Satran, and W. Micka. Point-

in-time copy: Yesterday, today and tomorrow. In Proc.

IEEE/NASA Conf. Mass Storage Systems, 2002.

[3] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and

M. Seltzer. Non-volatile memory for fast, reliable file

systems. ACM SIGPLAN Notices, 27(9):10–22, 1992.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,

and J. K. Ousterhout. Measurements of a distributed file

system. In Proc. of the 13th ACM Symposium on Operat-

ing Systems Principles, October 1991.

[5] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and

M. Shellenbaum. The zettabyte file system. In Proc. of

the 2nd Usenix Conference on File and Storage Technolo-

gies, 2003.

[6] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,

R. Latham, and R. Ross. Understanding and improving

computational science storage access through continuous

characterization. ACM Trans. on Storage, 7(3), October

2011.

[7] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and

K. Riley. 24/7 Characterization of Petascale I/O Work-

loads. In Proc. of the 1st Works. on Interfaces and Ab-

stractions for Scientific Data Storage, 2009.

[8] EMC. EMC Symmetrix VMAX. http:

//www.emc.com/storage/symmetrix-vmax/

symmetrix-vmax.htm, 2013.

[9] A. Gulati, C. Kumar, and I. Ahmad. Storage workload

characterization and consolidation in virtualized environ-

ments. In Proc. of the 2nd Inter. Workshop on Virtualiza-

tion Performance: Analysis, Characterization, and Tools,

2009.

[10] D. Hitz, J. Lau, and M. Malcolm. File system design

for an nfs file server appliance. In Proceedings of the

USENIX Winter 1994 Technical Conference, pages 235–

246, 1994.

[11] W. W. Hsu and A. Smith. The performance impact of I/O

optimizations and disk improvements. IBM Journal of

Research and Development, pages 255–289, March 2004.

[12] W. W. Hsu, A. J. Smith, and H. C. Young. I/O reference

behavior of production database workloads and the TPC

benchmarks - an analysis at the logical level. ACM Trans.

on Database Systems, 26:96–143, 2001.

[13] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris,

D. Hitz, S. Kleiman, and S. O’Malley. Logical vs. physi-

cal file system backup. In Proc. of the 3rd Symposium on

Operating Systems Design and Implementation, 1999.

[14] M. Ji, A. Veitch, J. Wilkes, et al. Seneca: remote mirror-

ing done write. In Proc. of the USENIX Annual Technical

Conf., 2003.

[15] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow,

Z. Zhang, and B. W. Settlemeyer. Workload characteriza-

tion of a leadership class storage cluster. In Proc. of the

5th Petascale Data Storage Workshop, 2010.

[16] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and

W. Allcock. I/O performance challenges at leadership

scale. In Proc. of Supercomputing, November 2009.

[17] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.

Measurement and analysis of large-scale network file sys-

tem workloads. In Proc. of the USENIX Annual Technical

Conf., 2008.

[18] E. L. Miller, R. H. Katz, and Y. H. Katz. Analyzing

the I/O behavior of supercomputer applications. In Proc.

of the 11th IEEE Symposium on Mass Storage Systems,

1991.

[19] J. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,

M. Kupfer, and J. G. Thompson. A Trace-Driven Anal-

ysis of the UNIX 4.2 BSD File System. In Proc. of the

10th Symposium on Operating System Principles, 1985.

[20] H. Patterson, S. Manley, M. Federwisch, D. Hitz,

S. Kleiman, and S. Owara. SnapMirror: file system based

asynchronous mirroring for disaster recovery. In Proc. of

the 1st USENIX Conf. on File and Storage Tech., 2002.

[21] A. Riska and E. Riedel. Disk drive level workload char-

acterization. In Proc. of the USENIX Annual Technical

Conf., 2006.

[22] O. Rodeh, J. Bacik, and C. Mason. Brtfs: The linux b-

tree filesystem. Technical report, IBM Research Report

RJ10501 (ALM1207-004), 2012.

[23] D. Roselli, J. Lorch, and T. E. Anderson. A comparison

of file system workloads. In Proc. of the USENIX Annual

Technical Conf., 2000.

[24] C. Ruemmler and J. Wilkes. Unix disk access patterns. In

Proc. of the Winter USENIX Conf., 1993.

[25] B. Shah. Disk performance of copy-on-write snapshot

logical volumes. PhD thesis, The University Of British

Columbia, 2006.

[26] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,

M. Chamness, and W. Hsu. Characteristics of backup

workloads in production systems. In Proc. of the 10th

USENIX Conf. on File and Storage Tech., 2012.

[27] H. Weatherspoon, L. Ganesh, T. Marian, M. Balakrish-

nan, and K. Birman. Smoke and mirrors: reflecting files

at a geographically remote location without loss of per-

formance. In Proc. of the 7th USENIX Conf. on File and

Storage Tech., 2009.

[28] M. Zhang, Y. Liu, and Q. Yang. Cost-effective remote

mirroring using the iSCSI protocol. In 21st IEEE Conf.

on Mass. Storage Systems and Tech., 2004.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 169

On the Efficiency of Durable State Machine Replication

Alysson Bessani1, Marcel Santos1, João Felix1, Nuno Neves1, Miguel Correia2

{1FCUL/LaSIGE, 2INESC-ID/IST}, University of Lisbon – Portugal

Abstract
State Machine Replication (SMR) is a fundamental tech-
nique for ensuring the dependability of critical services
in modern internet-scale infrastructures. SMR alone
does not protect from full crashes, and thus in practice
it is employed together with secondary storage to ensure
the durability of the data managed by these services. In
this work we show that the classical durability enforc-
ing mechanisms – logging, checkpointing, state transfer
– can have a high impact on the performance of SMR-
based services even if SSDs are used instead of disks. To
alleviate this impact, we propose three techniques that
can be used in a transparent manner, i.e., without modi-
fying the SMR programming model or requiring extra re-
sources: parallel logging, sequential checkpointing, and
collaborative state transfer. We show the benefits of these
techniques experimentally by implementing them in an
open-source replication library, and evaluating them in
the context of a consistent key-value store and a coordi-
nation service.

1 Introduction

Internet-scale infrastructures rely on services that are
replicated in a group of servers to guarantee availabil-
ity and integrity despite the occurrence of faults. One
of the key techniques for implementing replication is the
Paxos protocol [27], or more generically the state ma-
chine replication (SMR) approach [34]. Many systems
in production use variations of this approach to tolerate
crash faults (e.g., [4, 5, 8, 12, 19]). Research systems
have also shown that SMR can be employed with Byzan-
tine faults with reasonable costs (e.g., [6, 9, 17, 21, 25]).

This paper addresses the problem of adding durability
to SMR systems. Durability is defined as the capability
of a SMR system to survive the crash or shutdown of all
its replicas, without losing any operation acknowledged
to the clients. Its relevance is justified not only by the
need to support maintenance operations, but also by the

many examples of significant failures that occur in data
centers, causing thousands of servers to crash simultane-
ously [13, 15, 30, 33].

However, the integration of durability techniques –
logging, checkpointing, and state transfer – with the
SMR approach can be difficult [8]. First of all, these
techniques can drastically decrease the performance of
a service1. In particular, synchronous logging can make
the system throughput as low as the number of appends
that can be performed on the disk per second, typically
just a few hundreds [24]. Although the use of SSDs can
alleviate the problem, it cannot solve it completely (see
§2.2). Additionally, checkpointing requires stopping the
service during this operation [6], unless non-trivial opti-
mizations are used at the application layer, such as copy-
on-write [8, 9]. Moreover, recovering faulty replicas in-
volves running a state transfer protocol, which can im-
pact normal execution as correct replicas need to transmit
their state.

Second, these durability techniques can complicate the
programming model. In theory, SMR requires only that
the service exposes an execute() method, called by the
replication library when an operation is ready to be exe-
cuted. However this leads to logs that grow forever, so in
practice the interface has to support service state check-
pointing. Two simple methods can be added to the in-
terface, one to collect a snapshot of the state and another
to install it during recovery. This basic setup defines a
simple interface, which eases the programming of the
service, and allows a complete separation between the
replication management logic and the service implemen-
tation. However, this interface can become much more
complex, if certain optimizations are used (see §2.2).

This paper presents new techniques for implement-
ing data durability in crash and Byzantine fault-tolerant

1The performance results presented in the literature often exclude
the impact of durability, as the authors intend to evaluate other aspects
of the solutions, such as the behavior of the agreement protocol. There-
fore, high throughput numbers can be observed (in req/sec) since the
overheads of logging/checkpointing are not considered.

1

170 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

(BFT) SMR services. These techniques are transpar-
ent with respect to both the service being replicated and
the replication protocol, so they do not impact the pro-
gramming model; they greatly improve the performance
in comparison to standard techniques; they can be used
in commodity servers with ordinary hardware configura-
tions (no need for extra hardware, such as disks, special
memories or replicas); and, they can be implemented in
a modular way, as a durability layer placed in between
the SMR library and the service.

The techniques are three: parallel logging, for diluting
the latency of synchronous logging; sequential check-
pointing, to avoid stopping the replicated system during
checkpoints; and collaborative state transfer, for reduc-
ing the effect of replica recoveries on the system perfor-
mance. This is the first time that the durability of fault-
tolerant SMR is tackled in a principled way with a set
of algorithms organized in an abstraction to be used be-
tween SMR protocols and the application.

The proposed techniques were implemented in a dura-
bility layer on the BFT-SMaRt state machine replica-
tion library [1], on top of which we built two services:
a consistent key-value store (SCKV-Store) and a non-
trivial BFT coordination service (Durable DepSpace).
Our experimental evaluation shows that the proposed
techniques can remove most of the performance degra-
dation due to the addition of durability.

This paper makes the following contributions:

1. A description of the performance problems affect-
ing durable state machine replication, often over-
looked in previous works (§2);

2. Three new algorithmic techniques for removing
the negative effects of logging, checkpointing and
faulty replica recovery from SMR, without requir-
ing more resources, specialized hardware, or chang-
ing the service code (§3).

3. An analysis showing that exchanging disks by SSDs
neither solves the identified problems nor improves
our techniques beyond what is achieved with disks
(§2 and §5);

4. The description of an implementation of our tech-
niques (§4), and an experimental evaluation under
write-intensive loads, highlighting the performance
limitations of previous solutions and how our tech-
niques mitigate them (§5).

2 Durable SMR Performance Limitations

This section presents a durable SMR model, and then
analyzes the effect of durability mechanisms on the per-
formance of the system.

2.1 System Model and Properties
We follow the standard SMR model [34]. Clients send
requests to invoke operations on a service, which is im-
plemented in a set of replicas (see Figure 1). Operations
are executed in the same order by all replicas, by running
some form of agreement protocol. Service operations are
assumed to be deterministic, so an operation that updates
the state (abstracted as a write) produces the same new
state in all replicas. The state required for processing
the operations is kept in main memory, just like in most
practical applications for SMR [4, 8, 19].

���������������� ����������������

������������

invoke execute getState
setState

��������

g
s

e

������
��������

ate
ate

����

log+
ckpt

log+
ckpt

Figure 1: A durable state machine replication architecture.

The replication library implementing SMR has a client
and a server side (layers at the bottom of the figure),
which interact respectively with the client application
and the service code. The library ensures standard safety
and liveness properties [6, 27], such as correct clients
eventually receive a response to their requests if enough
synchrony exists in the system.

SMR is built under the assumption that at most f repli-
cas fail out of a total of n replicas (we assume n = 2 f +1
on a crash fault-tolerant system and n = 3 f +1 on a BFT
system). A crash of more than f replicas breaks this as-
sumption, causing the system to stop processing requests
as the necessary agreement quorums are no longer avail-
able. Furthermore, depending on which replicas were af-
fected and on the number of crashes, some state changes
may be lost. This behavior is undesirable, as clients may
have already been informed about the changes in a re-
sponse (i.e., the request completed) and there is the ex-
pectation that the execution of operations is persistent.

To address this limitation, the SMR system should also
ensure the following property:

Durability: Any request completed at a client
is reflected in the service state after a recovery.

Traditional mechanisms for enforcing durability in
SMR-based main memory databases are logging, check-
pointing and state transfer [8, 16]. A replica can recover
from a crash by using the information saved in stable
storage and the state available in other replicas. It is im-
portant to notice that a recovering replica is considered
faulty until it obtains enough data to reconstruct the state
(which typically occurs after state transfer finishes).

Logging writes to stable storage information about
the progress of the agreement protocol (e.g., when cer-

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 171

tain messages arrive in Paxos-like protocols [8, 20]) and
about the operations executed on the service. Therefore,
data is logged either by the replication library or the ser-
vice itself, and a record describing the operation has to
be stored before a reply is returned to the client.

The replication library and the service code synchro-
nize the creation of checkpoints with the truncation of
logs. The service is responsible for generating snap-
shots of its state (method getState) and for setting the
state to a snapshot provided by the replication library
(method setState). The replication library also imple-
ments a state transfer protocol to initiate replicas from
an updated state (e.g., when recovering from a failure or
if they are too late processing requests), akin to previous
SMR works [6, 7, 8, 9, 32]. The state is fetched from the
other replicas that are currently running.

2.2 Identifying Performance Problems
This section discusses performance problems caused by
the use of logging, checkpointing and state transfer in
SMR systems. We illustrate the problems with a con-
sistent key-value store (SCKV-Store) implemented using
BFT-SMaRt [1], a Java BFT SMR library. In any case,
the results in the paper are mostly orthogonal to the fault
model. We consider write-only workloads of 8-byte keys
and 4kB values, in a key space of 250K keys, which cre-
ates a service state size of 1GB in 4 replicas. More details
about this application and the experiments can be found
in §4 and §5, respectively.

High latency of logging. As mentioned in §2.1, events
related to the agreement protocol and operations that
change the state of the service need to be logged in stable
storage. Table 1 illustrates the effects of several logging
approaches on the SCKV-Store, with a client load that
keeps a high sustainable throughput:

Metric No log Async. Sync. SSD Sync. Disk
Min Lat. (ms) 1.98 2.16 2.89 19.61

Peak Thr. (ops/s) 4772 4312 1017 63

Table 1: Effect of logging on the SCKV-Store. Single-client
minimum latency and peak throughput of 4kB-writes.

The table shows that synchronous2 logging to disk can
cripple the performance of such system. To address this
issue, some works have suggested the use of faster non-
volatile memory, such as flash memory solid state drives
(SSDs) or/in NVCaches [32]. As the table demonstrates,
there is a huge performance improvement when the log is
written synchronously to SSD storage, but still only 23%

2Synchronous writes are optimized to update only the file contents,
and not the metadata, using the rwd mode in the Java’ RandomAccess-
File class (equivalent to using the O DSYNC flag in POSIX open). This
is important to avoid unnecessary disk head positioning.

of the “No log” throughput is achieved. Additionally, by
employing specialized hardware, one arguably increases
the costs and the management complexity of the nodes,
especially in virtualized/cloud environments where such
hardware may not be available in all machines.

There are works that avoid this penalty by using asyn-
chronous writes to disk, allowing replicas to present a
performance closer to the main memory system (e.g.,
Harp [28] and BFS [6]). The problem with this solution
is that writing asynchronously does not give durability
guarantees if all the replicas crash (and later recover),
something that production systems need to address as
correlated failures do happen [13, 15, 30, 33].

We would like to have a general solution that makes
the performance of durable systems similar to pure mem-
ory systems, and that achieves this by exploring the log-
ging latency to process the requests and by optimizing
log writes.

Perturbations caused by checkpoints. Checkpoints
are necessary to limit the log size, but their creation usu-
ally degrades the performance of the service. Figure 2
shows how the throughput of the SCKV-Store is affected
by creating checkpoints at every 200K client requests.
Taking a snapshot after processing a certain number of
operations, as proposed in most works in SMR (e.g.,
[6, 27]), can make the system halt for a few seconds. This
happens because requests are no longer processed while
replicas save their state. Moreover, if the replicas are not
fully synchronized, delays may also occur because the
necessary agreement quorum might not be available.

 0
 1
 2
 3
 4

 0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

Memory
Disk
SSD

Figure 2: Throughput of a SCKV-Store with checkpoints in
memory, disk and SSD considering a state of 1GB.

The figure indicates an equivalent performance degra-
dation for checkpoints written in disk or SSD, meaning
there is no extra benefit in using the latter (both require
roughly the same amount of time to synchronously write
the checkpoints). More importantly, the problem occurs
even if the checkpoints are kept in memory, since the fun-
damental limitation is not due to storage accesses (as in
logging), but to the cost to serialize a large state (1 GB).

Often, the performance decrease caused by check-
pointing is not observed in the literature, either because
no checkpoints were taken or because the service had a
very small state (e.g., a counter with 8 bytes) [6, 10, 17,
21, 25]. Most of these works were focusing on ordering

3

172 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

requests efficiently, and therefore checkpointing could be
disregarded as an orthogonal issue. Additionally, one
could think that checkpoints need only to be created spo-
radically, and therefore, their impact is small on the over-
all execution. We argue that this is not true in many sce-
narios. For example, the SCKV-Store can process around
4700 4kB-writes per second (see §5), which means that
the log can grow at the rate of more than 1.1 GB/min,
and thus checkpoints need to be taken rather frequently to
avoid outrageous log sizes. Leader-based protocols, such
as those based on Paxos, have to log information about
most of the exchanged messages, contributing to the log
growth. Furthermore, recent SMR protocols require fre-
quent checkpoints (every few hundred operations) to al-
low the service to recover efficiently from failed specu-
lative request ordering attempts [17, 21, 25].

Some systems use copy-on-write techniques for do-
ing checkpointing without stoping replicas (e.g., [9]), but
this approach has two limitations. First, copy-on-write
may be complicated to implement at application level in
non-trivial services, as the service needs to keep track of
which data objects were modified by the requests. Sec-
ond, even if such techniques are employed, the creation
of checkpoints still consumes resources and degrades
the performance of the system. For example, writing a
checkpoint to disk makes logging much slower since the
disk head has to move between the log and checkpoint
files, with the consequent disk seek times. In practice,
this limitation could be addressed in part with extra hard-
ware, such as by using two disks per server.

Another technique to deal with the problem is fuzzy
snapshots, used in ZooKeeper [19]. A fuzzy snapshot is
essentially a checkpoint that is done without stopping the
execution of operations. The downside is that some oper-
ations may be executed more than once during recovery,
an issue that ZooKeeper solves by forcing all operations
to be idempotent. However, making operations idem-
potent requires non-trivial request pre-processing before
they are ordered, and increases the difficulty of decou-
pling the replication library from the service [19, 20].

We aim to have a checkpointing mechanism that min-
imizes performance degradation without requiring addi-
tional hardware and, at the same time, keeping the SMR
programming model simple.

Perturbations caused by state transfer. When a
replica recovers, it needs to obtain an updated state to
catch up with the other replicas. This state is usually
composed of the last checkpoint plus the log up to some
request defined by the recovering replica. Typically, (at
least) another replica has to spend resources to send (part
of) the state. If checkpoints and logs are stored in a
disk, delays occur due to the transmission of the state
through the network but also because of the disk ac-

 0
 1
 2
 3
 4

 0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

Figure 3: Throughput of a SCKV-Store when a failed replica
recovers and asks for a state transfer.

cesses. Delta-checkpoint techniques based, for instance,
on Merkle trees [6] can alleviate this problem, but cannot
solve it completely since logs have always to be trans-
ferred. Moreover, implementing this kind of technique
can add more complexity to the service code.

Similarly to what is observed with checkpointing,
there can be the temptation to disregard the state trans-
fer impact on performance because it is perceived to oc-
cur rarely. However, techniques such as replica rejuvena-
tion [18] and proactive recovery [6, 36] use state transfer
to bring refreshed replicas up to date. Moreover, recon-
figurations [29] and even leader change protocols (that
need to be executed periodically for resilient BFT repli-
cation [10]) may require replicas to synchronize them-
selves [6, 35]. In conclusion, state transfer protocols may
be invoked much more often than when there is a crash
and a subsequent recovery.

Figure 3 illustrates the effect of state transmission dur-
ing a replica recovery in a 4 node BFT system using the
PBFT’s state transfer protocol [6]. This protocol requires
just one replica to send the state (checkpoint plus log) –
similarly to crash FT Paxos-based systems – while others
just provide authenticated hashes for state validation (as
the sender of the state may suffer a Byzantine fault). The
figure shows that the system performance drops to less
than 1/3 of its normal performance during the 30 seconds
required to complete state transfer. While one replica is
recovering, another one is slowed because it is sending
the state, and thus the remaining two are unable to order
and execute requests (with f = 1, quorums of 3 replicas
are needed to order requests).

One way to avoid this performance degradation is to
ignore the state transfer requests until the load is low
enough to process both the state transfers and normal re-
quest ordering [19]. However, this approach tends to de-
lay the recovery of faulty replicas and makes the system
vulnerable to extended unavailability periods (if more
faults occur). Another possible solution is to add ex-
tra replicas to avoid interruptions on the service during
recovery [36]. This solution is undesirable as it can in-
crease the costs of deploying the system.

We would like to have a state transfer protocol that
minimizes the performance degradation due to state
transfer without delaying the recovery of faulty replicas.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 173

3 Efficient Durability for SMR

In this section we present three techniques to solve the
problems identified in the previous section.

3.1 Parallel Logging
Parallel logging has the objective of hiding the high la-
tency of logging. It is based on two ideas: (1) log groups
of operations instead of single operations; and (2) pro-
cess the operations in parallel with their storage.

The first idea explores the fact that disks have a high
bandwidth, so the latency for writing 1 or 100 log en-
tries can be similar, but the throughput would be natu-
rally increased by a factor of roughly 100 in the second
case. This technique requires the replication library to
deliver groups of service operations (accumulated during
the previous batch execution) to allow the whole batch to
be logged at once, whereas previous solutions normally
only provide single operations, one by one. Notice that
this approach is different from the batching commonly
used in SMR [6, 10, 25], where a group of operations is
ordered together to amortize the costs of the agreement
protocol (although many times these costs include log-
ging a batch of requests to stable storage [27]). Here the
aim is to pass batches of operations from the replication
library to the service, and a batch may include (batches
of) requests ordered in different agreements.

The second idea requires that the requests of a batch
are processed while the corresponding log entries are be-
ing written to the secondary storage. Notice, however,
that a reply can only be sent to the client after the cor-
responding request is executed and logged, ensuring that
the result seen by the client will persist even if all repli-
cas fail and later recover. Naturally, the effectiveness of
this technique depends on the relation between the time
for processing a batch and the time for logging it. More
specifically, the interval Tk taken by a service to process
a batch of k requests is given by Tk = max(Ek,Lk), where
Ek and Lk represent the latency of executing and log-
ging the batch of k operations, respectively. This equa-
tion shows that the most expensive of the two operations
(execution or logging) defines the delay for processing
the batch. For example, in the case of the SCKV-Store,
Ek � Lk for any k, since inserting data in a hash table
with chaining (an O(1) operation) is much faster than
logging a 4kB-write (with or without batching). This is
not the case for Durable DepSpace, which takes a much
higher benefit from this technique (see §5).

3.2 Sequential Checkpointing
Sequential checkpointing aims at minimizing the perfor-
mance impact of taking replica’s state snapshots. The

���������� ���������� ���������� ����������

��
��

���� ���� ���� ����

���� ���� ���� ����

��
��

(a) Synchronized.

���������� ���������� ���������� ����������

����

����

����

����

����

����

����

��
��

��
���

(b) Sequential.

Figure 4: Checkpointing strategies (4 replicas).

key principle is to exploit the natural redundancy that ex-
ists in asynchronous distributed systems based on SMR.
Since these systems make progress as long as a quorum
of n− f replicas is available, there are f spare replicas in
fault-free executions. The intuition here is to make each
replica store its state at different times, to ensure that
n− f replicas can continue processing client requests.

We define global checkpointing period P as the max-
imum number of (write) requests that a replica will ex-
ecute before creating a new checkpoint. This parameter
defines also the maximum size of a replica’s log in num-
ber of requests. Although P is the same for all replicas,
they checkpoint their state at different points of the ex-
ecution. Moreover, all correct replicas will take at least
one checkpoint within that period.

An instantiation of this model is for each replica i =
0, ...,n−1 to take a checkpoint after processing the k-th
request where k mod P= i×⌊P

n

⌋
, e.g., for P= 1000, n=

4, replica i takes a checkpoint after processing requests
i×250, 1000+ i×250, 2000+ i×250, and so on.

Figure 4 compares a synchronous (or coordinated)
checkpoint with our technique. Time grows from the
bottom of the figure to the top. The shorter rectangles
represent the logging of an operation, whereas the taller
rectangles correspond to the creation of a checkpoint.
It can be observed that synchronized checkpoints occur
less frequently than sequential checkpoints, but they stop
the system during their execution whereas for sequential
checkpointing there is always an agreement quorum of 3
replicas available for continuing processing requests.

An important requirement of this scheme is to use val-
ues of P such that the chance of more than f overlapping
checkpoints is negligible. Let Cmax be the estimated max-
imum interval required for a replica to take a checkpoint
and Tmax the maximum throughput of the service. Two
consecutive checkpoints will not overlap if:

Cmax <
1

Tmax
×
⌊

P
n

⌋
=⇒

P > n×Cmax ×Tmax (1)

Equation 1 defines the minimum value for P that can
be used with sequential checkpoints. In our SCKV-Store
example, for a state of 1GB and a 100% 4kB-write work-

5

174 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

load, we have Cmax ≈ 15s and Tmax ≈ 4700 ops/s, which
means P > 282000. If more frequent checkpoints are re-
quired, the replicas can be organized in groups of at most
f replicas to take checkpoints together.

3.3 Collaborative State Transfer

The state transfer protocol is used to update the state of
a replica during recovery, by transmitting log records (L)
and checkpoints (C) from other replicas (see Figure 5(a)).
Typically only one of the replicas returns the full state
and log, while the others may just send a hash of this data
for validation (only required in the BFT case). As shown
in §2, this approach can degrade performance during re-
coveries. Furthermore, it does not work with sequential
checkpoints, as the received state can not be directly vali-
dated with hashes of other replicas’ checkpoints (as they
are different). These limitations are addressed with the
collaborative state transfer (CST) protocol.

Although the two previous techniques work both with
crash-tolerant and BFT SMR, the CST protocol is sub-
stantially more complex with Byzantine faults. Conse-
quently, we start by describing a BFT version of the pro-
tocol (which also works for crash faults) and later, at the
end of the section, we explain how CST can be simplified
on a crash-tolerant system3.

We designate by leecher the recovering replica and by
seeders the replicas that send (parts of) their state. CST
is triggered when a replica (leecher) starts (see Figure 6).
Its first action is to use the local log and checkpoint to de-
termine the last logged request and its sequence number
(assigned by the ordering protocol), from now on called
agreement id. The leecher then asks for the most recent
logged agreement id of the other replicas, and waits for
replies until n − f of them are collected (including its
own id). The ids are placed in a vector in descending
order, and the largest id available in f +1 replicas is se-
lected, to ensure that such agreement id was logged by at
least one correct replica (steps 1-3).

In BFT-SMaRt there is no parallel execution of agree-
ments, so if one correct replica has ordered the id-th
batch, it means with certainty that agreement id was al-
ready processed by at least f + 1 correct replicas4. The
other correct replicas, which might be a bit late, will also
eventually process this agreement, when they receive the
necessary messages.

3Even though crash fault tolerance is by far more used in production
systems, our choice is justified by two factors. First, the subtleties of
BFT protocols require a more extensive discussion. Second, given the
lack of a stable and widely-used open-source implementation of a crash
fault tolerance SMR library, we choose to develop our techniques in a
BFT SMR library, so the description is in accordance to our prototype.

4If one employs protocols such as Paxos/PBFT, low and high wa-
termarks may need to considered.

���������� ���������� ����������
��

��

����

����

��
��

(a) PBFT and others (n = 4).

����� �����
�������
������������� ����� ����� �����

���

���

���

��� ���
���

���

���

���

���
���

���

� �

���

���
���
���

���

���

���

���

���

������
���

���������

���

�������

���

����������

���

��
��

(b) CST (n = 7).

Figure 5: Data transfer in different state transfer strategies.

Next, the leecher proceeds to obtain the state up to
id from a seeder and the associated validation data from
f other replicas. The active replicas are ordered by the
freshness of the checkpoints, from the most recent to
the oldest (step 4). A leecher can make this calculation
based on id, as replicas take checkpoints at determinis-
tic points, as explained in §3.2. We call the replica with
i-th oldest checkpoint the i-th replica and the checkpoint
Ci. The log of a replica is divided in segments, and each
segment Li is the portion of the log required to update the
state from Ci to the more recent state Ci−1. Therefore, we
use the following notion of equivalence: Ci−1 ≡Ci +Li.
Notice that L1 corresponds to the log records of the re-
quests that were executed after the most recent check-
point C1 (see Figure 5(b) for n = 7).

The leecher fetches the state from the (f + 1)-th
replica (seeder), which comprises the log segments L1,
..., L f+1 and checkpoint Cf+1 (step 8). To validate this
state, it also gets hashes of the log segments and check-
points from the other f replicas with more recent check-
points (from the 1st until the f -th replica) (step 6a). Then,
the leecher sets its state to the checkpoint and replays the
log segments received from the seeder, in order to bring
up to date its state (steps 10 and 12a).

The state validation is performed by comparing the
hashes of the f replicas with the hashes of the log seg-
ments from the seeder and intermediate checkpoints. For
each replica i, the leecher replays Li+1 to reach a state
equivalent to the checkpoint of this replica. Then, it cre-
ates a intermediate checkpoint of its state and calculates
the corresponding hash (steps 12a and 12b). The leecher
finds out if the log segments sent by the seeder and the
current state (after executing Li+1) match the hashes pro-
vided by this replica (step 12c).

If the check succeeds for f replicas, the reached state
is valid and the CST protocol can finish (step 13). If
the validation fails, the leecher fetches the data from the
(f + 2)-th replica, which includes the log segments L1,
..., L f+2 and checkpoint Cf+2 (step 13 goes back to step
8). Then, it re-executes the validation protocol, consider-
ing as extra validation information the hashes that were
produced with the data from the (f + 1)-th replica (step
9). Notice that the validation still requires f +1 matching

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 175

1. Look at the local log to discover the last executed agreement;

2. Fetch the id of the last executed agreement from n− f replicas
(including itself) and save the identifier of these replicas;

3. id = largest agreement id that is available in f +1 replicas;

4. Using id, P and n, order the replicas (including itself) with the
ones with most recent checkpoints first;

5. V ← /0; // the set containing state and log hashes

6. For i = 1 to f do:

(a) Fetch Vi = �HL1, ...,HLi,HCi� from i-th replica;

(b) V ←V ∪{Vi};

7. r ← f +1; // replica to fetch state

8. Fetch Sr = �L1, ...,Lr,Cr� from r-th replica;

9. V ←V ∪{�H(Sr.L1), ...,H(Sr.Lr),H(Sr.Cr)�};

10. Update state using Sr.Cr;

11. v ← 0; // number of validations of Sr

12. For i = r−1 down to 1 do:

(a) Replay log Sr.Li+1;

(b) Take checkpoint C�
i and calculate its hash HC�

i ;

(c) If (Vi.HL1..i =Vr.HL1..i)∧ (Vi.HCi = HC�
i), v++;

13. If v ≥ f , replay log Sr.L1 and return; Else, r++ and go to 8;

Figure 6: The CST recovery protocol called by the leecher af-
ter a restart. Fetch commands wait for replies within a timeout
and go back to step 2 if they do not complete.

log segments and checkpoints, but now there are f + 2
replicas involved, and the validation is successful even
with one Byzantine replica. In the worst case, f faulty
replicas participate in the protocol, which requires 2 f +1
replicas to send some data, ensuring a correct majority
and at least one valid state (log and checkpoint).

In the scenario of Figure 5(b), the 3rd replica (the
(f +1)-th replica) sends L1, L2, L3 and C3, while the 2nd

replica only transmits HL1 = H(L1), HL2 = H(L2) and
HC2 = H(C2), and the 1st replica sends HL1 = H(L1)
and HC1 = H(C1). The leecher next replays L3 to get to
state C3 + L3, and takes the intermediate checkpoint C�

2
and calculates the hash HC�

2 = H(C�
2). If HC�

2 matches
HC2 from the 2nd replica, and the hashes of log segments
L2 and L1 from the 3rd replica are equal to HL2 and HL1
from the 2nd replica, then the first validation is success-
ful. Next, a similar procedure is applied to replay L2 and
the validation data from the 1st replica. Now, the leecher
only needs to replay L1 to reach the state corresponding
to the execution of request id.

While the state transfer protocol is running, replicas
continue to create new checkpoints and logs since the
recovery does not stop the processing of new requests.
Therefore, they are required to keep old log segments and
checkpoints to improve their chances to support the re-
covery of a slow leecher. However, to bound the required

storage space, these old files are eventually removed, and
the leecher might not be able to collect enough data to
complete recovery. When this happens, it restarts the al-
gorithm using a more recent request id (a similar solution
exists in all other state state transfer protocols that we are
aware of, e.g., [6, 8]).

The leecher observes the execution of the other repli-
cas while running CST, and stores all received messages
concerning agreements more recent than id in an out-
of-context buffer. At the end of CST, it uses this buffer
to catch up with the other replicas, allowing it to be re-
integrated in the state machine.

Correctness. We present here a brief correctness argu-
ment of the CST protocol. Assume that b is the actual
number of faulty (Byzantine) replicas (lower or equal to
f) and r the number of recovering replicas.

In terms of safety, the first thing to observe is that CST
returns if and only if the state is validated by at least
f +1 replicas. This implies that the state reached by the
leecher at the end of the procedure is valid according to
at least one correct replica. To ensure that this state is
recent, the largest agreement id that is returned by f +1
replicas is used.

Regarding liveness, there are two cases to consider.
If b + r ≤ f , there are still n − f correct replicas run-
ning and therefore the system could have made progress
while the r replicas were crashed. A replica is able to
recover as long as checkpoints and logs can be collected
from the other replicas. Blocking is prevented because
CST restarts if any of the Fetch commands fails or takes
too much time. Consequently, the protocol is live if cor-
rect replicas keep the logs and checkpoints for a suffi-
ciently long interval. This is a common assumption for
state transfer protocols. If b+ r > f , then there may not
be enough replicas for the system to continue process-
ing. In this case the recovering replica(s) will continu-
ously try to fetch the most up to date agreement id from
n− f replicas (possibly including other recovering repli-
cas) until such quorum exists. Notice that a total system
crash is a special case of this scenario.

Optimizing CST for f = 1. When f = 1 (and thus
n= 4), a single recovering replica can degrade the perfor-
mance of the system because one of n− f replicas will be
transferring the checkpoint and logs, delaying the execu-
tion of the agreements (as illustrated in Figure 7(a)). To
avoid this problem, we spread the data transfer between
the active replicas through the following optimization in
an initial recovery round: the 2nd replica (f + 1 = 2)
sends C2 plus �HL1,HL2� (instead of the checkpoint plus
full log), while the 1st replica sends L1 and HC1 (instead
of only hashes) and the 3rd replica sends L2 (instead of
not participating). If the validation of the received state

7

176 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

���

���

������������� ������������� �������������

���

���

��� ���

���

��� ���

���

��
��

(a) General CST.

���

���

������������� ������������� ������������

���

���

��� ���

���

��� ���

����

��
��

(b) Optimized CST.

Figure 7: General and optimized CST with f = 1.

fails, then the normal CST protocol is executed. This
optimization is represented in Figure 7(b), and in §5 we
show the benefits of this strategy.

Simplifications for crash faults. When the SMR only
needs to tolerate crash faults, a much simpler version of
CST can be employed. The basic idea is to execute steps
1-4 of CST and then fetch and use the checkpoint and log
from the 1st (most up to date) replica, since no validation
needs to be performed. If f = 1, a analogous optimiza-
tion can be used to spread the burden of data transfer
among the two replicas: the 1st replica sends the check-
point while the 2nd replica sends the log segment.

4 Implementation: Dura-SMaRt

In order to validate our techniques, we extended the
open-source BFT-SMaRt replication library [1] with a
durability layer, placed between the request ordering
and the service. We named the resulting system Dura-
SMaRt, and used it to implement two applications: a con-
sistent key-value store and a coordination service.

Adding durability to BFT-SMaRt. BFT-SMaRt orig-
inally offered an API for invoking and executing state
machine operations, and some callback operations to
fetch and set the service state. The implemented pro-
tocols are described in [35] and follow the basic ideas
introduced in PBFT and Aardvark [6, 10]. BFT-SMaRt
is capable of ordering more than 100K 0-byte msg/s
(the 0/0 microbenchmark used to evaluate BFT proto-
cols [17, 25]) in our environment. However, this through-
put drops to 20K and 5K msgs/s for 1kB and 4kB mes-
sage sizes, respectively (the workloads we use – see §5).

We modified BFT-SMaRt to accommodate an inter-
mediate Durability layer implementing our techniques at
the server-side, as described in Figure 8, together with
the following modifications on BFT-SMaRt. First, we
added a new server side operation to deliver batches of
requests instead of one by one. This operation supplies
ordered but not delivered requests spanning one or more
agreements, so they can be logged in a single write by
the Keeper thread. Second, we implemented the parallel

invoke

setState
getState
s
g

�������
��������

log

��������

logBatch

�����

l

ckp

�����������������

���������������

���������������

����������
� setState
getState

execute �������tSt t t

durability
layer

execBatch
invokeST
handlerST

Figure 8: The Dura-SMaRt architecture.

checkpoints and collaborative state transfer in the Dura-
Coordinator component, removing the old checkpoint
and state transfer logic from BFT-SMaRt and defining
an extensible API for implementing different state trans-
fer strategies. Finally, we created a dedicated thread and
socket to be used for state transfer in order to decrease
its interference on request processing.

SCKV-store. The first system implemented with Dura-
SMaRt was a simple and consistent key-value store
(SCKV-Store) that supports the storage and retrieval of
key-value pairs, alike to other services described in the
literature, e.g., [11, 31]. The implementation of the
SCKV-Store was greatly simplified, since consistency
and availability come directly from SMR and durability
is achieved with our new layer.

Durable DepSpace (DDS). The second use case is
a durable extension of the DepSpace coordination ser-
vice [2], which originally stored all data only in mem-
ory. The system, named Durable DepSpace (DDS), pro-
vides a tuple space interface in which tuples (variable-
size sequences of typed fields) can be inserted, retrieved
and removed. There are two important characteristics of
DDS that differentiate it from similar services such as
Chubby [4] and ZooKepper [19]: it does not follow a
hierarchical data model, since tuple spaces are, by defi-
nition, unstructured; and it tolerates Byzantine faults, in-
stead of only crash faults. The addition of durability to
DepSpace basically required the replacement of its orig-
inal replication layer by Dura-SMaRt.

5 Evaluation

This section evaluates the effectiveness of our techniques
for implementing durable SMR services. In particular,
we devised experiments to answer the following ques-
tions: (1) What is the cost of adding durability to SMR
services? (2) How much does parallel logging improve
the efficiency of durable SMR with synchronous disk and
SSD writes? (3) Can sequential checkpoints remove the
costs of taking checkpoints in durable SMR? (4) How

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 177

does collaborative state transfer affect replica recover-
ies for different values of f ? Question 1 was addressed
in §2, so we focus on questions 2-4.

Case studies and workloads. As already mentioned,
we consider two SMR-based services implemented us-
ing Dura-SMaRt: the SCKV-Store and the DDS coordi-
nation service. Although in practice, these systems tend
to serve mixed or read-intensive workloads [11, 19], we
focus on write operations because they stress both the
ordering protocol and the durable storage (disk or SSD).
Reads, on the other hand, can be served from memory,
without running the ordering protocol. Therefore, we
consider a 100%-write workload, which has to be pro-
cessed by an agreement, execution and logging. For the
SCKV-Store, we use YCSB [11] with a new workload
composed of 100% of replaces of 4kB-values, making
our results comparable to other recent SMR-based stor-
age systems [3, 32, 37]. For DDS, we consider the inser-
tion of random tuples with four fields containing strings,
with a total size of 1kB, creating a workload with a pat-
tern equivalent to the ZooKeeper evaluation [19, 20].

Experimental environment. All experiments, includ-
ing the ones in §2, were executed in a cluster of 14 ma-
chines interconnected by a gigabit ethernet. Each ma-
chine has two quad-core 2.27 GHz Intel Xeon E5520,
32 GB of RAM memory, a 146 GB 15000 RPM SCSI
disk and a 120 GB SATA Flash SSD. We ran the IOzone
benchmark5 on our disk and SSD to understand their per-
formance under the kind of workload we are interested:
rewrite (append) for records of 1MB and 4MB (the max-
imum size of the request batch to be logged in DDS and
SCKV-Store, respectively). The results are:

Record length Disk SSD
1MB 96.1 MB/s 128.3 MB/s
4MB 135.6 MB/s 130.7 MB/s

Parallel logging. Figure 9(a) displays latency-
throughput curves for the SCKV-Store considering
several durability variants. The figure shows that naive
(synchronous) disk and SSD logging achieve a through-
put of 63 and 1017 ops/s, respectively, while a pure
memory version with no durability reaches a throughput
of around 4772 ops/s.

Parallel logging involves two ideas, the storage of
batches of operations in a single write and the execu-
tion of operations in parallel with the secondary storage
accesses. The use of batch delivery alone allowed for a
throughput of 4739 ops/s with disks (a 75× improvement
over naive disk logging). This roughly represents what
would be achieved in Paxos [24, 27], ZooKeeper [19]

5http://www.iozone.org.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

L
a

te
n

c
y
 (

m
s
e

c
)

Throughput (Kops/sec)

Naive (Disk)
Naive (SSD)

Batching (Disk)
Par. Log (Disk)
Par. Log (SSD)

Pure Memory

(a) SCKV-Store.

 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16

L
a
te

n
c
y
 (

m
s
e
c
)

Throughput (Kops/sec)

(b) Durable DepSpace.

Figure 9: Latency-throughput curves for several variants of
the SCKV-Store and DDS considering 100%-write workloads
of 4kB and 1kB, respectively. Disk and SSD logging are always
done synchronously. The legend in (a) is valid also for (b).

or UpRight [9], with requests being logged during the
agreement protocol. Interestingly, the addition of a sep-
arated thread to write the batch of operations, does not
improve the throughput of this system. This occurs be-
cause a local put on SCKV-Store replica is very efficient,
with almost no effect on the throughput.

The use of parallel logging with SSDs improves the
latency of the system by 30-50ms when compared with
disks until a load of 4400 ops/s. After this point, par-
allel logging with SSDs achieves a peak throughput of
4500 ops/s, 5% less than parallel logging with disk (4710
ops/s), with the same observed latency. This is consistent
with the IOzone results. Overall, parallel logging with
disk achieves 98% of the throughput of the pure memory
solution, being the replication layer the main bottleneck
of the system. Moreover, the use of SSDs neither solves
the problem that parallel logging addresses, nor improves
the performance of our technique, being thus not effec-
tive in eliminating the log bottleneck of durable SMR.

Figure 9(b) presents the results of a similar experi-
ment, but now considering DDS with the same durabil-
ity variants as in SCKV-Store. The figure shows that a
version of DDS with naive logging in disk (resp. SSD)
achieves a throughput of 143 ops/s (resp. 1900 ops/s),
while a pure memory system (DepSpace), reaches 14739
ops/s. The use of batch delivery improves the perfor-
mance of disk logging to 7153 ops/s (a 50× improve-
ment). However, differently from what happens with
SCKV-Store, the use of parallel logging in disk further
improves the system throughput to 8430 ops/s, an im-
provement of 18% when compared with batching alone.
This difference is due to the fact that inserting a tuple re-
quires traversing many layers [2] and the update of an hi-
erarchical index, which takes a non-negligible time (0.04
ms), and impacts the performance of the system if done
sequentially with logging. The difference would be even
bigger if the SMR service requires more processing. Fi-
nally, the use of SSDs with parallel logging in DDS was
more effective than with the SCKV-Store, increasing the

9

178 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

peak throughput of the system to 9250 ops/s (an improve-
ment of 10% when compared with disks). Again, this is
consistent with our IOzone results: we use 1kB requests
here, so the batches are smaller than in SCKV-Store, and
SSDs are more efficient with smaller writes.

Notice that DDS could not achieve a throughput near
to pure memory. This happens because, as discussed in
§3.1, the throughput of parallel logging will be closer
to a pure memory system if the time required to pro-
cess a batch of requests is akin to the time to log this
batch. In the experiments, we observed that the workload
makes BFT-SMaRt deliver batches of approximately 750
requests on average. The local execution of such batch
takes around 30 ms, and the logging of this batch on disk
entails 70 ms. This implies a maximum throughput of
10.750 ops/s, which is close to the obtained values. With
this workload, the execution time matches the log time
(around 500 ms) for batches of 30K operations. These
batches require the replication library to reach a through-
put of 60K 1kB msgs/s, three times more than what BFT-
SMaRt achieves for this message size.

Sequential Checkpointing. Figure 10 illustrates the
effect of executing sequential checkpoints in disks with
SCKV-Store6 during a 3-minute execution period.

When compared with the results of Figure 2 for syn-
chronized checkpoints, one can observe that the unavail-
ability periods no longer occur, as the 4 replicas take
checkpoints separately. This is valid both when there is
a high and medium load on the service and with disks
and SSDs (not show). However, if the system is under
stress (high load), it is possible to notice a periodic small
decrease on the throughput happening with both 500MB
and 1GB states (Figures 10(a) and 10(b)). This behav-
ior is justified because at every

⌊P
n

⌋
requests one of the

replicas takes a checkpoint. When this occurs, the replica
stops executing the agreements, which causes it to be-
come a bit late (once it resumes processing) when com-
pared with the other replicas. While the replica is still
catching up, another replica initiates the checkpoint, and
therefore, a few agreements get delayed as the quorum
is not immediately available. Notice that this effect does
not exist if the system has less load or if there is sufficient
time between sequential checkpoints to allow replicas to
catch up (“Medium load” line in Figure 10).

6Although we do not show checkpoint and state transfer results for
DDS due to space constraints, the use of our techniques bring the same
advantage as on SCKV-Store. The only noticeable difference is due to
the fact that DDS local tuple insertions are more costly than SCKV-
Store local puts, which makes the variance on the throughput of se-
quential checkpoints even more noticeable (especially when the leader
is taking its checkpoint). However, as in SCKV-Store, this effect is
directly proportional to the load imposed to the system.

 0

 1

 2

 3

 4

 0 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

High load
Medium load

(a) 500MB state.

 0

 1

 2

 3

 4

 0 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

High load
Medium load

(b) 1GB state.

Figure 10: SCKV-Store throughput with sequential check-
points with different write-only loads and state size.

Collaborative State Transfer. This section evaluates
the benefits of CST when compared to a PBFT-like state
transfer in the SCKV-Store with disks, with 4 and 7 repli-
cas, considering two state sizes. In all experiments a sin-
gle replica recovery is triggered when the log size is ap-
proximately twice the state size, to simulate the condition
of Figure 7(b).

Figure 11 displays the observed throughput of some
executions of a system with n = 4, running PBFT and
the CST algorithm optimized for f = 1, for states of
500MB and 1GB, respectively. A PBFT-like state trans-
fer takes 30 (resp. 16) seconds to deliver the whole 1 GB
(resp. 500MB) of state with a sole replica transmitter. In
this period, the system processes 741 (resp. 984) write
ops/sec on average. CST optimized for f = 1 divides
the state transfer by three replicas, where one sends the
state and the other two up to half the log each. Overall,
this operation takes 42 (resp. 20) seconds for a state of
1GB (resp. 500MB), 28% (resp. 20%) more than with
the PBFT-like solution for the same state size. However,
during this period the system processes 1809 (resp. 1426)
ops/sec on average. Overall, the SCKV-Store with a state
of 1GB achieves only 24% (or 32% for 500MB-state)
of its normal throughput with a PBFT-like state transfer,
while the use of CST raises this number to 60% (or 47%
for 500MB-state).

Two observations can be made about this experiment.
First, the benefit of CST might not be as good as ex-
pected for small states (47% of the normal throughput
for a 500MB-state) due to the fact that when fetching
state from different replicas we need to wait for the slow-
est one, which always brings some degradation in terms
of time to fetch the state (20% more time). Second,
when the state is bigger (1GB), the benefits of dividing
the load among several replicas make state transfer much
less damaging to the overall system throughput (60% of
the normal throughput), even considering the extra time
required for fetching the state (+28%).

We did an analogous experiment for n = 7 (not shown
due to space constraints) and observed that, as expected,
the state transfer no longer causes a degradation on the
system throughput (both for CST and PBFT) since state
is fetched from a single replica, which is available since

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 179

 0

 1

 2

 3

 4

 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

PBFT

CST

(a) 500MB and n = 4.

 0

 1

 2

 3

 4

 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

PBFT

CST

(b) 1GB and n = 4.

Figure 11: Effect of a replica recovery on SCKV-Store
throughput using CST with f = 1 and different state sizes.

n = 7 and there is only one faulty replica (see Figure 5).
We repeated the experiment for n = 7 with the state of
1GB being fetched from the leader, and we noticed a
65% degradation on the throughput. A comparable ef-
fect occurs if the state is obtained from the leader in CST.
As a cautionary note, we would like to remark that when
using spare replicas for “cheap” faulty recovery, it is im-
portant to avoid fetching the state from the leader replica
(as in [4, 8, 19, 32]) because this replica dictates the over-
all system performance.

6 Related Work

Over the years, there has been a reasonable amount of
work about stable state management in main memory
databases (see [16] for an early survey). In particular,
parallel logging shares some ideas with classical tech-
niques such as group commit and pre-committed transac-
tions [14] and the creation of checkpoints in background
has also been suggested [26]. Our techniques were how-
ever developed with the SMR model in mind, and there-
fore, they leverage the specific characteristics of these
systems (e.g., log groups of requests while they are ex-
ecuted, and schedule checkpoints preserving the agree-
ment quorums).

Durability management is a key aspect of practical
crash-FT SMR-like systems [3, 8, 19, 20, 32, 37]. In par-
ticular, making the system use the disk efficiently usually
requires several hacks and tricks (e.g., non-transparent
copy-on-write, request throttling) on an otherwise small
and simple protocol and service specification [8]. These
systems usually resort to dedicated disks for logging, em-
ploy mostly synchronized checkpoints and fetch the state
from a leader [8, 19, 32]. A few systems also delay state
transfer during load-intensive periods to avoid a notice-
able service degradation [19, 37]. All these approaches
either hurt the SMR elegant programming model or lead
to the problems described in §2.2. For instance, recent
consistent storage systems such as Windows Azure Stor-
age [5] and Spanner [12] use Paxos together with several
extensions for ensuring durability. We believe works like
ours can improve the modularity of future systems re-
quiring durable SMR techniques.

BFT SMR systems use logging, checkpoints, and state
transfer, but the associated performance penalties often
do not appear in the papers because the state is very
small (e.g., a counter) or the checkpoint period is too
large (e.g., [6, 10, 17, 21, 25]). A notable exception is
UpRight [9], which implements durable state machine
replication, albeit without focusing on the efficiency of
logging, checkpoints and state transfer. In any case, if
one wants to sustain a high-throughput (as reported in the
papers) for non-trivial states, the use of our techniques is
fundamental. Moreover, any implementation of proac-
tive recovery [6, 36] requires an efficient state transfer.

PBFT [6] was one of the few works that explicitly
dealt with the problem of optimizing checkpoints and
state transfer. The proposed mechanism was based on
copy-on-write and delta-checkpoints to ensure that only
pages modified since the previous checkpoint are stored.
This mechanism is complementary to our techniques, as
we could use it together with the sequential checkpoints
and also to fetch checkpoint pages in parallel from differ-
ent replicas to improve the state transfer. However, the
use of copy-on-write may require the service definition
to follow certain abstractions [7, 9], which can increase
the complexity of the programming model. Additionally,
this mechanism, which is referred in many subsequent
works (e.g., [17, 25]), only alleviates but does not solve
the problems discussed in §2.2.

A few works have described solutions for fetching dif-
ferent portions of a database state from several “donors”
for fast replica recovery or database cluster reconfigura-
tion (e.g., [23]). The same kind of techniques were em-
ployed for fast replica recovery in group communication
systems [22] and, more recently, in main-memory-based
storage [31]. There are three differences between these
works and ours. First, these systems try to improve the
recovery time of faulty replicas, while CST main objec-
tive is to minimize the effect of replica recovery on the
system performance. Second, we are concerned with the
interplay between logging and checkpoints, which is fun-
damental in SMR, while these works are more concerned
with state snapshots. Finally, our work has a broader
scope in the sense that it includes a set of complemen-
tary techniques for Byzantine and crash faults in SMR
systems, while previous works address only crash faults.

7 Conclusion

This paper discusses several performance problems
caused by the use of logging, checkpoints and state trans-
fer on SMR systems, and proposes a set of techniques
to mitigate them. The techniques – parallel logging, se-
quential checkpoints and collaborative state transfer –
are purely algorithmic, and require no additional sup-
port (e.g., hardware) to be implemented in commodity

11

180 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

servers. Moreover, they preserve the simple state ma-
chine programming model, and thus can be integrated in
any crash or Byzantine fault-tolerant library without im-
pact on the supported services.

The techniques were implemented in a durability layer
for the BFT-SMaRt library, which was used to develop
two representative services: a KV-store and a coordina-
tion service. Our results show that these services can
reach up to 98% of the throughput of pure memory sys-
tems, remove most of the negative effects of checkpoints
and substantially decrease the throughput degradation
during state transfer. We also show that the identified
performance problems can not be solved by exchanging
disks by SSDs, highlighting the need for techniques such
as the ones presented here.

Acknowledgements. Thanks to the anonymous reviewers,
John Howell and Lorenzo Alvisi, our shepherd, for the com-
ments that helped improve the paper. This work was partially
supported by the EC FP7 through project TCLOUDS (ICT-
257243), by the FCT through project RC-Clouds (PTDC/EIA-
EIA/115211/2009), the Multi-annual Program (LASIGE), and
contract PEst-OE/EEI/LA0021/2011 (INESC-ID).

References
[1] BFT-SMaRt project page. http://code.google.com/p/

bftsmart, 2012.

[2] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: a
Byzantine fault-tolerant coordination service. In EuroSys, 2008.

[3] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and
P. Li. Paxos replicated state machines as the basis of a high-
performance data store. In NSDI, 2011.

[4] M. Burrows. The Chubby lock service. In OSDI, 2006.

[5] B. Calder et al. Windows azure storage: A highly available cloud
storage service with strong consistency. In SOSP, 2011.

[6] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and
proactive recovery. ACM Transactions on Computer Systems,
20(4):398–461, Nov. 2002.

[7] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstrac-
tion to improve fault tolerance. ACM Transactions on Computer
Systems, 21(3):236–269, Aug. 2003.

[8] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live - An
engineering perspective. In PODC, 2007.

[9] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riché. UpRight cluster services. In SOSP, 2009.

[10] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[11] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
SOCC, 2010.

[12] J. Corbett et al. Spanner: Google’s globally-distributed database.
In OSDI, 2012.

[13] J. Dean. Google: Designs, lessons and advice from building large
distributed systems. In Keynote at LADIS, Oct. 2009.

[14] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and
D. Wood. Implementation techniques for main memory database
systems. In SIGMOD, 1984.

[15] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In OSDI, 2010.

[16] H. Garcia-Molina and K. Salem. Main memory database sys-
tems: An overview. IEEE Transactions on Knowledge and Data
Engineering, 4(6):509–516, Dec. 1992.

[17] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next
700 BFT protocols. In EuroSys, 2010.

[18] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software reju-
venation: analysis, module and applications. In FTCS, 1995.

[19] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for Internet-scale services. In USENIX ATC,
2010.

[20] F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance
broadcast for primary-backup systems. In DSN, 2011.

[21] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel. CheapBFT:
resource-efficient Byzantine fault tolerance. In EuroSys, 2012.

[22] R. Kapitza, T. Zeman, F. Hauck, and H. P. Reiser. Parallel state
transfer in object replication systems. In DAIS, 2007.

[23] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration
in replicated databases based on group communication. In DSN,
2001.

[24] J. Kirsh and Y. Amir. Paxos for system builders: An overview. In
LADIS, 2008.

[25] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM Transac-
tions on Computer Systems, 27(4):7:1–7:39, Dec. 2009.

[26] K.-Y. Lam. An implementation for small databases with high
availability. SIGOPS Operating Systems Rev., 25(4), Oct. 1991.

[27] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[28] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira.
Replication in the Harp file system. In SOSP, 1991.

[29] J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J. Douceur, and
J. Howell. The SMART way to migrate replicated stateful ser-
vices. In EuroSys, 2006.

[30] R. Miller. Explosion at The Planet causes major outage. Data
Center Knowledge, June 2008.

[31] D. Ongaro, S. M. Ruble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In SOSP,
2011.

[32] J. Rao, E. J. Shenkita, and S. Tata. Using Paxos to build a scal-
able, consistent, and highly available datastore. VLDB, 2011.

[33] M. Ricknäs. Lightning strike in Dublin downs Amazon, Mi-
crosoft clouds. PC World, Aug. 2011.

[34] F. B. Schneider. Implementing fault-tolerant service using the
state machine aproach: A tutorial. ACM Computing Surveys,
22(4):299–319, Dec. 1990.

[35] J. Sousa and A. Bessani. From Byzantine consensus to BFT
state machine replication: A latency-optimal transformation. In
EDCC, 2012.

[36] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verı́ssimo.
Highly available intrusion-tolerant services with proactive-
reactive recovery. IEEE Transactions on Parallel and Distributed
Systems, 21(4):452–465, Apr. 2010.

[37] Y. Wang, L. Alvisi, and M. Dahlin. Gnothi: Separating data
and metadata for efficient and available storage replication. In
USENIX ATC, 2012.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 181

1

Estimating Duplication by Content-based Sampling

Fei Xie Michael Condict Sandip Shete

{fei.xie, michael.condict, sandip.shete}@netapp.com

Advanced Technology Group, NetApp Inc.

Abstract
We define a new technique for accurately estimating the amount of duplication in a storage volume from a small
sample and we analyze its performance and accuracy. The estimate is useful for determining whether it is worth-
while to incur the overhead of deduplication. The technique works by scanning the fingerprints of every block in
the volume, but only including in the sample a single copy of each fingerprint that passes a filter. The selectivity of
the filter is repeatedly increased while reading the fingerprints, to produce the target sample size. We show that the
required sample size for a reasonable accuracy is small and independent of the size of the volume. In addition, we
define and analyze an on-line technique that, once an initial scan of all fingerprints has been performed, efficiently
maintains an up-to-date estimate of the duplication as the file system is modified. Experiments with various real
data sets show that the accuracy is as predicted by theory. We also prototyped the proposed technique in an enter-
prise storage system and measured the performance overhead using the IOzone micro-benchmark.

1 Introduction
Deduplication detects and removes duplicate data
blocks (blocks at different locations that have the same
contents) from a storage system. In a system imple-
menting perfect deduplication, only one copy of dupli-
cate data blocks is stored, but in such a way that the
user’s view of the system remains unchanged. A. El-
Shimi et al. [21] provide a nice overview of the recent
research work in the area of data deduplication.

The benefit of deduplication in a primary storage sys-
tem varies for different workloads. For certain work-
loads that have a low level of duplication, one would
turn off the deduplication feature to avoid its effect on
I/O performance and to avoid the metadata overhead of
deduplication. It is desirable to have an efficient and
effective deduplication estimator to allow customers to
quickly estimate the deduplication benefit on their pri-
mary data sets before they turn on deduplication, and to
allow the storage system to prioritize the scheduling of
deduplication tasks for different data sets.

Existing deduplication estimators are either not fast
enough or not accurate enough. A simple but intrusive
and time-consuming way to discover the benefit of
deduplication is to actually turn on deduplication. If the
benefit is not satisfactory, deduplication can be reverted.
Alternatively, one could roughly estimate the potential
benefit of deduplication based on the type of workload.
This approach often does not produce accurate esti-
mates, since it does not look at the content of data.

Taking the content into account, one could attempt to
estimate the level of duplication by reading a small ran-
dom sample of the data set, and calculating the amount
of duplication in it. This is much harder than it sounds,
because of the large error in estimating the true number
of occurrences of an item that only occurs once or twice
in the sample. Furthermore, it has been proven that for
any random-sampling-based estimation function, there
are block-frequency distributions that cause it to be
very inaccurate, unless the sample percentage is very
large fraction of the data [1].

We defined and implemented an accurate and light-
weight deduplication-estimation technique for a prima-
ry storage system. At a very high level, the technique
samples the blocks based on the block fingerprint value,
and only selects the fingerprints that satisfy some predi-
cate on their value (i.e., a filter). That is, any two
blocks with the same fingerprint are either both includ-
ed in the sample or both excluded from the sample.
This is why the sample is said to be content-based.

The remainder of this paper consists of a comparison to
previous work (Section 2), an analysis of the algorithm
(Section 3), a discussion of the design and implementa-
tion of the system (Section 4), a performance study
(Section 5), and our conclusions (Section 6).

2 Related Work
Many commercial storage vendors provide deduplica-
tion estimators to allow customers to estimate potential
space savings. A popular approach is to use rule-of-

182 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

2

thumb estimation methods which involve looking at
metadata information like the type of data set, the fre-
quency that data is changed, annual data growth rate,
data retention, etc., which tend to influence deduplica-
tion ratios [11]. Many commercial estimators [9], [10]
have adopted this method. Note that these estimators do
not access the actual data in order to calculate the esti-
mates, and so, can sometimes be extremely inaccurate.

The problem of estimating the duplication in a data set
can be thought of as estimating the number of distinct
block values in the set, given that the total number of
blocks in use is known. This means that solutions to the
latter problem can be applied to the former.

Distinct elements estimation is a well-studied problem,
and frequently appears in literature concerning data-
streaming algorithms, statistics, and databases. P.B.
Gibbons [8] looks at many previous approaches to dis-
tinct value estimation and the difficulties with them. In
the database world, the early literature has extensively
studied sampling techniques, which involve gathering a
uniform random sample of the data, and using it to ap-
proximately answer distinct-value queries on relational
databases [5, 6, 7]. Although these estimators use so-
phisticated techniques to handle various input distribu-
tions, they are all unable to guarantee good accuracy for
their estimates [1, 4]. Charikar et al. [1] proved this
formally, establishing a strong negative result, namely
that no estimator can guarantee a small error for all
possible input distributions unless it examines a large
fraction of the input data. Raskhodnikova et al. [2] and
Valiant et al. [3] further provided near-linear and sub-
linear lower bounds, respectively, on the sample size
required for the estimate. The conclusion is that, in or-
der to ensure high-accuracy, distribution-independent
estimates, it is necessary to examine almost the entire
data set.

Estimation algorithms that require scanning all the data
once are referred to as single-pass algorithms. Flajolet
and Martin, in their seminal work [12], presented the
first single-pass algorithm for distinct values estimation
in a large collection of data using small limited storage.
Their probabilistic counting algorithm uses hash func-
tions to map set of values to bitmap vectors, such that
each distinct value maps to the ith bit in the vector with
2–(i+1) probability. Alon et al. [13] further build upon
this work and proposed more practical hash functions,
space bounds and provable error guarantees on their
estimates. This line of research continues with more
space/time efficient algorithms and better estimates of
distinct values [14, 15]. Some similar approaches use
adaptive sampling, which continuously maintain a
bounded-size up-to-date sample of distinct values for

the purpose of providing a very quick estimate of the
cardinality of the data set [17, 18, 26]. Our sampling
technique is in many respects similar to these.

D. Harnik et al. [19] are the first in the area of storage
deduplication to provide a provably accurate two-phase
algorithm for a one-time estimate of deduplication rati-
os, using very low storage space. Our technique differs
from theirs in that, after a single pass over existing data
for the initial estimate, it uses an adaptive technique to
incrementally maintain an up-to-date estimate that takes
into account any changes to the data.

3 Theory
Consider a data set consisting of a group of data blocks
(of fixed size or variable size) with possible duplicates.
We are interested in estimating the percentage of space
that can be saved by deduplication. Thus, we define the
deduplication ratio R as follows.

We assume a hash function that generates a fingerprint
for each data block. The proposed content-based sam-
pling applies a modulo-based filter to all the block fin-
gerprints of a data set. A block fingerprint passes the
filter and is added to the sample iff:

Where the divisor M is an integer greater than 1, and
the remainder X is an integer between 0 and M - 1.
Throughout this paper, we refer to M as the filter divi-
sor. The idea is to split the fingerprint space into M
partitions, and to use one of the partitions in the esti-
mate. More specifically, the total size of the distinct
(deduplicated) blocks in the sample is used to estimate
the total size of the distinct blocks in the entire data set.

Assume there are K different block sizes in the data set.
The sample can be partitioned into K groups of identi-
cal-sized blocks. Assume the ith (i = 1…K) block group
in the sample has ni distinct blocks of size si. Let Ni
denote the total number of distinct blocks of size si in
the data set. Let be the size in byte of the distinct
blocks in the data set. The estimate of S, denoted by S*,
is defined as:

 ∑

The deduplication ratio can be estimated as S*/Sdata_set,
where Sdata_set is the size of the data set before dedupli-
cation, which is known before the. In the case of fixed-
size blocks, we can ignore the block size and count only
the number of distinct blocks in the sample. Figure 1
illustrates the idea of content-based sampling.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 183

3

The main theoretical result of this work is the relation-
ship between the filter divisor and the accuracy of the
estimate. Define the relative error of the estimate as

We show that if the fingerprinting algorithm has good
uniformity and negligible collision probability, the rela-
tive error follows a normal distribution with zero mean
(i.e., the estimate is unbiased) and known variance.

Figure 1. Illustration of the Content-based sampling

We assume a storage system that maintains a relatively
strong fingerprint for data blocks, so that we can ignore
the impact of collisions. A previous work in the net-
working domain [16] takes collisions into account in
the estimate. As shown in that work, the expected error
introduced by collisions (which always causes an un-
derestimate) is computable from the size of the uncor-
rected estimate S*. Thus, we could apply these results
to correct for collisions, if necessary.

Theorem 1. Assume the fingerprinting has the uni-
formity property and negligible collision probability.
For large Ni (i = 1,.., K), err has a normal distribution
with zero as the mean and ̅ as the variance,
where ̅ is defined as ̅ ∑

 .

The proof of Theorem 1 is in Appendix A. The α-β ac-
curacy of the estimate is defined as:

Definition of α-β accuracy. Given α and β (α, β [0,
1]), the relative error err satisfies the following condi-
tion.

 | |
The relationship between M and the α-β accuracy is
described in the following theorem.

Theorem 2. M satisfies the α-β accuracy if:

 ̅ (1)

where erf-1() is the inverse of the Gauss error function
and ̅ is defined in Theorem 1 (proof in Appendix B).

To have the smallest possible sample size, one would
choose the largest M that satisfies a given accuracy re-

quirement. However, S and ̅ are not known before the
estimation. In practice, we could address this problem
as follows. Variable-size chunking algorithms (e.g.,
[24]) typically have a known average block size, which
can be used to approximate ̅. Also, ̅ is known for the
fixed-size blocks case. Rewrite inequality (1) as:

 ̅
 (2)

The left side of (2) could be approximated by the total
size of distinct blocks in sample (distinct block count in
the fixed-size blocks case), which is countable during
the sampling. The minimum “distinct sample size” that
satisfies (2) is called the target sample size. Table 1
gives some α, β values and the corresponding target
sample size in number of blocks. As long as there are
enough distinct blocks in the sample, we can increase
the selectiveness of the filter to reduce sample size in
the following Adaptive Sampling Approach.

During the sampling process, the ratio of the distinct
block count in sample to the target sample size is peri-
odically monitored. If the ratio is greater than 2, we find
the largest power of two that is less than or equal to the
ratio (denoted as f). M and X are updated as follows:

Step 1:
Step 2

The function rand(f) generates a random integer be-
tween 0 and . This allows us to randomly choose
a fingerprint partition while we aggressively divide the
fingerprint space. Finally, we remove the unqualified
blocks from the existing sample, and continue the sam-
pling with the new, more restrictive filter.

TABLE 1. Target sample size vs α-β accuracy

Target sample size α β

270 0.1 0.9

1843 0.06 0.99

12030 0.03 0.999

1513670 0.01 0.9999

4 Design and Implementation
We chose an enterprise-class network-attached storage
system as the reference system in which to implement
the estimation technique. The system uses a log-
structured file system [22] with 4KB blocks. Individual
data blocks of a file can be identified by a file handle
together with an offset within the file (called a file
block number). Our implementation estimates the num-
ber of unique data blocks in a volume. Ignoring the
initialization delay due to the one-time full-volume scan,
an up-to-date estimate can be returned on-demand with-

184 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

4

in a couple of minutes, no matter how large the volume
is. A large part of the recurring maintenance runs in the
background, in a non-intrusive fashion.

Figure 2. System Components

The major modules built into the reference storage sys-
tem are depicted in Figure 2. The change logging is a
software module that samples data blocks during the
consistency point. Metadata blocks are not sampled.
The storage system computes a 64-bit variant of the
Adler checksum [23] for each block as the RAID
checksum. This checksum, available at the time of a
consistency point, is used as the fingerprint. Existing
blocks in the volume are sampled by a scanner module.
The sample is stored in a fingerprint sample file (FPS).
The FPS contains a header and a sequence of entries
(20 bytes per entry) in the format of {file handle, file
block number, fingerprint}.

The estimation operation merges the sample from
change logging to the FPS, and updates the estimate
accordingly. File swapping is used in the merging, so
that the ongoing change logging process is not affected.
After merging, we count the distinct blocks by sorting
the FPS. We remove stale entries (i.e., blocks removed
or over-written) before counting. This is done by com-
paring the fingerprint in the entry with the fingerprint of
the real block. We maintain a stale inode cache during
the validation, to reduce the number of unnecessary
block-read attempts.

Adaptive sampling is triggered at the end of the estima-
tion operation. Once the filter divisor increases, the
change logging produces a smaller sample. The FPS is
shrunk as well. The initial value of M can be set by the
user. The initial value of X is chosen randomly.

The estimation operation is triggered if we have enough
data in the change logs or there is file deletion in the
volume (i.e., volume size decrease). These conditions
are checked periodically. This ensures minimum impact
to read-intensive workloads.

5 Performance Study
We studied the accuracy of our estimate using real-
world data sets (see TABLE 2). Given a data set, we
compared the empirical error’s standard deviation and
the theoretical ones, for various values of M. There
were 1000 data points for each empirical statistics, gen-
erated by varying the remainder X from 0 to 999. We
tested estimations over both 4KB fixed-size blocks, and
variable-size blocks [24]. The variable block size is
between 2KB and 8KB. The true deduplication ratio
was obtained as follows. In the case of variable-size
blocks, we trust the results of deduplicating over the
MD5 hash values of the blocks. For fixed-size blocks,
we deduplicated the data set in a NetApp® system.

TABLE 2. Information of the data sets

Names Size Dedupe
Ratio Description

Corp. Web 1.5TB ~50% Corporate web directory

Debian 260GB ~60% 2-month Debian build

Sharepoint 29GB ~18% Corporate Sharepoint

We consistently saw good matches between the empiri-
cal results and the theoretical results, for both the varia-
bles-size and fixed-size cases (see Figure 3 for details).
For the sake of space, we only report selected results in
this paper.

Figure 3. Accuracy test result

The evaluations of the prototype were done using a
NetApp FAS 3070 storage system running Data ON-
TAP® 8.1 [25]. IOzone [20] was chosen as the synthet-
ic I/O trace generator, since it can generate traces with
duplicated content. The storage system exported a NFS
v3 volume to the trace-generating client.

There are two major types of test, namely 64KB se-
quential write and 64KB sequential read. All the tests
were set to 50% inter-file duplication and 0% intra-file
duplication. Five files are accessed in parallel in the
tests, which saturated a 1GB network link. The dedupli-
cation ratio of the synthetic data set is 0.6. Every 4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 185

5

minutes, the system checked whether the estimation
operation should be triggered. Every 5 seconds, the
storage system sampled the CPU usage, number of
64KB I/O per second (IPOS), disk read rate, and disk
write rate. A single test run lasted for about 80 minutes.
There were 15 test runs for a single setting.

Figure 4. CDF for normalized CPU usage and IOPS

We first look at the results for 64KB sequential writes.
We only report the cumulative distribution function
(CDF) curves of CPU usage and IPOS in Figure 4. As
expected, the estimation test consumes more CPU and
has less IOPS, compared to the base case. Besides these
results, our data shows that the average changes in CPU
usage, IOPS, and disk reads are less than 0.5% for all
the tested target sample sizes. The average disk read
rate increases from 1% to 4% as the target sample size
increases from 1000 to 15000. The additional disk
reads are mainly contributed by the random disk access
from the counting module.

Figure 5. Latency histogram for both read and write tests

There is no significant impact to the system in the se-
quential read test. This is because the estimation code
has negligible overhead for a read-only workload. The
CDF results are not reported due to space limitations.
Figure 5 plots the client-side latency histogram reported
by IOzone. This plot shows that estimation’s impact to
the I/O latency is also negligible.

We also studied the estimation accuracy of our adaptive
sampling in the 64KB sequential write case. Figure 6
plots the results in one test run. As the volume size

grows, the filter divisor is doubled while the corre-
sponding distinct block count in the sample floats be-
tween 2500 and 1000. M was initially set to 4096. The
error is high at the beginning due to the small sample
size, and remains below 5% later.

Figure 6. Adaptive sampling in one experiment run.

6 Concluding Remarks
The main contribution of this work is a method that
estimates duplication in a storage system with statisti-
cally guaranteed accuracy using a single scan of the
data set. It is also notable for requiring only a small,
fixed amount of memory resources for a given level of
accuracy, independent of the size of the volume. This
makes it amenable to efficient in-line use and to main-
tain an accurate estimate in the face of a rapidly chang-
ing data set, which allows storage users to better assess
the utility of data deduplication. We implemented the
technique as a practical enhancement to a commercial
storage system, and confirmed that the accuracy was
within the statistically expected range for a variety of
real-world data sets. The performance impact of our
technique was found to be less than a few percent.

7 References
[1] M. Charikar, et al. Towards Estimation Error Guarantees for

Distinct Values. Proceedings of the 19th ACM Symposium on
Principles of Database Systems. ACM, New York, 2000.

[2] S. Raskhodnikova, et al. Strong Lower Bounds for Approximat-
ing Distribution Support Size and the Distinct Elements Prob-
lem. SIAM Journal on Computing, pages 813-842, 2009.

[3] G. Valiant, and P. Valiant. Estimating the Unseen: An n/log(n)-
sample Estimator for Entropy and Support Size, Shown Optimal
via New CLTs. In the 43rd ACM Symposium on Theory of
Computing, STOC, pages 685-694, 2011.

[4] S. Chaudhuri et al. Random sampling for histogram construc-
tion: How much is enough? In Proc. ACM SIGMOD Interna-
tional Conf. on Management of Data, pages 436–447, June 1998.

[5] P. J. Haas, et al. Sampling-based estimation of the number of
distinct values of an attribute. In Proc. 21st International Conf.
on Very Large Data Bases, pages 311–322, September 1995.

[6] G. Ozsoyoglu, et al. On estimating COUNT, SUM, and AV-
ERAGE relational algebra queries. In Proc. Conf. on Database
and Expert Systems Applications , pages 406–412, 1991.

186 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

6

[7] F. Olken. Random Sampling from Databases. PhD thesis, Com-
puter Science, U.C. Berkeley, April 1993.

[8] P. B. Gibbons. Distinct-values estimation over data streams. In
Manuscript, 2009.

[9] http://www.emcemearegistration.com/tapereplace/esquare/calcu
lator.php - EMC Data Domain

[10] http://www.itcalc.com/ - NetApp Inc.

[11] https://www.snia.org/sites/default/files/Understanding_Data_De
duplication_Ratios-20080718.pdf

[12] P. Flajolet et al. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci. 31(2): 182-209 (1985).

[13] N. Alon et al. The space complexity of approximating the fre-
quency moments. ACM STOC, 1996, pp. 20–29.

[14] P. Flajolet, et al. Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In AOFA 2007.

[15] D. M. Kane et al. An optimal algorithm for the distinct elements
problem. In PODS, pp. 41–52, 2010.

[16] C. Estan, G. Varghese, and M. E. Fisk. Bitmap algorithms for
counting active flows on high-speed links. IEEE/ACM Transac-
tions on Networking, 14(5):925-937, 2006.

[17] P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. VLDB‘01, pp 541–550

[18] Counting distinct items over update streams. ACM Journal
Theoretical Computer Science 378(3):211-222, 2007

[19] D. Harnik et al. Estimation of deduplication ratios in large data
sets. In Mass Storage Systems and Technologies (MSST), 2012

[20] IOzone Filesystem Benchmark http://www.IOzone.org/

[21] A. El-Shimi et al. Primary Data Deduplication -- Large Scale
Study and System Design. USENIX ATC ’12.

[22] D. Hitz et al. File system design for a file server appliance. In
USENIX Technical Conference, 1994, pages 235–245

[23] P. Corbett el al. Row-Diagonal Parity for Double Disk Failure
Correction. In Proceedings of the 2004 Usenix FAST, pp: 1- 14.

[24] E. Kave et al. A Framework for Analyzing and Improving Con-
tent-Based Chunking Algorithms No. HPL-2005-30R1.

[25] www.netapp.com/us/library/technical-reports/tr-3982.html

[26] A. Chen & A. Cao. Distinct counting with a self-learning bit-
map. IEEE ICDE ‘09. Pages 1171–1174.

Appendix A
Denote the total number of distinct fixed-size blocks in
the sample and data set as nd and Nd , respectively.

Lemma 1. Assume the fingerprint has uniformity prop-
erty and negligible collision probability. For large Nd ,
err has a normal distribution with zero as the mean and
 as the variance.
Proof: Because of good uniformity, any fingerprint in
the data sets has 1/M probability to be sampled. Since
the collision is negligible, the number of distinct fin-
gerprints is approximately equal to the number of dis-
tinct blocks in the sample. The sampling can be treated
as a Bernoulli trail of length Nd and successful rate 1/M.

The number of successes in the trail is equal to nd.
Therefore nd follows a binomial distribution. Based on
the definition of err, it can be represented as:

When Nd is large, the distribution of nd can be approxi-
mated as a normal distribution with E[nd] = Nd / M and
Var[nd] = . Therefore err follows a
normal distribution of zero mean and as
the variance.

Proof of Theorem 1: The sample in the variable-size
blocks case can be seen as a group of K fixed-size block
samples. According to Lemma 1, when Ni is large, ni
has a normal distribution: E[ni] = Ni / M and Var[ni] =
 . Since S* is a linear combination of ni
(i = 1,…,K), S*

 also follows a normal distribution with

 [] ∑
 and []

∑
 .

Since , it also has a normal distribu-
tion. E[err] is simply zero. The variance is calculated as:

 []
[]
 ∑

 ∑

 ̅

This proves the theorem.

Appendix B
Proof: The proof of this theorem is simply based on the
Empirical Rule of the normal distribution. Since the
error has a normal distribution, the accuracy of the es-
timation has the following property.

 (| | √ []) (√)

, where erf() is the error function and is a constant.
Substitute the variance of err from Theorem 1, we have:

 (| | √ ̅) (√)

We substitute with √ in the above ine-
quality, which yields:

 (| | √ √ ̅)

This means that as long as:

 ̅

the estimation satisfies α-β accuracy.

NetApp, the NetApp logo, Go further, faster, and Data
ONTAP are trademarks or registered trademarks of
NetApp, Inc. in the United States and/or other countries.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 187

MutantX-S: Scalable Malware Clustering Based on Static Features

Xin Hu1 Sandeep Bhatkar2 Kent Griffin2 Kang G. Shin3

1 IBM T.J. Waston Research Center 2 Symantec Research Labs 3 University of Michigan, Ann Arbor

Abstract
The current lack of automatic and speedy labeling of a
large number (thousands) of malware samples seen ev-
eryday delays the generation of malware signatures and
has become a major challenge for anti-virus industries.
In this paper, we design, implement and evaluate a novel,
scalable framework, called MutantX-S, that can effi-
ciently cluster a large number of samples into families
based on programs’ static features, i.e., code instruction
sequences. MutantX-S is a unique combination of sev-
eral novel techniques to address the practical challenges
of malware clustering. Specifically, it exploits the in-
struction format of x86 architecture and represents a pro-
gram as a sequence of opcodes, facilitating the extrac-
tion of N-gram features. It also exploits the hashing
trick recently developed in the machine learning com-
munity to reduce the dimensionality of extracted feature
vectors, thus significantly lowering the memory require-
ment and computation costs. Our comprehensive eval-
uation on a MutantX-S prototype using a database of
more than 130,000 malware samples has shown its abil-
ity to correctly cluster over 80% of samples within 2
hours, achieving a good balance between accuracy and
scalability. Applying MutantX-S on malware sam-
ples created at different times, we also demonstrate that
MutantX-S achieves high accuracy in predicting labels
for previously unknown malware.

1 Introduction
According to the Symantec’s latest Internet Threat Re-
port, 403 million new variants of malware were created
in 2011, a 41% increase from 2010. This exponential
growth of malware samples has created a major challenge
for anti-virus (AV) companies: how to efficiently process
this huge influx of new samples and accurately labels
them? It is practically impossible to manually analyze
several thousands of suspicious samples received every
day. As a result, a large fraction of samples are left un-
labeled, which delays the signature generation. One pos-
sible solution is to automatically cluster malware sam-
ples and assign them labels according to their similarities.
The intuition is that malware programs bearing signifi-
cant similarities are likely to have been derived from the
same code base, and hence from the same malware fam-
ily. One can thus group similar malware and label them

with high accuracy by analyzing only a few representa-
tive samples. Moreover, the label of a new sample can be
automatically derived and previous mitigation techniques
can be re-used if it is determined to belong to an exist-
ing family. Therefore, accurate clustering plays a crucial
role in helping AV companies categorize large amount
of incoming samples by avoiding duplicate work and en-
abling malware analysts to prioritize limited resources on
novel and representative samples [17, 12, 7]. In this pa-
per, we design, implement and evaluate MutantX-S, a
novel and scalable system, that can efficiently cluster a
large number of malware samples into families based on
their static features, i.e., code instruction sequences.

Many existing malware clustering/classification sys-
tems are based on dynamic behavioral features such as
runtime API or system call traces [6, 7, 24]. The major
benefit of using dynamic behavioral features is that they
are less susceptible to mutation schemes frequently em-
ployed by malware writers to evade binary analysis, e.g.,
packing or obfuscation. However dynamic-feature-based
approaches also suffer from several limitations. First,
they may have only limited coverage of an application’s
behavior, failing to reveal the entire capabilities of a given
malware program. This is because a dynamic analysis
can only capture API or system call traces corresponding
to the code path that was taken during a particular exe-
cution. Different code paths may be taken in different
runs, depending on the program’s internal logics and/or
external environments. Also, malware often include trig-
gers in their programs and exhibit an interesting behav-
ior only when certain conditions are met. For example
bot programs wait for commands from botmasters and
some malware are designed to launch attacks on a certain
time. Although there exists work that forces a program
to run all code paths [21], they are too expensive to an-
alyze large amount of malware. Second, dynamic analy-
sis is inherently resource-intensive and doesn’t scale well.
With limited resource and the sheer number of malware,
a dynamic-analysis system can execute and monitor each
sample only for a short period of time, e.g., a couple of
minutes. Unfortunately, this time is often too short for
typical malware to reveal all their true behavior.

In this paper, we present MutantX-S, a new and prac-
tical system that exploits static features of code instruc-
tion sequences for efficient and automatic malware clus-

188 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

tering and labeling. MutantX-S is motivated by the
common observation that majority of today’s malicious
programs are variations of a relative small number of
malware families and thus share similar instruction se-
quences. Analyzing static features of malware offers sev-
eral unique benefits. First, it has the potential to cover all
possible code paths, yielding more accurate representa-
tions of the entire functionalities of the program. More-
over, approaches based on static features are much more
scalable than their dynamic counterparts, as they do not
require resource-intensive and time-consuming monitor-
ing of program behavior. This is particularly important
for AV companies to process a rapidly-increasing number
of new malware samples. Unfortunately, static analysis is
well-known to suffer from run-time packing and obfus-
cation techniques. Therefore, the goal of MutantX-S is
not to replace existing dynamic-behavior-based systems,
but to complement them to achieve higher clustering ac-
curacy and better coverage of malware programs.
MutantX-S features a unique combination of tech-

niques to address the deficiencies of static malware anal-
ysis. First, it tailors a generic unpacking technique to
handle run-time packers without needs to know its spe-
cific packing algorithm. Second, it employs an efficient
encoding mechanism that exploits the IA32 instruction
format to encode a program into opcode sequences that
are resilient to low level mutations. In addition, it applies
a hashing-trick and a close-to-linear clustering algorithm
to allow MutantX-S to efficiently handle large num-
ber of malware with very high dimensional features. We
have successfully implemented a fully-automated proto-
type of MutantX-S and evaluated its performance using
over 130,000 distinct malicious programs. Our evalua-
tion demonstrates MutantX-S’ efficiency and efficacy
of creating clusters corresponding to malware families
and accurately predicting labels for new malware.

The rest of the paper is organized as follows. Section 2
surveys related work of malware analysis. Section 3
describes the architecture of MutantX-S followed by
elaboration of all subcomponents including unpacking
(Section 4), feature extraction (Section 5) and clustering
(Section 6). The performance evaluation is presented in
Section 7. Section 8 discusses the limitation and potential
improvement, and Section 9 concludes the paper.

2 Related Work
Malware pose one of the severest threats to computer sys-
tems and the Internet. Various schemes have been pro-
posed to automatically cluster/classify malware based on
either dynamic behavior or features.

Dynamic-analysis approaches have the major benefit
of handling obfuscated malware samples based on their
runtime system or API calls. Lee and Mody [18] used
a sequence of runtime events (e.g., registry and file sys-

tem modifications) to cluster similar malware programs.
Rieck et al. [23] applied SVM (Support Vector Machine)
to learn the frequency of run-time behavior, and classi-
fied unknown samples to their closest kin. Later, Bai-
ley et al. [6] applied a hierarchical clustering algorithm
to group similarly-behaving malware samples. Unfor-
tunately, the complexity of this clustering algorithm is
O(n2), limiting its applicability only to a small number
of samples. To address this problem, Bayer et al. [7] and
Rieck et al. [24] developed different methods to scale the
clustering. Bayer et al. [7] applies locality-sensitive hash-
ing (LSH) to efficiently compute an approximate hierar-
chical clustering with a significantly smaller number of
distance computations. By contrast, Rieck et al. [24] ap-
plied a prototype-based clustering algorithm that reduces
the runtime complexity by performing clustering only on
representative samples. Comparing to LSH clustering, a
prototype-based algorithm facilitates the analysis of be-
havior groups because each prototype represents a partic-
ular malware group [24]. In MutantX-S, we adopt the
same prototype-based algorithm as in [24] because of its
efficiency and explicit expression of malware features.

Static analysis, on the other hand, uses features ex-
tracted directly from malware binaries. Christodorescu
et al. [8] discovered malicious patterns from disassem-
bled malware that are resilient to obfuscation. Wich-
erski [30] utilizes static features from PE headers, e.g.,
entry point, import table, etc., to group malware pro-
grams. Karim et al. [13] demonstrates the effectiveness
of N-gram and N-perm on assembly instructions by using
them to study the malware evolution. Similar features
have also been used in [15] to validate various learning
methods. MutantX-S falls into the static-analysis cat-
egory since it relies on features extracted from the mal-
ware instructions. MutantX-S differs from previous
approaches in its unique combination of novel techniques
to improve its scalability in handling very large malware
datasets. Another independently developed system sim-
ilar to MutantX-S is BitShred [12] which also focuses
on malware comparison and triage on a large scale. How-
ever, BitShred compares malware using their byte se-
quences which is susceptible to binary level obfuscation.

3 Architecture
Figure 1 shows an overview of MutantX-S. At a high
level, MutantX-S takes a set of malicious or suspicious
samples as input and extracts their features using static
analysis to avoid the computational overhead and maxi-
mize code coverage. Specifically, MutantX-S first uses
existing tools (e.g., PeID1 [3]) to identify malware files
that are likely processed by packing tools such as UPX

1a popular packer detection tool that currently detect more than 470
different packer signatures in executables

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 189

[28], ASPack [5]. These files will be unpacked with a
generic unpacking technique tailored for MutantX-S.
Together with samples that are in their original binary
(not packed), they are disassembled to code instructions.
These pre-processing steps ensure that features inherent
to malware families can be successfully extracted without
influence of encryption or compression. Then, all mal-
ware samples are processed with three steps to extract
representative features: (1) Instruction Encoding for con-
verting each instruction to a sequence of operation codes
that capture the underlying semantics of the programs,
(2) N-gram analysis for constructing feature vectors used
to compute program similarities, and (3) Hashing Trick
for compressing the feature vectors, which significantly
improves the speed of similarity computation with only
a small penalty in accuracy. Finally, a prototype-based
clustering algorithm is applied on compressed feature
vectors and partitions samples into clusters, each repre-
senting a group of similar malware programs.

Figure 1: A system overview of MutantX-S

4 Generic Unpacking Algorithm
Run-time packing is arguably the most popular tech-
niques used by malware writers to circumvent anti-virus
detection. More than 80% of malware programs are es-
timated to be packed [10]. A typical packer like UPX
works as follows. UPX first compresses all the code and
data sections of a portable executable (PE) binary2 into a
single section. Then, it creates a new PE binary contain-
ing the compressed data followed by the unpacker code.
The entry point in the new PE header is altered to point
to the unpacker code such that when the packed program
runs the unpacker will first be executed . The unpacker
decompresses the original program codes into memory
and then jump to the first instruction of the restored codes
(i.e., the original entry point) to resume execution. This
packing process enables malware programs to disguise
their malicious instructions as random-looking data while
keeping the original functionality intact. Since all static
analysis tools including MutantX-S rely on features
extracted from original instructions, it is imperative for
them to handle packing correctly and efficiently.

While there exist unpacking tools such as UPX itself,
ArmaGedoon, etc., they are often targeted specifically at

2PE is the executable file format used by Windows OS

one or a few packers. As more packers appear in the
wild, the cost of manually reverse-engineering packers
and continually updating unpacking tools is expected to
grow over time. In addition, unpacking tools often have
to perform expensive processing to ensure that the un-
packed program can be successfully executed (e.g., the
PE headers and imported tables must be correctly recon-
structed), making them too slow for large scale process-
ing. MutantX-S, on the other hand, need not guaran-
tee the executability of unpacked programs as long as
the original instructions can be inspected and features ex-
tracted. MutantX-S thus exploits this advantage and
tailors a generic unpacking mechanism to meet the partic-
ular need for efficient malware clustering. The basic idea
is to use the inherent property of the unpacking proce-
dure, i.e., a packed binary has to write the unpacked code
into some memory space and transfer control to the mod-
ified memory locations to continue execution. By contin-
uously monitoring memory accesses, we can learn the oc-
currence of some form of unpacking, self-modification or
on-the-fly code generation if the program executes code
at a memory address after writing into it. These written-
then-executed memory pages likely contain the original
instructions and thus are the targets of MutantX-S.

The unpacking component of MutantX-S exploits
the physical non-execution (NX) support in modern x86
CPUs to track memory page status. It consists of a kernel
driver responsible for tracking system calls and a user-
level component that is injected as a remote thread into
a program’s address space. The unpacking component
does two things: (1) runs the packed binary and dumps
the memory image of the running process at an appro-
priate time when the binary is likely to finish unpack-
ing, and (2) determines the correct original entry point
(OEP) for the dumped image. Finding the correct OEP
is critical for correct program disassembling and feature
extraction. A wrong entry point may cause a disassem-
bler to miss all the instructions between the original and
the misidentified entry points (if there is no other refer-
ence to this portion of codes). In addition, if the entry
point is incorrectly set in the middle of an instruction, the
disassembler will fail or generate completely wrong as-
sembly codes. The unpacking process is summarized in
Algorithm 1 and elaborated below:
1. MutantX-S loads the packed program, suspends its
execution and injects the user-level hooking DLL into the
process’ memory space. It marks all the memory pages as
executable but non-writable, and resumes its execution.
2. During the execution, when the unpacker attempts
to write unpacked codes into memory (which has been
marked as non-writable), a write exception will occur.
MutantX-Smarks the page as dirty and changes its per-
mission to writable but non-executable.
3. When the unpacker jumps to the the newly-generated

190 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

code for execution (e.g., after finishing unpacking), the
non-executable permission on these pages triggers an ex-
ecution exception. MutantX-S intercepts the exception
and records the memory address where it occurred. For
simple packers (e.g. UPX) that first unpack the entire
program and then jump to the restored codes for execu-
tion, the memory address where the exception occurs is
the OEP (original entry point). However, this is not nec-
essarily true for more sophisticated packers (e.g., self-
modifying code that rewrite to the same memory loca-
tion). Hence, MutantX-S removes the write permission
from these memory pages again, grants execution privi-
lege and continues execution. MutantX-S also moni-
tors dynamic allocation of memory pages and removes
their write permission to track unpacking on these pages.
4. MutantX-S dumps the process memory image either
at the end of program execution or after certain time. The
rationale is that after the program has been running for a
sufficient amount of time (e.g., 1 minute), it is fairly safe
to assume that the program has finished unpacking and
the original codes are placed in the memory.

Algorithm 1 MutantX-S unpacking algorithm
1: Input: A packed binary program B
2: Output: A unpacked PE file with original program codes
3:
4: Load the packed program into memory
5: for all p in the program’s memory pages do
6: Permission(p)|= W̃ //remove write permission
7: end for
8:
9: while B is running and Truntime < Tthresh do

10: a: The address of the page fault
11: t: The page fault type t ∈ {WRITE, EXECUTE}
12: p ← Page(a)
13: if t = WRITE then
14: Permission(p)| = (W |X̃) // Writable but non-

executable
15: last written(p)← current time
16: end if
17: if t = EXECUTE then
18: Permission(p)| = (W̃ |X) //non-writable but exe-

cutable
19: last exec(p)← current time
20: addr exec(k)← a
21: end if
22: end while
23:
24: Dump process memory
25: reconstruct B′ by setting OEP to be addr exec(k) where:
26: k = argmink(last exec(k)> max(last written(i))
27: return B′

With the dumped memory image, MutantX-S cre-
ates a valid PE file from which a standard disassembler
can disassemble instructions. As mentioned earlier, the

major challenge in creating a valid PE file is to identify
the correct entry point in the PE header. For simple pack-
ers like UPX, the entry point is simply the start address
of the dirty memory page where the first execution ex-
ception occurs. Unfortunately, as adversaries become in-
creasingly sophisticated, various evasion schemes have
been developed to obfuscate OEP. A typical method is to
fake end-of-unpacking by writing rouge instructions into
a reserved memory page, transfer control to it, and jump
back to the unpacker code. More advanced packers use
incremental unpacking that decrypts only part of the pay-
load and executes them before decrypting more instruc-
tions. In such cases, detecting the first execution excep-
tion is not enough because only rouge instructions or part
of the original program is visible. To address these prob-
lems, we developed a new heuristic called LMFE (Last
Modification First Execution).

The idea is to keep track of time when the last write
exception and a subsequent execution exception occur on
each memory page, so MutantX-S can identify the un-
packer’s attempts to write to the same memory page mul-
tiple times, in which case, the previous modification and
execution on the page are likely to be spurious. More
specifically, for each memory page, MutantX-S keeps
a record of: 1) last modification time (i.e., a write excep-
tion occurred), denoted as last written; 2) last execution
exception time, denoted as last exec; and 3) the address
addr exec where the exception had occurred. At any
point of execution, there are 3 types of memory pages:
Type I: memory pages that have valid last written and
last exec, i.e., pages that have been both modified and
executed.
Type II: memory pages that have valid last written but
not last exec, i.e., pages that have been modified but not
executed. They could either be page containing tempo-
rary data or code pages that have not yet been executed.
Type III: memory pages that have neither valid
last written nor valid last exec. These could be initial-
ized data-section pages or unpacker-code pages.

Essentially, type-I memory pages are those that hold
the unpacked instructions and thus contain the OEP.
When dumping the process memory, MutantX-S uses
the following algorithm to pinpoint the correct OEP.
Let P(i), i = 1..n represent all type-I memory pages
and last written(i), last exec(i) and addr exec(i) re-
spectively represent the time of the last write exception,
last execution exception and address where the exception
occurred for page P(i). Then, the OEP is addr exec(k) in
the memory page P(k) where

k = argmin
k

(last exec(k)> max(last written(i)) (1)

where i = 1..n. In other words, P(k) is the first memory
page that is executed after all type-I memory pages have
been written. Below we show that the heuristic is able

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 191

to find the correct OEP (i.e. addr exec(k)) even when
the packers try to fool the MutantX-S using spurious
write-and-execute sequences or multi-layer packing.

Proposition. For k satisfying Eq. (1), addr exec(k) is the
correct OEP of the original program no matter whether
the program is packed with simple packers or more ad-
vanced packers that fake the end of unpacking.
Proof. First, for simple packers like UPX that restore
the entire program into memory before executing it, let
P(j), j = 1..m denote memory pages where the unpacker
writes the original program codes. Without loss of gener-
ality, we can assume that the contents are written sequen-
tially from P(1) to P(k), meaning that last written(1) <
last written(2) < .. . < last written(m). When the
packer finishes unpacking and starts executing the re-
stored program by jumping to the OEP, an execu-
tion exception will first occur in the page P(k) that
contains the OEP, i.e., last exec(k) > last written(m)
and last exec(k) < last exec(j)∀ j �= k. As a result,
addr exec(k) is the correct OEP.

Second, assume a more advanced packer with the
following spurious unpacking sequence: it writes arbi-
trary instructions into some memory page, executes them
and, at the end of execution, returns to the unpacker
code. Such a routine may be called multiple times dur-
ing the entire unpacking process. As a result, an un-
packing tool cannot assumes that unpacking ends at the
first (or first few) execution exception. MutantX-S is
resilient to this type of evasion by enforcing the invari-
ant that the execution exception on the OEP must suc-
ceed all the write exceptions. For example, when the
spurious unpacking routing touches memory page P(s),
MutantX-S records last exec(s) and marks P(s) as ex-
ecutable but un-writable. Then, the unpacker resumes
the normal unpacking and writes more decrypted instruc-
tions to memory page P(t) (t could be any page including
s). This creates a new write exception on P(t) at times-
tamp last written(t). Note that because last exec(s) <
last written(t), the heuristic determines s to not contain
the OEP. In contrast, after the packer finishes unpacking
and transfers control to the real OEP, the execution excep-
tion satisfies Eq. (1). By keeping addr exec up-to-date
and pointing to a valid instruction, MutantX-S is able
to keep track of the real OEP accurately. Same arguments
hold for multi-layer packing because the write exceptions
of code pages will always precede the executable excep-
tions caused by jumping to the OEP.

5 Feature Extraction
With the correct OEP identified, MutantX-S recon-
structs a new PE file with dumped memory images. The
correct OEP ensures a proper starting point to disassem-

Figure 2: x86 instruction format

ble instructions and MutantX-S uses the IDA Pro3 to
disassemble a malware program into a sequence of ma-
chine instructions that are then used for feature extrac-
tion. The key step in MutantX-S is the similarity
comparison between malware samples based on the dis-
assembled instruction sequences, e.g., move eax, ebx;
cmp eax, 1h. The main challenge in similarity compar-
ison lies in handling the variations of machine instruc-
tions. Malware often undergo changes for many reasons,
such as mutation, polymorphism, and obfuscation where
semantically-equivalent instruction sequences are used to
replace each other. Hence, ensuring exactness in compar-
ing instructions will not tolerate any variation in the syn-
tax. At the other extreme, correctness is compromised if
all forms of variation are tolerated. MutantX-S strikes
a balance between these two extremes by exploiting the
x86 instruction format (Fig. 2) and uses the opcode as a
succinct representation of the instruction semantics.

Using opcodes—instead of other features used be-
fore, such as control flow graphs, binary sequences or
mnemonic sequences—offers several benefits. First, op-
codes generalize well to represent variants of a malware
family. Malware in the same family are often derived
from the same code base and thus share similarities in
their instructions. However, due to relinking, rebind-
ing and rebasing, the operands (e.g., registers, mem-
ory addresses) of instructions tend to change across the
variants. Using opcodes and ignoring the operands (i)
make MutantX-S more resilient to low-level mutations
while providing a meaningful characterization of seman-
tics and (ii) reflect the functionality of the malware pro-
grams. Second, previous approaches often use mnemonic
sequences (e.g., mov, push) to represent the instruction
functionalities and address the variability of operands.
From the evaluation of MutantX-S, we discover that the
opcode sequence offers a better representation of instruc-
tion semantics. Mnemonics sometimes overly general-
ize the underlying CPU operations, causing instructions
with distinct semantics to appear similar. To illustrate
this, consider all the instructions in Table 1. Although
all of them have the same mnemonic (i.e., mov), the un-
derlying functionalities are drastically different. For in-
stance, moving a value to a control or debug register of-

3the de-facto disassembler for the analysis of hostile code

192 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

ten indicates a critical OS operation, such as interrupt
control, switch addressing mode or enable/disable debug-
ging, etc., which should not be treated the same as mov-
ing a value between registers. Ideally, moving data from
memory to a register (memory load operation) should
also be considered as a distinct operation from that of
moving from a register to memory (memory store oper-
ation). Unfortunately, using mnemonics would cause all
these distinct instructions to be represented with a single
feature (i.e., mov), which may lead to an accidental sim-
ilarity between code sequences. As illustrated in Fig. 3,
however, features based on opcode provide higher distin-
guishability between semantically different instructions,
thus yielding better clustering accuracy.

Op Instruction Description
89 MOV r/m32, r32 Move from reg to mem/reg
8B MOV r32, r/m32 Move from mem/reg to reg
B8 MOV r32, imm32 Move immediate val to reg
0F 20 MOV r32, CR0-CR4 Move from control reg to reg
0F 22 MOV CR0-CR4,r32 Move from reg to control reg
0F 21 MOV r32, DR0-DR7 Move from debug reg to reg
0F 23 MOV DR0-DR7,r32 Move from reg to debug reg

Table 1: Op (Opcodes) provides fine-grain representa-
tions of instruction semantics

Figure 3: Two code pieces with different semantics share
same mnemonic representation (i.e., move, cmp, jnz).
However, they can be differentiated by their opcode rep-
resentation: ”0F 21 3D 75” vs ”8B 3D 75”

.
With this encoding scheme, a program is represented

as a sequence of opcodes (Fig. 4). MutantX-S uses
the standard N-gram analysis to characterize the content
of a malware program, i.e., moving a fixed-length win-
dow over the sequence and considering a subsequence
of length N at each position. The resulting N-gram of
opcodes reflects short instruction patterns and implic-
itly captures the underlying program semantics. Then,
MutantX-S constructs a feature vector V in an |S|-
dimensional space (|S| = |O|N where O is the set of all
possible opcodes). Each dimension of V is the number
of occurrences of a particular opcode N-gram. Then,
MutantX-S can geometrically calculate the similarity
between two malware programs (m, v) as the Euclidean
distance between their feature vectors in the vector space:

d(m,n) = ‖Vm −Vn‖ =

√
∑|S|

i=1(Vm(i)−Vn(i))2. Com-
pared to the other similarity metrics (e.g., locality-based
hashing), geometric calculation of similarity in the vector

space provides explicit feature representation [24] where
the importance or contribution of each N-gram in clus-
tering malware can be traced back to its original code
patterns. For N-grams that may correspond to inherent
characteristics of a malware family (e.g., those that ap-
pear frequently within a family but rarely in others), their
original code segments can be traced back and used as
signatures to detect variants.

Figure 4: Encoding a function into a feature vector

6 Clustering Algorithm
The next step in MutantX-S is clustering malware sam-
ples into groups that share common traits. Considering
the enormous amount of malware in the wild, the goal of
MutantX-S is to process hundreds of thousands mal-
ware files sufficiently fast. Unfortunately, classic clus-
tering algorithms such as hierarchical and partitioning-
based clustering, e.g., K-Means or K-Medoids—although
they have been successfully applied to cluster malware
behaviors and programs [6, 13]—incur a time complex-
ity at least quadratic in the number of samples, which
in practice, does not scale to the MutantX-S’ target.
MutantX-S exploits two approaches to address the scal-
ability issue: (1) a hash kernel that compresses the high
dimensional feature vector into a low dimensional space,
and (2) a prototype-based clustering algorithm that has
close-to-linear runtime complexity.

6.1 Hashing Kernel

Kernel methods [25] are powerful tools used in machine
learning to allow operation in the high-dimensional fea-
ture space without having to compute the coordinates of
the data in that space. This is particularly useful when
the input data has a non-linear decision boundary but
can be linearly separated in a high dimensional feature
space. In MutantX-S, however, we have encountered
the opposite problem: the original space is very high-
dimensional4. The number of dimensions D determines
the complexity when computing the vector distance and
D increases exponentially with N in N-gram (i.e. D =
|O|N where |O| is the number of different opcodes and in
practice |O|> 200). Therefore even a small N like 3 will
result in a (very sparse) feature vector with more than 8
million dimensions, which is computationally prohibitive
when calculating similarities for large amount of malware

4thus, the input data are likely already linearly separable

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 193

samples. Unfortunately, N has to be at least 3 or 4 to be
descriptive enough for capturing the program semantics.
MutantX-S addresses the problem by exploiting the

hashing-trick recently developed in the machine learning
community[26], which hashes the high dimensional input
vector x ∈ Rn into a lower dimensional feature space Rm

with the mapping function φ : X → Rm. Since m � n,
the hashing trick reduces a feature vector to a more com-
pact representation, allowing the clustering algorithm to
handle a large volume of data, and save both computation
and memory requirements. Previous research has shown
that the hash kernel approximately preserves the vector
distance and the penalty incurred from using a hash for
reducing dimensionality only grows logarithmically with
the number of samples and groups [26, 14].

Specifically, MutantX-S applies a uniform hash
function H : {N-gram} → [1..m] that hashes N-gram di-
rectly into a position in the feature vector of length m. In
case of a collision where two or more N-grams map to
the same position, the sum of their counts is used as the
value in the new vector. More formally, for malware M
and M′, let v and v′ represent their original feature vector
extracted from the encoded opcode sequences and ξ de-
note the mapping from the N-gram (o1,o2, . . . ,oN)∈ S to
the index in v. We define the hash feature map φ as

φi(v) = ∑
l:H(o)=i,l∈S

v(ξ (o))

and the distance between M and M′ as

dφ (M,M′) = ‖v− v′‖φ = ‖φ(v),φ(v′)‖.

The choice of m, the length of the low dimensional vec-
tor, is a trade-off between clustering accuracy and stor-
age overhead plus computation complexity. Choosing a
smaller m means shorter vector length, thus, faster dis-
tance computation and smaller memory footprint to store
malware features. However, decreasing m increases the
collision possibility, leading to over-compression of fea-
tures and negative impact of the clustering accuracy.

6.2 Prototype-Based Clustering
Classic clustering algorithms typically incur a complex-
ity that is super-linear in the size of the input data.
For example, the running time for two most widely-
used clustering algorithms k-means and hierarchical clus-
tering are O(nkd) [4] and O(n2logn) [19], resulting in
the computation time that is prohibitively large for the
number of malware we have to deal with. Instead,
MutantX-S adopts the prototype-based close-to-linear
clustering algorithm[24].

Despite their simplicity, Prototype-based algorithms
have been empirically shown to be very effective and
often one of the best performers in real data [11].

Prototype-based clustering extracts a set of prototypes
each of which serves as the representative for a small
group. The remaining data points are associated with
their closest prototype in the feature space. The key idea
of Prototype-based algorithm is to perform computation
(e.g. clustering) only on the prototypes which are a small
subset of original data points, thus reducing the computa-
tion time significantly. The algorithm comprises 2 steps.

Prototype extraction: The quality of final clusters de-
pends on the choice of the prototypes. Well-positioned
prototypes can accurately capture the distribution of in-
put data and allows creating accurate class boundaries in
the feature space. Unfortunately, determining the optimal
number and positions of prototypes is NP-hard and an
approximate algorithm by Gonzàlez [9] was commonly
used to iteratively select prototypes. During each itera-
tion, the data point with the largest distance to existent
prototypes is selected as the next prototype (the first pro-
totype is selected randomly). The process repeats until
the distance from all the data points to their nearest pro-
totype is smaller than a predefined threshold Pmax, i.e., all
the data points are located within a certain radius from
their closest prototypes. The run-time complexity of this
algorithm is O(kn) where k is the number of prototypes
selected. Since k only depends on the distribution of the
data (in this case, k is proportional to the amount of mal-
ware families), with a reasonable choice of Pmax the algo-
rithm is linear in the number of input data n.

Clustering with prototypes. Instead of working on the
huge number of original data, the algorithm performs
agglomerative hierarchical clustering only on the proto-
types. Specifically, the algorithm starts with individual
prototypes as singleton clusters, successively merges two
closest clusters, and terminates when the distance be-
tween the closest clusters is larger than a predefined dis-
tance threshold Mind . Then, prototypes within the same
cluster are assigned the same cluster label and subse-
quently propagate the label to their associated data points.
Because each prototype is a good representation of its as-
sociated data points (all within a radius of Pmax), the al-
gorithm avoids expensive distance computation between
the original data points without too much loss in the
overall accuracy. The respective run-time complexities
of clustering and propagation steps are O(k2log k) and
O(n). Compared to the O(n2log n) complexity of ap-
plying an hierarchical clustering algorithm on the origi-
nal data points, this algorithm achieves a speed-up with a
factor of at least (n/k)2.

7 Experimental Evaluation
We now evaluate MutantX-S’ efficiency and accuracy
using two data sets: (1) a reference data set containing
4821 malware files whose labels are generated by se-
curity experts from a large anti-virus company and thus

194 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

more reliable; and (2) a large malware data set collected
from an online malware archive [29] which comprises
132,234 malware samples with unreliable labels derived
from AV scanners. The reference data set includes mal-
ware samples from 20 different families and their distri-
butions are given in Table 2. Considering its reliable la-
beling, the reference set is used to evaluate and fine-tune
the empirical parameters for the MutantX-S’ clustering
engine while the larger set is used to assess its scalability.

Family # Family # Family #
Pilleuz 500 Bredolab 301 Tidserv 59
Koobface 496 Vundo 249 Waledac 34
Silly 489 Almanahe 241 Ackantta 32
Fakeav 489 Sasfis 199 Mebroot 26
Zbot 459 Graybird 166 Hotbar 21
Banker 449 Gammima 126 Qakbot 17
Virut 361 Mabezat 107

Table 2: Malware families of the reference data set

7.1 Effectiveness of Unpacking Engine
To evaluate the effectiveness of MutantX-S’s unpack-
ing component, we select and then pack a malware pro-
gram with 8 popular packers. We then unpack them with
MutantX-S and compare unpacked files with the origi-
nal version. Ideally, the unpacked binary should be byte-
to-byte identical to the original file. However, this is nei-
ther possible (MutantX-S does not reconstruct the im-
port table, and the unpacker code is also dumped from the
memory), nor necessary for the purpose of malware clus-
tering. As a result, we compared the unpacked files with
the original one using two metrics: (i) the difference in
their instruction count (IC), and (ii) the distance between
their N-gram feature vectors (NG), because they are di-
rectly related to clustering accuracy. Table 3 summa-
rized the results. For most packers, the MutantX-S suc-
cessfully recovered their original binaries with only a 1–
6% increase of ICs which is often due to the inclusion
of unpacker routines in the dumped memory. Besides,
the feature vectors of unpacked binaries are very sim-
ilar to those of the original binary with most normal-
ized distance measurements below 0.1, where 0 means
identical and 1 means completely different. However,
MutantX-S also failed on certain packers. In partic-
ular, the memory dump of Armadillo-packed malware
sample still contains a packed version of the binary. A
further investigation showed that Armadillo works by un-
packing an intermediate executable on disk and creating
another process to run this executable [20]. Therefore,
memory dump of an Armadillo-packed file does not con-
tain original instructions. After running MutantX-S on
the larger data set, we have also observed other causes
of unsuccessful unpacking, such as malware samples re-

fusing to run in a virtual machine or the time required
for unpacking is longer than the threshold. Nevertheless.
MutantX-S’ generic unpacking technique is still effec-
tive against popular packers without requiring any spe-
cialized knolwedge of packing algorithms.

Packer Diff in NG Packer Diff in NG
IC (%) Dist IC (%) Dist

PEcompact 0.88% 0.068 ASprotect 6.70% 0.133
EXECryptor 3.20% 0.176 UPX 0.88% 0.068
EXEStealth 0.88% 0.071 NSPack 0.87% 0.069
VMprotect 2.50% 0.10 Armadillo - -

Table 3: Unpacking effectiveness (IC: Instruction Count;
NG Dist: N-gram Difference)

7.2 Malware Clustering Accuracy
We first evaluate and calibrate MutantX-S against the
reference data set. All of our evaluations were done
on a Ubuntu 10.4 machine with Core i7 3.0G CPU and
12GB memory. We use precision and recall as the main
metrics to assess the accuracy of MutantX-S. Sup-
pose that with respect to the original labels (i.e., fam-
ily names in Table 2), n input malware samples can
be grouped into a set of clusters O = {O1,O2, . . . ,Oo}.
Assume MutantX-S outputs a set of clusters C =
{C1,C2, . . . ,Cc}. Then, precision P measures how well
individual clusters agree with the original classes (i.e., the
exactness of clusters), and recall R measures how much
the malware classes are scattered across the clusters (i.e.,
the completeness of each cluster). Formally, we define

P =
1
n

c

∑
i=1

max(|Ci ∩O1|, |Ci ∩O2|, . . . , |Ci ∩Oo|)

R =
1
n

o

∑
j=1

max(|O j ∩C1|, |O j ∩C2|, . . . , |Oi ∩Cc|)

P will be 1 if all the samples in every cluster Ci are
from the same family and R will be 1 if all malware sam-
ples from the same family fall into a single cluster (but
not necessarily the only family in this cluster). Fig. 5
shows the precision and recall of MutantX-S’s cluster-
ing with varying thresholds Pmax and Mind (defined in
Section 6). The experiment uses 4-gram and 12 hash bits
(i.e., the 4-gram is mapped into 212 hash bins).

From the figure, we observe that MutantX-S is able
to cluster the samples with the precision ranging from
0.72 to 0.89 (average=0.80). The precision number is
smaller than those reported in previous dynamic-behavior
approaches, e.g., 0.996 in [24] and 0.984 in [7]. We con-
jecture that this difference may be due to different mal-
ware sets (and possibly incorrect labeling) used in our
experiments and the reason for the higher accuracy of
dynamic-behavior approaches is also likely due to their
high-level generalization of behavior at the cost of longer

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 195

0.2
0.4

0.6
0.8

0.2 0.4 0.6 0.8 1

70

75

80

85

90

Mind

Clustering Precision

Pmax

Pr
ec

is
io

n

0

0.5

1 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Mind

Clustering Recall

Pmax

R
ec

al
l

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

1

0

10

20

30

40

Pmax

Running Time of Clutering

Mind

Se
co

nd
s

Figure 5: Precision, recall and running time of MutantX-S

running time and limited coverage as discussed in Sec-
tion 1. Therefore, MutantX-S can provide an alter-
native way of categorizing malware and is complemen-
tary to the behavior-based analysis with better scalabil-
ity while maintaining reasonably good accuracy. In-
deed, Fig. 5 shows that it takes only less than 30 sec-
onds to complete the clustering for the entire reference
dataset (we also ran the K-mean and hierarchical clus-
tering on the same dataset which respectively took 32.3
seconds with precision 0.75 and 51.3 seconds with pre-
cision 0.82). In addition, we observe that the recall of
MutantX-S is around 0.3 and 0.4. However, this low
value of recall is not surprising, because there often ex-
ists significant diversity across malware variants. For
instance, we observed that one variant in Vundo fam-
ily is 10 times larger in terms of file size than the other
Vundo variant. This is possibly due to mislabeled sam-
ples, unidentified packers or heavily-obfuscated binaries.
Because of the highly diverse variants, MutantX-S of-
ten breaks one family into several sub-families, resulting
in a low recall, e.g., MutantX-S creates more than 50
clusters for the reference dataset which contains 20 fam-
ilies according to the labels. Albeit less ideal, a break-
down into sub-families is acceptable in practice, e.g., pre-
dicting labels for unknown samples as we will show later.

Another observation from these results is that Pmax (the
threshold for distances from data points to their near-
est prototypes) has a greater influence on the clustering
speed, since a smaller Pmax forces the algorithm to find
more prototypes to cover all the data points, thus requir-
ing more computation. On the other hand, Mind has a
major impact on the clustering accuracy. Increasing Mind
reduces the precision, because a smaller inter-cluster dis-
tance threshold will stop the prototype-merging process
earlier which reduces the probability of combining unre-
lated prototypes into a larger cluster. However, the price
for this is the over-fitting of clustering, i.e., the algorithm
tends to create several small clusters. Hence, a trade-off
has to be empirically made, as in our later experiments.

7.3 Validity of the Hashing Trick
The main concern in using the hashing trick is the pos-
sible loss of information due to the compression of high
dimensional features into a lower dimensional space. To
evaluate the efficacy of hashing trick, we use different
number of hash bins to cluster the reference data set.
The hash function used in MutantX-S is MurmurHash
2.0 [1], a simple hash implementation with uniform value
distribution, high throughput, and good collision resis-
tance. As comparison, we also ran MutantX-S on the
original feature vectors without the hashing trick, which
serves as the baseline benchmark and best-possible result
achievable without information loss.

Figure 6 compares the precision, clustering time and
peak memory requirements with different hash sizes (the
number of hash bins ranging from 28 to 216 and no hash).
Different bars represent the results generated by different
parameter combinations. From the left figure, we find
that as the hash size increases, the precision improves
because the collision probability reduces. In fact, when
the hash size is large enough, the probability of colli-
sion becomes so negligible that the hashed features vec-
tor perform the same as the original ones. For instance,
with more than 212 hash bins, the clustering achieves al-
most the same precision, 0.864, as the original features
P = 0.868. However, as the hash size becomes smaller,
the impact of collision starts to surface. When the num-
ber of hash bins reduces to 28 = 256, the precision drops
significantly (less than 0.5) for some parameter combi-
nations, due to collision of many critical features (e.g.,
features indicative of different families are now mapped
to the same hash bin) In this regard, a larger hash size is
preferable. On the other hand, the middle and right fig-
ures in Figures 6 show that a small hash size is very effec-
tive in reducing the algorithm’s running time and memory
footprints. This is because smaller number of hash bins
means shorter feature vectors which require less mem-
ory for storage and fewer CPU cycles to compute the dis-
tance. For instance, as the hash size decreases from 16
bits to 8 bits, the required running time drops from al-
most 2 minutes to less than 10 seconds and memory re-
quirement from 800 Mbytes to less than 100 Mbytes, at

196 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 6: Precision, time, and peak memory with hash bin number ranging from 28 to
216 and with no hash trick .

0 .3 0 .4 0 .5 0 .6 0 .70 .7

0 .75

0 .8

0 .85

0 .9

3 gram
4 gram
5 gram
6 gram

Figure 7: Precision of clus-
tering with different N.

the cost of precision. In practice, a 12-bit hash function
is found to be a good compromise, reducing the time and
memory requirements by over 80% while still keeping
good accuracy5. Figure 6 also shows that as the number
of malware increases, the hashing trick becomes critical.
Without it, the memory requirement could quickly be-
come prohibitively high.

7.4 Impact of N-gram on Performance
Intuitively, as N increases, N-gram becomes more de-
scriptive, providing better distinguishability. However,
this comes at the cost of exponential increase in the di-
mensionality of the resulting feature vectors (mN where
m is total number of different opcodes), as well as the
required storage and computation time. Therefore, previ-
ous work that uses N-gram based approaches commonly
chose small N (3 or 4). Fortunately, the hashing trick en-
ables us to compress the feature vectors and evaluate the
performance of large N. Figure 7 summarizes the result.

From Figure 7, one can observe that use of a larger N
value indeed improves the precision, e.g., 4- and 5-grams
achieve better precision than 3-gram since larger grams
can better capture the underlying instruction semantics.
However, the figure also shows that 6-gram performs the
worst. This is because the number different 6-grams (i.e.,
over 6.4 ∗ 1012) is too large for the 12-bit hash function
(4096 hash bins), leading to a large number of collisions
between irrelevant features. In MutantX-S, we have
chosen 4-gram, because the improvement provided by 5-
gram is not large enough to warrant the additional storage
and computation overheads.

7.5 Scalability of MutantX-S

In this subsection, we evaluate the scalability and accu-
racy of MutantX-S on the large malware data set with
over 130,000 samples. We ran MutantX-S on the en-
tire set with different parameters and plotted the results
in Fig. 8. The right figure shows the amount of time for
clustering the entire set. the value Pmax seems to have a

5Hence, unless specified otherwise, throughout the paper, the exper-
iments are performed with a 12-bit hash function

more significant impact on the running time. For exam-
ple, when Pmax is set to 0.5, the clustering takes less than
1 hour which is almost half of the time when Pmax is set
to 0.2. As mentioned before, Pmax determines the number
of prototypes extracted from the input data which deter-
mines the total number of distance computations required
for clustering. Although a larger Pmax leads to a shorter
running time, the left plot in Fig. 8 illustrates the cor-
relation between a large Pmax and the reduced clustering
precision, i.e., increasing Pmax from 0.2 to 0.5 reduces
the precision by almost 10%. This can be explained as
follows: a large Pmax allows each prototype to cover a
large portion of the space, thus increasing the possibil-
ity of including samples from irrelevant families. With
a reasonable setting (e.g., Mind = 0.5 and Pmax = 0.4),
MutantX-S is able to complete the clustering of over
130K malware in less than 1.5 hours with the precision
close to 0.82.6 The peak memory usage is around 3.6GB.
These results indicate that MutantX-S is very efficient
in handling a large number of samples and thus has the
potential to keep up with the huge influx of malware vari-
ants received nowadays.

Figure 8: Precision and running time of MutantX-S’s
clustering over 130K samples

7.6 Predicting Labels of Unknown Mal-
ware

So far, we have evaluated MutantX-S using the data
set of known malware families. In a realistic scenario,
e.g., in AV companies, MutantX-S is more likely to
be used to analyze new incoming malware and predict
their family labels. In such a scenario, incoming malware

6The recall for the large data set is around 0.25 because of breaking
the samples from large malware families into relatively small groups.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 197

are analyzed and labeled according to their association
with the closest kin in the previously-analyzed samples.
To simulate this situation, we need a chronological or-
der of malware samples according to their creation time.
We extract the creation time for each malware from their
IMAGE FILE HEADER. IMAGE FILE HEADER is a
standard header in the PE file and contains a timestamp
field that is set by the compiler at the compilation time.
We use this timestamp to bucket malware programs into
months and select one year worth of malware (more than
40,000 unique samples). Fig. 9 shows the distribution of
the number of new malware samples across all months.
Next, we use these malware to simulate the process of
determining the labels for new incoming samples.

0 2000 4000 6000
1
2
3
4
5
6
7
8
9

10
11
12

Number of new malware

M
on

th

Figure 9: Number of new
samples in each month used
to evaluate prediction capa-
bility

7 8 9 10 11 120

0 .2

0 .4

0 .6

0 .8

1

Test Month

A
cc

ur
ac

y

Predict with all previous months
Predict with previous 6 months
Predict with first 6 month

Figure 10: Accuracy in ap-
plying MutantX-S to pre-
dict family labels for un-
known malware

Specifically, we separate the malware program into
training set and testing set based on their creation time
in order to simulate the scenario where AV companies
have analyzed the malware from the training set and try
to predict the labels for newly-received malware (test
set). The test set consists of malware samples from each
month between July and December (these months are
“test months”). Then, we choose 3 different training sets.
For the first training set, we use samples from all months
from January to one month before the test month. For in-
stance, if the test month is September, the training months
are January through August. For the second training set,
we use 6 months prior to the test month, i.e., if Septem-
ber is the test month, March through August will be the
training months. Finally, as a controlled experiment, we
keep the the first 6 months (i.e., January through June)
as the training month regardless of test months. Given
any training set, MutantX-S creates a set of clusters Ci
(i= 0,1, . . . ,n). Each cluster has a label L(Ci) determined
by the majority family labels of the constituent malware
samples. Then MutantX-S determines the family label
L(x j) of the new sample x j in the test month based on the
label of the cluster that is closest to x j, i.e., L(x j) = L(Ci)
where d(x j,Ci) =min(d(x j,Ck))∀k = 0,1, . . . ,n. We then
compare this predicted family label with the original la-
bel of x j, and plot the percentage of correctly predicted
samples in Fig. 10. The first observation from the figure

is that malware are constantly evolving and the informa-
tion obtained from previous clustering can become obso-
lete quickly, as shown by the bottom green line where we
kept on using the same first 6 months as the training data
and the prediction accuracy degraded rapidly from 0.7 in
July to below 0.4 in December. In contrast, if we use the
full history as the training data, the accuracy stays con-
sistently in the 0.7–0.8 range (the top red line in Fig. 10),
thanks to the up-to-date information from the recent mal-
ware. However, in reality, due to the resource (e.g., stor-
age) constraints, it may not be possible to keep the entire
history of previous malware samples. It is more efficient
to use only the most recent history, e.g., 6 months as in
the middle blue line. From Fig. 10, one can see that the
result is very close to that of using the full history, with
only a small decrease, about 2 to 3%. These results imply
that there exists a strong temporal correlation among mal-
ware variants which can be exploited by MutantX-S in
predicting the labels for unknown malware samples.

8 Limitations and Improvements

Here we discuss limitations of the current prototype
of MutantX-S that could be exploited by adver-
saries to degrade its effectiveness in clustering. As a
static-analysis approach, MutantX-S is vulnerable to
binary/instruction-level obfuscation. First, even with a
generic unpacking algorithm, MutantX-S is less ef-
fective against advanced packers that employ sophisti-
cated protection mechanisms, e.g., driver-level protec-
tion, anti-debug, anti-emulation, etc. Specialized unpack-
ing tools [2] have been developed for these packers and
they can be incorporated into MutantX-S to combat so-
phisticated packers. Second, MutantX-S extracts fea-
tures from disassembled malware code. Unfortunately,
producing correct disassembly is often very challenging
and many anti-disassembly tricks [31] can be used to con-
fuse a disassembler, such as mixture of code and data,
making an infeasible conditional jump to the middle of
next instruction, etc. Although the current prototype does
not handle these types of obfuscation for simplicity, there
are a variety of techniques [16] proposed to mitigate these
problems. Third, MutantX-S relies on the similarity of
code instructions to cluster malware samples. It is possi-
ble to create syntactically distinct but semantically sim-
ilar variants through heavy instruction-level obfuscation.
To address these problems, MutantX-S could incorpo-
rate more advanced de-obfuscation techniques [27, 22]
and normalize the malware codes before clustering them.
Note that dynamic-behavior-based approaches do not suf-
fer from this limitation, but they come with their own
deficiencies—limited coverage, scalability and specific
evasion techniques. Therefore, MutantX-S’ goal is not
to replace the dynamic approaches, but to complement

198 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

them and collaboratively mitigate their weaknesses (e.g.
apply dynamic analysis only on representative samples
or outliers of static analysis). Finally, MutantX-S can-
not handle file infector or parasitic malware types which
inject themselves into host executables. This is a limita-
tion for any similarity based clustering, regardless static
or dynamic approaches, because most features are from
the host executables rather than the maleware. Such par-
asitic malware are a matter of our future inquiry.

9 Conclusion

In this paper, we have presented the design, implementa-
tion and evaluation of a malware clustering system based
on static features, called MutantX-S. MutantX-S can
accurately and efficiently group malware variants accord-
ing to the similarity in their code instructions. It converts
each malware program into a compact but effective op-
code representation and performs prototype-based clus-
tering on the corresponding N-gram feature vectors. It
also incorporates a generic unpacking technique to max-
imize the capability of analyzing the malware’s original
instructions. To ensure the scalability, MutantX-S uses
a combination of a hashing kernel that reduces the di-
mensionality of feature vectors and a close-to-linear time
prototype-based clustering that uses a small set of repre-
sentative samples for fast data organization. Equipped
with these techniques, MutantX-S is experimentally
shown to be able to process more than 130,000 malware
samples within a few hours. As a static-analysis ap-
proach, MutantX-S is expected to be very effective and
can be combined with existing dynamic-behavior-based
system to provide the level of accuracy and coverage re-
quired to pace with the current malware sample submis-
sion rate.

References
[1] Murmurhash 2.0. http://sites.google.com/site/murmurhash/.

[2] Unpackers. http://www.exetools.com/unpackers.htm.

[3] Peid 0.95. http://www.peid.info/, 2008.

[4] ARTHUR, D., AND VASSILVITSKII, S. How slow is the k-means
method? In Proceedings of the twenty-second annual symposium
on Computational geometry (2006).

[5] ASPACK SOFTWARE. Aspack. http://www.aspack.com/.

[6] BAILEY, M., ANDERSEN, J., MAO, Z. M., AND JAHANIAN, F.
Automated classification and analysis of internet malware. Tech.
rep., Proceedings of RAID, 2007.

[7] BAYER, U., COMPARETTI, P., HLAUSCHEK, C., KRUEGEL, C.,
AND KIRDA, E. Scalable, behavior-based malware clustering. In
Proc. of the 16th NDSS (2009).

[8] CHRISTODORESCU, M., AND JHA, S. Static analysis of executa-
bles to detect malicious patterns. In In Proceedings of the 12th
USENIX Security Symposium (2003).

[9] GONZALEZ, T. Clustering to minimize the maximum interclus-
ter distance. In Theoretical Computer Science (1985), vol. 38,
pp. 293–306.

[10] GUO, F., FERRIE, P., AND CHIUEH, T.-C. A study of the packer
problem and its solutions. In Proceedings of RAID (2008).

[11] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction.
Springer-Verlag, 2009.

[12] JANG, J., BRUMLEY, D., AND VENKATARAMAN, S. Bitshred:
feature hashing malware for scalable triage and semantic analysis.
In Proceedings of CCS’11 (2011).

[13] KARIM, M. E., WALENSTEIN, A., LAKHOTIA, A., AND
PARIDA, L. Malware phylogeny generation using permutations
of code. JOURNAL IN COMPUTER VIROLOGY 1 (2005), 13–
23.

[14] KILIANWEINBERGER, DASGUPTA, A., LANGFORD, J.,
SMOLA, A., AND ATTENBERG, J. Feature hashing for large scale
multitask learning. In Proceedings of the 26th ICML (2009).

[15] KOLTER, J. Z., AND MALOOF, M. A. Learning to detect and
classify malicious executables in the wild. Journal of Machine
Learning Research 7 (2006), 2006.

[16] KRUEGEL, C., ROBERTSON, W., VALEUR, F., AND VIGNA, G.
Static disassembly of obfuscated binaries. In Proceedings of the
13th conference on USENIX Security Symposium (2004).

[17] LABS, A. R. New toy in the avast research lab.
https://blog.avast.com/2012/12/03/new-toy-research-lab/.

[18] LEE, T., AND J.MODY, J. An automated virus classification sys-
tem. In Proceedings of VIRUS BULLETIN CONFERENCE OC-
TOBER 2005 (2005).

[19] MANNING, C. D., RAGHAVAN, P., AND SCHUTZE, H. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[20] MARTIGNONI, L., CHRISTODORESCU, M., AND JHA, S. Om-
niunpack: Fast, generic, and safe unpacking of malware. In Pro-
ceedings of ACSAC (2007).

[21] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple
execution paths for malware analysis. In Proceedings of the 2007
IEEE Symposium on Security and Privacy (2007).

[22] RABER, J., AND LASPE, E. Deobfuscator: An automated ap-
proach to the identification and removal of code obfuscation. Re-
verse Engineering, Working Conference on (2007).

[23] RIECK, K., HOLZ, T., WILLEMS, C., DÜSSEL, P., AND
LASKOV, P. Learning and classification of malware behavior. In
Proc. of the DIMVA’08 (2008).

[24] RIECK, K., TRINIUS, P., WILLEMS, C., AND HOLZ, T. Auto-
matic analysis of malware behavior using machine learning. tech
report, Berlin Institute of Technology, 2009.

[25] SHAWE-TAYLOR, J., AND CRISTIANINI., N. Kernel Methods
for Pattern Analysis. Cambridge University Press, 2004.

[26] SHI, Q., PETTERSON, J., DROR, G., LANGFORD, J., SMOLA,
A., STREHL, A., AND VISHWANATHAN, V. Hash kernels. In
Proc. of the 12th International Conference on Artificial Intelli-
gence and Statistics (2009).

[27] UDUPA, S. K., DEBRAY, S. K., AND MADOU, M. Deobfusca-
tion: Reverse engineering obfuscated code. Reverse Engineering,
Working Conference on (2005).

[28] UPX. http://upx.sourceforge.net/.
[29] VXHEAVEN. Vxheaven virus collection. http://vx.netlux.org/,

2010.
[30] WICHERSKI, G. pehash: A novel approach to fast malware clus-

tering. In 2nd Usenix LEET Workshop (2009).
[31] YASON, M. The art of unpacking, https://www.blackhat.com/pre

sentations/bh-usa-07/yason/whitepaper/bh-usa-07-yason-wp.pdf.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 199

Redundant State Detection for Dynamic Symbolic Execution

Suhabe Bugrara
Stanford University

Dawson Engler
Stanford University

Abstract

Many recent tools use dynamic symbolic execution to
perform tasks ranging from automatic test generation,
finding security flaws, equivalence verification, and ex-
ploit generation. However, while symbolic execution
is promising, it perennially struggles with the fact that
the number of paths in a program increases roughly ex-
ponentially with both code and input size. This paper
presents a technique that attacks this problem by elimi-
nating paths that cannot reach new code before they are
executed and evaluates it on 66 system intensive, com-
plicated, and widely-used programs. Our experiments
demonstrate that the analysis speeds up dynamic sym-
bolic execution by an average of 50.5 X, with a median
of 10 X, and increases coverage by an average of 3.8 %.

1 Introduction

Dynamic symbolic execution has enabled many recent
advances in program analysis such as high-coverage test
input generation, patch checking, equivalence verifica-
tion, malware signature generation, assertion checking,
and debugging [7]. The technique’s power comes from
its ability to systematically and precisely enumerate pro-
gram paths automatically. Further, in many cases it can
eliminate false positives by producing a concrete test
case to demonstrate a bug or specific path execution.

There are many variations in modern symbolic execu-
tion interpreters, but broadly speaking they work as fol-
lows. First, they start from some initial program state
in which program inputs are represented by “unknowns”
that take on any value. The interpreter symbolically ex-
ecutes the program by updating the state with the effect
of each instruction. When it reaches a branch statement
with condition C, the interpreter forks the state into two
states, adding the constraint C to one and ¬C to the other.
This forking is skipped if one branch direction is infeasi-
ble. The interpreter repeatedly executes and forks states

until either it generates every possible state of the pro-
gram, thereby exploring every possible path with respect
to the inputs or, more typically, it exhausts memory or
exceeds a time limit.

While powerful, naive symbolic execution faces the
significant challenge in practice that the number of paths
(and thus states) increases roughly exponentially both
with the size of the tested program and with the size of
the program inputs. Programs with fewer than ten thou-
sand lines of code routinely generate millions of states,
each consisting of tens of thousands of memory loca-
tions. Thus, under realistic time and memory limits,
state-of-the-art dynamic symbolic execution tools only
explore a small percentage of paths.

As a result, while capable of deep reasoning, these
tools have had limited applicability. They often fail when
used to verify a property when doing so requires ex-
ploring every feasible path involving the property. Even
when used purely for bug-finding, they often quickly get
lost in an exponential number of superficially different
but essentially identical states. Many tools [4, 5, 10, 12]
counter this problem by using heuristic search strategies,
but these have proven notoriously fragile.

This paper presents a novel, complementary approach
that exploits a key observation: for many program analy-
sis applications, most paths are redundant with respect to
the goal of the symbolic execution and thus do not need
to be explored. For example, if the goal is to generate
a suite of program inputs that covers every line of code,
then the symbolic execution only needs to explore paths
that will reach lines which have not been covered by pre-
viously explored paths.

The contributions of this paper are (1) the design
and implementation of a sound, redundant state detec-
tor capable of scaling up to handle real programs and
(2) a thorough experimental evaluation on 66 system-
intensive, complicated, and widely used programs which
demonstrates that the detector yields dramatic perfor-
mance improvements. Our technique speeds up dynamic

200 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

symbolic execution by an average of 50.5 X, with a me-
dian of 10 X, and increases coverage by an average of
3.8 %. On 12 of the benchmarks, the analysis reduces
the state space sufficiently that the tool exhaustively ex-
plores all remaining states.

2 Overview

In this section, we give an overview of our analysis using
the following program, which contains two variables: w

and m.

1 if (w)

2 printf("X");

3 else

4 printf("Y");

5 if (m)

6 exit (0);

7 else

8 exit (1);

The program is symbolically executed from four initial
states. States consists of a program counter and a set of
constraints over program variables. Each of these four
initial states starts at line 1. Suppose that state A has the
constraints {w = 0, m = 1}, state B has constraints {w =

1, m = 1}, state C has constraints {w = 2, m = 1}, and
state D has constraints {w = 3, m = 0}. When state A is
symbolically executed through the program, it covers the
lines 1, 3, 4, 5, and 6; state B covers 1, 2, 5 and 6; state
C covers 1, 2, 5, and 6; and state D covers 1, 2, 5, 7, and
8. Figure 1 shows a diagram of the state tree produced
by symbolically executing the program from these initial
states.

As these four initial states are executed over the pro-
gram, the same lines are covered over and over again.
Since our goal is to produce high-coverage test suites
and to explore different parts of the program to find bugs,
we can avoid a significant amount of redundant work if
we discard states that behave similarly to previously ex-
ecuted states. For example, after states A and B are ex-
ecuted to completion, state C will only cover a subset of
the lines that A and B covered, so C is redundant and can
be eliminated. The challenge is to detect that C is redun-
dant without actually executing it. One simple approach
is to compare the constraints of C to the constraints of
A and B: if they have the same constraints, then they
must follow the same paths, and thus will cover exactly
the same lines. However, requiring that two states have
identical constraints is unnecessarily conservative.

In this paper, we present an approach that precisely
determines which constraints affect whether a state will
cover the same lines as a previously executed state. We
use dynamic slicing [1], a program analysis technique
that finds all program statements that affected the value
of a variable occurrence for given program inputs. Our

Figure 1: A diagram illustrating the state tree produced
by symbolically executing the program in Section 2 from
the initial states A, B, C, and D. Each state is represented
by a circle that is labeled with the state’s constraints.
Each row of the diagram corresponds to a line of the
program. States at exit instructions are denoted by thick
borders. Let pc1 be the program counter of state σ1. An
arrow from state σ1 to state σ2 means that σ2 is the result
of executing pc1 on σ1. The initial states A, B, C, and D
appear in the top row, which corresponds to line 1. Note
that the path starting from state A does not reach lines
2, 7, and 8, which is reflected in the diagram by missing
circles in those rows along the path.

approach detects which variables affect branch instruc-
tions that control uncovered lines and restrict state com-
parison to constraints that involve these variables. By
minimizing the set of constraints used to compare states,
the analysis can find more opportunities to eliminate re-
dundant states.

In the remainder of this section, we describe how our
analysis works on the example program. As described
above, symbolic execution of the program begins with
four initial states A, B, C, and D whose program coun-
ters are set to line 1. First, state A is selected and a path
through lines 1, 3, 4, 5, and 6 is explored until it termi-
nates by executing the exit instruction on line 6. Figure 2
shows four different state trees at various stages of sym-
bolically executing the program using our analysis. The
leftmost diagram shows the state tree immediately after
the path starting from A terminates. Note that the dia-
gram indicates that the path starting from state B has not

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 201

Figure 2: The state tree at four different stages of symbolic execution of the example program in Section 2. The box
next to each state contains its relevant location set.

been explored yet since B has no successor states. At this
stage, the uncovered lines are 2, 7 and 8.

As soon as the path starting from initial state A termi-
nates, the analysis determines which variables affected
the decisions of branch instructions along the path that
controlled each uncovered line. We call these variables
relevant locations. A set of relevant locations at each
point along the terminated path is computed backwards
starting from the termination point. For example, the set
of relevant locations at line 1 along this path is {m,w} be-
cause, at this stage of symbolic execution, lines 2, 7, and
8 are uncovered, and both m and w affect the decisions of
the branches that control these lines. Similarly, the rel-
evant location set at line 5 is {m}, because, from line 5
onward, the only variable that affects the decision of a
branch that controls an uncovered line is m.

After the analysis has computed a relevant location set
for each of the previously executed states along this ter-
minated path, it can now try to match any of the currently
running states to the previously executed ones that have
the same program counter. For example, our analysis
tries to match the currently running state B to the previ-
ously executed state A. This matching is performed by
looking up the relevant location set of state A, which is
{m,w}, and checking whether the constraints of state A
that involve m and w imply the constraints of state B that
involve m and w. Because the constraints differ on vari-
able w, the analysis determines that no match exists, and
thus, it cannot eliminate B.

Next, the path starting at state B executes line 1 and
moves to line 2. The second diagram from the left in
Figure 2 shows the state tree at this stage of symbolic
execution, which illustrates an important aspect of our
analysis. Now, lines 1, 2, 3, 4, 5, and 6 are all covered,
which means that the branch on line 1 no longer controls
an uncovered line. Our analysis immediately detects this
change and refines the relevant location sets along the
path starting from state A by removing w because w no
longer affects the decision of a branch that controls an
uncovered line. Dynamically adjusting the relevant lo-
cation sets as more lines become covered increases our
analysis’s ability to eliminate redundant states. As a re-
sult, in many cases, the analysis can eliminate all states,
exhaustively exploring the state space and soundly prov-
ing that the remaining uncovered lines are dead code with
respect to the modeled environment.

After the refinement of the relevant location sets, the
analysis tries to match the currently running state on line
2 to other previously executed states along terminated
paths. The analysis fails to find a match because, so far,
no other states have reached line 2, so there’s nothing to
compare it to. Thus, the path continues executing until
it reaches line 5 as illustrated in the third state tree from
the left in Figure 2. Let this state be called σB,5 because
it is generated on the path that started from state B and
its program counter is line 5. Again, the analysis tries
to find a match for σB,5 and sees that a previously ex-
ecuted state on the terminated path starting from A has
the same program counter. Let this state be called σA,5.

3

202 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Now, the analysis checks to see if σA,5’s constraint set
implies σB,5’s constraint set with respect to the relevant
location set associated with σA,5. In this case, a match
does exist: σA,5’s constraint set is {w=0,m=1}, σB,5’s con-
straint set is {w=1,m=1}, and σA,5’s relevant location set is
m. Note that even though their constraint sets differ on w,
a match still exists because w is not relevant to covering
the remaining lines 7 and 8. After finding the match, the
analysis prunes σB,5 by eliminating it from symbolic ex-
ecution and deallocating it. Figure 2 illustrates that σB,5
has been pruned by giving it a thick, dashed border.

Next, the analysis performs the same process on the
paths starting from states C and D. State C is pruned im-
mediately because it matches state A on m. State D is
never pruned. The analysis tries to match states along the
path starting from D to the previously executed states, but
it finds that they always differ on m: in state D, m is 0 and
in the other three states, it is 1. The path starting from
D proceeds until it reaches the uncovered lines 7 and 8
and then terminates when it reaches the exit instruction
on line 8.

The fourth state tree in Figure 2 illustrates the final
state tree generated at the end of the symbolic execu-
tion. Note that because all lines are now covered, the
relevant location sets for every state have been refined
to the empty set because there are no longer any more
branch instructions that control uncovered lines.

3 Redundant State Detector

This section explains how the redundant state detector
dynamically monitors symbolic execution and eliminates
redundant states. Algorithm 1 gives a high-level descrip-
tion of the different parts of the detector and how they
interact with symbolic execution. The boxed lines are
performed by the detector, and the non-boxed ones are
performed by normal symbolic execution, which we dis-
cuss first.

Symbolic execution uses a worklist algorithm to gen-
erate and execute states until the entire state space is ex-
plored. A state consists of both a program counter and
a constraint set that encodes the sequence of branch de-
cisions made by the state thus far in terms of program
memory locations. Line 2 initializes the worklist with
special states in which global variables are initialized and
program arguments have been assigned to arrays of “un-
knowns” which can take on any value. On each iteration
of the worklist algorithm, line 4 selects and removes a
state with constraint set C from the worklist. If the state
is at a branch, lines 6 - 10 create two copies of the state
and place them on the worklist if their paths are feasible.
Otherwise, line 12 updates the state with the effects of
the instruction specified by its program counter, which is
then incremented on the following line. If the state has

reached a program exit, line 21 generates concrete pro-
gram inputs that drive program execution down the cor-
responding path, and then line 22 deletes the state. Oth-
erwise, the state is inserted into the worklist on line 24.

input: A program and a set of initial states

1 ConstructStaticControlDepGraph()

2 worklist ← InitialStates
3 while worklist �= /0 do
4 stateC ← worklist.pop()
5 if stateC at branch condition B then
6 (stateB, state¬B) ← Fork(stateC)

7 if C∧B is satisfiable then
8 worklist.insert(stateB)

9 if C∧¬B is satisfiable then
10 worklist.insert(state¬B);

11 else
12 Execute(stateC)

13 increment stateC’s program counter

14 UpdateDynamicDepGraph(stateC)

15 if stateC.pc was previously uncovered then
16 UpdateRelBranchSet(stateC)

17 RefineRelLocSets()

18 FindMatch(stateC)

19 if stateC has match or is at program exit then
20 ConstructRelLocSets(stateC)

21 compute test inputs for stateC
22 delete stateC

23 else
24 worklist.insert(stateC)

Algorithm 1: High-level description of how the re-
dundant state detector dynamically monitors sym-
bolic execution to eliminate redundant states.

We now discuss the statements of Algorithm 1 per-
formed by the redundant state detector. On line 1, the
detector constructs a static control dependence graph to
keep track of which static branches are relevant in the
sense that they control a line that has not yet been cov-
ered by symbolic execution as described in Section 3.1.
Line 14 updates the dynamic dependence graph imme-
diately after every call to Execute with the effects of
the recently executed instruction. This graph, which is
described in Section 3.2.1, tracks the dynamic data de-
pendencies between two writes as well as the dynamic
control dependencies between a dynamic branch and the
writes it controls.

On line 15, the algorithm checks whether the state has
reached a previously uncovered instruction. If so, on
line 16, the detector uses the static control dependence
graph to update the current set of relevant static branches.
Then, on line 17, it refines all relevant constraint sets con-
structed thus far because they may contain reads that are

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 203

no longer relevant as described in Section 3.4.
On line 18, as described in Section 3.3, the detector

searches for a relevant constraint set constructed along a
previously explored path that matches the state. A suc-
cessful match implies that the state is redundant. As soon
as a state reaches a program exit or is pruned, the detector
dynamically slices the part of the dynamic dependence
graph corresponding to the path followed by the state to
determine which reads along the path were relevant in
the sense that they potentially affected whether the state
reached an uncovered instruction. Section 3.2 describes
how the call on line 20 extracts the dynamic slice and
how the slice is used to construct relevant constraint sets.

3.1 Relevant Static Branches
The most basic component of the redundant state detec-
tor is identifying which static branches of the program
are relevant. A static branch is relevant if the outcome of
its condition may affect whether an uncovered instruc-
tion is reachable. Consider the simplified code snippet
from the Unix utility chown below. Suppose for now that
the program never exits before line 11—we explain how
we handle embedded halts in Section 3.2.3.
1 if (reference_file) {

2 if (stat (...))

3 error (...); // uncovered

4 ...;

5 } else {

6 if (parse_user_spec (...))

7 error (...);

8 ...;

9 }

10 if (chopt.recurse & preserve_root)

11 ...; // uncovered

Because lines 3 and 11 are uncovered, the branches
if(reference file) on line 1, if(stat(...)) on line
2 and if(chopt.recurse & preserve root) on line 10
are the relevant static branches since they affect whether
an uncovered instruction is reachable.

The detector identifies the relevant static branches of
a program by constructing a static control dependence
graph [17] whose nodes are the static instructions of
the program and whose edges (b, i) signify that branch
b statically controls instruction i, so the outcome of b’s
condition affects whether i is executed. A static branch
b is relevant if there exists a path in the static control
dependence graph from b to some uncovered instruc-
tion i. For example, the static control dependence graph
for this code snippet contains four nodes: one for each
branch condition on lines 1, 2, 6, 10. The static branch
if(reference file) on line 1 is relevant because line 3
is uncovered, and the graph has a path from line 1 to line
3 via line 2.

Note that the set of relevant static branches gets
smaller and smaller as more instructions are reached and

become covered. Thus, every time a state reaches an un-
covered instruction, the detector updates the set of rele-
vant static branches as shown in Algorithm 1, line 16.

3.2 Relevant Locations

The detector determines that a state is redundant by com-
paring it to previously executed states. Conceptually, to
perform this comparison, it records a complete history
of the symbolic execution by taking a snapshot of each
state every time it executes an instruction. The kth snap-
shot of a state is simply a copy of the state’s constraint
set immediately after it executes the kth instruction along
its path.

If a snapshot’s constraint set is equivalent to a state’s
constraint set, then the detector concludes that the state
is redundant and eliminates it. However, this condition
is unnecessarily conservative in the sense that a state
may be redundant even if its constraint set is not entirely
equivalent to a snapshot’s. For example, if a snapshot’s
constraint set is a subset of a state’s constraint set, then
the detector can also conclude that the state is redundant
because the state is “more constrained” than the snapshot
and thus will not explore any new relevant behaviors of
the program.

We say that this subset condition is more precise than
the equivalence condition because its weaker and thus
allows the detector to find more redundant states. We
also say that it is sound because, even though it is weaker,
it never concludes that a state is redundant when it is not.

This approach faces two practical challenges: how to
incrementally encode every snapshot of the symbolic ex-
ecution efficiently, and how to compare a state to a snap-
shot precisely. The detector addresses both challenges
simultaneously using dynamic slicing, a program anal-
ysis technique that identifies which instructions along a
path affect the value of a given memory location [1].

As soon as a state reaches a program exit, the detector
dynamically slices the path taken by the state to identify,
at every kth instruction along the path, which locations
are relevant in the sense that they potentially affected the
outcome of the decision of a relevant static branch further
down the path. We refer to the relevant locations at the
kth instruction along a path taken by a state as the state’s
kth relevant location set. Note that the relevant location
sets for a state are not constructed until it has reached
a program exit to ensure that no relevant locations are
missed.

We use relevant location sets to devise an even more
precise, yet sound, condition for detecting that a state is
redundant: if the constraints of a snapshot that depend on
a relevant location is a subset of the set of constraints of
a state that depend on a relevant location, then the state
is redundant. Conceptually, the constraints in constraint

5

204 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

set ∆ that depend on a location l are those that limit the
possible values that l can have. Formally, let L be a set of
relevant locations. The subset ∆|L of ∆ that depends on
locations in L is recursively defined as the constraints in
∆ that use locations in L or locations that appear in some
constraint in ∆|L. For example, the constraints in the set
{a > b, b = 0, c = 1, d = 2} that depend on the locations
{a,c} are {a > b, b = 0, c = 1}.

We use the following abridged code snippet from the
Unix utility chown to demonstrate relevant location sets.
The symbols TRUE and FALSE in the code below are int

constant variables assigned the values 1 and 0, respec-
tively. Suppose the initial state consists of three com-
mand line arguments: the program name in argv[0],
a three-byte array of “unknowns” in argv[1], and a
sixteen-byte array of “unknowns” in argv[2]. Further,
suppose that lines 7 and 21 are the only uncovered lines.

1 chopt.recurse = FALSE;

2 preserve_root = FALSE;

3 ...

4 if (! strcmp(argv[1], "-R"))

5 chopt.recurse = TRUE;

6 if (! strcmp(argv[2], "--preserve -root"))

7 preserve_root = TRUE; // uncovered

8 ...

9 if (reference_file) {

10 ...

11 chopt.user_name = uid_to_name (...);

12 chopt.group_name = gid_to_name (...);

13 } else {

14 ...

15 if(!chopt.username && chopt.group_name)

16 chopt.username = "";

17 ...

18 }

19 if (chopt.recurse)

20 if (preserve_root)

21 ...; // uncovered

22 ok = chown_file (... ,& chopt);

23 exit(ok);

The branches on lines 6, 19, 20 are the only relevant
static branches because they control the only uncovered
instructions as discussed in Section 3.1. Consider the
state that takes the path through lines 1-6, 8-12, 19, 22,
23. As soon as it reaches the program exit on line 23, the
detector constructs relevant location sets at every point
along the path, which are shown in the table below.

Line Relevant Location Set
1-3 { TRUE, argv[2][0], argv[1][0..2] }
4 { TRUE, argv[2][0], argv[1][0..2] }
5 { TRUE, argv[2][0] }
6 { chopt.recurse, argv[2][0] }
8-12 { chopt.recurse }
19 { chopt.recurse }
22 {}
23 {}

On line 23, the relevant location set is trivially empty be-
cause it is a program exit. On line 22, it is empty because
no relevant static branches are reachable on the path from
this point onward. Now on line 19, the detector deter-
mines that chopt.recurse is a relevant location at this
point because it affects the decision of the relevant static
branch on line 19. On lines 10-12, chopt.recurse is also
relevant for the same reason. Note that preserve root is
not relevant on these lines because even though it stat-
ically controls an uncovered instruction, it does not dy-
namically control the uncovered instruction, since it is
not read along the path taken by the state.

Now, on lines 8 and 9, the relevant location set is still
{chopt.recurse} and does not include reference file.
Even though reference file is read by a branch condi-
tion along the path, it does not affect the decision of a rel-
evant branch. The power of the detector is demonstrated
here: it is capable of reasoning that the entire if-else

block on lines 9-18 does not affect whether the uncov-
ered instruction on line 21 is reachable and can thus be
ignored, keeping the number of relevant locations small,
which is valuable when comparing a snapshot to a state:
the fewer of a snapshot’s constraints that need to ap-
pear in the state’s constraints, the greater the chance of
soundly concluding that the state is redundant.

On line 6, argv[2][0] is included in the relevant loca-
tion set because this location is used by the condition of
the relevant static branch on line 6 via the call to strcmp.

Now, on line 5, chopt.recurse is replaced by the con-
stant TRUE in the relevant location set. Conceptually, the
location chopt.recurse is not relevant at this point be-
cause the write on line 5 which affects the decision of
the relevant static branch on line 19 has not occurred on
the path yet. The location TRUE, however, is now rele-
vant because it is used by the assignment to compute a
value that is written to a relevant location. In Section 3.5
we describe a way to handle locations that have the same
value across all paths, such as TRUE, in a special way that
reduces the overhead of the detector.

Finally, on line 4, argv[1][0..2] is included in the
relevant location set because it is used by the condition of
the branch on line 4 that dynamically controls the write
of the relevant location chopt.recurse. In the remain-
der of this section, we describe how the relevant loca-
tion sets are constructed in the general case. First we de-
scribe how the dynamic dependence graph is constructed
in Section 3.2.1 and then, in Section 3.2.2, how relevant
locations are inferred by slicing the graph with respect to
relevant static branches.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 205

3.2.1 Dynamic Dependence Graph

Throughout symbolic execution, the detector records the
dependencies between executed instructions along each
path by incrementally updating the dynamic dependence
graph whose nodes are byte-level writes and whose
edges are either data, control, or potential dependen-
cies [1, 2]. A write w2 performed by instruction i is data-
dependent on another write w1 if i reads w1. A write w2
is control-dependent on a write w1 if a branch that reads
w1 dynamically controls w2. A write w2 is potentially-
dependent on a write w1 if a branch that reads w1 stati-
cally controls assignment e2 := e not along the path and
e2 aliases the static location of w2.

Inferring data and control dependencies is straightfor-
ward because it requires reasoning about parts of the ex-
ecuted path only, and not other parts of the program. In
contrast, inferring potential dependencies is challenging
because it requires reasoning about both the executed
path as well as static locations on non-executed paths.
Consequently, potential dependencies require a sound,
interprocedural aliasing analysis. Our implementation
uses a sound, highly precise intraprocedural pointer anal-
ysis to resolve non-escaping aliases and a sound, scal-
able, yet coarse interprocedural alias analysis to resolve
escaping aliases [13]. While state-of-the-art, sound alias-
ing analysis is notoriously imprecise, in Section 3.6, we
describe a technique that allows the detector to recover
from some of the precision loss. Note that this impre-
cision only affects the detector’s ability to identify re-
dundant states; it does not affect the completeness of the
symbolic execution and does not cause it to report false
positives.

3.2.2 Dynamic Slicing

This section describes how, in general, the dynamic de-
pendence graph is sliced with respect to relevant static
branches in order to infer relevant location sets. One
slight complication, however, is that symbolic execution
paths are not linear, but rather form trees, because a state
may fork into several states. Thus, the detector cannot
construct the kth relevant location set until all states gen-
erated by forks after the kth instruction have reached a
program exit.

When a state reaches a program exit, the detector starts
from the end of the path taken by the state and constructs
the relevant location set Lk at the kth instruction along
the path. Let Ck be the relevant control set used as an in-
termediate set for constructing relevant location sets that
consist of the dynamic branches that control the kth in-
struction. The sets Lk and Ck are constructed as follows:

1. Compute L∪
k , which is the union of the relevant loca-

tion sets at the immediate successor instructions of

the kth instruction. Recall that an instruction along
a path may have multiple immediate successor in-
structions if symbolic execution forked at that point.

2. Compute C∪
k , which is the union of the relevant con-

trol sets at the immediate successor instructions of
the kth instruction.

3. If the kth instruction is a program exit, both Lk and
Ck are empty.

4. If the kth instruction is a dynamic branch b, then
add to Ck all of C∪

k −{b}, and also add to Ck the
dynamic branch that controls b. If at least one of
the following three situations hold, then add to Lk
the locations used in the branch condition:

(a) b corresponds to a relevant static branch,
(b) b is in C∪

k ,
(c) some location in L∪

k potentially depends on b.

5. If the kth instruction is a dynamic assignment e2 :=
e1 and the location of e2 is in L∪

k , then add to Ck the
dynamic branch that controls the assignment, and
add to Lk all the locations read by the expression e1.

3.2.3 Irregular Control Dependence

The explanation of the detector thus far is not sound
for programs that have irregular control flow introduced
by embedded halts [17] which are instructions that ter-
minate execution of the program, such as calls to exit

and abort, that are distinct from the normal termination
point. An embedded halt induces interprocedural control
dependence from the branch that controls the halt to any
statement statically reachable from that branch. These
interprocedural control dependencies must be handled by
the detector because, otherwise, it may not recognize a
relevant location as relevant. By expanding the third step
of the dynamic slicing algorithm in Section 3.2.2 as fol-
lows, the detector will soundly handle irregular control
flow:

3. If the kth instruction is a program exit, then Lk is
empty and Ck is the set of dynamic branches that
control it.

3.2.4 Inter-Path Dynamic Slicing

So far in this paper, relevant location sets have been con-
structed along a path only when the state reaches a pro-
gram exit. Because the detector eventually prunes almost
every state before the state can reach a program exit,
very few paths have relevant location sets constructed
along them. Consequently, the precision of the detector
is severely limited: in general, the more relevant loca-
tion sets that are constructed, the more opportunities the
detector has to find a match for state and thus to prune it.

7

206 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

We add an additional step to the dynamic slicing al-
gorithm in Section 3.2.2 to give the detector the ability
to construct relevant location sets along paths taken by
states that are pruned before they reach a program exit:

6. If the kth instruction is the last instruction along the
path of the state that was matched and pruned by the
relevant location set L′

j, then add to Lk all of L′
j and

add to Ck all the dynamic branches that control the
kth instruction.

The effect of this additional step allows the dynamic slic-
ing algorithm to incorporate the slicing result of previ-
ously explored paths to construct relevant location sets
along new paths of pruned states.

3.3 State Matching
A state is redundant if it matches any snapshot, which
occurs when the following conditions hold. Let L be the
relevant location set that corresponds to the snapshot.

1. The state and the snapshot are at the same context-
sensitive static instruction. A state’s context-
sensitive static instruction is a pair consisting of (1)
the state’s program counter and (2) the sequence of
call instructions on its call stack.

2. The snapshot constraints that depend on L are a sub-
set of the state constraints that depend on L.

Recall from Section 3.2 that the constraints of a con-
straint set that depend on a location l are those that limit
the possible values that l can have in a satisfying assign-
ment.

Throughout Section 3, we use the concept of snapshots
to explain how the detector works. However, our imple-
mentation never explicitly constructs these snapshots be-
cause the time and space overhead of allocating millions
of constraint sets, each of which contains tens of thou-
sands of constraints is prohibitively expensive. Instead,
the detector exploits the fact that the matching conditions
above only need the constraints of a snapshot that depend
on relevant locations, called the relevant constraints of
the snapshot. The set of relevant constraints of a snap-
shot is 100X smaller than its entire set of constraints.

3.4 Dynamic Refinement
In this section we describe a technique that increases the
detector’s precision as symbolic execution covers more
and more of the program. Recall from Section 3.1 that
relevant static branches are those that control uncovered
instructions, and a location is relevant if it affects the de-
cision of a relevant static branch. Thus, as symbolic exe-
cution covers more uncovered instructions, the fewer the

relevant static branches, and the fewer the relevant loca-
tions, and thus the more chances the detector has to find
a match for a state.

As soon as symbolic execution reaches an uncovered
instruction, the detector iterates over all the relevant lo-
cation sets and removes any locations that were included
because that line was previously uncovered.

This dynamic refinement of relevant location sets sub-
stantially improves the precision of the detector, making
it possible to exhaustively explore the entire state space
on some benchmarks, proving that any remaining uncov-
ered instructions are dead code with respect to the envi-
ronment without any false positives or false negatives.

3.5 Single-Valued Locations
In this section, we describe an optimization that reduces
the overhead of the detector by exploiting the fact that,
in practice, more than half of the locations that appear in
relevant constraint sets are single-valued, meaning they
have the same value written to them along every path
explored thus far by symbolic execution. Note that a
single-valued location is not necessarily constant; it may
be that the symbolic execution will eventually explore a
path that writes a different value to the location. Thus,
a location that is single-valued for the first few minutes
of symbolic execution may not be single-valued there-
after. These locations are prevalent in programs that ex-
tensively use libraries because the majority of locations
are typically initialized to a single value and then mostly
read and rarely overwritten with a different one.

The detector exploits this observation by removing
single-valued locations from relevant constraint sets,
thus reducing the sizes of the sets, and consequently, re-
ducing overhead substantially. The optimization is sound
and does not introduce a loss in precision.

One difficulty with implementing this optimization is
that a location l may be single-valued for the first n sym-
bolically executed instructions, but on the n + 1 instruc-
tion, a different value may be written to it. At this point,
the detector may become unsound and prune a non-
redundant state because a relevant constraint set con-
structed before this point may have previously removed
l. To ensure that soundness is maintained, as soon as l
is written-to with a different value, the detector identifies
which relevant constraint sets previously removed l and
re-adds l to them before executing the n + 2 instruction.
This refinement step requires re-slicing the paths along
which l was removed.

3.6 Relevant Search Heuristic
One source of imprecision in the detector is the use of a
sound, coarse, interprocedural alias analysis to infer po-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 207

tential dependencies as described in Section 3.2.1. Con-
sequently, locations that are not actually relevant may be
inferred as such. To recover from this loss of precision,
the detector keeps two relevant location sets at each in-
struction along a path: one relevant location set is con-
structed soundly by slicing through data, control and po-
tential dependencies in the dynamic dependence graph,
and the other is constructed unsoundly by only slicing
through data and control dependencies.

Throughout the entire symbolic execution, the detec-
tor uses only sound relevant location set to prune states.
However, simultaneously, the detector incorporates the
unsound relevant location sets into its search strategy by
giving priority to states that do not match any unsound
relevant location set. This technique substantially de-
creases the time it takes to reach the maximum coverage
of a program. Intuitively, it is effective because it gives
preference to states that are the most “different”, in a rel-
evant way, from any other previously explored state, and
thus are more likely to reach an uncovered instruction.

3.7 Efficient State Matching
As discussed in Section 3.3, after each executed instruc-
tion, the detector searches for a match of a state by com-
paring it to all the relevant constraint sets at the same
context-sensitive static instruction. A straightforward
implementation will perform this search by comparing
the state to each relevant constraint set individually.

Unfortunately, even programs with fewer than ten
thousand lines of code will have thousands of unique
relevant constraint sets at each program point, and each
set may contain hundreds of constraints. Thus, compar-
ing a state to each relevant constraint set individually
after each executed instruction is prohibitively expen-
sive. To address this challenge, the detector constructs,
at each context-sensitive static instruction pc, a decision
tree [16] that organizes relevant constraint sets at pc in
a manner that makes searching for a match efficient. A
decision tree is a highly effective data structure for this
search problem because it can exploit the fact that the
relevant constraint sets at a program point share many
common locations.

Consider the following seven relevant constraint sets
at context-sensitive static instruction pc.

1. { x = 2, y = 4, u = 10 }
2. { x = 2, y = 5, u = 10 }
3. { x = 1, u = 10 }
4. { x = 3, u = 11 }
5. { x = 2, u = 11 }
6. { x = 2, u = 10, w = 6 }
7. { x = 2, u = 10, w = 7 }

Suppose that the current state is also at pc and has con-
straints {x = 2, y = 4, z = 8, u = 11}. If the state is

y

x

w

1 2 3

4 5 undef

6 7

{ x=1, u=10}

{ x=2, u=11}

{ x=3, u=11 }

{ x=2, y=4, u=10 } { x=2, y=5, u=10 }

{ x=2, u=10, w=6 } { x=2, u=10, w=7}

Figure 3: The decision tree for the seven relevant con-
straint sets in Section 3.7.

compared to each relevant constraint set individually, the
detector would need to perform eighteen lookups in the
state’s constraint set, one for each relevant constraint.
However, by organizing these relevant constraints sets
into a decision tree, only four lookups are required.

Figure 3 shows the decision tree for the seven relevant
constraint sets above. Each of the tree’s non-leaf nodes
is labeled with a location l, and its outgoing edges are
labeled with the possible values associated with l in the
relevant constraint sets. If l does not appear in every rel-
evant constraint set, then it may have an outgoing edge
labeled undef. Each relevant constraint set is associated
with exactly one of the nodes. In the figure, the node for
location x has three outgoing edges, one for each of the
possible values that x is constrained to. The node for lo-
cation y has an outgoing edge labeled undef because it is
not constrained in some relevant constraint sets.

The decision tree is used to search for a relevant con-
straint set that matches the state. The search process
starts at root node x, so x is looked up in the state and
is found to have the value 2. Thus, the search process
moves to the child whose incoming edge has the value 2,
which is node y. Then, y is looked up in the state and
is found to have the value 4. Thus, the search process
moves to the child whose incoming edge has the value 4
and contains the relevant constraint set {x = 2, y = 4,

u = 10}. Now, the search process checks if this relevant
constraint set matches the state entirely. The locations x,
y and u are looked up in the state to see if they have the
same values in the relevant constraint set, that is, 2 and
11, respectively. They do not match on the location u, so
the state does not match this relevant constraint set. Be-
cause the current node is a leaf, the search process ends,
which means that the state does not match any of these
relevant constraint sets. Thus, by using a decision tree
for the search process, only four lookups were necessary
in this example, compared to eighteen lookups if the rel-
evant constraint sets were compared individually.

In general, the search process starts at the root node of

9

208 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

y

4 5

{ x=2, y=5, u=10 }{ x=2, y=4, u=10 }

{ x=1, u=10}

y

4 5

{ x=2, y=5, u=10 }{ x=2, y=4, u=10 }

undef

x

{ x=1, u=10} { x=3, u=11 }

1 3

y

x
1

2
3

4 5

{ x=1, u=10}

{ x=2, u=11}

{ x=3, u=11 }

{ x=2, y=4, u=10 } { x=2, y=5, u=10 }

y

4 5

{ x=2, y=4, u=10 } { x=2, y=5, u=10 }

{ x=2, y=4, u=10 }

Figure 4: The different stages of the decision tree in Fig-
ure 3 as each of the first five relevant constraint sets in
Section 3.7 is incorporated.

the decision tree and performs the following steps until
either a match or a conflict is found. Let t be a non-leaf
node representing a location l. If l is defined by the state,
let v be its value. There are three possibilities:

1. If l is defined in the state and if t has an outgoing
edge labeled v to a node s, then the search proceeds
to s.

2. If l is defined in the state and if t has no outgoing
edge labeled with v, then a conflict is found and the
search process at this node ends without finding a
match.

3. If l is undefined in the state, the search proceeds to
each child node of t individually.

Construction. Even for programs with fewer than ten
thousand lines of code, thousands of new, relevant con-
straint sets are generated during each minute of symbolic
execution. Thus, the construction of these decision trees
must be incremental: every time a relevant constraint set

is generated, it must be efficiently incorporated into the
already existing decision tree.

Figure 4 shows how the decision tree in Figure 3 is
constructed incrementally as each of the first five relevant
constraint sets above are added. Initially, the decision
tree contains a single, empty root node. The first set { x

= 2, y = 4, u = 10 } is simply added to the root node.
When the second relevant constraint set { x = 2, y =

5, u = 10 } is added, the root node is labeled with the
location that has most number of distinct values, which
is y because it takes on the two values, 4 and 5, whereas
locations x and u each only take on a single value. Then,
two child nodes are added, one for each distinct value of
y. The relevant constraint set { x = 2, y = 4, u = 10

} is placed at the child node for value 4 and { x = 2, y

= 5, u = 10 } at the child node for value 5.
Conceptually, y is chosen because it splits the relevant

constraint sets into as many partitions as possible, thus
minimizing the number of lookups needed to find match-
ing relevant constraint sets. If either x or u was chosen,
no partitioning would have been possible. In general, the
split heuristic used by the decision trees to minimize the
number of lookups is to select locations that maximize
the number of partitions at each level of the tree.

Next, the third set { x = 1, u = 10 } is added to the
root node because it does not have a constraint for y, and
it is the only such set. Once the fourth set { x = 3, u

= 11 } is added, a new child node labeled x is created
whose edge from the root node is labeled undef. Both the
third and fourth sets are placed at separate child nodes of
this x node.

Now, once the fifth set { x = 2, u = 11 } is added,
the location x takes on three distinct values whereas y

only takes on two distinct values. Consequently, the split
heuristic is violated at the first level of the tree. As a
result, the tree is rebuilt from scratch to have location x at
the root node and a node labeled y as one of its children.

We use two additional optimizations to further reduce
construction overhead:

1. Relevant constraint sets are added to a decision tree
lazily. Instead of incorporating the constraint set
immediately after it is generated, the detector waits
until a state actually needs to match itself against
the corresponding decision tree.

2. Only the specific subtree of the decision tree that
violates the split heuristic is rebuilt from scratch.
The remaining portion of the tree remains intact.

4 Evaluation

We implemented our state space reduction analysis
by augmenting a copy of the open source version of

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 209

KLEE [5], a symbolic virtual machine capable of au-
tomatically generating test inputs for complex programs
such as device drivers, network drivers, and utility pro-
grams written in C. For the remainder of this paper, we
refer to this unmodified open source version of KLEE
as KLEE-BASE, and we refer to our augmentation of
KLEE with our state space reduction analysis as KLEE-
REDUCE. In this section, we discuss the details of our
implementation that enabled us to achieve the orders of
magnitude improvement in performance.

KLEE-BASE performs symbolic execution over
LLVM bytecode instructions starting from several initial
states, each with different numbers and sizes of symbolic
objects representing the program’s arguments. The initial
states were generated using the following KLEE flags:
--sym-args 0 1 10 --sym-args 0 2 2 --sym-files

1 8 --sym-stdout. We configured KLEE-BASE to
use KLEE’s best, built-in heuristic search strategy
for line coverage, which is specified using the flags:
--use-random-path --use-interleaved-covnew-NURS

--use-batching-search

--batch-instructions=10000.
This section measures how KLEE-REDUCE performs

compared to KLEE-BASE on three metrics: (1) how
much faster it reaches the same statement coverage, (2)
how much more statement coverage it gets, and (3) how
many more programs have their state spaces exhausted.

Our benchmarks consist of 66 programs from the
GNU Coreutils utility suite, a diverse set of system-
intensive, complicated programs that form the core user-
level environment installed on millions of computer sys-
tems. They are the same benchmarks used in the origi-
nal KLEE paper [5] and are among the largest and most
complex benchmarks that constraint-based automatic in-
put generation has been shown to run on for code cov-
erage. The reader is referred to Figure 4 in [5] for the
distribution of program sizes.

We view Coreutils as a fair test for KLEE-BASE since
it was used in the original paper [5]. For similar reasons,
our experiments follow the original paper’s methodol-
ogy: each program was checked for one hour each with
the same flags and with the same number (and sizes) of
symbolic inputs.

Our experiments have two changes from the origi-
nals, which we do not expect to have substantive im-
pact. First, the open source version of KLEE eliminated
some flags used by the original system, so we obviously
could not use them. Second, we only checked 66 of
the 89 possible utilities since the others either had errors
when run on our 64-bit machine (the original KLEE-
BASE results were on 32-bit) or were so small that they
reached the maximum possible coverage in under ten
seconds. The sizes of these 66 utilities varied from 6.6 K
to 29 K instructions of optimized LLVM bytecode (using

the --optimize KLEE flag) with a median size of 12.6 K.
All together, they sum to 905 K instructions.

Speedups. We calculated speedup as follows:

1. Ran each program for one hour with KLEE-BASE
and one hour with KLEE-REDUCE .

2. Recorded the maximum coverage Cmax that both
KLEE-BASE and KLEE-REDUCE were able to
reach.

3. Recorded the times Tbase and Tred at which KLEE-
BASE and KLEE-REDUCE reached Cmax, respec-
tively.

4. Calculated the speedup as Tbase/Tred.

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

Sp
ee

du
p

(X
)

Benchmark

Log Speedups

Figure 5: Log-scale speedups of how many times faster
KLEE-REDUCE reaches the same statement coverage as
KLEE-BASE.

Figure 5 uses a log scale to show the relative speedup,
sorted from least to most. A bar below 1.0 means KLEE-
REDUCE ran slower than KLEE-BASE and a bar above
1.0 means that it ran faster. As can be seen from the re-
sults, KLEE-REDUCE gives enormous speedups on the
vast majority of benchmarks. KLEE-REDUCE ’s aver-
age speedup is 50.5 X , that is, 50.5 times faster than
KLEE-BASE. Its median speedup is 10 X , the max-
imum is 717 X and its maximum slow down is 0.2 X
. And, 54 out of 66 (82 %) benchmarks had speedups
greater than 1 X.

Table 1 shows the impact of KLEE-REDUCE on sev-
eral metrics. Table 2 shows individual results from
running KLEE-BASE and KLEE-REDUCE on the ten
largest coreutils benchmarks.

Coverage. On 55 of the 66 (83 %) benchmarks,
KLEE-REDUCE reaches at least the same coverage

11

210 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Statistic BASE REDUCE Reduction
Instructions 1.8 billion 222 million 8 X
Paths 5,285,596 391,057 14 X
Queries 266,286 77,614 3.4 X
Query Constructs 24.3 million 9.8 million 2.5 X
Solver Time 20.6 hours 4.1 hours 5 X
Solver Overhead 73 % 37 % 1.9 X

Table 1: Impact of KLEE-REDUCE on the number of
instructions executed, paths generated, queries made,
solver time, and solver overhead across all benchmarks.

KLEE-BASE KLEE-REDUCE
T cov Tc T cov Tc X covinc

join 3,587 83.1 3,587 3,189 87.5 1,002 3.6 4.4
csplit 1,686 70.4 1,686 3,163 77.8 1,322 1.3 7.4
stty 2,340 58.2 2,340 694 86.5 66 35.2 28.3
dd 3,353 40.3 3,353 1,999 44.5 137 24.5 4.2
tail 3,230 70.1 3,230 2,305 76.8 143 22.7 6.7
od 3,599 74.7 3,599 1,250 84.9 200 18 10.2
tr 2,839 60.6 2,839 1,164 64 962 3 3.4

ptx 1,541 18.5 1,541 3,461 40.6 18 85.1 22.1
pr 234 57.2 29 54 39.4 54 0.5 -17.8
ls 298 34 92 82 29.5 82 1.1 -4.5

Table 2: Individual results from running KLEE-BASE
and KLEE-REDUCE on the ten largest coreutils bench-
marks. T is time to reach the maximum coverage, cov
is maximum coverage, Tc is time to reach the same cov-
erage, X is relative speedup, and covinc is coverage in-
crease.

as KLEE-BASE, and on 30 (45 %) KLEE-REDUCE
reaches higher coverage. The average coverage increase
is 3.8 % with a median of 2.5 % on the 54 benchmarks on
which either KLEE-BASE or KLEE-REDUCE did not
reach the maximum coverage possible given the modeled
environment. Figure 6 shows the coverage increases for
each benchmark.

Exhaustion. Our analysis eliminates states to the
extent that on 12 out of 66 benchmarks (18 %), KLEE-
REDUCE explores every state in the state space exhaus-
tively, proving that any remaining uncovered lines are

-20

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60 70

C
ov

er
ag

e
In

cr
ea

se
s

(%
)

Benchmark

Coverage Increases

Figure 6: Coverage increases

dead code with respect to the modeled environment.
KLEE-BASE , on the other hand, was not able to explore
the state space exhaustively on any of these benchmarks.

Challenges. Now, we discuss the 14 out of 66 (21 %)
benchmarks that were either slower than KLEE-BASE or
had lower coverage. On eleven of these 14 benchmarks,
KLEE-REDUCE did not reach the maximum coverage of
KLEE-BASE, and on the remaining three, it reached the
maximum coverage but was slower than KLEE-BASE.

On seven of these 14 benchmarks, KLEE-REDUCE
did not outperform KLEE-BASE because these particu-
lar benchmarks had especially high solver overhead, as
they spent more than 90% of their time solving queries.
Thus, there was less opportunity for KLEE-REDUCE to
improve performance. Furthermore, KLEE-REDUCE is
biased, by design, to explore deeper parts of the program
which causes it to encounter harder queries.

On the other seven of these 14 benchmarks, KLEE-
REDUCE did not outperform KLEE-BASE because it
does not reason precisely enough about constraints that
are inconsistent in general, yet, with respect to reach-
ing uncovered lines of code, they are equivalent. For ex-
ample, consider the following common code pattern that
uses the libc read function, which returns either -1 on
error, 0 on reaching the end-of-file, or a positive value
denoting the number of bytes read into buf.

1 while (1) {

2 bytes_read = read(fd, buf , sizeof buf);

3 if (bytes_read <= 0)

4 break; // uncovered

5 ...

6 }

Suppose a state reaches line 3 with the constraint
bytes read = 5, and the detector tries to match it against
a relevant constraint set with bytes read = 7. The de-
tector will conclude that no match exists because it will
see that these two constraints have different values for
bytes read. However, with respect to reaching the un-
covered line, they essentially match and thus the state
should be pruned.

5 Related Work

The closest antecedent to our work is Boonstoppel et
al. [3]. They detect redundant states by comparing a
state’s live constraints against those of previous states
that have reached the same context-sensitive program
point, where a constraint is live if it involves a location
that is read anywhere along the path taken by the pre-
vious state. They require that a depth-first search strat-
egy is used for exploring states, which severely limits its
ability to achieve high coverage. In contrast, our anal-
ysis works with any search strategy and only compares

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 211

constraints that are specifically relevant to uncovered in-
structions, thus making it significantly more precise. In-
ferring relevant locations is substantially more challeng-
ing because it requires slicing the dynamic data, control,
and potential dependencies between locations (§ 3.2.2)
and handling irregular control flow (§ 3.2.3). Further-
more, in our paper, we introduce the novel techniques of
inter-path slicing (§ 3.2.4), dynamic refinement (§ 3.4),
single-valued locations (§ 3.5) and using unsound rele-
vant location sets to enhance search strategies (§ 3.6).

It is difficult to directly compare the two approaches.
This previous system was built on EXE [6], which typ-
ically handles three to five orders of magnitude fewer
states than KLEE, in large part because EXE created a
new kernel process using (fork) at each branch point
(e.g., each if-statement with two feasible branches). As
a result, they did not solve many of the non-trivial en-
gineering challenges we had to handle in order to suc-
cessfully beat a much faster base system (KLEE). As a
crude method to ignore this important engineering as-
pect and just compare the additional benefit of only the
new refinement and propagation ideas in our approach,
we disabled all techniques we added that were not in the
original paper, and re-ran our system over the same 66
benchmarks in Section 4. On more than 90% of these
benchmarks, the previous system either did not reach the
same coverage as KLEE-BASE or was slower than it. On
average, it had a coverage decrease of -15.5%.

In [15], the authors use dynamic slicing as part of a
DART-based path exploration technique that helps avoid
exploring redundant paths. They evaluate their approach
on five very simple benchmarks. On the two smallest
benchmarks each of which is less than 120 lines of code,
they show that their approach saves a total of 60 seconds.
On the other three benchmarks each of which is less than
260 lines, their approach either does not reach the same
coverage as the base system or shows no improvement.
We handle much larger programs, a much larger variety
of them, and get much larger speedups.

Finally, there are a set of interesting state space re-
duction techniques for dynamic symbolic execution that
improve scalability that are complementary to our work.
Collingbourne et al. [8] use phi-node folding to replace
control-flow forking with predicated select instructions
in order to reduce the number of paths explored by sym-
bolic execution. Kuznetsov et al. [14] propose a tech-
nique to merge states obtained on different paths to re-
duce the state space that a dynamic symbolic execution
system needs to explore. The challenge they tackle is that
merging states introduces disjunctions into the path con-
dition and increases its complexity thereby stressing the
underlying constraint solver. They demonstrate that their
technique allows a symbolic execution system to explore
substantially more paths. Godefroid et al. [9, 11] propose

constructing function summaries for dynamic symbolic
execution represented as input-output constraints. We
believe using our techniques would allow this prior work
to achieve even greater improvements (and vice versa).

6 Acknowledgments

We would like to thank Cristian Cadar, David Ramos,
Philip Guo, and the anonymous reviewers for their in-
sightful comments and feedback.

References
[1] AGRAWAL, H., AND HORGAN, J. R. Dynamic Program Slicing.

In PLDI (1990).

[2] AGRAWAL, H., HORGAN, J. R., KRAUSER, E. W., AND LON-
DON, S. Incremental Regression Testing. In CSM (1993).

[3] BOONSTOPPEL, P., CADAR, C., AND ENGLER, D. RWset: At-
tacking Path Explosion in Constraint-based Test Generation. In
TACAS (2008).

[4] BURNIM, J., AND SEN, K. Heuristics for Scalable Dynamic Test
Generation. In ASE (2008).

[5] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In OSDI (2008).

[6] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: Automatically Generating Inputs of
Death. In CCS (2006).

[7] CADAR, C., GODEFROID, P., KHURSHID, S., PĂSĂREANU,
C. S., SEN, K., TILLMANN, N., AND VISSER, W. Symbolic
Execution for Software Testing in Practice: A Preliminary As-
sessment. In ICSE (2011).

[8] COLLINGBOURNE, P., CADAR, C., AND KELLY, P. H. Sym-
bolic Crosschecking of Floating-point and SIMD Code. In Eu-
rosys (2011).

[9] GODEFROID, P. Compositional Dynamic Test Generation. In
POPL (2007).

[10] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected Automated Random Testing. In PLDI (2005), V. Sarkar
and M. W. Hall, Eds.

[11] GODEFROID, P., NORI, A. V., RAJAMANI, S. K., AND TETALI,
S. D. Compositional May-Must Program Analysis: Unleashing
the Power of Alternation. In POPL (2010).

[12] GROCE, A., AND VISSER, W. Heuristic Model Checking for
Java Programs. In STTT (2004).

[13] HACKETT, B., AND AIKEN, A. How Is Aliasing Used in Sys-
tems Software? In FSE (2006).

[14] KUZNETSOV, V., KINDER, J., BUCUR, S., AND CANDEA, G.
Efficient State Merging in Symbolic Execution. In PLDI (2012).

[15] QI, D., NGUYEN, H. D., AND ROYCHOUDHURY, A. Path Ex-
ploration Based on Symbolic Output. In FSE (2011).

[16] QUINLAN, J. R. Induction of Decision Trees. Machine Learning
1, 1 (Mar. 1986).

[17] SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. Computa-
tion of Interprocedural Control Dependence. In ISSTA (1998).

13

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 213

packetdrill: Scriptable Network Stack Testing, from Sockets to Packets

Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath Raghavan,

Nandita Dukkipati, Hsiao-keng Jerry Chu, Andreas Terzis, and Tom Herbert

Google

Abstract

Testing today’s increasingly complex network proto-

col implementations can be a painstaking process. To

help meet this challenge, we developed packetdrill, a

portable, open-source scripting tool that enables testing

the correctness and performance of entire TCP/UDP/IP

network stack implementations, from the system call

layer to the hardware network interface, for both IPv4

and IPv6. We describe the design and implementation

of the tool, and our experiences using it to execute 657

test cases. The tool was instrumental in our development

of three new features for Linux TCP—Early Retransmit,

Fast Open, and Loss Probes—and allowed us to find and

fix 10 bugs in Linux. Our team uses packetdrill in all

phases of the development process for the kernel used in

one of the world’s largest Linux installations.

1 Introduction

Despite their importance in modern computer systems,

network protocols often undergo only ad hoc testing be-

fore their deployment, and thus they often disappoint us.

In large part this is due to their complexity. For ex-

ample, the TCP roadmap RFC [19] from 2006 lists 32

RFCs. Linux implements many of these, along with a

few post-2006 Internet drafts, the sockets API, a dozen

congestion control modules, SYN cookies, numerous

software and hardware offload mechanisms, and socket

buffer management. Furthermore, new algorithms have

unforeseen interactionswith other features, so testing has

only become more daunting as TCP has evolved. In par-

ticular, we have made a number of changes to Linux

TCP [14, 15, 17, 20–22, 30] and have faced significant

difficulty in testing these features. The difficulties are

exacerbated by the number of components interacting,

including the application, kernel, driver, network inter-

face, and network. We found we needed a testing tool

for three reasons:

New feature development. Development testing of new

TCP features has often relied either on testing patches

on production machines or in emulated or simulated net-

work scenarios. Both approaches are time-consuming.

The former is risky and impossible to automate or repro-

duce; the latter is susceptible to unrealistic modeling.

Regression testing. While valuable for measuring over-

all performance, TCP regression testing with netperf,

application load tests [16], or production workloads can

fail to reveal significant functional bugs in congestion

control, loss recovery, flow control, security, DoS hard-

ening, and protocol state machines. Such approaches

suffer from noise due to variations in site/network con-

ditions or content, and a lack of precision and isola-

tion; thus bugs in these areas can go unnoticed (e.g. the

bugs discussed in Section 4.2 were only discovered with

packetdrill tests).

Troubleshooting. Reproducing TCP bugs is often chal-

lenging, and can require developers to instrument a pro-

duction kernel to collect clues and identify the culprit.

But production changes risk regressions, and it can take

many iterations to resolve the issue. Thus we need

a tool to replay traces to reproduce problems on non-

production machines.

To meet these challenges, we built packetdrill, a tool

that enables developers to easily write precise, repro-

ducible, automated test scripts for entire TCP/UDP/IP

network stacks. We find that it meets our design goals:

Convenient. Developers can quickly learn the syntax of

packetdrill and need not understand the internals of

protocols or packetdrill itself. The syntax also makes

it easy for the script writer to translate packet traces into

test scripts. The tool runs in real time so tests often com-

plete in under one second, enabling quick iteration.

Realistic. packetdrill works with packets and sys-

tem calls, testing precise sequences of real events.

packetdrill tests the exact kernel image used in pro-

duction, running in real time on a physical machine. It

214 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

can run with real drivers and a physical network inter-

face card (NIC), wire, and switch, or a TUN virtual NIC.

It does not rely on virtual machines, user-mode Linux,

emulated networks, or approximate models of TCP.

Reproducible. packetdrill can reliably reproduce

test script timing with less than one spurious failure per

2500 test runs (see Section 4.4).

General. packetdrill allows a script to run in IPv4,

IPv6, or IPv4-mapped IPv6 mode without modification.

It runs on Linux, FreeBSD, OpenBSD, and NetBSD,

and is portable across POSIX-compliant operating sys-

tems that support the libpcap packet capture/injection

library. Since it is open source, it can be extended by

protocol implementors to work with new algorithms, fea-

tures, and packet formats, including TCP options.

We find packetdrill useful in feature development, re-

gression testing, and production troubleshooting. Dur-

ing feature development, we use it to unit test imple-

mentations, thereby enabling test-driven development—

we have found it vital for incrementally testing complex

new TCP features on both the server and client side dur-

ing development. Then we use it for easy regression

testing. Finally, once code is in production, we use it

to isolate and reproduce bugs. Throughout the process,

packetdrill provides a succinct but precise language

for discussing TCP scenarios in bug reports and email

discussions.

In the rest of the paper, we discuss the design and im-

plementation of packetdrill, our experiences using it,

and related work.

2 Design

2.1 Scripting Language

packetdrill is entirely script-driven, to ease inter-

active use. packetdrill scripts use a language we de-

signed to closely mirror two syntaxes familiar to net-

working engineers: tcpdump and strace. The language

has four types of statements:

• Packets, using a tcpdump-like syntax, including

TCP, UDP, and ICMP packets, and common TCP

options: SACK, Timestamp, MSS, window scale,

and Fast Open.

• System calls, using an strace-like syntax.

• Shell commands enclosed in `` backticks, which

allow system configuration or assertions about net-

work stack state using commands like ss.

• Python scripts enclosed in %{}% braces, which en-

able output or assertions about the tcp_info state

that Linux and FreeBSD expose for TCP sockets.

2.2 Execution Model

packetdrill parses an entire test script, and then ex-

ecutes each timestamped line in real time—at the pace

described by the timestamps—to replay and verify the

scenario. For each system call line, packetdrill exe-

cutes the system call and verifies that it returns the ex-

pected result. For each command line, packetdrill

executes the shell command. For each incoming packet

(denoted by a leading < on the line), packetdrill con-

structs a packet and injects it into the kernel. For each

outgoing packet (denoted by a leading > on the line),

packetdrill sniffs the next outgoing packet and ver-

ifies that the packet’s timing and contents match the

script.

Consider the example script in Figure 1, which shows

a packetdrill script that tests TCP fast retransmit.

This test passes as-is on Linux, FreeBSD, OpenBSD, and

NetBSD, using a real NIC. As is typical, this script starts

by setting up a socket (lines 1–4) and establishing a con-

nection (lines 5–8). After writing data to a socket (line

9), the script expects the network stack under test to send

a data packet (line 10) and then directs packetdrill to

inject an acknowledgement (ACK) packet (line 11) that

the stack will process. The script ultimately verifies that

a fast retransmit occurs after three duplicate acknowl-

edgements arrive.

2.3 Local and Remote Testing

packetdrill enables two modes of testing: lo-

cal mode, using a TUN virtual network device, or in

remote mode, using a physical NIC. In local mode,

packetdrill uses a single machine and a TUN virtual

network device as a source and sink for packets. This

tests the system call, sockets, TCP, and IP layers, and is

easier to use since there is less timing variation, and users

need not coordinate access to multiple machines. In re-

mote mode, users run two packetdrill processes, one

of which is on a remote machine and speaks to the sys-

tem under test over a LAN. This approach tests the full

networking system: system calls, sockets, TCP, IP, soft-

ware and hardware offload mechanisms, the NIC driver,

NIC hardware, wire, and switch. However, due to the

inherent variability in the many components under test,

remote mode can result in larger timing variations, which

can cause spurious test failures.

3 Implementation

packetdrill is a user-level application written en-

tirely in C, adhering to Linux kernel code style to ease

use in kernel testing environments. In this section we

delve into the implementation of the tool.

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 215

0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 // Create a socket.

+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 // Avoid binding issues.

+0 bind(3, ..., ...) = 0 // Bind the socket.

+0 listen(3, 1) = 0 // Start listening.

+0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> // Inject a SYN.

+0 > S. 0:0(0) ack 1 <...> // Expect a SYN/ACK.

+.1 < . 1:1(0) ack 1 win 257 // Inject an ACK.

+0 accept(3, ..., ...) = 4 // Accept connection.

+0 write(4, ..., 1000) = 1000 // Write 1 MSS of data.

+0 > P. 1:1001(1000) ack 1 // Expect it to be sent immediately.

+.1 < . 1:1(0) ack 1001 win 257 // Inject an ACK after 100ms.

+0 write(4, ..., 4000) = 4000 // Write 4 MSS of data.

+0 > . 1001:2001(1000) ack 1 // Expect immediate transmission.

+0 > . 2001:3001(1000) ack 1

+0 > . 3001:4001(1000) ack 1

+0 > P. 4001:5001(1000) ack 1

+.1 < . 1:1(0) ack 1001 win 257 <sack 2001:3001,nop,nop> // Inject 3 ACKs with SACKs.

+0 < . 1:1(0) ack 1001 win 257 <sack 2001:4001,nop,nop>

+0 < . 1:1(0) ack 1001 win 257 <sack 2001:5001,nop,nop>

+0 > . 1001:2001(1000) ack 1 // Expect a fast retransmit.

+.1 < . 1:1(0) ack 6001 win 257 // Inject an ACK for all data.

Figure 1: A packetdrill script for TCP fast retransmit. Scripts use ... to omit irrelevancies.

3.1 Components

3.1.1 Lexer and Parser

For generality and extensibility, we use flex and

bison to generate packetdrill’s lexer and parser, re-

spectively. The structure of the script language is fairly

simple, and includes C/C++ style comments.

3.1.2 Interpreter

The packetdrill interpreter has one thread for the

main flow of events and another for executing any sys-

tem calls that the script expects to block (e.g. poll()).1

Packet events. For convenience, scripts use an ab-

stracted notation for packets. Internally, packetdrill

models aspects of TCP and UDP behavior; to do this,

it maintains mappings to translate between the values in

the script and those in the live packet. The translation

includes IP, UDP, and TCP header fields, including TCP

options such as SACK and timestamps. Thus we track

each socket and its IP addresses, port numbers, TCP se-

quence numbers, and TCP timestamps.

For outbound packet events we start sniffing immedi-

ately, in order to detect any packets that go out earlier

than the script specifies. When we sniff an outbound live

packet we find the socket that sent it, and verify that the

packet was sent at the expected time. Then we translate

1Currently, for simplicity of both understanding and implementa-

tion, we support only one blocking system call at a time.

the live packet to its script equivalent and verify that the

bits the kernel sent match what the script expected.

For inbound packet events we pause until the specified

time, then translate the script values to their live equiv-

alents so the network stack under test can process them,

and then inject the packet into the kernel.

To capture outgoing packets we use a packet socket

(on Linux) or libpcap (on BSD-derived OSes). To in-

ject packets locally we use a TUN device. To inject pack-

ets over the physical network in remote mode we use

libpcap. To consume test packets in local mode we use

a TUN device; remotely, packets go over the physical

network and the remote kernel drops them, since it has

no interface with the test’s remote IP address.

In packetdrill scripts, several aspects of outgoing

TCP packets are optional. This simplifies tests, allows

them to focus on a single area of behavior, eases mainte-

nance, and facilitates cross-platform testing by avoiding

test failures due to irrelevant differences in protocol stack

behavior over time or between different OSes. For exam-

ple, scripts may omit the TCP receive window, or use a

<...> notation for TCP options. If specified, they are

checked; otherwise they are ignored. For example, the

<...> on the SYN/ACK packet in Figure 1 ignores the

only difference between the four OSes in this test.

System calls. For non-blocking system call events, we

invoke the system call directly in the main thread. For

3

216 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

blocking calls, we enqueue the event on an event queue

and signal the system call thread. The main thread then

waits for the system call thread to block or finish the call.

When executing system calls we evaluate script sym-

bolic expressions and translate to live equivalents to get

inputs for the call. Then we invoke the system call;

when it returns we verify that the actual output, including

errno, matches the script’s expected output.

Shell commands. packetdrill executes command

strings with system().

Python scripts. packetdrill runs Python snippets by

recording the socket’s tcp_info struct at the time of the

script event, and then emitting Python code to export

the data, followed by the Python snippet itself, for the

Python interpreter to run after test execution completes.

3.2 Handling Variation

3.2.1 Network protocol features

packetdrill supports a wide array of protocol fea-

tures. Developers can use the same script unmodified

across IPv4, IPv6, and IPv4-mapped IPv6 modes by us-

ing command line flags to select the address mode and

MTU size. Beyond IPv4, IPv6, TCP, and UDP, we sup-

port ECN and inbound ICMP (for path MTU discovery).

It would be straightforward to add support for other IP-

based protocols, such as DCCP or SCTP.

3.2.2 Machine configuration

We have found that most scripts share machine set-

tings, and thus most scripts start by invoking a default

shell script to configure the machine. Also, since script

system calls do not specify aspects of the test machine’s

configuration, the interpreter substitutes these values in

during test execution. For example, we select a default

IP address that will be used for bind system calls based

upon the choice of IPv4, IPv6, or IPv4-mapped IPv6.

3.2.3 Timing Models

Since many protocols are very sensitive to timing,

we added support for significant timing flexibility in

scripts. Each statement has a timestamp, enforced by

packetdrill: if an event does not occur at the specified

time, packetdrill flags an error and reports the actual

time. Table 1 shows the packetdrill timing models.

3.2.4 Avoiding Spurious Failures

For over a year, we have used a --tolerance_usecs

value of 4 ms, so a test will pass as long as events happen

within 4 ms of the expected time. This allows the most

common variation: a 1-ms deviation in RTT leads to a

3-ms deviation in retransmission timeout (RTO), initial-

ized to 3 ·RTT per RFC 6298. We have found this to be

a practical trade-off between precision and maintenance

overhead, catching most significant timing bugs while

usually allowing a full run of all packetdrill scenarios

without a single spurious failure.

packetdrill also takes steps internally to reduce

timing variation and spurious failures, including align-

ing the start of test execution at a fixed phase offset rel-

ative to the kernel scheduler tick, leveraging sleep wake-

up events to obtain fresh tick values on “tick-less” Linux

kernels lacking a regular scheduler tick, using a real-time

scheduling priority, using mlockall() to attempt to pin

its memory pages into RAM, precomputing data where

possible, and automatically sending a TCP RST segment

to all test connections at the end of a test to avoid inter-

ference from retransmissions.

4 Experiences and results

For over 18monthswe have used packetdrill to test

the Linux kernel used on Google production machines.

Next we discuss how we’ve found it useful.

4.1 Features developed with packetdrill

Our team has used packetdrill to test the features

that we have implemented in Linux and have published.

We avoided pushing into production numerous bugs by

using packetdrill during development to test TCP

Early Retransmit [14], TCP Fast Open [30], TCP Loss

Probe [20], and a complete rewrite of the Linux F-RTO

implementation [15]; we also used it to test forward er-

ror correction for TCP [24]. The TCP features we devel-

oped before packetdrill, and thus for which we wrote

packetdrill tests afterward, include increasing TCP’s

initial congestion window to ten packets [22], reducing

TCP’s initial retransmission timeout to 1 second [17],

and Proportional Rate Reduction [21].

4.2 Linux bugs found with packetdrill

In the process of writing tests for the Linux TCP stack,

our team found and fixed 10 bugs in the official version

of Linux maintained by Linus Torvalds.

DSACK undo. Linux TCP can use duplicate se-

lective acknowledgements, or DSACKs, to undo con-

gestion window reductions. There was a bug where

DSACKs were ignored if there were no outstanding un-

acknowledged packets at the time the sender receives

the DSACK—this is actually the most common case [4].

Also, Linux was not allowing DSACK-based undo in

some cases where ACK reordering occurred [5].

CUBIC and BIC RTO undo. CUBIC, the default TCP

congestion control module for Linux, and the related

BIC module had bugs preventing them from undoing

a congestion window reduction that resulted from an

RTO [6, 7]; RTOs are the most common form of loss re-

covery in web sites with short flows [21].

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 217

Model Syntax Description

Absolute 0.750 Specifies the specific time at which an event should occur.

Relative +0.2 Specifies the interval after the last event at which an event should occur.

Wildcard * Allows an event to occur at any time.

Range 0.750~0.9 Requires the given event to occur within the time range.

Loose --tolerance_usecs=800 Allows all events to happen within a range (from the command line).

Blocking 0.750...0.9 Specifies a blocking system call that starts/returns at the given times.

Table 1: Timing models supported in packetdrill.

TCP Fast Open server. We used packetdrill to

find and fix several minor bugs in the TCP Fast Open

server code: the RTT sample taken using the server’s

TCP SYN/ACK packet was incorrect [8,9], TFO servers

failed to process the TCP timestamp value on the incom-

ing receiver ACK that completed the three-way hand-

shake [10], and TFO servers failed to count retransmits

that happened during the three-way handshake [11].

Receiver RTT estimation. We found and fixed a bug

in which receiver-side RTT estimates were broken due to

a path in which the code was directly comparing a raw

RTT sample with one that had already been shifted into

a fixed point representation [12].

Scheduler jiffies update. Jitter in packetdrill test

RTT estimates hinted at a Linux kernel code path in

which tick-less jiffies could be stale. Our audit of the

jiffies code revealed such a bug, which we fixed [13].

4.3 Catching external behavior changes
packetdrill scripts brought to our team’s attention

external Linux kernel changes that were not bugs, but

still had significant impacts in our environment, includ-

ing timer slack [32] and recent fixes in packet size ac-

counting [23]. For these changes we ended up adjusting

our production kernel’s behavior.

4.4 Test Suite
Coverage. Our team of nine developers has written

266 packetdrill scripts to test the Google production

Linux kernel and 92 scripts to test packetdrill itself.

Because packetdrill enables developers to run a given

test script in IPv4, IPv6, or IPv4-mapped IPv6 modes,

the number of total test case scenarios is even greater:

657. Table 2 summarizes the areas of TCP functionality

covered by our packetdrill scripts.

Reproducibility. To quantify the reproducibility of our

test results, we examined the spurious failure rate for two

days of recent test runs on a 2.2GHz 64-bit multiproces-

sor PC running a recent Google production Linux kernel.

We examined the most recent 54 complete runs of all 657

packetdrill test cases relevant for that release of the

kernel, and found 14 test case failures, all of which were

spurious. This implies an overall spurious test case fail-

ure rate of just under 0.0004, or 1 in 2500. Since fewer

Feature Description Tests

Socket API listen, connect, write, close, etc. 11

RFC 793 Core functionality 21

RFC 1122 Keep-alive 4

RFC 1191 Path MTU discovery 4

RFC 1323 Timestamps 1

RFC 2018 SACK (Selective Acknowledgement) 12

RFC 3168 Explicit Congestion Notification 3

RFC 3708 DSACK-based undo 10

RFC 5681 Congestion control 10

RFC 5827 Early retransmit 11

RFC 5682 F-RTO (Forward RTO-Recovery) 14

RFC 6298 Retransmission timer 13

RFC 6928 Initial congestion window 5

RFC 6937 Proportional rate reduction 10

IETF draft Fast open 44

IETF draft Loss probe 9

IETF draft CUBIC congestion control 1

n/a TSO (TCP segmentation offload) 3

n/a Receive buffer autotuning 2

n/a Linux inet_diag sockets 3

n/a Miscellaneous 75

Total test scripts 266

Table 2: Areas of TCP tested by packetdrill scripts.

than a quarter of full test runs suffer from spurious fail-

ures, we find this to be an acceptable overhead on our

kernel team. However, we continue to refine scripts to

further reduce the spurious failure rate.

Execution Time. packetdrill scripts execute quickly,

so we run all packetdrill scripts before sending for

review any commit that modifies the Google production

TCP code. For the 54 test runsmentioned above, the total

time to execute all 657 test cases was 25–26 minutes in

all 54 test runs, an average of 2.4 seconds per test case.

5 Related Work

There are many tools to debug and test protocol im-

plementations. RFC2398 [28] categorizes late-90s

tools. The Packet Shell [27] seems to be the closest

to packetdrill in design. It allowed scripts to send

and receive packets to test a TCP peer’s responses, but it

was developed specifically for Solaris, is no longer avail-

able publicly, was more labor-intensive (e.g. it took 8

5

218 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

lines of Tcl commands to inject a single TCP SYN), and

had no support for the sockets API, specifying packet ar-

rival times, or handling timers. Orchestra [18] is a fault-

injection library to check the conformance of TCP im-

plementations to basic TCP RFCs. It places a layer be-

low the X-kernel TCP stack and executes user-specified

actions to delay, drop, reorder, and modify packets. Re-

sults require manual inspection, and the tests are not au-

tomated to check newer TCP stacks. While not devel-

oped for testing, TCPanaly [29] analyzes TCP traces to

identify TCP implementations and diagnose RFC viola-

tions or performance issues. In packetdrill such do-

main knowledge is constructed through scripts; in TCP-

analy its built directly into the software itself, which is

harder to revise and expand.

The tools above were developed in the late 1990s, and

to our knowledge none of them is being actively used

to test modern TCP stacks. By contrast, IxANVL [1] is

a modern commercial protocol conformance testing tool

that covers core TCP RFCs and a few other networking

protocols, but unlike packetdrill it can not be eas-

ily extended or scripted to troubleshoot bugs or test new

changes, and is not open source.

Other research efforts test protocols by manually writ-

ing a model in a formal language, and then using auto-

mated tools to check for bugs [2, 3, 26, 31]. While these

models are rigorous, their high maintenance cost is un-

sustainable, since they diverge from the rapidly-evolving

code they try to model. Other tools automatically find

bugs, but only within narrow classes, or in user-level

code [25]. These approaches are complementary to ours.

6 Conclusion

packetdrill enables quick, precise, reproducible

scripts for testing entire TCP/UDP/IP network stacks.

We find packetdrill indispensable in verifying pro-

tocol correctness, performance, and security during de-

velopment, regression testing, and troubleshooting. We

have released packetdrill as open source in the hope

that sharing it with the community will make the process

of improving Internet protocols an easier one.

The source code and test scripts for packetdrill are

available at: http://code.google.com/p/packetdrill/.

Acknowledgements

We would like to thank Bill Sommerfeld, Mahesh

Bandewar, Chema Gonzalez, Laurent Chavey,Willem de

Bruijn, Eric Dumazet, Abhijit Vaidya, Cosmos Nicolaou,

and Michael F. Nowlan for their help and feedback.

References
[1] IxANVL. http://goo.gl/SV6ia.

[2] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,

SMITH, M., AND WANSBROUGH, K. Rigorous specification and

conformance testing techniques for network protocols, as applied

to TCP, UDP, and sockets. In Proc. of SIGCOMM (2005), ACM.

[3] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,

SMITH, M., AND WANSBROUGH, K. Engineering with logic:

HOL specification and symbolic-evaluation testing for TCP im-

plementations. In Proc. of ACM POPL (2006), ACM.

[4] CARDWELL, N. Linux commit 5628adf. http://goo.gl/Fnj46.

[5] CARDWELL, N. Linux commit e95ae2f. http://goo.gl/uyRUp.

[6] CARDWELL, N. Linux commit fc16dcd. http://goo.gl/xv6xB.

[7] CARDWELL, N. Linux commit 5a45f00. http://goo.gl/cHYiw.

[8] CARDWELL, N. Linux commit 0725398. http://goo.gl/jWu0S.

[9] CARDWELL, N. Linux commit 016818d. http://goo.gl/axR97.

[10] CARDWELL, N. Linux commit e69bebd. http://goo.gl/Rh2J1.

[11] CARDWELL, N. Linux commit 30099b2. http://goo.gl/BKZWH.

[12] CARDWELL, N. Linux commit 18a223e. http://goo.gl/BL4O5.

[13] CARDWELL, N. Linux commit 6f10392. http://goo.gl/IFQ4D.

[14] CHENG, Y. Linux commit eed530b. http://goo.gl/MPmF0.

[15] CHENG, Y. Linux commit e33099f. http://goo.gl/hhIfU.

[16] CHENG, Y., HÖLZLE, U., CARDWELL, N., SAVAGE, S., AND

VOELKER, G. Monkey see, monkey do: A tool for TCP tracing

and replaying. In Proc. of USENIX ATC (2004).

[17] CHU, J. Linux commit 9ad7c04. http://goo.gl/gxiFT.

[18] DAWSON, S., JAHANIAN, F., AND MITTON, T. Experiments

on six commercial TCP implementations using a software fault

injection tool. Software Practice and Experience 27, 12 (1997),

1385–1410.

[19] DUKE, M., BRADEN, R., EDDY, W., AND BLANTON, E. A

Roadmap for Transmission Control Protocol (TCP) Specification

Documents, September 2006. RFC 4614.

[20] DUKKIPATI, N., CARDWELL, N., CHENG, Y., AND MATHIS,

M. Tail Loss Probe (TLP): An Algorithm for Fast Recovery of

Tail Losses, Feb. 2013. IETF Draft, draft-dukkipati-tcpm-tcp-

loss-probe-01.

[21] DUKKIPATI, N., MATHIS, M., CHENG, Y., AND GHOBADI, M.

Proportional rate reduction for TCP. In Proc. of IMC (2011).

[22] DUKKIPATI, N., REFICE, T., CHENG, Y., CHU, J., HERBERT,

T., AGARWAL, A., JAIN, A., AND SUTIN, N. An Argument

for Increasing TCP’s Initial Congestion Window. ACM Comput.

Commun. Rev. 40 (2010).

[23] DUMAZET, E. Linux commit 87fb4b7. http://goo.gl/MgRWi.

[24] FLACH, T., DUKKIPATI, N., TERZIS, A., RAGHAVAN, B.,

CARDWELL, N., CHENG, Y., JAIN, A., HAO, S., KATZ-

BASSETT, E., AND GOVINDAN, R. Reducing Web Latency: the

Virtue of Gentle Aggression. In SIGCOMM (2013).

[25] KOTHARI, N., MAHAJAN, R., MILLSTEIN, T. D., GOVINDAN,

R., AND MUSUVATHI, M. Finding protocol manipulation at-

tacks. In SIGCOMM (2011), pp. 26–37.

[26] MUSUVATHI, M., ENGLER, D., ET AL. Model checking large

network protocol implementations. In Proc. of NSDI (2004).

[27] PARKER, S., AND SCHMECHEL, C. The packet shell protocol

testing tool. http://goo.gl/CS4kf.

[28] PARKER, S., AND SCHMECHEL, C. RFC2398: Some testing

tools for TCP implementors, August 1998.

[29] PAXSON, V. Automated packet trace analysis of TCP implemen-

tations. In Proc. of ACM SIGCOMM (1997), ACM.

[30] RADHAKRISHNAN, S., CHENG, Y., CHU, J., JAIN, A., AND

RAGHAVAN, B. TCP Fast Open. In Proc. of CoNEXT (2011).

[31] SMITH, M., AND RAMAKRISHNAN, K. Formal specification

and verification of safety and performance of TCP selective ac-

knowledgment. IEEE/ACM ToN 10, 2 (2002).

[32] VAN DE VEN, A. Linux commit 3bbb9ec. http://goo.gl/w18r6.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 219

DeepDive: Transparently Identifying and Managing Performance

Interference in Virtualized Environments

Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić†, and Ricardo Bianchini‡

EPFL, Switzerland †Institute IMDEA Networks, Spain ‡Rutgers University, USA

Abstract

We describe the design and implementation of Deep-

Dive, a system for transparently identifying and man-

aging performance interference between virtual ma-

chines (VMs) co-located on the same physical ma-

chine in Infrastructure-as-a-Service cloud environments.

DeepDive successfully addresses several important chal-

lenges, including the lack of performance information

from applications, and the large overhead of detailed in-

terference analysis. We first show that it is possible to

use easily-obtainable, low-level metrics to clearly dis-

cern when interference is occurring and what resource

is causing it. Next, using realistic workloads, we show

that DeepDive quickly learns about interference across

co-located VMs. Finally, we show DeepDive’s ability

to deal efficiently with interference when it is detected,

by using a low-overhead approach to identifying a VM

placement that alleviates interference.

1 Introduction

Many enterprises and individuals have been offload-

ing their workloads to Infrastructure-as-a-Service (IaaS)

providers, such as Amazon and Rackspace. A key en-

abling factor in the expansion of cloud computing is vir-

tualization technology. IaaS providers use virtualization

to (1) package each customer’s application into one or

more virtual machines (VMs), (2) isolate misbehaving

applications, (3) lower operating costs by multiplexing

their physical machines (PMs) across many VMs, and

(4) simplify VM placement and migration across PMs.

Despite the benefits of virtualization, including its abil-

ity to slice a PM well in terms of CPU and memory space

allocation, performance isolation is far from perfect in

these environments. Specifically, a challenging problem

for providers is identifying (and managing) performance

interference between the VMs that are co-located at each

PM. For example, two VMs may thrash in the shared

hardware cache when running together, but fit nicely in

it when each is running in isolation. As another exam-

ple, two VMs, each with sequential disk I/O when run-

ning in isolation, may produce a random access pattern

on a shared disk when running together. To make things

worse, technology trends point to manycore PMs with

hundreds or even thousands of cores. On these PMs, the

chance of experiencing interference will increase.

Interference can severely diminish the trust of cus-

tomers in the cloud’s ability to deliver predictable per-

formance. Thus, interference might become a stumbling

block in attracting performance-sensitive customers.

Effectively dealing with interference is challenging

for many reasons. First, the IaaS provider is oblivi-

ous to its customers’ applications and workloads, and

it cannot easily determine that interference is occurring.

Moreover, the IaaS provider cannot rely on applications

to report their performance levels (and therefore know

when interference is occurring), because this might over-

burden application developers who moreover cannot be

trusted. This challenge speaks against non-transparent

approaches [12, 18, 25, 26, 27, 33, 37]. Second, interfer-

ence is complex in nature and may be due to any server

component (e.g., shared hardware cache, memory, I/O).

An effective solution has to account for all components.

Further, interference might only manifest when the co-

located VMs are concurrently competing for hardware

resources. The existing approaches for predicting per-

formance degradation [12, 18, 25, 26, 37] are not appli-

cable, as they require the provider to have access to the

co-located VMs for long periods prior to deployment. In-

terference detection must be a quicker, online activity. Fi-

nally, the sheer volume of new VMs deployed daily at a

large public provider may cause scalability issues.

Given these challenges, we propose DeepDive, a sys-

tem for transparently and efficiently identifying and man-

aging interference in IaaS providers. We contribute:

1. A method for transparently obtaining the ground truth

about interference, including a black-box detection of ap-

plication behavior and the ability to pinpoint the culprit

resource for interference using only low-level metrics.

2. A warning system that reduces the overhead of de-

tailed interference analysis by learning about normal,

non-interfering behaviors.

3. A technique for leveraging global information to in-

crease scalability that uses the behavior of VMs running

the same workload on other PMs.

4. A mechanism for transparently and cheaply migrating

the culprit VM, by using a simple synthetic benchmark

to mimic the low-level behavior of a VM and its impact

on other VMs before actual migration.

5. Results using realistic workloads that show: i) Deep-

Dive transparently infers performance loss with high ac-

curacy (less than 5% error on average), identifies inter-

1

220 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 1000

 2000

 3000

 4000

 5000

 6000

March 24 (5:00 PM) March 26 (5:00 PM)
 0

 50

 100

 150

 200

 250

 300

 350

 400
T

h
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
)

Time

Throughput
Average latency

Figure 1: Measured performance of a service running on EC2

under a fixed workload and resource configuration. Perfor-

mance is periodically affected by co-located VMs.

ference, and pinpoints the culprit resource; ii) it is highly

accurate (no false negatives) and has low overhead (few

profiling machines); and iii) it makes quick (less than a

minute) and accurate VM placement decisions.

To our knowledge, DeepDive is the first end-to-end

system that transparently and efficiently handles interfer-

ence on any major server resource, including I/O. Its de-

ployment would have two key benefits. First, it would

enable cloud providers to meet their service-level objec-

tives using fewer resources, which would increase user

satisfaction and reduce energy costs. Second, the smarter

VM placement would enable cloud customers to pur-

chase fewer resources from the provider.

2 Background and Motivation

Virtualization software chronically lacks effective perfor-

mance isolation, especially in the context of hardware

caches and I/O components. For instance, recent ef-

forts [15] reveal that interference may cause same-type

VMs (e.g., those offering the same amount of virtual

resources) to exhibit significantly different performance

over time. This impact can be seen in our experiment

using Cassandra [8] (a key-value store) running on Ama-

zon EC2. We deploy one Cassandra VM and monitor

its performance under a fixed workload and resource al-

location during a three-day period. As shown in Fig-

ure 1, although both the workload and virtual resources

remain the same, Cassandra faces many periods of sig-

nificantly degraded performance. We attribute the perfor-

mance losses to interference as we tightly control the ex-

periment, except of course for the virtualization platform

and the PM, where interference can occur.

Faced with such losses, users might compensate by

overprovisioning their VMs [26, 27, 33], which increases

their costs. However, overprovisioning is not a panacea,

especially for “scale out” applications that dynamically

increase the number of running VMs while keeping the

instances affected by interference in the active set. As a

result, many (potential) customers still find interference

as a barrier to migrating their loads to the cloud [6].

VM2

Sandboxed environment

VM0 VM1 VM2

ProxyClient Requests

Production

BM0VM4VM3

Placement (production)
2’: Evaluate VM

placement (e.g., of the

most aggressive VM)

1: Clone VM

(if needed)

Interference analyzer
VMM

Warning system
VMM

Other VMs’

behavior

(low-level

metrics) VM behavior

repository

Placement manager
VMM

Synthetic

benchmark

mimicking VM0

VM

behavior 2’’: Update normal

VM behaviors

Figure 2: DeepDive overview, showing how it detects and mit-

igates the effect of interference on VM2.

3 Approach

DeepDive operates in parallel with applications, seeking

to provide application performance that is comparable

to, or ideally the same as, that observed in an isolated

environment. Figure 2 highlights DeepDive’s main com-

ponents and the way they interact. DeepDive transpar-

ently deals with interference by inspecting low-level met-

rics, including hardware performance counters and read-

ily available hypervisor (VMM) statistics about each VM.

To reduce the overhead of interference detection and mit-

igation, DeepDive introduces two interference analyses

that differ in their accuracy and overhead.

DeepDive first relies on a warning system running in

the VMM to conduct early interference analysis. This

analysis is fast, and incurs negligible overhead as we can

collect the required statistics without affecting the appli-

cations currently running on the PM1. DeepDive places

these statistics in a multi-dimensional space, where the

interference and non-interference cases cluster into eas-

ily separable regions.

Figure 3 depicts the decision-making process in the

warning system by illustrating the important cases in the

multi-dimensional space (shown here only using two di-

mensions for clarity). One option is for the current mea-

surements to fall within a cluster of acceptable behav-

iors (Figure 3(a)). If that is not the case but other VMs

running this workload are behaving similarly (e.g., due

to a change in the client-induced workload), again there

is no need to perform further interference analysis (Fig-

ure 3(b)). Further investigation is required only if the cur-

rent measurement is substantially different (i.e., by more

than an automatically-determined threshold) from both

the existing behaviors as well as other VMs running the

same workload (Figure 3(c)).

While the warning system reduces DeepDive’s over-

head, it is not perfectly accurate and cannot pinpoint the

source of interference. DeepDive thus relies on an inter-

ference analyzer to perform a highly reliable but expen-

sive analysis, when necessary. Only when the warning

1We use the terms “PM”, “server”, and “machine” interchangeably.

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 221

Name Description Name Description

cpu_unhalted Clock cycles when not halted resource_stalls Cycles during which resource stalls occur

inst_retired Number of instructions retired bus_tran_any Number of completed bus transactions

l1d_repl Cache lines allocated in the L1 data cache bus_trans_ifetch Number of instruction fetch transactions

l2_ifetch L2 cacheable instruction fetches bus_tran_brd Burst read bus transactions

l2_lines_in Number of allocated lines in L2 bus_req_out Outstanding cacheable data read bus re-

quests duration

mem_load Retired loads br_miss_pred Number of mispredicted branches retired

iostat Tdisk presents all the idle CPU cycles while the system had an outstanding disk I/O request.

netstat Tnet presents all the idle CPU cycles while the system had a packet in the Snd/Rcv queue.

Table 1: Low-level metrics used to differentiate normal VM behaviors from interference. The iostat and netstat tools can be

used to approximate I/O-related stalls associated with different VMs, using VM introspection tools like XenAccess.

Existing measurements Current measurements

(c): interference suspected(b): no interference

(workload change)
(a): no interference

VM on

this

machine

Figure 3: The warning system uses previously collected data

and current global measurements, to decide whether DeepDive

should further investigate interference.

system suspects that one or more VMs are subjected to

interference, DeepDive invokes the analyzer to conduct

the exhaustive interference analysis.

The analyzer clones the VM on-demand and executes

it in a sandboxed environment. By using a proxy to du-

plicate client requests, the cloned VM is subjected to

the same workload as the VM co-located with other ten-

ants. The analyzer then uses the low-level measurements

to estimate the performance of the original and cloned

VMs. The estimates should be similar – different by less

than an operator-defined threshold percentage – in the

absence of interference. This VM cloning, workload du-

plication, and comparison approach has been studied ex-

tensively in [33, 36]. The approach provides the ground

truth, and enables DeepDive to pinpoint the dominant

sources (server components) of interference. The ana-

lyzer uses the classic cycles per instruction (CPI) model

to transparently identify these sources. Researchers have

used this model to detect performance issues other than

interference, e.g. [9]. We augment it with system-level

metrics that extend the CPI stack to include I/O.

In the absence of interference, the analyzer updates

the repository of VM behaviors with this new informa-

tion. If interference does exist, the analyzer forwards its

findings to the VM-placement manager to determine a

preferable (e.g., minimal) change in VM placement that

will eliminate or at least reduce interference. The default

behavior is to migrate the most aggressive VM, in terms

of its use of the resource that is causing interference.

The VM-placement manager tries to find a PM that

will be the best match (e.g., non-interference causing)

for the VM at hand. It does so by running a synthetic

benchmark that mimics the behavior of the VM for a

short time on another PM (with other VMs present), and

evaluates whether interference reappears. If it does not,

DeepDive can migrate the VM to that PM. If it does, the

VM-placement manager tries a different PM.

3.1 The warning system

The warning system prevents unnecessary interference

analyzer invocations by differentiating workload changes

from interference. It does so based on the metrics listed

in Table 1, which represent the major PM resources

(cores, memory, disk, and network interface), and have

been enough for our experiments to date. Vasić et

al. [33] considered a larger set of metrics, but found it

to be overkill. Nevertheless, one can automatically deter-

mine whether a metric should be considered; Vasić et al.

solved a similar feature selection problem [33].

The system uses both local and global information to

infer if interference may be happening. It first locally

tries to match the current values of the metrics against

the previously learned set of normal behaviors. If it can-

not find a match, it globally checks whether other VMs

running the same code are experiencing similar behavior.

More precisely, when first faced with a VM, the warn-

ing system has no information about it and activates the

interference analyzer. The analyzer then provides the

warning system with: i) a set of normal VM behaviors S
that are obtained in isolation, and form the ground truth,

and ii) a vector of metric classification thresholds MT

used to filter out the workload noise from actual inter-

ference. Note that these classification thresholds are dif-

ferent from the operator-defined performance threshold

for acceptable performance degradations (Section 3.2),

and are set automatically by the clustering algorithm (de-

scribed below). From this point on, the warning system

continuously collects the metrics and tries to retrieve a

match from the set of normal VM behaviors, respecting

the acceptable metric deviations MT .

Like any other statistical method, the warning system

can only identify performance anomalies (interference)

3

222 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

L1

 � : Data Serving - No Interference

� : Data Serving - Interference

Memory

L2

L1

(a) Data Serving

 � : Web Search - No Interference
� : Web Search - Interference

Memory

L2

L1

(b) Web Search

 � : Data Analytics - No Interference
� : Data Analytics - Interference

Memory

 L2

L1

(c) Data Analytics

Figure 4: Metric values when running under different workload and interference scenarios.

if they are exceptional. Fortunately, our measurements

performed on a real-world platform (Figure 1) suggest

that anomalies are indeed exceptional in practice. Even if

performance anomalies were common for an application,

i.e. they cannot be used to detect that the application

is undergoing interference, DeepDive would eventually

learn so via invocations of the interference analyzer.

To prevent VM load changes unrelated to interference

from causing analyzer invocations, we normalize the met-

rics with respect to the amount of work performed (the

number of instructions retired). We find that the metrics’

normalized values are persistent across a wide range of

load intensities. This finding is critically valuable, since

cloud loads frequently fluctuate over time.

Local information. To demonstrate experimentally

that the warning system can differentiate normal from

interference behaviors, we use typical cloud workloads

under different quantitative and qualitative load changes,

and interference conditions. Specifically, in Figure 4,

we extensively experiment with the Data Serving, Web

Search, and Data Analytics workloads from Cloud-

Suite [20]. (More details about these workloads appear

in Section 4.) Although we collect the dozen or so met-

rics listed in Table 1, the figure includes only three of

them for clarity. The figure presents normalized metric

values relating to the first-level cache (L1), the second-

level cache (L2), and main memory. Each point in the

graphs depicts a different experimental setting, including

various load intensities, and different key and word pop-

ularities for Data Serving and Web Search, respectively.

In the absence of interference, the data points cluster on

one side of the space. Once we inject differently mod-

ulated interference effects, the normalized metric values

experience significant deviation, which allows the warn-

ing system to detect new interference conditions. (We

detail the interfering VM in Section 4.1.)

Global information. To further reduce the number

of invocations of the analyzer, the warning system lever-

ages the fact that cloud applications regularly execute the

same code on many (perhaps dozens or even thousands

of) VMs. This enables the warning system to diagnose if

the observed deviations come from interference or appli-

N
e

tw
o

rk
 s

ta
lls

 � : Global - No Interference
� : Global - Interference

CPU usage

CPI

Figure 5: Metric values for Data Analytics. Observing multi-

ple VMs prevents unneeded invocations of the analyzer.

cation behavior changes. If the VMs executing the same

code, spread across multiple PMs, observe similar metric

value deviations at about the same time, it is highly likely

that the application is subjected to workload changes and

further interference analysis is not necessary. Further-

more, DeepDive considers several metrics, which further

reduces the chance that multiple VMs reporting similar

behavior is a consequence of interference.

To illustrate the use of global information, we perform

a set of experiments with our Data Analytics workload

running across nine PMs in our cluster. We inject vary-

ing amounts of network interference into the cluster by

progressively co-locating more interfering VMs that run

a network-intensive benchmark (iperf). This scenario

stresses the warning system because interference man-

ifests only when the mappers and reducers (from the

Hadoop MapReduce-like framework) have to fetch data

remotely. Figure 5 plots some of the normalized metrics

(relating to network and core utilization) obtained from

each of the PM’s local warning systems. The metrics cor-

responding to the PMs where we run the interfering VMs

clearly deviate from the remaining VMs’ behaviors. The

figure hence demonstrates that DeepDive: i) deals with

I/O-related interference, and ii) can further minimize the

profiling overhead by merely observing the behavior of

VMs running the same workload on different PMs.

DeepDive’s ability to use global information relies on

the assumption that it knows which VMs are running the

same application. This is a reasonable assumption, since

VMs can be rented in a pre-configured state. Moreover,

cloud providers often provide load balancing functional-

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 223

ity that tenants explicitly request from the cloud provider

for groups of VMs that execute the same code.

False positives and false negatives. False positives

occur when the warning system unnecessarily invokes

the analyzer under non-interference conditions. For in-

stance, changes in a VM’s working set or qualitative

workload changes (e.g., the request mix substantially

shifts) may lead to substantial statistical variation. Al-

though false positives may sporadically lead to unnec-

essary analyzer invocations, they are mostly benign and

only marginally affect DeepDive’s overhead. We have

verified this empirically by running extensive experi-

ments under realistic workload conditions.

On the other hand, if the warning system confuses in-

terference with normal workload changes – a false neg-

ative – the impact is more severe. Fortunately, our sen-

sitivity analysis demonstrates that the vector of metric

thresholds MT determined by a standard clustering tech-

nique (described below) prevents false negatives, while

still maintaining high warning system efficiency. More-

over, cloud providers might periodically (e.g., at a fre-

quency driven by VM priority) invoke the analyzer to re-

duce a potential non-zero false negative rate.

Clearly, the challenge here is to define metric thresh-

olds MT that properly separate representative VM be-

haviors from noise, while also properly identifying inter-

ference. If the thresholds are too strict, even minor de-

viation from prior VM behaviors would cause the warn-

ing system to fire. On the other hand, excessively loose

thresholds might let interference proceed undetected. We

leverage the expectation-maximization clustering algo-

rithm [21] to produce interference-free clusters in N-

dimensional space, where N is the number of metrics that

DeepDive uses. In producing the clusters, the algorithm

also defines the metric thresholds. DeepDive improves

the clustering by providing a set of constraints [10, 11]

along with the collected VM behaviors – when diagnos-

ing a VM’s behavior with interference, the analyzer also

prevents the algorithm from assigning this behavior to an

interference-free cluster. This has a positive effect on the

detection rate, as we have verified empirically.

Shortly after a VM’s deployment, the metric space is

empty or sparsely populated. To create the interference-

free clusters, the warning system operates in a conserva-

tive mode – every drop in VM performance above the

performance threshold causes invocation of the analyzer.

This is how DeepDive ensures that no interference goes

undetected, and accelerates learning of the interference-

detecting metric thresholds.

3.2 The interference analyzer

If the warning system suspects that one or more VMs

may be facing interference, it invokes the analyzer to con-

firm. To do so, the analyzer uses VM cloning, workload

duplication, and VM performance comparison. If inter-

ference is indeed present, the analyzer also determines

which resource is the most likely to be causing the inter-

ference (e.g., shared cache, I/O).

Identifying the ground truth. DeepDive uses the

same approach to determine VM performance in the ab-

sence of interference as DejaVu [33]. Though we do

not claim any novelty in this approach, we summarize

it here for completeness. DeepDive clones the VM un-

der test in a sandboxed environment that uses non-work-

conserving schedulers to tightly control the resource al-

location. The amount of time to complete VM cloning

depends on the amount of state in the VM, but is typi-

cally small compared to the frequency of invocation of

the analyzer. DeepDive relies on a proxy that intercepts

the clients’ traffic to: 1) duplicate and send copies of the

requests to the sandboxed environment, and 2) forward

the traffic to/from the production VM to avoid negatively

impacting the applications running inside that VM. Deep-

Dive can then compare the metrics in isolation and in pro-

duction. Others [33, 36] have studied this approach and

its challenges (including how to tackle non-determinism)

extensively, so we do not repeat this study here.

Performance analysis. Given the statistics from the

production and sandboxed environments, DeepDive uses

the analyzer’s performance model to transparently esti-

mate the performance degradation that a VM is experi-

encing due to interference. Given this model, DeepDive

can opt for VM migration if the degradation is substan-

tial, or refrain from any action otherwise.

Since we do not expect the VMs to assess and com-

municate their performance levels, the key question here

is knowing when the VM’s performance is degraded by

simply looking at low-level metrics. The analyzer con-

trasts the instructions retired rate in production with that

in isolation (in the sandbox) to approximate how much

the shared resources contribute to the overall degradation:

Degradation = Instproduction/Instisolation.

Once the analyzer estimates the degradation, it may

proceed in one of two ways. If the degradation is below

the operator-defined performance threshold, the analyzer

notifies the warning system about the false alarm. This

extends the warning system’s set of acceptable VM be-

haviors with the new metrics’ values. If the degradation

exceeds the threshold, the analyzer forwards the results

of its analysis to the VM placement manager, which may

migrate the VM to a more appropriate PM.

Importantly, [7, 19] have shown that the number of

instructions retired is not always a reliable performance

metric in multithreaded applications, since spin-based

synchronization may cause timing and thread interleav-

ing variations. This is not a serious problem for Deep-

Dive for two reasons. First, the computed degrada-

tion need not be accurate with respect to absolute per-

5

224 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0

3

6

T
h
e
 s

ta
lle

d
 c

y
c
le

s

 p
e
r

in
s
tr

u
c
ti
o
n

 Scenario A Scenario B Scenario C
Isolation Production Isolation Production Isolation Production

Core

L2 miss

FSB

Net+Disk

(a) Data Serving

0

1

2

T
h
e
 s

ta
lle

d
 c

y
c
le

s

 p
e
r

in
s
tr

u
c
ti
o
n

 Scenario A Scenario B Scenario C
Isolation Production Isolation Production Isolation Production

Core

L2 miss

FSB

Net+Disk

(b) Web Search

0

1

2

T
h
e
 s

ta
lle

d
 c

y
c
le

s

 p
e
r

in
s
tr

u
c
ti
o
n

 Scenario A Scenario B Scenario C
Isolation Production Isolation Production Isolation Production

Core

L2 miss

FSB

Net+Disk

(c) Data Analytics

Figure 6: Breakdown of stalled cycles in production and isolation. Our analysis reveals the sources of interference.

formance; rather, it simply needs to properly identify

anomalies. Second, if these inaccuracies become a prob-

lem in practice, we can leverage prior efforts that exclude

spinning instructions, or augment the measurements to

account only for the useful computation [19]. Multi-

threading has not been a problem for us so far.

Identifying dominant sources of interference. If the

amount of performance loss requires invocation of the

VM-placement manager, the analyzer pinpoints the re-

sources that are likely the culprits using CPI analysis aug-

mented with system-level metrics (to capture I/O). The

augmented CPI “stack” captures the amount of work the

VM is doing, while identifying where it is spending time.

Intuitively, interference causes the VM to suffer more

stall cycles, and perform less useful work.

Our root cause analysis hence estimates a breakdown

of the various run-time stall components of the server:

Toverall = Tcore + Toff_core︸ ︷︷ ︸
CPI analysis using hardware counters

+

+Tdisk + Tnet︸ ︷︷ ︸
using system-level statistics

where Tcore represents the time running instructions on

the core (and hitting in private caches), Toff_core repre-

sents the stalled cycles due to memory accesses (includ-

ing shared caches), Tdisk represents the time waiting for

disk, and Tnet represents network-related stalls. We in-

fer these values from the metrics in Table 1. The met-

rics are clearly architecture-dependent, but sufficiently

generic for DeepDive not to be tied to any particular ar-

chitecture, as shown in our longer technical report [28].

We estimate the resources’ individual contributions to

the performance degradation via the discrepancies in the

metrics obtained in isolation and production:

Factorresource =
T production

resource − T isolation
resource

T production
overall

To validate this performance model, we run a set of ex-

periments with the Data Serving, Web Search, and Data

Analytics workloads. Figure 6 contrasts the various re-

source stalls in the production environment (which is un-

dergoing interference) and in isolation (in the sandbox).

Each experiment carefully tunes the interference, so as to

move it from the last level cache (Scenario A) to the front

side bus (Scenario B) to the I/O subsystem (Scenario C).

We then invoke the analyzer to estimate the amount of

performance loss, and identify the resources that primar-

ily contribute to it. We mark the resources identified by

the analyzer with arrows in the figure. We observe that

the analyzer correctly identifies the culprit resources as

their growing (degrading) factors clearly dominate over

the remaining resources.

3.3 The VM-placement manager

If the analyzer detects interference on a PM, DeepDive

runs the VM-placement manager to determine a new VM

placement. The manager can implement multiple poli-

cies for selecting which VM to migrate: it may select

the VM that is suffering the most from interference, or

it may select the VM using the culprit resource most ag-

gressively. Although we view the placement policy as

orthogonal to this work, we design a simple policy to

evaluate our placement manager. Upon identifying a re-

source that is the source of interference, the placement

manager selects the VM that is most aggressive in using

the resource, and then migrates it if an appropriate des-

tination PM exists. To ensure better performance isola-

tion, DeepDive repeats this process until the interference

is sufficiently reduced, or ideally eliminated altogether.

The remaining challenge is ensuring that a VM migra-

tion will not cause even worse interference on the destina-

tion PM. A naive placement manager might speculatively

migrate the selected VMs in the hope that this will not

cause further interference on the destination PMs. How-

ever, this could result in numerous and expensive VM

migrations (especially for applications with large mem-

ory and/or persistent state), as well as prolonged periods

of severe performance degradation. DeepDive therefore

anticipates the resulting interference conditions on the

destination PM prior to actual VM migration.

Toward this end, DeepDive uses a novel synthetic

benchmark that can mimic the behavior of an arbitrary

VM. The key goal is that an actual VM and its synthetic

counterpart should exhibit similar interference character-

istics, when co-located with other VMs running on a

PM. The benchmark models the working set size, data

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 225

locality, instruction mix, level of parallelism, and disk

and network throughput of a VM. In more detail, it is

a collection of loops that exercise the different PM re-

sources to match the metric values collected from an ac-

tual VM. The resources can be exercised locally to a PM,

except for the network interface. For this resource, the

benchmark spawns a thread that acts as a communica-

tion partner for a benchmark running on another PM. The

loops execute numbers of iterations given as inputs to

the benchmark. Thus, creating the benchmark involved

learning the set of input values that best approximates

any set of metric values. We used a standard regression

algorithm for this training. Though the training phase

may take a long time (a few days in our experiments),

this training is done offline and only once for each server

type. Choosing a particular configuration, after the train-

ing phase, takes only a few seconds. Although, one can

use existing, more sophisticated workload synthesizers;

we find this extra sophistication unnecessary.

The placement manager uses the benchmark to evalu-

ate potential migrations. Specifically, given a set of met-

ric values to reproduce, it runs the benchmark (with the

proper learned inputs) in a VM on all candidate PMs con-

currently. The runs take less than a minute in our exper-

iments. With metric data collected from these runs, the

manager picks the best destination PM for the migration.

3.4 Discussion

Can DeepDive tackle interference due to an oversub-

scribed network? Currently, DeepDive can tackle in-

terference at the network interface, but requires a well-

provisioned connection to the sandbox to determine the

impact of network oversubscription. This is not a ma-

jor constraint, since the number of PMs required for the

sandbox is small, as we demonstrate in the next section.

Can DeepDive deal with non-determinism? Deep-

Dive can tolerate deviations coming from different

sources, such as OS-level non-determinism (e.g., peri-

odic flushing of dirty pages). DeepDive views such non-

deterministic events as noise, as they are typically too

short and infrequent. Nevertheless, if they are persistent

across multiple monitoring epochs, DeepDive is able to

recognize this and label the behavior as normal.

Can DeepDive deal with oscillating interference

conditions? While we have not focused on possible in-

terference oscillations in this work, interference might

vary over time. This would require us to repeat the in-

terference analysis to ensure better guarantees on inter-

ference detection. In fact, we could install a simple con-

troller that would react only upon detections that are per-

sistent across multiple epochs.

Can DeepDive deal with heterogeneity? Our experi-

ence so far has been with homogeneous PMs. This is rea-

sonable since cloud providers typically use disjoint sets

of homogeneous PMs for simpler management. Never-

theless, DeepDive can deal with heterogeneity by group-

ing the low-level metrics by PM type, performing the CPI

analysis according to PM type, and training a synthetic

benchmark for each PM type.

Can DeepDive degrade performance while evaluat-

ing a placement scenario? We run our benchmark only

for tens of seconds until we collect the necessary metrics.

We think that this is acceptable compared to the impact

of a full migration. Furthermore, the cloud operator can

prioritize and explicitly avoid certain PMs.

Can DeepDive deal with false negatives? One might

be able to design an adversarial workload that would re-

semble interference conditions. Section 3.1 discusses

how DeepDive tackles false negatives.

Can DeepDive be ported to different architectures?

One of the authors ported DeepDive to a NUMA (non-

uniform memory access) server with two quad-core Core

i7-based processors. The port took just a few days to

complete – we provide more details in our report [28].

4 Evaluation

4.1 Experimental infrastructure

Servers and clients. We run our production and sand-

boxed environments on up to 10 servers with Intel Xeon

X5472 processors. The servers have eight 3-GHz cores,

with 12 MB of L2 cache shared across each pair of cores.

The servers also feature 8 GB of DRAM, two 250-GB

7200rpm disks, and one 1-Gb network port.

The servers run the Xen VMM.We configure the VMs

to run on virtual CPUs that are pinned to separate cores

(we assign two cores per VM). We allocate enough mem-

ory for each VM to avoid swapping to disk.

The clients run on a separate machine with four 12-

core AMD Opteron 6234 processors running at 2.4 GHz,

132 GB of DRAM, and two 1-Gb network ports.

Cloud workloads. We use diverse, representative

cloud workloads from CloudSuite [20]. Our Data Serv-

ing workload consists of one instance of Cassandra [8].

To experiment with different loads, we instrument clients

from the Yahoo! Cloud Service Benchmark [14] to vary

both the key popularities and the read/write ratio.

Our Web Search workload involves a single index

serving node (available from the Nutch open-source

project [2]) that holds a 2GB index. To experiment with

different loads, we instrument the Faban client emula-

tor [3] to vary word popularities and the number of client

sessions (driven by the traces described below).

OurData Analyticsworkload uses Hadoop [4] to run a

modified Bayes classification example from the Mahout

package [1] across 35 GB of Wikipedia data. The cluster

consists of nine VMs configured with 2 GB of memory

7

226 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

50

100

1st day 2nd day 3rd day

P
e
rc

e
n
ta

g
e
 [
%

]

Detection rate
False positive rate

(a) Data Serving

50

100

1st day 2nd day 3rd day

P
e
rc

e
n
ta

g
e
 [
%

]

Detection rate
False positive rate

(b) Web Search

50

100

1st day 2nd day 3rd day

P
e
rc

e
n
ta

g
e
 [
%

]

Detection rate
False positive rate

(c) Data Analytics

Figure 7: Detection and false positive rates while replaying the HotMail traces. DeepDive always detected the injected interference.

The false positive rate quickly decreases as DeepDive learns more about normal behaviors.

and two dedicated cores, and the master which is provi-

sioned with 8GB of RAM and four cores.

Real-world traces. To evaluate DeepDive under dy-

namic workloads, we use real load intensity traces to

drive the execution of our cloud workloads. Specifically,

we use traces fromMicrosoft’s HotMail from September,

2009. The traces represent the aggregated load across

thousands of servers, averaged over 1-hour periods. We

ensure that the maximum number of active client ses-

sions is within the servers’ maximum capabilities.

In addition to load traces, we injected interference con-

ditions mimicking a real cloud platform. Specifically, we

rented four Amazon EC2 instances and let our Data Serv-

ing workload run for a three-day period. During this

period, we continuously measured the performance re-

ported by our client emulator. Whenever the client re-

ported performance degradation of at least 20%, we la-

beled these performance crises as interference. We later

use the time slots corresponding to the cloud’s perfor-

mance crises to drive our stress workloads (described be-

low) on a co-located VM while replaying the traces. We

further quantify the cloud’s performance crises and use

this information to drive the inputs of our stress work-

loads so as to cause similar performance degradation

with respect to the particular VM we are stressing.

Using the clients’ measured performance (e.g., re-

sponse time), we evaluate DeepDive’s ability to identify

interference conditions. The clients label a certain per-

formance loss as due to interference only if the amount

of loss is larger than 20%. In Section 4.3, we demon-

strate that DeepDive is capable of dealing with arbitrary

interference conditions.

Interfering workloads. We evaluate DeepDive with

three interfering workloads. Our memory-stress work-

load is inspired by the stress test from Mars et al. [26].

It aggressively exercises shared resources, like last-level

caches and the memory controller. The workload takes

the desired working set size as an input. We use iperf as

our network-stressworkload. It takes the desired network

throughput as an input, and creates bi-directional UDP

data streams to exercise network resources accordingly.

Finally, we designed a simple disk-stress workload that

copies files from one source to another, while respecting

the maximum transfer rate defined as an input.

4.2 How accurate is the warning system?

To demonstrate the effectiveness of the warning system,

we clear the set of VM behaviors before each experiment.

This forces the the warning system to rely solely on the

information it obtained from the analyzer in the previous

steps, as described in Section 3. Figures 7(a) to 7(c) plot

the detection rate and the false positive rate of DeepDive

while running our workloads. The detection rate mea-

sures DeepDive’s consistency in identifying interference,

whereas the false positive rate reflects scenarios where

the warning system unnecessarily invoked the analyzer.

In these experiments, we use memory-stress to generate

interference, and vary the working set size to reproduce

interference amounts that we obtained from our experi-

ments on Amazon EC2. Because this workload primarily

affects memory-related metrics that vary at a fine grain,

this is the most challenging scenario for DeepDive to sep-

arate normal from interference conditions.

The figures show that DeepDive reliably identifies the

interference, each time VM performance is substantially

affected by the co-located VMs. Besides the detection

rate, the number of analyzer invocations is important, as

it determines DeepDive’s overhead. On the first day after

deployment, DeepDive shows a fairly high false positive

rate, as it is still learning the normal behaviors. Starting

from the second day, this rate drops to near-zero, as the

warning system recognizes behaviors it has seen earlier.

We did not observe false negatives in our experiments.

Importantly, recall that false positives do not result in

unnecessary VM migrations, since the interference ana-

lyzer will realize that these metric deviations correspond

to workload changes, rather than interference.

4.3 How accurate is the analyzer?

We now run experiments to demonstrate that DeepDive

accurately estimates performance degradation under var-

ious interference conditions. We use client emulators for

our workloads that continuously report average perfor-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 227

0

0.50

1.00

1.50

2.00

6 12 64 256 512R
a

ti
o

 o
f

p
ro

d
u

c
ti
o

n
 l
a

te
n

c
y

to
 l
a

te
n

c
y
 i
n

 i
s
o

la
ti
o

n

Different interference intensities using
the memory-stress workload [working set size in MB]

Estimated

Reported by clients

(a) Data Serving

0

0.50

1.00

1.50

2.00

1 2.5 5 7.5 10R
a

ti
o

 o
f

p
ro

d
u

c
ti
o

n
 l
a

te
n

c
y

to
 l
a

te
n

c
y
 i
n

 i
s
o

la
ti
o

n

Different interference intensities using
the disk-stress workload [throughput in MB/s]

Estimated

Reported by clients

(b) Web Search

0

0.50

1.00

1.50

2.00

50 100 300 500 700R
a

ti
o

 o
f

p
ro

d
u

c
ti
o

n
 l
a

te
n

c
y

to
 l
a

te
n

c
y
 i
n

 i
s
o

la
ti
o

n

Different interference intensities using
the network-stress workload [throughput in Mbps]

Estimated

Reported by clients

(c) Data Analytics

Figure 8: DeepDive accurately and transparently estimates performance loss from the metrics’ values.

0

20

40

60

80

6 12 64 256 512E
s
ti
m

a
te

d
 d

e
g

ra
d

a
ti
o

n
 [

%
]

Different interference intensities using
the memory-stress workload [working set size in MB]

Ideal

Synthetic benchmark

(a) Data Serving

0

20

40

60

80

1 2.5 5 7.5 10E
s
ti
m

a
te

d
 d

e
g

ra
d

a
ti
o

n
 [

%
]

Different interference intensities using
the disk-stress workload [throughput in MB/s]

Ideal

Synthetic benchmark

(b) Web Search

0

20

40

60

80

50 100 300 500 700E
s
ti
m

a
te

d
 d

e
g

ra
d

a
ti
o

n
 [

%
]

Different interference intensities using
the network-stress workload [throughput in Mbps]

Ideal

Synthetic benchmark

(c) Data Analytics

Figure 9: The synthetic benchmark accurately reproduces the performance loss of its real counterpart.

mance, enabling us to compare the client-reported degra-

dations with those estimated by the analyzer.

We run the experiments at the maximum-possible re-

quest rate. We allow the servers to warm up for several

minutes and start reporting stable performance. At this

point, we launch the stress workloads on a co-located

VM to inject interference. Given our workloads, and

the server components they primarily exercise, we co-

locate: i) memory-stress with Data Serving, ii) network-

stress with Data Analytics, and iii) disk-stress with Web

Search. We vary the interference intensity by varying: i)

the working set size of memory-stress from 6 MB to 512

MB, ii) the throughput of network-stress from 50 Mbps

to 700 Mbps, and iii) the file transfer rate of disk-stress

from 1 MB/s to 10 MB/s. Our goal is to select the stress

workloads’ inputs so as to replicate the cloud’s perfor-

mance losses seen in our experiments on Amazon EC2.

Figure 8 plots both the estimated and client-reported

latency degradations for Data Serving and Web Search,

and task completion time degradations for Data Ana-

lytics, reported by the interference-suffering VM. Each

group of bars represents a different amount of interfer-

ence, yielding performance degradation roughly from 5%

to 50%. We observe that the analyzer’s CPI analysis can

faithfully approximate the degradation across the inter-

ference levels. In particular, we observe that the ana-

lyzer estimates the degradation within 10% accuracy in

the worst case, and less than 5% on average.

4.4 How robust is DeepDive’s placement?

Here we evaluate the ability of DeepDive’s synthetic

benchmark to mimic the behavior of a VM in two ways.

First, we monitor the performance degradation that both

the monitored VM and its synthetic representation expe-

rience when co-located with our stress test workloads. If

they match, the synthetic benchmark can successfully be

used to quickly test if a migrated VM would no longer

suffer interference. To evaluate the synthetic clone’s ac-

curacy under different interference conditions, we lever-

age our three stress workloads to tune interference in-

tensities. Figures 9(a) to 9(c) contrast the performance

loss reported by the real VM and its synthetic represen-

tation, while the real VM runs different cloud applica-

tions. We see that the synthetic benchmark can closely

approximate the performance loss of a real VM – the me-

dian and average estimation error of our synthetic bench-

mark across all our experiments were 8% and 10%, re-

spectively. These results can be improved, especially if

representative interference conditions are considered dur-

ing the training of the synthetic benchmark.

Next, we show how the placement manager migrates

an aggressive VM that is the culprit for interference to a

destination PM so as to minimize the resulting interfer-

ence. In response to detecting an interference-inducing

VM (memory-stress), DeepDive runs the synthetic repre-

sentation of this aggressive VM on three PM candidates,

each of which is running one of our workloads. Based

on these runs, the placement manager selects the desti-

nation PM on which the analyzer reports the least inter-

ference. Figure 10 plots the resulting performance loss

at that PM relative to the best (but impractical) scenario

where the placement manager learns the interference ef-

fects on the destination PM by actually performing VM

migration. During the experiment, we also record the re-

sulting performance loss for all the possible placements,

allowing us to: i) compute the average performance loss,

9

228 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0

15

30

Best DeepDive Average WorstP
e
rf

o
rm

a
n
c
e
 d

e
g
rd

a
ti
o
n
 r

e
la

ti
v
e

to
 t
h
e
 b

e
s
t
V

M
 p

la
c
e
m

e
n
t

Figure 10: The placement manager properly predicts interfer-

ence on the possible destination PMs.

and ii) label the placement with the highest performance

loss as the worst. We observe from the figure that Deep-

Dive finds the best destination PM relying on its syn-

thetic benchmark to estimate the interference. This result

is important, because it shows that we can entirely elim-

inate expensive and yet worthless (for placement) VM

migration that could cause performance loss elsewhere.

4.5 What is the overhead of DeepDive?

DeepDive imposes a small per-VM memory overhead.

For example, even when a VM is experiencing interfer-

ence every hour, DeepDive requires less than 5KB to

record the VM’s behavior for the whole day. Storing this

information into a repository is not an issue, as there are

many works on high-performance NoSQL datastores.

We next explore DeepDive’s profiling overhead, i.e.

the amount of time and the number of machines re-

quired by the interference analyzer. We have conducted

our evaluation using both live experiments with the

Data Serving workload (it invokes the analyzer most fre-

quently) and simulations. Running live experiments in

our testbed helps us understand how often DeepDive trig-

gers the analyzer in dynamic, realistic environments, and

gives us an idea of the overall profiling overhead. Using

this information, we drive simulations to analyze the scal-

ing properties of DeepDive when applied to large-scale

datacenters with high VM-arrival rates.

Using real experiments, Figure 11 plots the accumu-

lated profiling time for a VM undergoing interference

for both DeepDive and a baseline approach. The base-

line triggers the analyzer every time performance varies

more than a threshold (5%, 10%, and 20%). Triggering

the analyzer too frequently renders the baseline unscal-

able and infeasible in practice. On the other hand, Deep-

Dive relies on its warning system and its observed VM

behaviors to prevent unnecessary VM profiling. The fig-

ure shows that DeepDive’s overhead accumulates to only

twenty minutes of profiling over 3 days. In fact, after the

first day, no more profiling is needed.

To extrapolate from these results, we next drive our

simulator to trigger the analyzer exactly at the points in

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

A
c
c
u
m

u
la

te
d
 p

ro
fi
lin

g
 t
im

e
 [
m

in
]

Time [hours]

Baseline-20%
Baseline-10%

Baseline-5%
DeepDive

Figure 11: DeepDive’s profiling overhead is low, and dimin-

ishes as it learns more about the VM behaviors.

time that were previously recorded by our live experi-

ment. We also used Matlab to model DeepDive’s pro-

filer as a simple queue: i) the VM arrival rate follows a

Poisson process (we also experiment with a lognormal

distribution of VM arrivals below), ii) the service time is

replicated from the live experiments, and ii) the datacen-

ter handles 1000 new (incoming) VMs every day.

Figure 12(a) presents DeepDive’s reaction time as a

function of the percentage of VMs undergoing interfer-

ence. The figure plots the reaction time as long as the

system is stable (mean service time < mean inter-arrival

time), and the waiting time is acceptable (less than 10

minutes). As expected, the mean reaction time decreases

as DeepDive uses more profiling servers. Most impor-

tantly, the figure demonstrates a desirable scaling behav-

ior. For instance, only four profiling servers provide reac-

tion time within four minutes, even under an aggressive

rate of 20% of VMs undergoing interference.

These results assume that each VM runs a different

workload, thus preventing DeepDive from being able to

leverage global information. We design another set of

experiments where VM reoccurrence follows a typical

Zipf distribution – a few cloud tenants execute their work-

loads on a large number of VMs (available global in-

formation), and the remaining tenants run their deploy-

ments on a handful of VMs ("the long tail"). Figure

12(b) shows that leveraging global information signifi-

cantly improves DeepDive’s reaction time and allows it

to reduce the number of profiling servers required (by 2x

in these experiments).

To mimic various deployment scenarios, we vary the

power-law tail index (from light- to heavy-tailed, using

the α parameter) while using four profiling servers. Fig-

ure 12(c) plots the mean reaction time as a function of in-

terference. While leveraging global information is most

effective under the “light tail” conditions (α=1), it sub-
stantially improves DeepDive’s reaction time for all the

scenarios we considered.

To demonstrate DeepDive’s scaling under more bursty

workloads, we repeat the same set of experiments under a

lognormal VM-arrival distribution, again assuming 1000

new VMs per day. The results (available in [28]) show

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 229

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

M
e
a
n
 r

e
a
c
ti
o
n
 t
im

e
 [
m

in
]

Fraction of VMs undergoing interference

2 servers
4 servers

8 servers
16 servers

(a) Using only local information.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

M
e
a
n
 r

e
a
c
ti
o
n
 t
im

e
 [
m

in
]

Fraction of VMs undergoing interference

2 servers
4 servers

8 servers
16 servers

(b) Using both local and global information.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

M
e
a
n
 r

e
a
c
ti
o
n
 t
im

e
 [
m

in
]

Fraction of VMs undergoing interference

no global information (alpha=∞)
aplha = 2.5

aplha = 2
aplha = 1.5

aplha = 1

(c) Under a range of VM popularities [5].

Figure 12: Reaction time for 1000 new VMs per day. Curves stop where the system becomes unstable or excessively slow.

that fewer than 10 profiling machines are required, even

under an extreme new-VM arrival scenario.

5 Related Work

Interference analysis. Most of the prior efforts on an-

alyzing interference focus on on-chip contention and/or

require application feedback. Recent efforts [12, 18, 25,

26, 37] demonstrate that an analysis of the sensitivity

of workloads to co-located applications may accurately

predict the degradation due to interference. In public

clouds however, applications are not available prior to

their deployment and often run for a long time, so cloud

providers cannot easily perform this analysis. Thus,

DeepDive does not rely on prior knowledge of applica-

tions or their interactions.

To speedup interference analysis, Paragon [16] uses

a few stress experiments with each new application and

a recommendation system to identify the best place-

ment for the application with respect to interference. In

contrast, DeepDive collects low-level metrics (the aug-

mented CPI stack) from production VMs without stress

tests. Moreover, because it was implemented in a virtual-

ized environment, DeepDive can easily rely on VM mi-

gration for changing placements when workloads change

and interference reoccurs.

Concurrently with our work, Zhang et al. [35] pro-

posed CPI2, a method for detecting and eliminating CPU

interference on shared clusters. Our approach differs be-

cause: i) DeepDive uses CPI, not only to detect interfer-

ence, but also to pinpoint its root cause, ii) DeepDive

extends CPI analysis by including I/O, and iii) DeepDive

leverages its synthetic benchmark to estimate the poten-

tial impact of a migrated VM on alternative PMs.

Focusing on IaaS clouds and long-running workloads,

DejaVu [33] relies on comparing the performance of a

production VM and a replica of it that runs in a sand-

box to detect interference. If interference is present, De-

jaVu overprovisions virtual resources to mitigate its ef-

fects. Unfortunately, DejaVu relies on user/application

assistance to identify interference and cannot pinpoint

its cause. Moreover, overprovisioning is an inefficient

approach for tackling interference.

Workload profiling and characterization. Sample-

based profiling tools, like Magpie [23] and Pinpoint [13],

produce workload models and automatically manage fail-

ures in distributed systems. Although these tools are

useful for understanding workload (mis)behaviors, they

are not useful in virtualized environments where cloud

providers do not have access to the applications running

inside VMs. Without requiring such access, DeepDive

can pinpoint the main source of VM interference, and

migrate VMs to reduce or even eliminate it.

Synthetic benchmarks. Given their easy develop-

ment, synthetic benchmarks are often used to mimic

behaviors of a specific application on different hard-

ware platforms. Even more conveniently, tunable bench-

marks can closely approximate a large portion of an ar-

bitrary application’s behavior by merely determining a

suitable set of input parameters [32]. Several recent ef-

forts [22, 29, 30, 31] have also demonstrated that one

can reproduce any application’s behavior using a lim-

ited number of the application’s characteristics, such as

the memory access pattern and instruction dependencies.

These previous efforts inspired the design of our syn-

thetic VM benchmark. Importantly, we are the first to

use such a benchmark to manage interference.

Recently, Bubble-Up [26], Paragon [16], and Bob-

tail [34] proposed test benchmarks for placing VMs or

applications. Bubble-Up uses a benchmark to exercise

the memory system and characterize the effect it has on a

co-located application. Similarly, Paragon uses multiple

benchmarks to identify sources of interference and their

impact on a co-located application. Bobtail employs a

simple test program to determine whether the VMs al-

ready running on a PM are CPU-intensive. In contrast

to these systems, our simple benchmark reproduces the

behavior of each VM that DeepDive intends to migrate,

and considers all resources that can cause interference,

including disk and network I/O.

Performance modeling. Recent efforts have tried

to predict performance by relying on regression mod-

els. For example, Lee et al. [24] combine processor,

contention, and penalty models to estimate performance

in multiprocessors. Similarly, Deng et al. [17] rely

on hardware performance counters to model the perfor-

11

230 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

mance (and power consumption) of the memory subsys-

tem. These works are orthogonal to DeepDive, since it

does not try to predict performance per se, but rather to

pinpoint the resource that is causing the interference. Fur-

thermore, our framework is not tied to a specific architec-

ture, and focuses on all key shared system resources.

6 Conclusion

Cloud services are becoming increasingly popular. A

key challenge that cloud service providers face is how to

identify and eliminate performance interference between

VMs running on the same PM. This paper proposed and

evaluated DeepDive, a system for transparently and ef-

ficiently identifying and managing interference. Deep-

Dive quickly identifies that a VM may be suffering in-

terference by monitoring and clustering low-level met-

rics, e.g. hardware performance counters. If interference

is suspected, DeepDive compares the metrics produced

by the VM running in production and in isolation. If in-

terference is confirmed, DeepDive starts a low-overhead

search for a PM to which the VM can be migrated.

Acknowledgments

This research was funded in part by the TRANSCEND

Strategic Action Grant from Nano-Tera.ch and NSF

grant CNS-0916878. Nedeljko Vasic is also supported

by Swiss NSF grant FNS 200021-130265. We thank the

anonymous reviewers and our shepherd Manuel Costa

for their careful reading and valuable comments. We

would also like to thank Babak Falsafi and his team for

providing us with the latest version of CloudSuite.

References

[1] Apache mahout. http://mahout.apache.org.

[2] Apache nutch. http://nutch.apache.org.

[3] Faban framework. http://java.net/projects/faban.

[4] HDFS. http://hadoop.apache.org/core.

[5] Pareto distribution. http://en.wikipedia.org/wiki/

Pareto_distribution.

[6] What are the barriers to cloud computing. http://www.

interxion.com/cloud-insight/.

[7] A. R. Alameldeen et al. Ipc considered harmful for multiproces-

sor workloads. IEEE Micro, 2006.

[8] Apache Foundation. The Apache Cassandra Project. http://

cassandra.apache.org/.

[9] R. Azimi, et al. Online Performance Analysis by Statistical Sam-

pling of Microprocessor Performance Counters. In ICS, 2005.

[10] S. Basu, et al. Active semi-supervision for pairwise constrained

clustering. In SDM, 2004.

[11] M. Bilenko, et al. Integrating constraints and metric learning in

semi-supervised clustering. In ICML, 2004.

[12] D. Chandra, et al. Predicting inter-thread cache contention on a

chip multi-processor architecture. In HPCA, 2005.

[13] M. Y. Chen, et al. Pinpoint: Problem determination in large, dy-

namic internet services. In DSN, 2002.

[14] B. F. Cooper, et al. Benchmarking cloud serving systems with

YCSB. In SoCC, 2010.

[15] J. Dejun, et al. EC2 performance analysis for resource provision-

ing of service-oriented applications. In NFPSLAM-SOC, 2009.

[16] C. Delimitrou et al. Paragon: QoS-aware scheduling for hetero-

geneous datacenters. In ASPLOS, 2013.

[17] Q. Deng, et al. Memscale: active low-power modes for main

memory. In ASPLOS, 2011.

[18] M. Dobrescu, et al. Toward predictable performance in software

packet-processing platforms. In NSDI, 2012.

[19] L. Eeckhout. Computer Architecture Performance Evaluation

Methods. 2010.

[20] M. Ferdman, et al. Clearing the Clouds: A Study of Emerging

Scale-out Workloads on Modern Hardware. In ASPLOS, 2012.

[21] M. Hall, et al. The weka data mining software: an update.

SIGKDD Explor. Newsl., 11:10–18, November 2009.

[22] A. Joshi, et al. The return of synthetic benchmarks. In SPEC

Benchmark Workshop, 2008.

[23] T. Kielmann, et al. Magpie: Mpi’s collective communication op-

erations for clustered wide area systems. SIGPLAN Not., 1999.

[24] B. C. Lee, et al. Cpr: Composable performance regression for

scalable multiprocessor models. In MICRO, 2008.

[25] J. Machina et al. Predicting cache needs and cache sensitivity

for applications in cloud computing on cmp servers with config-

urable caches. In IPDPS, 2009.

[26] J. Mars, et al. Bubble-up: Increasing utilization in modern ware-

house scale computers via sensible co-locations. IEEE Micro,

2012.

[27] R. Nathuji, et al. Q-clouds: managing performance interference

effects for qos-aware clouds. In EuroSys, 2010.

[28] D. Novaković, et al. DeepDive: Transparently Identifying and

Managing Performance Interference in Virtualized Environments.

Technical Report 183449, EPFL, 2013.

[29] A. Phansalkar, et al. Measuring program similarity: Experiments

with spec cpu benchmark suites. In ISPASS, 2005.

[30] T. Sherwood, et al. Automatically characterizing large scale pro-

gram behavior. In ASPLOS, 2002.

[31] K. Skadron, et al. Challenges in computer architecture evaluation.

Computer, 2003.

[32] E. Strohmaier et al. Architecture independent performance char-

acterization and benchmarking for scientific applications. In

MASCOTS, 2004.

[33] N. Vasić, et al. DejaVu: Accelerating Resource Allocation in

Virtualized Environments . In ASPLOS, 2012.

[34] Y. Xu, et al. Bobtail: Avoiding Long Tails in the Cloud. In NSDI,

2013.

[35] X. Zhang, et al. CPI2: CPU performance isolation for shared

compute clusters. In EuroSys, 2013.

[36] W. Zheng, et al. Justrunit: Experiment-based management of

virtualized data centers. In USENIX, 2009.

[37] S. Zhuravlev, et al. Addressing shared resource contention in

multicore processors via scheduling. In ASPLOS, 2010.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 231

Efficient and Scalable Paravirtual I/O System

Nadav Har’El
nadav@harel.org.il

Abel Gordon
abelg@il.ibm.com

Alex Landau
landau.alex@gmail.com

Muli Ben-Yehuda⋆

muli@cs.technion.ac.il

Avishay Traeger
avishay@il.ibm.com

Razya Ladelsky
razya@il.ibm.com

IBM Research — Haifa ⋆Technion and Hypervisor Consulting

Abstract
The most popular I/O virtualization method today is

paravirtual I/O. Its popularity stems from its reasonable
performance levels while allowing the host to interpose,
i.e., inspect or control, the guest’s I/O activity.

We show that paravirtual I/O performance still signifi-
cantly lags behind that of state-of-the-art non-interposing
I/O virtualization, SRIOV. Moreover, we show that in
the existing paravirtual I/O model, both latency and
throughput significantly degrade with increasing number
of guests. This scenario is becoming increasingly impor-
tant, as the current trend of multi-core systems is towards
an increasing number of guests per host.

We present an efficient and scalable virtual I/O sys-
tem that provides all of the benefits of paravirtual I/O.
Running host functionality on separate cores dedicated
to serving multiple guest’s I/O combined with a fine-
grained I/O scheduling and exitless notifications our
I/O virtualization system provides performance which
is 1.2x–3x better than the baseline, approaching and in
some cases exceeding non-interposing I/O virtualization
performance.

1 Introduction
In recent years, hardware and software improvements for
x86 machine virtualization made it possible to run virtu-
alized workloads with performance approaching that of
a physical machine (bare-metal performance). However,
to achieve the desired bare-metal performance, I/O inten-
sive virtual workloads require direct access to a hardware
device [10]. For this purpose, modern hypervisors imple-
ment a technique called device assignment [7, 14, 30],
“PCI passthrough” or “DirectPath I/O”.

Device assignment achieves its performance by by-
passing the host software on the I/O path, but this bypass
also means giving up a lot of virtualization flexibility:
With device assignment, the host software cannot offer a
virtual device with no physical counterpart (e.g., a virtual
disk stored as a file in the host’s filesystem). Nor can it

interpose on the guest’s I/O, i.e., inspect or modify the
guest’s I/O, which is necessary for many virtualization
features such virtual networking and security scanning.
Device assignment also requires more expensive hard-
ware (an IOMMU and SRIOV) and complicates VM live
migration [31] and memory overcommitment [30]. For
these and other reasons, most real-world applications of
virtualization today—including most enterprise data cen-
ters and most cloud computing sites—do not use device
assignment.

Instead, the most popular I/O virtualization technique
today is paravirtual I/O [2], exemplified by KVM’s vir-
tio [23] and VMWare’s VMXNET3 [28]. In paravirtual
I/O, the host presents to its guests a software-based (vir-
tual) I/O device. All I/O passes through the host soft-
ware, retaining the ability to interpose on the guest’s I/O
and all the flexibility described above.

But paravirtual I/O’s interposition comes with signifi-
cant performance penalty for I/O-intensive guests, as al-
ready noted in previous work [5, 6, 13, 16, 29]. Tradi-
tional paravirtual I/O implementations suffer from two
problems: The first is the slowdown of a single guest,
mainly caused by exits [1] — switches back and forth
between guest and host context. The second is lackluster
scalability — when the host has multiple I/O-intensive
guests, the competition between these guests cause sig-
nificant reduction in throughput and increase in latency.
These problems are becoming increasingly serious, as
the current trend is towards multi-core systems with an
increasing number of guests per host, and towards faster
networks with expectation of lower latency and higher
bandwidth.

We present ELVIS (Efficient and scaLable para-
Virtual I/O System). ELVIS solves the above two prob-
lems, and provides all the benefits of paravirtual I/O with
performance approaching — and sometimes surpassing
— that of device assignment. ELVIS’s design is pre-
sented in Section 2: It is designed to be oblivious to the
type of I/O activity (e.g., block or network), to maximize

1

232 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

throughput, to minimize latency, and to scale linearly in
the number of I/O-intensive guests. ELVIS alleviates the
overhead of paravirtual I/O by running host functional-
ity on dedicated cores that are separate from guest cores,
and by avoiding exits on the I/O path. ELVIS efficiently
and fairly handles multiple guests by using a new fine-
grained I/O scheduler that decides when and for how
long to serve each guest.

We describe ELVIS’s implementation in the KVM hy-
pervisor in Section 3 and experimentally evaluate it in
Section 4. We thoroughly evaluate ELVIS’s performance
using throughput-oriented and latency-oriented bench-
marks on both network-intensive and block-intensive
workloads. We evaluate its scalability by running differ-
ent experiments with up to 14 I/O-intensive guests. In the
majority of benchmarks, ELVIS improved performance
when compared with paravirtual I/O by up to 3x and was
within 90% of device assignment, and sometimes even
exceeding it. In the worst case benchmark ELVIS was
only within 70% of device assignment but still improved
paravirtual performance by 1.4x.

The main contributions of this work are as follows:

1. We demonstrate and evaluate, for the first time, how
a new feature announced for future x86 processors
— posted interrupts — can be exploited to improve
paravirtual I/O performance. We efficiently emulate
posted interrupts on today’s processors by extend-
ing our previous work on Exit-Less Interrupts [10].

2. However, we show that posted interrupts only solve
part of the problem. We contribute a novel fine-
grained I/O scheduler which together with exit-less
notifications provides a complete, efficient and scal-
able, paravirtual I/O solution.

2 ELVIS Design
In this section we introduce the design of ELVIS, our
proposed model for an Efficient and scaLable para-
Virtual I/o System. ELVIS is based on the familiar par-
avirtual I/O model [2, 23], the state-of-the-art mech-
anism for I/O virtualization with interposition. We
improve on traditional paravirtual I/O performance by
avoiding the exits associated with I/O request and reply
notifications. We improve scalability with a fine-grained
I/O scheduling mechanism, allowing a single I/O thread
to efficiently serve multiple VMs.

The design we present in this section can be applied
to different paravirtual I/O implementations in different
hypervisors. In Section 3, we present in more detail our
implementation in the KVM hypervisor, and its in-kernel
paravirtual I/O implementation, vhost.

2.1 The paravirtual I/O model
In paravirtual I/O the host interposes on the guest’s I/O,
i.e., each I/O request is handled by the host. The guest’s

Figure 1: Ideal paravirtual model.

Figure 2: Slowdown when exits require notifications.

driver (the front-end) sends each I/O request to the host
(back-end), which handles it and later returns a reply.

I/O requests are asynchronous: A guest does not block
until getting the reply. In some cases, a long time might
pass until a reply, e.g., disk reads or packet receive re-
quests. So generally, the host does not fully handle the
I/O request at the time of the request. Rather, the host
has a separate I/O thread which handles the I/O requests.

On multi-core systems, it has been shown [12, 17, 15]
that performance can be improved by dedicating a sepa-
rate core (a sidecore) for the I/O thread, instead of time-
sharing the same core for both the guest and its I/O
thread. Moving the I/O thread to a separate core not
only leaves the guest’s core with more cycles (and there-
fore improves the guest’s peak performance), it also im-
proves overall system efficiency as context switches are
avoided. SplitX [13] studied the costs associated with
such context switches, and found that in addition to their
direct cost, there is another indirect cost of cache pollu-
tion, as each of the two alternating contexts (guest and
I/O thread) runs slower for some time after each context
switch. Aiming at improved performance, ELVIS there-
fore runs the guest and the I/O thread on separate cores.

Figure 1 illustrates this ideal paravirtual I/O model:
The guest and I/O thread run on separate cores. The
two cores efficiently communicate using shared mem-
ory buffers, and additionally require some mechanism
for notifications: the guest wants to notify the I/O core
of new I/O requests, and the I/O core wants to notify the
guest when previous requests have completed.

In non-virtual environments, there is a light-weight ar-
chitectural mechanism, Inter-Processor Interrupts (IPI)
to send notifications between cores. But unfortunately,
there are no mechanisms in currently available x86 hard-
ware to send notifications to or from a running guest,
without first existing to the hypervisor. This can lead to
two exits for each I/O request, as illustrated in Figure 2:

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 233

Figure 3: Comparing ELVIS’s fine-grained I/O schedul-
ing (top) to thread-based I/O scheduling (bottom).

When the guest wants to notify the I/O core of a new re-
quest in the shared buffer, it cannot directly send an IPI
to the I/O core so it exits to have the hypervisor do this.
Then, when the I/O core completes the operation and
wants to notify the guest, it cannot remotely inject a vir-
tual interrupt into the running guest, and needs to cause
the guest to exit first (e.g., using an IPI) so that the hyper-
visor can inject the virtual interrupt. Some implementa-
tions even suffer a third exit, when the guest completes
handling the virtual interrupt and writes to the End-of-
Interrupt (EOI) register. ELVIS improves paravirtual I/O
performance by replacing the two exit-causing notifica-
tions with new exit-less notification mechanisms, as we
explain in Sections 2.3 and 2.4 below.

2.2 Fine-grained I/O scheduling
One I/O core is often capable of handling I/O from sev-
eral I/O-intensive VMs, as we demonstrate in Section 4.
However, the common approach to handle I/O is to cre-
ate a separate I/O thread per VM and let the hypervi-
sor’s scheduler run these multiple threads on one or more
cores.

ELVIS adopts a more fine-grained approach to I/O
scheduling: A single I/O thread runs on an I/O core, and
handles the I/O requests of multiple VMs. Figure 3 il-
lustrates how fine-grained I/O scheduling differs from
thread-based scheduling. We expect fine-grained I/O
scheduling to achieve better throughputs and latencies

than thread-based I/O scheduling: When several VMs
have high I/O loads, thread-based I/O scheduling may
service one VM for a long time, delaying I/O in other
VMs until the OS decides to switch threads. Contrast
this with fine-grained I/O scheduling, which can inspect
the request queues it is serving, and can more fairly and
promptly switch between them. The benefits of fine-
grained scheduling are even more pronounced when the
I/O thread uses polling, as it often does in ELVIS as ex-
plained below.

We show in Section 4.7 that indeed fine-grained I/O
scheduling improves paravirtual I/O performance and
scalability on multi-core machines. It allows an I/O core
to handle more VMs with better throughput and latency.

2.3 Exitless I/O request notifications
In the paravirtual I/O model, the driver in the guest writes
its I/O requests to a shared memory buffer. The driver
then notifies the I/O thread that new work is pending.
The x86 architecture provides no mechanism besides an
exit for the guest to interrupt a host thread, so the request
notification involves an exit, as shown in Figure 2.

In ELVIS, we avoid request notifications (and their as-
sociated exits) by polling in the host’s I/O core [17, 5].
The guest writes its request to memory shared with the
hypervisor, as usual, and does not employ any further
exit-causing notification mechanism. The host polls this
memory from the separate I/O core, handling requests as
they are noticed.

Polling requires a dedicated I/O core, but as explained
above, we generally want to share this core among sev-
eral guests. With fine-grained I/O scheduling, ELVIS
already has one I/O thread handling requests from sev-
eral VMs, so now it needs to poll several VMs. In Sec-
tion 3 we discuss how we efficiently and fairly poll sev-
eral VMs without hurting the quality of service (namely,
throughput and latency) to individual VMs.

For workloads which are not I/O-intensive, the waste
inherent in excessive polling may outweigh the benefits
of exitless notifications. It is therefore beneficial to dy-
namically switch between polling and traditional exit-
based guest-to-host notifications. Such switching is of-
ten used in the context of interrupt mitigation [20, 24],
and has also been used for paravirtual I/O by VMWare’s
VMXNET3 [28].

2.4 Exitless I/O reply notifications
In the paravirtual I/O model, when the I/O thread com-
pletes handling an I/O request it writes its reply to the
shared memory area, and then notifies the guest.

Unfortunately, unlike the case of request notifications
above, it is not practical to simply avoid using reply no-
tifications. Avoiding these notifications means that each
guest would need to poll for new replies [5], wasting a
significant number of cycles that could otherwise be used

3

234 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

to run more useful work or just kept unused to reduce
power consumption. Since we cannot avoid reply notifi-
cations, our goal is to make them as efficient as possible,
and in particular exitless.

The architectural mechanism of notifying an OS of
some event is via an interrupt. I.e., the I/O core wishes
to cause an interrupt inside a guest running on a different
core. On existing x86 processors, a hypervisor can only
inject interrupts into the guest from the same core run-
ning it, and therefore the reply notification requires caus-
ing the guest to exit (e.g., by sending an Inter-Processor
Interrupt (IPI) to the core running the guest), at which
point the hypervisor injects the desired virtual interrupt.

Intel has recently announced that unspecified future
processors will include a new feature called posted in-
terrupts. Posted interrupts will allow one core to inject a
virtual interrupt into a guest currently running on a dif-
ferent core — without the guest having to exit first. AMD
also announced a similar future mechanism in their pro-
cessors, and named it doorbell interrupts.

ELVIS avoids the reply-notification exits by emulating
posted interrupts on existing x86 processors, using the
Exit-Less Interrupts (ELI) technique [10]: When the I/O
core wishes to inject a certain virtual interrupt into the
guest running on a different core, it writes the interrupt
vector (i.e., the interrupt number) into a memory location
shared with the guest, and then sends a fixed IPI to the
guest’s core. Normally, receiving this IPI would cause
the guest to exit, but we have this interrupt delivered in
the running guest by asking the processor to deliver all
interrupts to the running guest, with the guests interrupt
descriptor table (IDT) shadowed so that only the fixed
IPI is actually delivered to the guest and the rest cause an
exit to the hypervisor. Once the fixed IPI is delivered to
the guest, the handler for the vector number stored in the
shared memory location is invoked. The ELI paper [10]
focused on assigned devices and on the interrupts they
generate but we extended this mechanism for delivering
an IPI directly to the guest.

ELI works by asking the processor to deliver all inter-
rupts to the running guest, with the guest’s interrupt de-
scriptor table (IDT) shadowed so that only the intended
IPI is actually delivered to the guest and the rest cause
an exit to the hypervisor. The ELI paper focused on as-
signed devices and on the interrupts they generate — but
we can extend this mechanism for delivering an IPI di-
rectly to the guest.

3 ELVIS Implementation
To validate the ELVIS design, we implemented it in the
KVM hypervisor. KVM [11] is implemented as a Linux
kernel module that extends the kernel with hypervisor
capabilities, driven by a QEMU [4] user process.

KVM offers two different implementations for par-

avirtual I/O devices: (1) a user-space implementation,
part of QEMU; and (2) an in-kernel implementation,
vhost. Both implement the same protocol, virtio [23],
and share the same guest drivers. We based our imple-
mentation on vhost because it performs significantly bet-
ter than the user-space alternative [27]. Vhost currently
implements two paravirtual device types — network
(vhost-net) and block device (vhost-block) and by modi-
fying only their common base (vhost), we get ELVIS for
both types of devices — as we show in Section 4.

We implemented ELVIS in KVM/vhost as follows:

3.1 Fine-grained I/O scheduling
Normally, vhost creates a separate I/O thread per paravir-
tual device, so that I/O handling can proceed in parallel
to the guest running, boosting performance on multi-core
systems. Each I/O thread potentially handles multiple
virtqueues (queues of I/O requests and their replies [23]),
e.g., a send queue and a receive queue in the paravirtual
network device vhost-net.

With fine-grained I/O scheduling, we no longer cre-
ate a separate I/O thread per device. Instead, we create
only one I/O thread per dedicated I/O core, and each such
thread now handles virtqueues from multiple virtual de-
vices and multiple VMs. All these devices share a single
work queue, to which vhost adds work when it is notified
by the guest of a new I/O request, or when vhost dis-
covers that a previous I/O request has completed (e.g.,
a packet has arrived, and can be returned to the guest).
Note that this model does not affect the isolation and se-
curity properties of vhost.

Despite the fine-grained I/O scheduling, in some cases
when one I/O thread handles many guests with very high
throughput, a large number of I/O requests may arrive
on a virtqueue before they can be handled, overflowing
the virtqueue’s ring buffers if they are not big enough.
We found that in some of the network benchmarks pre-
sented in Section 4, the rings that Qemu allocates with a
fixed default size 256 were occasionally overflowed. In-
creasing this default size to 512 was enough in all our
experiments, and we used this new default in all baseline
and ELVIS configurations in Section 4.

3.2 Mixing latency- and throughput-sensitive work-
loads

One of the challenges of implementing fine-grained
I/O scheduling is deciding when to switch between
virtqueues. Latency-sensitive workloads perform best
when we only handle a virtqueue for a very short dura-
tion, and quickly move on to the next. High-throughput
workloads, on the other hand, benefit from allowing
more processing on each virtqueue before switching to
the next. When guests are mixed — some care about la-
tency and some about throughput — we need to carefully
consider the needs of both.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 235

Our implementation uses several heuristics to decide
when to leave a virtqueue and proceed to the next: We
always leave a queue after doing a certain maximum
amount of work on it, even if it is not yet empty. We
may leave a queue earlier (though not before we did some
minimum amount of work on it), if we recognize that an-
other non-empty queue is stuck and therefore likely to be
latency-sensitive. We call a queue stuck if a certain time
has passed since it last received new work. A latency-
sensitive workload which waits for replies before send-
ing further requests will get “stuck” in this sense, while
a high-throughput workload which continuously creates
new requests will not be found stuck. In Section 4.6,
we show how these heuristics are indeed effective when
high-throughput and low-latency workloads are served
by the same I/O thread.

3.3 Placement of threads, memory and interrupts
Modern large multi-core systems have a multi-socket, or
NUMA, design where part of the memory is closer to
some of the cores. On such systems, performance is best
if a guest running on a particular socket is serviced by
an I/O thread running on the same socket, and if and the
virtqueues shared between them are allocated from mem-
ory closest to this socket.

Our implementation therefore dedicates one I/O core
(or more) per socket, and pins an I/O thread to each
I/O core. Each I/O thread is configured to handle
only virtqueues belonging to guests running on cores on
the same socket. We ensure that an SMP guest does
not spread across multiple sockets by limiting its vcpu
threads to only run on cores on one socket.

Finally, when the virtual device is based on a phys-
ical device (e.g., vhost-net uses the host network), per-
formance can be improved with IRQ affinity: We direct
interrupts from the physical device to the I/O core, avoid-
ing interrupts (and their exits) on guest cores and improv-
ing cache hit rates.

3.4 Exitless I/O request notifications
In KVM, the guest notifies the host of new I/O re-
quests by executing a programmable I/O (PIO) instruc-
tion, causing an exit. We avoid these exits by replacing
these notifications with polling in the I/O thread:

The virtio protocol allows the host backend to tell
the guest driver not to send notifications for a certain
virtqueue. This flag is normally used for short durations,
to avoid further notifications while the host is servicing
a particular virtqueue. But in ELVIS, we permanently
disable notifications for virtqueues which we intend to
poll. Instead of waiting for notifications, we supplement
vhost’s work queue with a new poll queue, which lists the
virtqueues that are being polled. In a round-robin fash-
ion, considering the heuristics we previously described,

we poll each virtqueue. If we discover new requests, we
handle them, just like a notification would be handled.

Even with polling enabled, the work queue continues
to be relevant: E.g., the network backend adds an item
to it when a packet arrives, so an outstanding receive re-
quest would be completed. So we interleave looking for
new work in both work and poll queues. For fairness,
any time work is done on a virtqueue for any reason, this
virtqueue is moved to the end of the poll queue.

It is important that polling be as efficient as possi-
ble, to ensure that unsuccessful polling of relatively-
idle virtqueues does not significantly hurt performance of
other virtqueues. By having the I/O thread map the mem-
ory of all polled virtqueues in its own memory space,
polling a virtqueue for newly available work becomes
nothing more than a simple memory read. To further
reduce the impact of unsuccessful polling, our imple-
mentation enables polling on a virtqueue only after ex-
ceeding a predefined notification rate, and later disables
polling (re-enabling exit-causing notifications) when ac-
tivity on this virtqueue subsides. These optimizations al-
low us not to waste precious cycles on polling virtqueues
which only infrequently see requests and exits.

3.5 Exitless I/O reply notifications
Vhost notifies the guest of a reply for a previous I/O re-
quest by injecting the guest with a virtual interrupt, com-
ing from the virtual device. When the guest is currently
running, KVM first forces it to exit by sending an inter-
processor interrupt (IPI) to the core running the guest,
and only then KVM on that core can inject the desired
virtual interrupt.

We replaced this exit-causing mechanism with our
exit-less mechanism, allowing the I/O core to send a vir-
tual interrupt to a guest running on another core without
causing the guest to exit first. Current x86 processors do
not yet support such exitless cross-core interrupt injec-
tion, known as posted interrupts. We emulated it extend-
ing an efficient software-only technique known as Exit-
Less Interrupts (ELI) [10], as explained in Section 2.4.

4 Evaluation
In this section, we experimentally evaluate and analyze
the performance of our implementation. We look at
both network-intensive and block-intensive workloads,
and consider both throughput and latency. We evaluate
scalability with experiments going up to 16 cores. We
analyze how fine-grained I/O scheduling and exitless no-
tifications contributed to the performance improvement.

The results show that ELVIS improved I/O interpo-
sition performance by 1.2x–3x compared to traditional
paravirtual I/O, and that ELVIS scaled linearly to more
guests. For most of the workloads, ELVIS interposition
overhead — how far it was from state-of-the-art non-
interposing I/O virtualization — was less than 10% when

5

236 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

enough cores were dedicated to handling the I/O of mul-
tiple VMs. In the worst case, the overhead was 30%.

4.1 Experimental Setup
Our test machine is an IBM System x3550 M4, equipped
with a dual-socket, 8-cores-per-socket Intel Xeon E2660
CPU running at 2.2 GHz with hyper-threading disabled.
The system includes 56GB of memory and an Intel x520
dual port 10Gbps SRIOV NIC. We used a second iden-
tical server connected directly by two 10Gbps fibers as
the remote end of the benchmarks. We set the Max-
imum Transmission Unit (MTU) to its default size of
1500 bytes; we did not use jumbo Ethernet frames. The
host ran Linux 3.1.0 and QEMU 0.14.0. The guests used
only one VCPU and ran Linux 3.1.0. The guests’ mem-
ory was backed by huge (2 MB) pages in the host. For
setups using paravirtual I/O, we bridged the guests’ vir-
tual NICs with the host’s physical NICs using macvtap.

4.2 Experimental Methodology
Performance-minded applications would typically dedi-
cate whole cores to guests (a single VCPU per core), thus
we limited our benchmarks to this case. We compared
ELVIS against traditional paravirtual I/O to show our
performance and scalability improvements, and against
state-of-the-art non-interposing I/O virtualization to ana-
lyze the interposition overhead. Altogether, we measured
and compared four configurations:
ELVIS: This configuration measured ELVIS perfor-
mance. For it, we ran each VM with a paravirtual NIC
or block device using our ELVIS-enabled KVM. To an-
alyze ELVIS scalability and avoid performance interfer-
ence caused by NUMA, we partitioned the physical re-
sources symmetrically across the two CPU sockets. For
benchmarks with N ≤ 7 VMs we only used cores from
the first CPU socket and one 10Gb port. We dedicated a
core for each of the VMs (VCPU threads) and one core
(the I/O core) to run a single ELVIS I/O thread. We also
set the IRQ affinity to deliver the NIC’s interrupts only
to the I/O core. For benchmarks running N >7 VMs,
we enabled a second ELVIS I/O thread, used the second
10Gb port, and configured the second socket exactly in
the same way we configured the first socket. The mem-
ory of each VM was pinned to the CPU socket running
the VCPU thread. The Intel NICs were initialized with-
out SRIOV support.
Baseline: This configuration represented traditional par-
avirtual I/O. We ran each VM using the unmodified
KVM. To use the same amount of physical resources as
the ELVIS configuration, for benchmarks running N ≤7
VMs, we limited the Linux host to use only N+1 cores
and one 10Gb port; The Linux scheduler decided on
which core to run each of the VCPU and I/O threads.
Similarly, for benchmarks running N >7 VMs, we gave

the host N+2 cores and the two 10Gb ports. The In-
tel NICs were initialized without SRIOV support and the
NICs’ interrupts were balanced across the cores in use.
The NUMA node used to back the memory of each VM
was decided by the Linux kernel.
Baseline with Affinity: We used this configuration to
analyze how the Linux scheduler, IRQ balancer and
NUMA memory allocation affect traditional paravirtual
I/O. This setup is similar to Baseline except we explicitly
partitioned the physical resources. For benchmarks using
N ≤7 virtual machines we only used cores from the first
CPU socket and one 10Gb port. We dedicated a core to
run each VCPU thread and one core (the I/O core) to run
all the KVM I/O threads. We also set the IRQ affinity
to deliver the NIC’s interrupts only to the I/O core. For
benchmarks running N >7 VMs, we configured the sec-
ond socket and used the second 10Gb port exactly in the
same way we configured the first socket. The memory of
each VM was pinned to the NUMA node (CPU socket)
responsible for running the VCPU thread.
No Interposition: We used this configuration to analyze
ELVIS’s interposition overhead. For this setup we al-
located the physical resources in a similar way we did
for ELVIS: one dedicated core per VCPU and up to two
10Gb ports. We multiplex each 10Gb port across the
VMs using device assignment (SRIOV and ELI [10]) so
the hypervisor didn’t interpose on the I/O. ELVIS uses
additional dedicated cores to run the I/O threads, thus, to
make a fair comparison, we kept one core per socket un-
used for No Interposition. We count this as the ELVIS in-
herent resource overhead (1/7 in the case of eight cores).

4.3 Network throughput
We used three different and well-known benchmarks to
show ELVIS can virtualize and interpose I/O efficiently
for network intensive workloads. For these benchmarks,
ELVIS improved Baseline throughput up to 3x. Com-
pared to No Interposition, ELVIS I/O interposition over-
head was less than 10% in most of the cases and less than
30% in the worst case when we allocated sufficient cores
to handle the I/O of multiple virtual machines. In addi-
tion, ELVIS always scaled much faster than Baseline up
to 14 VMs. Baseline with Affinity didn’t scale at all.

We considered the following three network bench-
marks for the evaluation:
Netperf TCP stream opens a single TCP connection to
the remote machine, and makes repeated write() calls
of 64 bytes.
Apache is an HTTP server. We used ApacheBench to
load the server. ApacheBench ran on the remote machine
and repeatedly requested a static 4KB page from 2 con-
current threads per VM.
Memcached is an in-memory key-value storage server.
It is used by many high-profile Web sites for caching

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 237

0G
2G
4G
6G
8G

10G
12G
14G
16G
18G
20G

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Th
ro

ug
hp

ut
 (b

ps
)

Netperf

ELVIS
No interposition
Baseline
Baseline+affinity

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Netperf

0K
10K
20K
30K
40K
50K
60K
70K
80K

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ag
gr

eg
at

e
re

qu
es

ts
/s

Apache

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14N
or

m
al

iz
ed

 a
gg

re
ga

te
 re

qu
es

t r
at

e Apache

0K
200K
400K
600K
800K

1000K
1200K

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Number of VMs

Memcached

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14N
or

m
al

iz
ed

 tr
an

sa
ct

io
ns

 ra
te

Number of VMs

Memcached

Figure 4: Comparing network throughput with ELVIS to that of the baseline and no-interposition configurations.
Graphs on the left show for each of the three benchmarks, running on 1 up-to 14 VMs, the total throughput from all
VMs. Graphs on the right are the same measurements shown normalized as a fraction of no-interposition performance.

results of slow database queries, thereby significantly
improving the site’s overall performance and scalabil-
ity. We used the Memslap benchmark, part of the lib-
memcached client library, to load the server and measure
its performance. Memslap runs on the remote machine,
sends a random sequence of memcached get (90%) and
set (10%) requests to the server and measures the re-
quest completion rate. We configured memslap to per-
form 32 concurrent requests per VM.

To verify ELVIS can scale using a single I/O core
per socket, we ran the experiments using 1 through 14
VMs. Figure 4 compares the results for each of the three
benchmarks using the four configurations previously de-
scribed. We show on the left the aggregated throughput
for all the VMs and on the right the same measurements
normalized as a fraction of No Interposition. ELVIS im-
proved Baseline throughput by 6%-200%. Baseline with
Affinity as well as Baseline suffered from performance
degradation due to the costly exit-based notifications and
inefficient I/O scheduling. In these two configurations
the Linux kernel couldn’t make good scheduling deci-
sions because it has no information about the content
of the virtio queues. As evident from Figure 4, Base-

line with Affinity didn’t scale because one CPU core was
used to run all the I/O threads which were competing for
CPU cycles and starving each other. In contrast, in the
Baseline case, the Linux kernel had more flexibility be-
cause threads could run on any core. The I/O threads
could be scheduled instead of VCPU threads, uninten-
tionally throttling the system. When a VCPU thread
doesn’t run, the VM doesn’t perform I/O and releases
CPU cycles to process pending I/O.

Baseline did better than Baseline with Affinity but
scaled very slowly compared to ELVIS for all the bench-
marks. ELVIS managed to scale almost perfectly for
Netperf and Apache. The reason Apache stopped scaling
after 10 VMs is because our remote machine was satu-
rated. For Memcached, ELVIS scaled up to 3 VMs. At
this point, the I/O core was saturated and ELVIS could
not scale any more with a single I/O core. With more
than 7 VMs, ELVIS used an additional dedicated core
and Memcached continued scaling up to 11 VMs.

So far we demonstrated ELVIS performed and scaled
better than traditional paravirtual I/O running network in-
tensive workloads. However, we didn’t show ELVIS I/O
interposition overhead. For this purpose, we compare

7

238 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

ELVIS against No Interposition. We can see in Figure 4
that ELVIS results were pretty close to No Interposition.
The performance degradation caused by ELVIS I/O in-
terposition was less than 1%, 10% and 30% for Netperf
TCP stream, Apache and Memcached respectively when
the I/O cores and the remote machine were not saturated.
In the case of Memcached, ELVIS required an additional
I/O core to continue scaling after 3 VMs.

For some cases, ELVIS was even better than No In-
terposition. As we discussed in Section 3 and analyzed
later in Section 4.6, ELVIS balances between throughput
and latency by batching queued requests and coalesc-
ing the reply notifications. In the case of Netperf TCP
stream and Apache, this mechanism improved through-
put, making ELVIS up to 15% better than No Interposi-
tion. For example, when running Netperf TCP stream,
ELVIS reduced the interrupt rate of each guest from 30K
to 10K compared to No Interposition. However, in the
case of Memslap, the same mechanism degraded the per-
formance of the guests, and ELVIS performed up to 30%
worse than No Interposition when we allocated sufficient
cores to handle I/O.

Baseline suffered 142K, 109K and 146K exits/second
for Netperf, Apache and Memcached respectively when
we used only a single VM. As expected, ELVIS reduced
the exits rate to less than 800 exits/second for all the
benchmarks. Most of these remaining exits are not re-
lated to I/O — e.g., 500 of them are related to timer in-
terrupts. The number of exits per VM for Baseline and
Baseline with Affinity decreased as the number of VMs
increased. That’s because also in these setups the I/O
threads batched more requests and coalesced more noti-
fications, reducing the total number of exits/second. In
addition, in the case of Baseline, the I/O threads were
sometimes scheduled instead of VCPU threads, uninten-
tionally throttling the system and further reducing the
number of exits. For example, Baseline with 7 VMs
handled 53K, 39K, 60K exits/sec per VM for Netperf,
Apache and Memcached respectively.

4.4 Network latency
We measured ELVIS’s latency using Netperf UDP-RR
(request-response), which sends a UDP packet and waits
for a reply before sending the next. Baseline with
Affinity did not scale and latency increased to 400µsec
because the I/O threads starved each other. Baseline
managed to scale because the I/O threads could run
on any core. Figure 5 presents the results, omitting
Baseline with Affinity for clarity. With a single VM,
ELVIS reduced Baseline’s latency by 8µsec. With mul-
tiple VMs ELVIS reduced the average latency per VM
up to 28µsec. This improvement was possible be-
cause ELVIS’s fine-grained I/O scheduling, as opposed
to thread-based scheduling, combined with exitless noti-

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Av
g.

 la
te

nc
y

(m
ic

ro
se

c)

Number of VMs

Baseline
ELVIS

No interposition

Figure 5: Average latency measured by UDP-RR, on 1
to 14 VMs. With ELVIS, latency is lower, and remains
low even when each I/O core serves multiple VMs.

fications managed to keep latency less than 1% worse
than No Interposition. In Section 4.7 we analyze the
performance contributions of fine-grained I/O schedul-
ing and exitless notifications separately.

We notice in Figure 5 that when running less than 6
VMs, ELVIS again out-performs No Interposition. Here,
batching and interrupt coalescing cannot explain this cu-
rious phenomenon, as it did for the network throughput
workloads. There was a different reason: the NIC’s la-
tency increased when we enabled SRIOV. We ran a single
instance of Netperf UDP-RR on bare-metal Linux with
SRIOV disabled and we did the same test with SRIOV
enabled. When SRIOV was disabled, the bare-metal
Linux used a Physical Function in the same way KVM
used it for ELVIS. But when we enabled SRIOV in bare-
metal Linux, we intentionally used a Virtual Function in
th same way the guests used them for No Interposition.
We noticed that Netperf UDP-RR latency when running
on bare-metal Linux increased by 22% when we used the
Virtual Function (SRIOV was enabled).

4.5 Block workloads

We next analyzed the performance of ELVIS under an
I/O-intensive block workload. To avoid physical disk
bottlenecks and allow the VMs to achieve their max-
imum throughput, we assigned a single 1GB ramdisk
on the host to the virtual machines using virtio. Each
VM ran four write threads and four read threads, each
of which performed 4KB random I/O on the paravirtual
device using filebench. We bypassed the guest’s buffer
cache by opening the virtio device with the O DIRECT
flag, so that all I/O requests would pass the guest-host
boundary. In this environment, we tested the ELVIS,
Baseline, and Baseline with Affinity. We did not test No
Interposition because in the case of a ramdisk, there is no
physical device to assign to the guests.

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 239

0K
50K

100K
150K
200K
250K
300K
350K

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

op
er

at
io

ns
 p

er
 s

ec
on

d ELVIS
Baseline
Baseline+affinity

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Av
g.

 la
te

nc
y

(m
illi

se
c)

Number of VMs

Baseline
ELVIS

Figure 6: Filebench random read/write performance. No
Interposition was not evaluated because the virtual disks
exposed to the guests are backed by a ramdisk in the host
(no physical device to assign).

As we can see in Figure 6, ELVIS scales perfectly up
to 14 VMs. The bottleneck for each VM in this case is
guest CPU saturation. Each VM performs about 21,613
operations/second on average, regardless of the number
of running VMs, with a standard deviation of only 128.
In addition, each VM experiences low latencies for its
block accesses (0.3ms), regardless of the number of VMs
running. For Baseline with Affinity, the I/O core is satu-
rated immediately, and so aggregate throughput does not
increase. Latency increases linearly to 3.0s and is omit-
ted from the graph to improve clarity (as in Section 4.4).
Baseline without affinity does scale, but not well. With
one VM running, it achieves 18,715 ops/s with 0.4ms
latency. When we reach 14 VMs, each achieves only
8,862 ops/s on average and the average latency doubles
to 0.8ms. With one VM, ELVIS has 17% better through-
put with 25% better latency, and with 14 VMs, ELVIS
has 2.4x better throughput with less than half the latency.

4.6 Mixed latency- and throughput-sensitive guests
Sections 4.3 and 4.4 showed ELVIS was able to run
throughput intensive and latency sensitive workloads ef-
ficiently in separated runs. However, ELVIS efficiency
handling latency sensitive workloads may be influenced
by throughput intensive workloads and vice versa when
they run concurrently. While ELVIS handles I/O for a
throughput-intensive VM, a latency-sensitive VM may
be delayed. To decrease latency, ELVIS can scan I/O
requests more often and serve latency-sensitive VMs im-

mediately, but the cycles spent for scanning pending re-
quests and switching between VMs degrades the perfor-
mance of throughput intensive VMs.

To evaluate how ELVIS deals with this situation, we
ran multiple instances of Netperf TCP stream represent-
ing throughput intensive workloads, simultaneously with
multiple instances of Netperf UDP-RR representing la-
tency sensitive workloads. We repeated the experiment
running different combinations: M VMs ran TCP stream
while N −M VMs ran UDP-RR (for N = 7, M = 1 to 6).
Figure 7 shows the TCP stream average throughput per
VM and UDP-RR average latency per VM.

We compared the average performance per VM we ob-
tained in this setup with the single VM results we ob-
tained in sections 4.3 and 4.4. As shown in Figure 4,
TCP stream achieved 1.45Gbps and 1.08Gbps when it
ran in a single VM using ELVIS and Baseline respec-
tively. Figure 7 shows that when 1 or 2 TCP stream
were competing with 5 or 6 UDP-RR, ELVIS did not de-
grade TCP stream throughput. The latency of UDP-RR
increased by 28µsec and 38µsec. In contrast, Baseline
degraded TCP stream throughput by 17% and 26% when
1 or 2 TCP stream competed with 6 or 5 UDP-RR. La-
tency increased by 28µsec and 38µsec, but still 13µsec
and 7µsec higher than ELVIS.

In general, for all the combinations, ELVIS degraded
TCP stream by 0%-32% and increased UDP-RR latency
by 28µsec-45µsec. In contrast, Baseline, degraded TCP
stream by 16%-52% and increased UDP-RR latency by
29µsec-129µsec.

In all the configurations, except No Interposition, TCP
stream throughput per VM degraded as we added more
instances of UDP-RR. And UDP-RR latency increased
when we added more TCP stream instances. As de-
picted in Figure 7, ELVIS managed to balance between
throughput and latency sensitive workloads efficiently
while Baseline and Baseline with Affinity didn’t.

4.7 Impact of fine-grained I/O scheduling and Exit-
less notifications

To analyze how fine-grained I/O scheduling and exit-
less I/O notifications contributed to the performance im-
provements, we measured Netperf TCP stream using
only fine-grained I/O scheduling and compared the re-
sults with ELVIS, Baseline and Baseline with Affinity.

Figure 8 shows the results for all the configurations
using 1 to 7 VMs. The graph on the left shows the aggre-
gated throughput while the graph on the right shows the
throughput normalized as a fraction of Baseline. Fine-
grained I/O scheduling and ELVIS improved Baseline
throughput by 2.7x and 3x respectively when running
more than one VM. As expected, with a single VM,
Baseline with Affinity performance was similar to fine-
grained I/O scheduling. That’s because in both cases we

9

240 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0G
0.2G
0.4G
0.6G
0.8G

1G
1.2G
1.4G
1.6G

Th
ro

ug
hp

ut
 p

er
 S

TR
EA

M
 (b

ps
)

STREAM
RR

1
6

2
5

3
4

4
3

5
2

6
1

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

La
te

nc
y

of
 R

R
 (u

se
c)

STREAM
RR

1
6

2
5

3
4

4
3

5
2

6
1

ELVIS
No interposition
Baseline

Figure 7: Comparing ELVIS to No Interposition and Baseline configurations when run a mix of Netperf TCP stream
and UDP-RR with 7 VMs. The graph on the left shows the average TCP stream throughput per VM while the graph on
the right shows the average UDP-RR latency per VM. The X axis shows how many VMs where running TCP stream
and how many VMs where running UDP-RR.

1G
2G
3G
4G
5G
6G
7G
8G
9G

10G

 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (b

ps
)

Number of VMs

ELVIS
Fine-grained
Baseline
Baseline+Affinity

0.5

1

1.5

2

2.5

3

3.5

 1 2 3 4 5 6 7

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of VMs

Figure 8: Comparing TCP stream throughput with ELVIS to that of Fine-grained I/O scheduling, Baseline and Baseline
with Affinity configurations. The graph on the left shows the total throughput running 1 to 7 VMs. The graph on the
right shows the same measurements normalized as a fraction of Baseline performance

used one dedicated core to process I/O and one dedicated
core to run the VM. There was no need to schedule I/O
for multiple VMs, thus fine-grained I/O scheduling did
not have any impact on the performance. In this single
VM case, the performance benefits of ELVIS come from
exitless I/O request and replies. As depicted in the graph,
ELVIS over-performed Baseline with Affinity by 33%.

Baseline achieved lower performance than Baseline
with Affinity up to 3 VMs due to the overhead caused by
balancing interrupts, I/O threads and the VCPU threads
across the cores. As we discussed in Section 4.3, Base-
line performed and scaled better than Baseline with
Affinity when running more than 3 VMs because the I/O
core used by Baseline with Affinity became saturated af-
ter 2 VMs. While Baseline scaled slowly up-to 7 VMs,
it suffered from inefficient I/O scheduling. Fine-grained
I/O scheduling contributed the most to ELVIS, giving a
performance boost of 1.4x–2.7x over Baseline. The im-
provement of ELVIS against fine-grained I/O scheduling
started decreasing after 5 VMs because ELVIS was ap-
proaching line rate while fine-grained I/O scheduling had
free bandwidth to continue scaling. These results shows

that fine-grained I/O scheduling is extremely important
to scale linearly while exitless notifications are required
to improve performance.

4.8 ELVIS and NUMA
As described in Section 2, ELVIS uses dedicated cores
to handle I/O. The number of cycles consumed by the
I/O cores reading and writing to the in-memory virtio
queues is critical because the fewer cycles ELVIS spends
to read/write from/to the queues, the more cycles the
I/O core has to serve more requests. Thus, to reduce
cycles consumed by memory operations, its preferable
to handle the I/O of a given guest in the same socket
(NUMA node) in which the guest runs. Otherwise, the
I/O core will waste additional cycles to access memory
managed by a remote NUMA node. To exemplify this
phenomenon, we ran 1 to 7 instances of Netperf TCP
stream in separate guests served by a single ELVIS I/O
core. We compared two configurations: NUMA aligned
and unaligned. In the NUMA aligned configuration we
ran all the guests and handled I/O in the same socket. In
the NUMA unaligned configuration, we ran all the guests
in the one socket but handled I/O in the other socket. Fig-

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 241

0G
1G
2G
3G
4G
5G
6G
7G
8G
9G

10G

 1 2 3 4 5 6 7

Th
ro

ug
hp

ut
 (b

ps
)

Number of VMs

Aligned
Unaligned

Figure 9: Comparing Netperf TCP stream performance
when the I/O thread run in the same socket (Aligned) or
different socket (Unaligned) where the VMs run.

ure 9 shows the results. NUMA aligned scaled perfectly
and achieved line rate with 6 VMs. In contrast, NUMA
unaligned was saturated after 5 VMs and achieved only
70% of NUMA aligned performance with 7 VMs. In ad-
dition, even for a single VM, NUMA aligned performed
26% better than NUMA unaligned. These results con-
firm ELVIS is extremely sensitive to NUMA. To max-
imize ELVIS performance and scalability, at least one
core per socket should be dedicated to handle I/O. We
believe this constraint is fairly weak because as the num-
ber of cores per socket increases year by year the re-
source overhead for having a dedicated core per socket
will decrease. In addition, as network links continue to
be improved, we will need more cores to virtualize more
bandwidth at lower latencies.

5 Related Work
Many researchers have addressed different aspects of I/O
virtualization over the years. In this section, we focus
primarily on those works that are most closely related to
ELVIS: those that seek to improve the performance of
software-based I/O virtualization.

Menon et al. [19] and Santos et al. [25, 22] optimized
Xen’s paravirtual I/O model, focusing specifically on
networking. Their goal was to achieve 10Gb/s for a sin-
gle virtual machine, using Xen [2], which (at the time)
did not use the architectural support for virtualization,
leading to different decision considerations. Ongaro et
al. [21] looked at the impact of guest scheduling on guest
I/O performance, also in the context of Xen. VAMOS [8]
reduces the overhead of paravirtual I/O by replacing
many low-level I/O requests with fewer application-level
requests. In contrast, ELVIS does not require modify-
ing guests’ applications. Mansley et al. [18] proposed a
hybrid of paravirtual I/O and device assignment where
the slow path goes through the hypervisor and the fast
path goes directly to the device. Apart from the inher-
ent problems with device assignment (e.g., difficult live
migration), this approach does not work when there is

no physical device, e.g., a virtual disk backed by a file.
ELI [10] explored exitless interrupts in the context of de-
vice assignment but did not consider paravirtual I/O.

Dedicating cores to specific functions is well known
to increase performance under certain conditions (e.g.,
[12, 15, 3, 26]). However, when using this approach in
virtualized systems, special care has to be taken to ensure
that inter-core communication does not cause exits and is
both fast and scalable, so as not to become a bottleneck
itself. We elaborate on these issues in Section 2.1.

Several works dedicated one core to the hypervisor
and left the rest of the cores for (mostly) running guest
functionality. VPE [17] did not remove costly exits for
host-to-guest notifications and was networking specific;
SplitX [13] relied on new hardware which is not avail-
able; another [5] was block-specific and used polling
for both guest-to-host and host-to-guest notifications. In
contrast to all of the above, ELVIS uses exitless notifi-
cations for host-to-guest notifications, is agnostic to the
type of I/O protocol being used, achieves excellent per-
formance on existing hardware, does not require any new
hardware, and scales linearly in the number of guests.

In our short paper [9] we reported preliminary work
on improving paravirtual I/O performance. In this paper,
we present a complete system with new techniques and
ideas, and provide a comprehensive evaluation of both
performance and scalability for multiple workloads.

6 Conclusions and Future Work
Paravirtual I/O is the most popular I/O virtualization
model used in virtualized data centers as well as cloud
computing sites because it enables useful features such
as live migration and software-defined-networks. These
features, and many more, require from the hypervisor to
interpose on the I/O activity of its guests. The perfor-
mance and scalability of this interposition are extremely
important for cloud providers and enterprise data cen-
ters. A guest running an I/O intensive workload should
not affect the performance of other guests. The I/O re-
sources must be shared fairly among guests depending
on SLAs. The way we share the I/O resources should
not affect the performance of the guests and should not
have scalability limitations. For all these reasons we de-
signed ELVIS, a low-overhead and scalable I/O interpo-
sition mechanism. Using two dedicated cores ELVIS can
interpose on the I/O activity of up to 14 I/O-intensive
guests and achieve performance that is 1.2x–3x better
than the baseline while still scaling linearly.

We show that exitless requests and replies are required
to improve performance and fine-grained I/O schedul-
ing is required to improve scalability. Intel and AMD
have recently announced that unspecified future proces-
sors will support exitless replies. This hardware capa-
bility alone will not solve the whole problem — exitless

11

242 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

requests and fine-grained I/O are also required.
In the future, we plan to improve our fine-grained

I/O scheduling to consider guests’ SLAs. In addition,
we also plan to improve ELVIS to dynamically allocate
or release I/O cores depending on the system load and
guests’ workloads.

Acknowledgments
The authors wish to thank Mike Day, Anthony Liguori,
Shirley Ma, Badari Pulavarty from IBM’s Linux Tech-
nology Center and our shepherd Paul Leach for the in-
sightful comments and discussions. The research leading
to the results presented in this paper is partially supported
by the European Community’s Seventh Framework Pro-
gramme under grant agreement #248615 (IOLanes).

References
[1] ADAMS, K., AND AGESEN, O. A comparison of software and

hardware techniques for x86 virtualization. In Architectural Sup-
port for Programming Languages & Operating Systems (2006).

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In ACM Sym-
posium on Operating Systems Principles (SOSP) (2003).

[3] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new OS architecture for
scalable multicore systems. In ACM Symposium on Operating
Systems Principles (SOSP) (2009), pp. 29–44.

[4] BELLARD, F. QEMU, a fast and portable dynamic translator. In
USENIX Annual Technical Conference (2005), pp. 41–46.

[5] BEN-YEHUDA, M., BOROVIK, E., FACTOR, M., ROM, E.,
TRAEGER, A., AND YASSOUR, B.-A. Adding advanced stor-
age controller functionality via low-overhead virtualization. In
Conference on File & Storage Technologies (FAST) (2012).

[6] DONG, Y., YANG, X., LI, X., LI, J., TIAN, K., AND GUAN,
H. High performance network virtualization with SR-IOV. In
International Symposium on High Performance Computer Archi-
tecture (2010).

[7] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMSON, M. Safe hardware access
with the Xen virtual machine monitor. In 1st Workshop on Op-
erating System and Architectural Support for the on demand IT
InfraStructure (OASIS) (2004).

[8] GORDON, A., BEN-YEHUDA, M., FILIMONOV, D., AND DA-
HAN, M. VAMOS: Virtualization aware middleware. In USENIX
Workshop on I/O Virtualization (WIOV) (2011).

[9] GORDON, A., HAR’EL, N., LANDAU, A., BEN-YEHUDA, M.,
AND TRAEGER, A. Towards exitless and efficient paravirtual
I/O. In SYSTOR (2012).

[10] GORDON, A., NADAV, A., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: Bare-
metal performance for I/O virtualization. In Architectural Sup-
port for Programming Languages & Operating Systems (2012).

[11] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. KVM: the Linux virtual machine monitor. In Ot-
tawa Linux Symposium (OLS) (2007).

[12] KUMAR, S., RAJ, H., SCHWAN, K., AND GANEV, I. Re-
architecting VMMs for multicore systems: The sidecore ap-
proach. In Workshop on Interaction between Operating Systems
& Computer Architecture (WIOSCA) (2007).

[13] LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX:
Split guest/hypervisor execution on multi-core. In USENIX Work-
shop on I/O Virtualization (WIOV) (2011).

[14] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ, S. Un-
modified device driver reuse and improved system dependability
via virtual machines. In USENIX Symposium on Operating Sys-
tems Design & Implementation (OSDI) (2004).

[15] LIAO, G., GUO, D., BHUYAN, L., AND KING, S. R. Software
techniques to improve virtualized I/O performance on multi-core
systems. In ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS) (2008).

[16] LIU, J. Evaluating standard-based self-virtualizing devices:
A performance study on 10 GbE NICs with SR-IOV support.
In International Parallel & Distributed Processing Symposium
(IPDPS) (2010).

[17] LIU, J., AND ABALI, B. Virtualization polling engine (VPE):
Using dedicated CPU cores to accelerate I/O virtualization. In
ACM International Conference on Supercomputing (ICS) (2009).

[18] MANSLEY, K., LAW, G., RIDDOCH, D., BARZINI, G., TUR-
TON, N., AND POPE, S. Getting 10 Gb/s from Xen: safe and
fast device access from unprivileged domains. In Conference on
Parallel Processing (Euro-Par) (2007).

[19] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimiz-
ing network virtualization in xen. In USENIX Annual Technical
Conference (2006).

[20] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating re-
ceive livelock in an interrupt-driven kernel. ACM Transactions
on Computer Systems (TOCS) 15 (1997), 217–252.

[21] ONGARO, D., COX, A. L., AND RIXNER, S. Scheduling i/o in
virtual machine monitors. In ACM SIGPLAN/SIGOPS Confer-
ence on Virtual Execution Environments (VEE) (2008).

[22] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10Gbps using safe and transparent net-
work interface virtualization. In ACM/USENIX International
Conference on Virtual Execution Environments (VEE) (2009).

[23] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review (OSR) 42, 5
(2008), 95–103.

[24] SALIM, J. H., OLSSON, R., AND KUZNETSOV, A. Beyond Soft-
net. In Anual Linux Showcase & Conference (2001).

[25] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G., AND PRATT,
I. Bridging the gap between software and hardware techniques
for I/O virtualization. In USENIX Annual Technical Conference
(2008).

[26] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-YEHUDA,
M. IsoStack: highly efficient network processing on dedicated
cores. In USENIX Annual Technical Conference (2010), p. 5.

[27] TSIRKIN, M. S. virtio- and vhost- net: need for speed. KVM
Forum, 2010.

[28] VMWARE INC. Esx server 2 - architecture and performance im-
plications. Tech. rep., VMWare, 2005.

[29] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent direct net-
work access for virtual machine monitors. In International Sym-
posium on High Performance Computer Architecture (2007).

[30] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O.
Direct device assignment for untrusted fully-virtualized virtual
machines. Tech. Rep. H-0263, IBM Research, 2008.

[31] ZHAI, E., CUMMINGS, G. D., AND DONG, Y. Live migration
with pass-through device for Linux VM. In Ottawa Linux Sym-
posium (OLS) (2008), pp. 261–268.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 243

vTurbo: Accelerating Virtual Machine I/O Processing
Using Designated Turbo-Sliced Core

Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, Dongyan Xu
Department of Computer Science, Purdue University

Abstract

In a virtual machine (VM) consolidation environment,
it has been observed that CPU sharing among multiple
VMs will lead to I/O processing latency because of the
CPU access latency experienced by each VM. In this pa-
per, we present vTurbo, a system that accelerates I/O pro-
cessing for VMs by offloading I/O processing to a des-
ignated core. More specifically, the designated core –
called turbo core – runs with a much smaller time slice
(e.g., 0.1ms) than the cores shared by production VMs.
Most of the I/O IRQs for the production VMs will be
delegated to the turbo core for more timely processing,
hence accelerating the I/O processing for the production
VMs. Our experiments show that vTurbo significantly
improves the VMs’ network and disk I/O throughput,
which consequently translates into application-level per-
formance improvement.

1 Introduction
Cloud computing is arguably one of the most transforma-
tive trends in recent times. Many enterprises and busi-
nesses are increasingly migrating their applications to
public cloud offerings such as Amazon EC2 [1] and Mi-
crosoft Azure [8]. By purchasing or leasing cloud servers
with a pay-as-you-go charging model, enterprises bene-
fit from significant cost savings in running their applica-
tions, both in terms of capital expenditure (e.g., reduced
server costs) as well as operational expenditure (e.g.,
management staff). On the other hand, cloud providers
generate revenue by achieving good performance for
their “tenants” while maintaining reasonable cost of op-
eration.

One of the key factors influencing the cost of cloud
platforms is server consolidation—the ability to host
multiple virtual machines (VM) in the same physical
server. If the cloud providers can increase the level of
server consolidation, i.e., pack more VMs in each phys-
ical machine, they can generate more revenue from their
infrastructure investment and possibly pass cost savings
on to their customers. Two main resources that typi-
cally dictate the level of server consolidation, memory
and CPU. Memory is strictly partitioned across VMs,
although there are techniques (e.g., memory ballooning
[29]) for dynamically adjusting the amount of memory
available to each VM. CPU can also be strictly parti-
tioned across VMs, with the trend of ever increasing
number of cores per physical host. However, given that

each core is quite powerful, another major scaling fac-
tor comes by allocating multiple VMs per core. While
the ever increasing core count in modern systems may
suggest the possibility of a dedicated core per VM, it
is not likely to happen any time soon, as evidenced in
current cloud computing environments such as Amazon
EC2, where a 3GHz CPU may be shared by three small
instances.

In practice, CPU sharing among VMs can be quite
complicated. Each VM is typically assigned one or more
virtual CPUs (vCPUs) which are scheduled by the hy-
pervisor on to physical CPUs (pCPUs) ensuring propor-
tional fairness. The number of vCPUs is usually larger
than the number of pCPUs, which means that, even if
a vCPU is ready for execution, it may not find a free
pCPU immediately and thus needs to wait for its turn,
causing CPU access latency. If a VM is running I/O-
intensive applications, this latency can have a significant
negative impact on application performance. While sev-
eral efforts [30, 12, 17, 28, 19, 25] have made this obser-
vation in the past, and have in fact provided solutions
to improve VMs’ I/O performance, the improvements
are still moderate compared to the available I/O capac-
ity because, they do not explicitly focus on reducing the
most important and common component of I/O process-
ing workflow—namely IRQ processing latency.

To explain this more clearly, let us look at I/O process-
ing in modern OSes today. There are two basic stages
involved typically. (1) Device interrupts are processed
synchronously in an IRQ context in the kernel and the
data (e.g., network data, disk reads) is buffered in kernel
buffers; (2) The application eventually copies the data
from kernel buffer to its user-level buffer in an asyn-
chronous fashion whenever it gets scheduled by the pro-
cess scheduler. If the OS were running directly on a
physical machine, or if there were a dedicated CPU for
a given VM, the IRQ processing component gets sched-
uled almost instantaneously by preempting the currently
running process. However, for a VM that shares CPU
with other VMs, the IRQ processing may be significantly
delayed because the VM may not be running when the
I/O event (e.g., network packet arrival) occurs.

IRQ processing delay can affect both network and disk
I/O performance significantly. For example, in the case
of TCP, incoming packets are staged in the shared mem-
ory between the hypervisor (or privileged domain) and
the guest OS, which delays the ACK generation and can
result in significant throughput degradation. For UDP

244 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

flows, there is no such time-sensitive ACK generation
that governs the throughput. However, since there is lim-
ited buffer space in the shared memory (ring buffer) be-
tween the guest OS and the hypervisor, it may fill up
quickly leading to packet loss. IRQ processing delay
can also impact disk write performance. Applications of-
ten just write to memory buffers and return. The kernel
threads handling disk I/O will flush the data in memory
to the disk in the background. As soon as one block write
is done, the IRQ handler will schedule the next write and
so on. If the IRQ processing is delayed, write throughput
will be significantly reduced.

Unfortunately, none of the existing efforts explicitly
tackle this problem. Instead, they propose indirect ap-
proaches that moderately shorten IRQ processing latency
hence achieving only modest improvement. Further, be-
cause of the specific design choices made in those ap-
proaches, the IRQ processing latency cannot be funda-
mentally eliminated (e.g., made negligible) by any of the
designs, meaning that they cannot achieve close to op-
timal performance. For instance, the vSlicer approach
[30] schedules I/O-intensive VMs more frequently us-
ing smaller micro time slices, which implicitly lowers
the IRQ processing latency, but not significantly. Also
it does not work under all scenarios. For example,
if two I/O latency-sensitive VMs and two non-latency-
sensitive VMs share the same pCPU, the worst-case IRQ
processing latency will be about 30ms, which is still
non-trivial, even though it is better than without vS-
licer (which would be 90ms). Similarly, another ap-
proach called vBalance [10] proposes routing the IRQ
to the vCPU that is scheduled for the corresponding VM.
This may work well for SMP VMs that have more than
one vCPU, but will not improve performance for sin-
gle vCPU VMs. Even in the SMP case, it improves the
chances that at least one vCPU is scheduled; but fun-
damentally it does not eliminate IRQ processing latency
because each vCPU is contending for the physical CPU
independently.

To solve this problem more fundamentally, we aim to
make the IRQ processing latency for a CPU-sharing VM
almost similar to the scenario where the VM is given a
dedicated core. To achieve this, we propose a new solu-
tion called vTurbo, that involves two basic ideas. First,
we leverage the existence of multiple cores in modern
processors to designate a specialized turbo-sliced core
(or turbo core for short), for synchronous processing
threads in the guest OS. In terms of actual hardware,
the turbo core is no different from a regular core, ex-
cept that the hypervisor-level scheduler schedules VMs
on this core with extremely small quantum (e.g., 0.1ms).
Second, we expose this turbo-sliced core to each VM
as a “co-processor” just dedicated to kernel threads that
require synchronous processing, such as IRQ handling.

The other regular kernel threads are scheduled on a reg-
ular core with regular slicing just like what exists to-
day. Since the IRQ handlers are executed by the turbo
core, they are handled almost synchronously with a mag-
nitude smaller latency. For example, assuming 5 VMs
and 0.1ms quantum for the turbo core, an IRQ request is
processed within 0.4ms compared to 120 ms (assuming
30ms time slice for regular cores).

The turbo core is accessible to all VMs in the system.
If a VM runs only CPU-bound processes, it may choose
not to use this core since its performance is not likely to
be good due to frequent context switches. Even if a VM
chooses to schedule a CPU-bound process on the turbo
core, it has virtually no impact on other VMs’ turbo core
access latency thus providing good isolation between
VMs. We ensure fair-sharing among VMs with differ-
ential requirement between regular/turbo cores because,
otherwise, it would motivate VMs to push more process-
ing to the turbo core. Thus, for example, if there are two
VMs—VM1 requesting 100% of the regular core, and
VM2 requesting 50% regular and 50% turbo cores, the
regular core will be split 75-25% while VM2 obtains the
full 50% of the turbo core, thus equalizing the total CPU
usage for both VMs. We also note that, while we men-
tion one turbo core in the system, our design seamlessly
allows multiple turbo cores in the system driven by I/O
processing load of all VMs in the host. This makes our
design extensible to higher bandwidth networks (10Gbps
and beyond) and higher disk I/O bandwidths that require
significant IRQ processing beyond what a single core can
provide.

To summarize, the main contributions of this paper are
as follows:

(1) We propose a new class of high-frequency schedul-
ing CPU core named turbo core and a new class of co-
vCPU called turbo vCPU. The turbo vCPU pinned on
turbo core(s) is used for timely processing of the I/O
IRQs thus accelerating I/O processing for VMs in the
same physical host.

(2) We develop a simple but effective VM scheduling
policy giving general CPU cores and turbo core magni-
tudes different time-slice. The very small CPU time-slice
on turbo cores grants VM low scheduling delay and low
I/O IRQ processing latency.

(3) We have implemented a prototype of vTurbo based
on Xen. Various evaluations prove the effectiveness of
vTurbo. Our micro-benchmark results show that vTurbo
can significantly improve the TCP throughput (up to 3×),
UDP throughput (up to 4×), and disk write throughput
(up to 2×). Our evaluation with application-level bench-
marks shows that vTurbo improves application-specific
performance as well. For example, Olio’s throughput is
increased by 38.7%. NFS’ throughput is improved by up
to 2×.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 245

VM2 VM3VM4

Time
Request

Response

30 ms

VM1

90 ms

Hypervisor

t1 t2

Scheduled VMs

Figure 1: Impact of VM CPU sharing on I/O processing.

The rest of the paper is organized as follows. We mo-
tivate the problem in detail in Section 2 followed by the
vTurbo design in Section 3. In Section 4 we describe
the implementation of vTurbo prototype based on Xen.
Section 5 presents evaluation results, followed by related
work and conclusions.

2 Motivation
Let us first focus on receive-side I/O processing. In a
non-virtualized system, all receive-side I/O events (e.g.,
network packet arrival) are typically handled by specific
IRQ routines corresponding to each device (i.e., disk
controller or NIC) in the OS kernel. The data is stored in
a kernel buffer first, and once the user process is sched-
uled, it copies the data from the kernel buffer to the user
buffer. Since I/O-bound processes usually have higher
priority, they get scheduled relatively quickly and the
data is subsequently processed by the application thus
achieving high I/O throughput. However, in a virtualized
system with several VMs sharing a physical CPU, each
VM gets only a slice of the physical CPU, which means
the incoming I/O event will need to wait until the VM
gets access to the CPU. Such a CPU access latency will
significantly affect the timeliness of IRQ processing, re-
sulting in low I/O throughput.

We illustrate this negative effect using an example
shown in Figure 1. In this example, 4 VMs share a
physical CPU. VM1 runs a mixed workload that in-
cludes both CPU-bound tasks and I/O-bound applica-
tions, while VM2 to VM4 run only CPU-bound appli-
cations. Assuming a proportional-share VM scheduling
policy (adopted by Xen and VMware ESX), VM1 gets
only 25% of CPU when all VMs are busy, which means
that roughly 75% of time, VM1 has to wait in runqueue
and cannot process I/O events immediately. When an
I/O request for VM1 reaches the hypervisor at t1, VM1
cannot process this request and respond until t2. If the
I/O-bound application in VM1 is a TCP server, for in-
stance, the client will stop sending data to the server once
the client’s TCP window is full, due to lack of acknowl-
edgments from the server while VM1 is in runqueue. If
VM1 runs a UDP server, even though the client can con-
tinue to send data to the server without getting responses,
the packets will be dropped by the hypervisor once the
shared buffers (between the hypervisor and guest OS) are
full. As a result, throughput of either TCP or UDP for

 0
 200
 400
 600
 800

 1,000

0.1 1 10 30TC
P

Th
ro

ug
hp

ut
 (M

bp
s)

Time Slice (ms)

(a) TCP throughput

 0
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000

0.1 1 10 30M
em

. T
hr

ou
gh

pu
t (

M
B

ps
)

Time Slice (ms)

(b) Memory throughput
Figure 2: Impact of micro-timeslice on TCP throughput
and memory throughput

VM1 would be much lower than the available capacity.
In the reverse direction (i.e., when a process sends

packets or writes to the disk), the user process first copies
data to the kernel buffer associated with the particular
output (e.g., socket, file descriptor). For some I/O mech-
anisms such as asynchronous network packet sends and
disk writes, the call to output the data will return to the
user process immediately after the data is copied to the
kernel buffer. The kernel components associated with the
corresponding device will asynchronously write the data
to the device. However, this task cannot be continued ef-
ficiently if the hypervisor schedules the vCPU out while
the kernel component is waiting for the completion of the
write to the device, resulting in low throughput.

There are other sources of delay for interrupt process-
ing even after the I/O event reaches the VM. These in-
clude long periods in which, the VM runs with inter-
rupts disabled, locking conflicts for shared data struc-
tures (such as TCP accept queue [26]) and overhead
of dispatching interrupts in virtualized environments
[13]. However, most of these latencies lie within sub-
millisecond range in the average case [20, 18], while the
scheduling delay causes the interrupt processing to be de-
layed for tens of milliseconds (in our example, the aver-
age scheduling delay is about 35ms for Xen VMM).

Symmetric multi-processing (SMP) VMs can take ad-
vantage of a multi-core architecture to execute many dif-
ferent applications in parallel and improve the overall
system throughput. In an SMP-VM, two or more al-
located vCPUs are scheduled by the hypervisor sched-
uler on any available pCPUs and thus, each vCPU has a
higher chance to get scheduled. However, the SMP-VM
may still suffer from scheduling delays, if none of the
vCPUs can be scheduled in because the pCPUs are all
busy executing other vCPUs. Thus, we cannot guaran-
tee that the vCPU running an IRQ gets scheduled in time
when a target VM receives an I/O request.

2 .1 Existing Approaches
Now we discuss several existing approaches addressing
the problem of CPU sharing impacting I/O performance
of VMs and discuss why they do not work well.
Reducing CPU time-slice . One intuitive approach to
solve the scheduling latency problem is to uniformly re-

246 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

duce the VM scheduling time-slice [15]. In proportional-
share scheduling, the worst-case scheduling delay of
each VM is (Number of sharing VMs -1) × time-slice.
A small scheduling time-slice enables VMs to get sched-
uled more frequently thus improving the I/O through-
put of VMs. However, the short time-slice results in
more frequent context switches which may hurt the per-
formance of memory-intensive or CPU-bound applica-
tions. We conduct a simple experiment to demonstrate
this problem.

In our experiment, 4 single vCPU VMs share one
physical CPU. One VM hosts a TCP server, the client is
running in another physical machine in the same LAN.
Iperf [5] is used to measure the server’s TCP throughput.
We vary the scheduling time-slice from 0.1ms to 30ms,
which is the default time-slice of Xen. From Figure 2(a)
we can find that, smaller time-slice leads to higher TCP
throughput. Especially, with a 0.1ms time-slice, the aver-
age TCP throughput is up to 900 Mbps which is close to
the bandwidth of 1Gbps network card used in our experi-
ment. However, the performance of memory/CPU bound
applications degrades under smaller time-slice as shown
in Figure 2(b). Here, we run STREAM [6] benchmark in
one of the 4 VMs1. So, simply reducing the CPU time-
slice cannot simultaneously benefit both I/O-intensive
applications and CPU-intensive applications. Hence this
approach is not suitable for cloud environments where
mixed workloads are common.
Sending I/O interrupts to active vCPU To reduce the
IRQ processing delay and improve I/O throughput for
SMP-VMs, a recent approach called vBalance [10] sends
I/O interrupts to the active vCPU of the target VM. In this
way, I/O interrupts can be processed in a more timely
fashion and I/O throughput may be improved. However,
there are still several issues with this method. As dis-
cussed before, an SMP-VM may have increased chances
to get scheduled because of the multiple vCPUs assigned
to it. But there is no fundamental guarantee that the
SMP-VM have at least one vCPU running at any time.
If none of the vCPUs is running, an I/O interrupt still
cannot be processed in time. Besides, even if the I/O
interrupt is sent to an active vCPU successfully, the I/O
cannot be finished if the vCPU executing the I/O appli-
cation is not running simultaneously. This specifically
impacts TCP, where the application vCPU may be in the
runqueue holding the ownership of the lock structure,
hence the kernel-level TCP processing cannot generate
an ACK in time for incoming TCP packets. We suspect
this is the main reason [10] only reports 400Mbps TCP
throughput in a 1Gbps LAN environment.
Differentiated VM scheduling Tuning VM scheduling

1We conducted a similar experiment in [30]. But here we set even
smaller time-slice (0.1ms) and contrast TCP and memory throughput
under such a time-slice.

VMM

Hardware
CPU 0 CPU 1

. . .

vTurbo Scheduler

CPU n-1CPU m-1... ...CPU m

Regular Cores Turbo Cores

VM 1

vCPU vTurbovCPU...

I/O IRQs

I/O-bound

Applications

CPU-bound

Applications

Kernel Buffer

VM l

vCPU vTurbovCPU...

I/O IRQs

I/O-bound

Applications

CPU-bound

Applications

Kernel Buffer

Figure 3: Architecture of vTurbo

policy is another method to speed up I/O processing. vS-
licer [30] schedules each latency-sensitive VM (LSVM)
more frequently with a smaller micro time-slice, which
enables more timely processing of I/O events by LSVMs.
There are two caveats of this approach. First, we need to
know which VMs are LSVMs running latency-sensitive
applications in advance and adjust the VM scheduler
configuration accordingly. Second, vSlicer reduces the
scheduling delay but does not completely eliminate it,
as discussed earlier. It, therefore, does not improve the
TCP/UDP throughput significantly, although it does re-
duce application-perceived I/O latency.

3 Design
The discussion in the previous section suggests that if
we use a very small value as the CPU time-slice, I/O
performance of CPU-sharing VMs can be significantly
improved. However, we also showed that such an ap-
proach may hurt the performance of CPU-bound VMs,
for which larger time-slice is desirable. To address this
dilemma, we leverage one key degree of freedom that has
not been exploited hitherto: The CPU time-slice for each
core may not be the same for a multi-cores system.

Thus, in our approach called vTurbo, we designate one
(or more) core(s) in the system as what we call a turbo
core, which is just any regular physical core, except that
we set a very small (e.g., 0.1ms) CPU time-slice for it.
We expose the turbo core to each VM in addition to the
regular cores, and allow the guest OS to schedule I/O-
bound threads (e.g., IRQ handling) in the turbo core thus
speeding up I/O processing significantly. The guest OS
still schedules CPU-bound workloads on cores with the
regular time-slice. As such vTurbo achieves I/O process-
ing speedup without impacting CPU-bound workloads.

In effect, vTurbo focuses on re-factoring the interface
between the hypervisor and guest OS, with the new ab-
straction of turbo core. This approach is completely
transparent to applications running in VMs, a key advan-
tage of practicality. Another benefit of vTurbo is that it
does not require classification of VMs into I/O- or CPU-
intensive VMs, as required by some solutions such as
vSlicer [30]. Such classification is difficult as most VMs

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 247

in practice run a combination of I/O and CPU workloads.
Of course, the guest OS now needs to identify I/O-bound
threads such as IRQ processing and schedule them on the
turbo core. But that is not hard as there are only a handful
of such threads. Our approach also guarantees CPU fair-
ness among all VMs. Any VM using the turbo core will
essentially not obtain any “extra” CPU beyond its fair
share—an important property in multi-tenancy clouds.

The architecture of vTurbo requires changes to both
the hypervisor and the guest OS. At the hypervisor level,
the VM scheduler needs to accommodate the new turbo
core abstraction. At the guest kernel-level, we need to
modify the VM process scheduler to pin certain threads
to the turbo core in addition to a few changes to the TCP
protocol stack. In the following subsections, we discuss
these in more detail.

3.1 Modifications to Hypervisor
We mainly need to modify the VM scheduler in the hy-
pervisor to support the turbo core abstraction. Upon
host initialization, we designate a set of cores in the
host as turbo cores. The number of turbo cores is con-
figurable, and our current version statically assign turbo
cores based on user configuration. However, we believe
that our system can be improved by having a dynamic
method to assign turbo cores based on the available ma-
chine capacity (i.e., total number of cores), number of
VMs, demand for the turbo core, and overall I/O inten-
sity (e.g., a host with multiple active NICs or 10GB/s
NICs may require more turbo cores). One can also dy-
namically change the number of turbo cores via adminis-
trative tools (such as xm tools in Xen). While the current
implementation of vTurbo randomly selects the turbo
cores, we can incorporate parameters such as cache affin-
ity to further improve their performance.

In vTurbo, each VM is assigned a turbo vCPU in addi-
tion to its regular vCPUs. The turbo vCPU is assigned to
one of the turbo cores in the host. This step is performed
during VM initialization. For instance, if a user launches
an SMP-VM configured with 2 vCPUs, the VM will have
3 vCPUs after initialization. Among these, the 0th vCPU
is the turbo vCPU, whereas the 1st and 2nd vCPUs are
regular vCPUs.

Based on our empirical study (discussed in Section 2),
we set 0.1ms as the CPU scheduling time-slice for turbo
cores (as it enables the VM to reach up to 900Mbps TCP
throughput for a 4 CPU-sharing VMs scenario). Since
only interrupt processing runs on turbo cores, frequent
context switches caused by the small turbo core time-
slice does not affect the performance of interrupt pro-
cessing much because of the very short duration of the
processing. According to our measurements (Figure 4),
when 4 VMs each running an iperf server share one turbo
core, the order of magnitude of cache miss per second on

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.1 0.5 1 5 10 30C
ac

he
 M

is
s R

at
e

(1
0-5

/s
ec

)

Time-slice (ms)

4 VMs sharing a turbo core

Figure 4: Impact of time-slice size on cache misses on
turbo cores.
the turbo core is only 10−5, which is negligible. The
CPU time-slice for regular cores is set be a much larger
value — 30ms in the current implementation which is
the default time-slice of Xen. The vTurbo VM scheduler
uses per-core scheduling timer to trigger scheduling code
to select the next vCPU from the runqueue. We achieve
CPU time-slice differentiation by setting these timers to
0.1ms for turbo cores and 30ms for regular cores.

Once the vCPUs are assigned to turbo cores and reg-
ular cores, our next concern is to correctly handle vCPU
migration in the presence of turbo cores. vCPU migra-
tion allows to balance the CPU load among the available
cores in the system. However, if we let the vCPUs to mi-
grate freely among available cores, there is a possibility
that a regular vCPU be migrated to a turbo core making
undesirable effects. To solve this, we restrict migration
of regular vCPUs to only among all regular cores and
migration of turbo vCPUs only among turbo cores. We
do not allow a turbo vCPU to migrate to a regular core
or vice versa. This is done by changing each vCPU’s
affinity to the corresponding set of cores. Hence vTurbo
scheduler not only determines the appropriate mapping
between vCPUs and physical cores, but also ensures fair
CPU sharing among all VMs.
VM scheduling policy Since we intend to use the turbo
core only for I/O activity, we cannot treat it as a regular
core and apply the existing scheduling policy to guaran-
tee fair sharing among VMs. The challenge is to deter-
mine the CPU share of VMs for turbo and regular cores
in the presence of heterogeneous workloads (i.e., when a
VM is CPU intensive, I/O-intensive, or both).

Current schedulers (e.g., Xen’s) use simple credit-
based scheduling algorithm for achieving global load
balancing and work-conservation. For instance, in Xen’s
credit scheduler, a VM is assigned some amount of cred-
its periodically based on the priority of the VM. As the
vCPUs belonging to a particular VM run on physical
CPUs, credits are deducted from that VM. When the
scheduler needs to make a decision, it uses the amount of
available credits for each VM to decide which vCPU will
run on the physical CPU. To accommodate turbo cores
in our system, we mainly need to modify the credit as-
signment portion of the credit scheduling algorithm to
account for the turbo vCPU execution time.

Specifically, assume l VMs are sharing an n-core host
with m regular cores and n-m turbo cores. Let rdi denote

248 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

the percentage demand for regular cores (CPU-bound
component) and let tdi denote the percentage demand
for turbo cores (I/O-bound component) for VMi. We as-
sume the demand for regular core and turbo core in two
consecutive scheduling periods does not change much (if
it does, we account for and adjust it in future rounds). So
both rdi and tdi are calculated based on the consumed
CPU cycles by the VM in the previous scheduling period.
Since our scheduler is work-conserving, the division of
the total capacity among the regular and turbo cores is
determined by the following:

CR
tot =

l∑
i=1

rdi and CT
tot =

l∑
i=1

tdi

The total capacity demand of the system is:

Ctot = CR
tot + CT

tot

The fraction of CPU allocated for a VM out of this
total capacity is determined by its assigned weight wti.
Hence each VM’s fair share (FSi) of CPU is given by:

FSi = (Ctot × wti)/(

l∑
j=1

wtj)

In vTurbo, we first allocate turbo core capacity fairly
among VMs, as all of the VMs’ IRQ processing is per-
formed by the turbo vCPUs and starvation of turbo vC-
PUs (even for CPU-bound VMs) will result in applica-
tion performance hit. So VMi’s fair share of the turbo
core (FST

i) is calculated as:

FST
i = (CT

tot × wti)/(

l∑
j=1

wtj)

Once VMi’s turbo core share is determined, we allo-
cate the rest of its CPU share from the regular cores. The
fraction of the allocation is given by:

FSR
i = FSi −

ˆFST
i

where ˆFST
i denotes the actual usage of the turbo core

by VMi in the previous scheduling period. We use FST
i

and FSR
i to determine the proportion of credits given to

VMs out of total credits in the turbo core pool and reg-
ular core pool, for the next scheduling period. Table 1
shows the CPU allocation results from experiments with
our prototype, where two VMs—with equal weight—
share one regular core and one turbo core, under vari-
ous workload demands. Columns 2 and 3 of the table
indicate the CPU demand of each VM (i.e., CPU utiliza-
tion if they were run without CPU sharing); Columns
4 and 5 indicate measured consumption in the previous
scheduling period; Columns 6 and 7 indicate the allo-
cated shares of regular and turbo cores based on our pol-
icy; and Columns 8 and 9 show the measured consump-
tion of regular (ˆFSR

i) and turbo (ˆFST
i) core capacity in

the next scheduling period. The results confirm that our
policy allocates CPU with proportional fairness.

Demand Measured Allocated Consumed
Reg. Turbo rdi tdi FSR

i
FST

i

ˆFSR

i

ˆFST

i

VM1 100 0 50 0 50 0 50 0
VM2 100 0 50 0 50 0 50 0
VM1 100 0 50 0 100 0 100 0
VM2 100 100 50 100 0 100 0 100
VM1 100 100 50 50 50 50 50 50
VM2 100 100 50 50 50 50 50 50
VM1 100 15 50 15 70 35 70 15
VM2 100 55 50 55 30 35 30 55

Table 1: VMs’ CPU demand and allocated CPU shares
under different scenarios
3.2 Modifications to Guest OS
Process scheduler As noted before, if CPU-bound
workload were scheduled on the turbo cores, its perfor-
mance would degrade due to frequent context switches.
Since process scheduling inside the VM is transparent
to the hypervisor’s VM scheduler, we should make the
guest OS’s process scheduler aware of the turbo core
to prevent user processes and non-I/O-related kernel
threads from being scheduled on the turbo core. This
can be achieved by setting scheduler affinity rule which
sets the affinity of the non-I/O related threads to regular
vCPUs. In Linux, this can be easily done by a schedul-
ing mechanism known as Linux CPU isolation [3] (by
setting a kernel parameter).
I/O buffers in guest OS With the above change, we can
reduce IRQ processing delay to extremely small values.
However, low IRQ processing delay by itself does not au-
tomatically translate into high I/O throughput, because of
a critical locking behavior between the kernel and appli-
cation threads as we explain below. The network receive
path in typical OSes (e.g., Linux) consists of two main
steps: (1) Processing IRQ in kernel and buffering data in
kernel buffer; (2) Application reading the data from ker-
nel buffer and clearing it. Since the CPU time-slice of
regular cores is still 30ms in vTurbo, the CPU access de-
lay on the regular core will make the kernel buffer full
very quickly and stop the IRQ threads from buffering
more data, which would lead to poor I/O performance.

To address this problem and to keep the turbo vCPU
busy processing IRQs, we need to tune the kernel buffer
to store more received data while the application running
on regular vCPU is blocked. As an example when 4
single-vCPU (excluding turbo vCPU) VMs are sharing
one regular core, the CPU access delay is up to 90ms
((4 - 1) × 30ms). To keep the IRQ threads on turbo
vCPU busy, all data received during this period need
to be buffered. So if the bandwidth of NIC is BN , the
minimum kernel buffer required (Bmin) is: Bmin =
BN×Scheduling Delay (i.e., the required kernel buffer
is proportional to the number of VMs sharing the same
CPU core). In fact, the real kernel buffer we need is

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 249

almost always much larger than Bmin. For example,
in our experimental environment with 1Gbps NICs, if 4
VMs share one CPU, the kernel buffer for UDP should
be around 11.25MB. However, we did not obtain high
throughput (more than 900Mbps) until we set the UDP
kernel buffer (net.core.rmem max) to about 40MB.

Algorithm 1 Generating ACK for Backlog Queue
1: rcv.nxt is the seq. number of expected packet for receive queue
2: bl.nxt is the seq. number of expected packet for backlog queue
3: seq is the seq. number of received packet
4: if backlog queue is empty then
5: if rcv.nxt ≥ bl.nxt then
6: /* initial status or packets in backlog queue are all acked by

process context */
7: bl.nxt = rcv.nxt;
8: bl.online = 1; /* enable ACK generation */
9: else

10: if bl.online == 0 and bl.nxt ≤ rcv nxt then
11: /* packets in backlog queue are acked by process context */
12: bl.online = 1; /* enable ACK generation */
13: bl.nxt = rcv.nxt;
14: if bl.online == 1 then
15: if bl.nxt == seq then
16: /* packet to be added to backlog queue is in order */
17: update(bl.nxt);
18: else
19: /* stop ACK generation due to out-of-order packet */
20: bl.online = 0;
21: if add backlog() is successful and bl.online == 1 then
22: tcp ack backlog(); /* generate and send ACK */

Modifications to VM’s TCP stack While simply set-
ting the guest kernel buffer to a high value ensured good
UDP performance, it did not improve TCP throughput at
all. Upon a deeper investigation, we found the following
problem: In TCP, when a data segment is received, the
receiver generates an ACK to inform the reception of the
segment. The sender uses this ACK to confirm the re-
ception of data as well as for congestion control. Now,
using the turbo core, we eliminate the long delay for pro-
cessing incoming data segments. With our additional I/O
buffering enabled, the IRQ context now buffers all these
data packets. However, the locking behavior in the VM’s
TCP stack still prevents the ACK generation in a timely
manner, hence reducing TCP throughput significantly.

Specifically, when the user process is calling function
recv(), it locks the socket to prevent the IRQ threads from
modifying the socket structure while it is reading from
the socket buffers. If a new data segment arrives during
this period, the IRQ process will queue it in the backlog
queue without generating an ACK. When the receiving
process engages in a tight receiving loop, the socket gets
locked frequently by the process context. Moreover, the
process can get scheduled out of the regular core while it
is holding the lock. When this happens, ACKs will not be
generated for a long period (until the process gets sched-
uled and releases the lock), even though the turbo core
can accept and buffer TCP segments from the network.
As a result, the sender will throttle down the sending rate
leading to sub-par TCP throughput.

We make a simple modification to the VM’s TCP stack
to enable ACK generation from the IRQ context run-
ning in the turbo core, even when the socket structure
is locked by the user process. The high-level steps per-
formed by our modification are shown in Algorithm 1
which runs in the softIRQ context just before queuing the
packet in the TCP backlog queue. Here, when the IRQ
thread discovers that the socket is locked by the user pro-
cess, it checks whether the new data segment is in-order.
If so, an ACK is generated for the data packet, which
will then be marked as acknowledged and queued. Note
that we are not modifying the socket structure as it is cur-
rently owned by the process context. This is somewhat
similar to vSnoop [17], although vSnoop is implemented
purely in the driver domain whereas the ACK generation
here is from within the guest VM. Thus we have access
to VM’s TCP information and can afford much larger
buffers (compared to the limited ring buffer space in vS-
noop). If a flow encounters an out-of-order packet, we
disable this ACK generation until the missing segments
are recovered by the usual slow path of TCP processing.
This small modification helps achieve TCP throughput
close to the line rate.

4 Implementation
We have implemented a prototype of vTurbo based on
Xen 4.1.2. vTurbo only requires small modifications to
the VM scheduler in hypervisor (about 400 lines of code)
and guest OS kernel (less than 200 lines of code).
Hypervisor To differentiate between regular cores and
turbo cores, we added a field to the per-core data struc-
ture schedule data, to indicate the CPU time-slice for
the specific core–30ms for regular cores and 0.1ms for
turbo cores. Our implementation allows the flexibility of
changing these values dynamically via xm tools.

Our vTurbo scheduler inherits most of its functional-
ity from Xen’s credit scheduler which provides the pro-
portional fairness and work-conserving properties. We
added and modified functionality of the main scheduler
code of the credit scheduler to accommodate turbo cores
and turbo vCPUs. Specifically, we modified function
csched schedule(), which is responsible for selecting vC-
PUs from the runqueue to run on physical cores and set-
ting the scheduling timer of turbo cores to 0.1ms.

We assign each VM a turbo vCPU by modifying the
VM’s configuration so that an extra vCPU is added dur-
ing the configuration parsing step of VM initialization
performed by the Xen tools. Also during this step, the
turbo vCPUs are pinned to the set of turbo cores and reg-
ular vCPUs are pinned to the regular cores by modifying
the loaded VM’s configuration. By doing this, we do not
have to modify the scheduler code to prevent undesirable
vCPU migrations (discussed in Section 3), because the
credit scheduler will adhere to the CPU affinity rules set

250 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

in the configuration.

Algorithm 2 vTurbo accounting algorithm
Require: num tcore ≥ 1

Require: num rcore ≥ 1

Require: num vm ≥ 1

Regular accounting triggered every 30ms:
tcore usage = get rcore usage(); /* CR

tot
*/

rcore usage = get tcore usage(); /* CT
tot

*/
for vm in vm list do

vm.credits = vm.weight×
(tcore usage+ rcore usage)/vm weight sum;

vm.tcredits = get turbo core usage(vm);

vm.rcredits = vm.credits − vm.tcredits;
ratio = 300; /* = 30/0.1 */
vm.vturbo slice = vm vcredits/ratio;
update rcredits(vm.rcredits);

vTurbo accounting triggered every 0.1ms:
for vm in vm list do

update tcredits(vm.vturbo slice);

CPU accounting is conducted by function
csched acct() in the credit scheduler. We extended
this function by implementing two accounting routines
for regular and turbo vCPUs individually as shown
in Algorithm 2. They run at different frequencies in
accordance with CPU scheduling frequencies (e.g.,
30ms for regular vCPUs and 0.1ms for turbo vCPUs),
because updating credits faster or slower than the
scheduling frequency would cause inaccurate state
of vCPUs in terms of OVER and UNDER priorities
in Xen. The vTurbo accounting routines are simple,
incurring very low overhead considering the high fre-
quency of their execution. Functions get rcore usage()
and get tcore usage() retrieve the consumed clock
cycles by regular vCPUs and turbo vCPUs of all VMs
respectively; while functions update rcredits() and
update tcredits() set the calculated credits for regular
cores and turbo cores for the next scheduling period.
Function get turbo core usage() retrieves the the clock
cycle usage by the turbo vCPU of a given VM. We
do not change method burning credits() in the credit
scheduler, which deducts credits from the VMs based on
their running time on the cores. Instead we implement a
new method for vTurbo credit deduction.

Guest OS Our modification to the TCP stack, to gener-
ate early ACKs for packets buffered in backlog queue,
is mainly in function tcp v4 rcv(). There are 3 ker-
nel buffers to buffer received TCP packets: (1) receive
queue, (2) prequeue, and (3) backlog queue. When a
socket is not locked, received packets are buffered in re-
ceive queue. However, if the application process locks
the socket while fetching data from the kernel, packets
received during that period will be buffered in backlog
queue. We modified the backlog queuing path of func-
tion tcp v4 rcv() to verify a received packet is “expected”
and if so, call function tcp ack() to generate an ACK for

the received packet. Since very few packets (less than
0.1%) go to prequeue in CPU sharing VMs, we disable
prequeue in vTurbo to simplify our implementation.

5 Evaluation
We first evaluate the effectiveness of vTurbo for different
types of I/O operations via a series of micro-benchmarks.
We then use NFS, SCP, and Apache Olio [2] to eval-
uate the application-level performance improvement by
vTurbo.
Experimental setup Our testbed consists of servers
with quad-core 3.2GHz Intel Xeon CPUs and 16GB of
RAM. They are connected via Gigabit Ethernet, except
for the experiments with 10Gbps Ethernet. These servers
run Xen 4.1.2 as hypervisor and Linux 3.2 in both do-
main0 and guest VMs. We pin domain0 to one of the
cores in all our experiments.

5 .1 Micro-Benchmark Results
In this section we evaluate the performance of vTurbo
for various types of I/O. We use lookbusy [7] to keep the
CPU utilization at determined levels during experiments.
File read and write We use IOzone benchmark [4]
to read/write a 1GB file from/to disk and measure the
read/write throughput. Figure 5 shows the read and write
throughput—in comparison with the vanilla Xen–when
we vary the record size from 1MB to 16MB.

From Figure 5(a) we see that the disk write through-
put is improved significantly (by 75% to 82%); whereas
the disk read throughput (Figure 5(b)) sees less improve-
ment (only up to 26%). The main reason is that, when
the process performs a write, the data is immediately
written to the file system cache and the write() call re-
turns. So the process can keep writing while the reg-
ular vCPU is scheduled. The dirty pages of the disk
cache are flushed to the disk by a kernel thread executed
by the turbo vCPU. Therefore with vTurbo, disk write
throughput is greatly improved. However, when the pro-
cess performs a read for a fresh block from the disk, it
gets blocked until the actual data blocks are read from
the disk. Meanwhile the hypervisor may schedule other
vCPUs on the regular core. The turbo vCPU will be able
to handle the disk read completion interrupt and place
the data in the process’ buffer while the regular vCPU is
scheduled out. But the process will not be able to make
further read requests until it is scheduled again. Hence in
this case, vTurbo achieves less throughput improvement
than in the case of disk write.
UDP throughput To measure the benefit of vTurbo to
network I/O we first measure the UDP throughput im-
provement achieved by vTurbo. In these experiments, we
use iperf to send a stream of UDP packets for 10 seconds
to a VM sharing a core with 2, 3, or 4 other VMs. The av-
erage throughput (averaged over 10 runs) observed at the

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 251

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
 (K

B
ps

)

Record Size(B)

Xen
vTurbo

(a) Write

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
 (K

B
ps

)

Record Size(B)

Xen
vTurbo

(b) Read
Figure 5: File read/write throughput.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

3 4 5

Th
ro

ug
hp

ut
 (M

bp
s)

Number of VMs

Xen−UDP
vTurbo−UDP
Xen−TCP
vTurbo−TCP

(a) 1Gbps Network

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

3 4 5

Th
ro

ug
hp

ut
 (M

bp
s)

Number of VMs

Xen−UDP
vTurbo−UDP
Xen−TCP
vTurbo−TCP

(b) 10Gbps Network
Figure 6: TCP and UDP throughput.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

X
en

vT
ur

bo

X
en

vT
ur

bo

X
en

vT
ur

bo

X
en

vT
ur

bo

Th
ro

ug
hp

ut
 (M

bp
s)

Number of I/O Intensive VMs
 1 2 3 4

vm4
vm3
vm2
vm1

Figure 7: UDP throughput: multiple I/O-intensive VMs.

VM on vanilla Xen and vTurbo is shown in Figure 6(a)
by blue and yellow bars, respectively. With vanilla Xen,
the UDP throughput starts to decrease when the number
of VMs sharing the core increases. This is because, when
UDP packets arrive at domain0, the target VM may not
be scheduled and the packets have to be buffered in do-
main0. But the space in domain0 is limited and hence
once this buffer fills up, packets will be dropped caus-
ing the throughput to go down. With vTurbo, the target
VM’s network IRQ processing threads get scheduled fre-
quently and hence the buffer in domain0 can be drained
frequently. This leads to much less packet drops thereby
achieving close-to full network bandwidth (1Gbps).

Next, we evaluate the impact of sharing the turbo core
among multiple I/O-intensive VMs. We reuse the setup

in the previous experiment. But instead of 1 VM re-
ceiving a UDP packet stream, we increase the number of
VMs receiving UDP streams from 1 to 4. Figure 7 shows
the aggregate throughput achieved as well as the through-
put seen by individual VMs. In both vanilla Xen and Xen
with vTurbo configurations, we see that the I/O band-
width is fairly shared among VMs. However, vTurbo
achieves (close to) wire speed and outperforms vanilla
Xen irrespective of the number of I/O-intensive VMs.

TCP throughput We use a setup similar to the UDP
experiments to measure the TCP throughput improve-
ment achieved by vTurbo. In this experiment, we send a
200MB file using iperf to a VM from another server and
we vary the number of VMs sharing the same core with
the receiving VM. Figure 6(a) shows the TCP through-
put on vanilla Xen and Xen with vTurbo by grey and
red bars, respectively. Recall that with vTurbo, the TCP
stack is modified to generate ACKs when the regular
vCPU is holding the socket ownership and scheduled
out. As the figure shows, vTurbo improves TCP through-
put significantly (by 63% - 200%). However the TCP
throughput achieved by vTurbo still does not reach the
full available network bandwidth. The reason is, even
with our modification, if a packet loss happens, we have
to resort to the (usual) slow code path where packet loss
recovery is subject to regular vCPU scheduling delay,

252 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

UDP TCP

Th
ro

ug
hp

ut
 (M

bp
s)

Protocol

Xen
Xen+irqbalance
vTurbo

Figure 8: UDP and TCP throughput for VSMP VMs.

which negatively affects the TCP throughput.

10Gbps Ethernet To evaluate the benefit of vTurbo
with 10Gbps Ethernet, we repeat the UDP and TCP ex-
periments. In our setup, two physical servers are con-
nected via 10Gbps Ethernet. In the UDP experiment,
we use netperf [9] to send a 10-second UDP stream to
the target VM sharing a core with 2 to 4 other VMs. In
the TCP experiment, we send a 500MB file using iperf
from one physical server to a VM running in the other
server, varying the number of VMs sharing the same core
with the receiving VM. The results in Figure 6(b) indi-
cate that, in a 10Gbps network, vTurbo achieves a pat-
tern of improvement for both UDP and TCP throughput
similar to that in the 1Gbps network. However, since
the regular core is shared by multiple VMs, the applica-
tion does not get enough CPU cycles to copy the buffered
data from kernel space to user space, hence we can not
achieve line speed.

Benefit of vTurbo to VSMP VMs To show the ben-
efit of vTurbo to SMP VMs, we use iperf to send TCP
and UDP traffic (in different runs) to a VM which is
assigned 2 vCPUs. In this experiment, we run 4 VMs
each with 2 vCPUs. These vCPUs are restricted to
run in the first 2 cores of the quad-core processor, but
are allowed to migrate between the two cores. Simi-
lar to previous experiments, we pin domain0 to the 3rd
core and, for vTurbo, we use the 4th core as the turbo
core. In the vanilla Xen configuration, we first dis-
able irqbalance in VM and allow the interrupts to be di-
rected only to vCPU0 of the VM. Next we enable irqbal-
ance so that the interrupts can be balanced between the
two vCPUs. In the vTurbo configuration, interrupts are
routed to the turbo vCPU. Figure 8 shows the TCP and
UDP throughput when transferring 200MB of data to the
VSMP VM. vTurbo vastly outperforms both irqbalance-
on and irqbalance-off configurations. However, the TCP
throughput is lower than that under the “4 single-vCPU
VMs” configuration (for both vanilla Xen and vTurbo
configurations – see Figure 6(a)) . We conjecture that
this is due to the vCPU migrations between the two phys-
ical cores and the iperf receiver process migrations be-
tween the two vCPUs of the VSMP VM.

 0

 20

 40

 60

 80

 100

 120

W
rite

Re−
write

Read

Re−
rea

d

Th
ro

ug
hp

ut
 (M

B
ps

)

Test

Xen
vTurbo

(a) NFS read/write throughput.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

3 4 5

Th
ro

ug
hp

ut
 (M

B
ps

)

Number of VMs

Xen
vTurbo

(b) SCP throughput.

Figure 9: SCP and NFS throughput.

5.2 Application-Level Results
NFS server throughput NFS uses TCP to transport
commands and data blocks between the NFS client and
server. We use the NFS tests in IOzone to evaluate the
benefit of vTurbo to the NFS server. We export a direc-
tory of a VM using NFS and run IOzone in another server
which mounts this exported directory. We pin the NFS
server VM’s vCPU to a single core shared by three other
VMs with 30% CPU utilization. Figure 9(a) shows the
file read and write throughput (file size: 1GB). vTurbo
significantly outperforms vanilla Xen for all types of op-
erations. The results for “Read” and “Re-read” opera-
tions are especially interesting (and somewhat surpris-
ing). Recall that, for file read/write micro-benchmarks,
vTurbo does not improve disk read throughput much. Yet
we observe significant improvement in NFS read and re-
read throughput. After some investigation, we figure out
the reasons for the improvements here: First, NFS uti-
lizes pre-fetching for sequential read operations where
multiple read operations are issued in advance. Second,
Linux NFS implementation uses in-kernel data transfer
from files to sockets. As such, the server process is able
to process many read requests while the regular vCPU is
scheduled and to delegate the actual file block transfer
operations to the kernel threads run by the turbo vCPU,
hence achieving much higher throughput.

Secure copy (SCP) throughput SCP involves both
CPU activity (for encryption and decryption of data) and
I/O activity. We copy a 1GB file using SCP from a client
to a VM sharing a core with 2, 3, or 4 other VMs. In this
experiment the sshd process which is receiving the file
is scheduled at the regular vCPU while both TCP pro-
cessing and disk I/O handling threads are scheduled at
the turbo vCPU. Figure 9(b) shows that vTurbo improves
SCP throughput by 53% to 66%.

Apache Olio To assess the benefit of vTurbo to a cloud
application, we use Apache Olio, an event calender de-
veloped using Web 2.0 technologies. The Apache Olio
benchmark consists of 3 components: (1) a web server
to process user requests, (2) a MySQL database server to

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 253

Single Instance Two Simultaneous Instances
Instance 1 Instance 2

Operation Count Count Count Count Count Count
Vanilla Xen vTurbo Vanilla Xen vTurbo Vanilla Xen vTurbo

HomePage 4028 5602 3918 5334 3839 5311
Login 1629 2190 1524 2121 1540 2109
TagSearch 5183 7198 4888 6822 4892 6778
EventDetail 3856 5274 3701 5075 3630 5013
PersonDetail 405 562 379 550 381 508
AddPerson 127 178 131 177 120 167
AddEvent 300 402 280 416 279 413
Total 15528 21406 14821 20495 14681 20299
Rate(ops/sec) 51.8 71.3 49.4 68.3 48.9 67.7
Improvement (%) - 37 .6% - 38 .2% - 38 .4%

Table 2: Results from Apache Olio experiment (single- and two-instance)

store user profiles and event information, and (3) an NFS
server to store images and documents specific to events.
We use the PHP version of the benchmark.

In our setup, we host the 3 Olio components in 3 dif-
ferent VMs each in a separate physical host. In each host
we pin the Olio VM’s vCPU to a single core, which is
shared by 3 other VMs having 20% of CPU load. We
stress the Olio service with 400 client threads generating
requests using the Faban client simulator for 6 minutes.

In Table 2, the “Single Instance” (2nd and 3rd)
columns show the breakdown of total operations (aver-
aged over 3 runs) performed by Olio on vanilla Xen and
on vTurbo, respectively. vTurbo achieves higher oper-
ation counts than vanilla Xen for all types of operations
during the same period. This is because vTurbo improves
communication performance among the three Olio com-
ponents as well as file write performance of MySQL and
NFS servers. With vTurbo the overall throughput of the
Olio service is improved from 51.8 ops/second to 71.3
ops/second – a 37.6% improvement.

Next, we evaluate the performance of two simultane-
ous instances of Olio, with the same set of components
hosted by the same physical servers. In this experiment,
of the 4 CPU cores of each server, we dedicate one core
to domain0 and one core as the turbo core shared by
all VMs. In our replicated Olio configuration, we pin
the two copies of each Olio component to the 2 remain-
ing cores respectively, with each core shared by 3 other
VMs. Columns 4, 5, 6, 7 of Table 2 show the breakdown
of total operations performed by the two Olio instances,
which are started at the same time and run for the same
6-minute period. Compared with the “Single Instance”
results, most rows see a slight reduction of operation
throughput for both vanilla Xen and vTurbo configura-
tions. We believe this is due to the sharing of resources
such as the disk and network. However, we observe that
with vTurbo, the overall Olio throughput is increased by
38.2% and 38.4% for instances 1 and 2, respectively.

6 Related Work
We have discussed some of the recent and most related
efforts in optimizing I/O processing for virtualized sys-

tems in Section 1 and Section 2. In this section, we
discuss other related work in the same problem space.
These efforts can be categorized into two categories: I/O
path tuning and VM scheduling optimization.
I/O path improvements vSnoop [17] and vFlood [12]
are two related efforts to improve TCP throughput of
VMs. vSnoop offloads ACK generation from a VM to its
driver domain to hide the VM scheduling delay from the
TCP sender. We adopt a similar idea in vTurboinside the
guest OS to generate ACKs while the receiving process
on the regular core has locked the socket. vSnoop only
benefits TCP receiving, it does not benefit UDP or disk
I/O. Moreover, due to the limited shared buffer space in
the driver domain, vSnoop can only accelerate small TCP
flows. On the other hand vTurbo can improve throughput
of TCP/UDP receive—regardless of flow size—and disk
write. It can also benefit disk read if data pre-fetching
is used by applications (as shown by the NFS through-
put results in Section 5.2). One can consider vTurbo as
an alternative to vSnoop with extra features. vFlood of-
floads TCP congestion control to driver domain to hide
VM scheduling delay from receiver thus improving the
performance of TCP send. vFlood has the same problem
as vSnoop: It only works for small TCP flows. IsoStack
[27] offloads the entire TCP processing engine to a ded-
icated core. The main advantage of IsoStack is that, it
can reduce cache misses and reduce synchronized ac-
cesses to shared state of the TCP stack by multiple cores
(e.g., socket structures). vTurbo in spirit offloads IRQ
processing (only) to a separate core, with the goal of mit-
igating the impact of VMs’ regular core access latency.
In [24, 22, 23], Menon et al.propose optimizations for
device virtualization using techniques such as checksum
offload, segmentation offload, packet coalescing, scat-
ter/gather I/O, and offloading device driver functional-
ity. SR-IOV [11] devices and IOMMUs such as Intel VT-
d [14] enable the hypervisor to directly assign devices to
guests. This allows the guest to directly interact with the
device eliminating the virtulization overhead. However,
even in this case, scheduling delays still impact the inter-
rupt processing delay. We believe that vTurbo is comple-
mentary to both SR-IOV and VT-d, since it enables the

254 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

processing of the interrupt and data associated with the
interrupt as soon as the interrupt is delivered to the VM.

VM scheduling optimization Adapting the schedul-
ing policy in the hypervisor-level VM scheduler can also
improve I/O performance perceived by applications run-
ning in VMs. vSlicer [30] reduces CPU scheduling delay
and hence the application-perceived latency—to a certain
degree by setting smaller time-slice for latency-sensitive
VMs. Still, that time-slice is not small enough to im-
prove TCP/UDP throughput in LAN/datacenter environ-
ments. With vTurbo, IRQ processing delay is reduced to
sub-millisecond. And the concurrent I/O processing on
regular and turbo cores brings significant I/O throughput
improvement. We note that vTurbo and vSlicer can be in-
tegrated to achieve both low latency and high throughput
for VM I/O. A soft-realtime VM scheduler is proposed in
[21] to reduce response time of I/O requests thus improv-
ing the performance of soft-realtime applications such as
media servers. But its preemption-based scheduling pol-
icy may violate CPU share fairness when a VM is per-
forming heavy I/O activities. MRG [16] is a VM sched-
uler to improve I/O performance for MapReduce jobs.
This scheduler facilities MapReduce job fairness by in-
troducing a two-level group credit-based scheduling pol-
icy. Through batching of I/O requests within a group
the efficiency of map and reduce tasks is improved and
superfluous context switches are eliminated. However
MRG is a MapReduce-specific scheduler; and it works
well only when the VMs and the driver domain share the
same CPU core.

7 Conclusion
We have presented vTurbo, a system that aims at accel-
erating I/O processing for VMs sharing the same core
in a multi-core host. More specifically, vTurbo signifi-
cantly reduces IRQ processing latency by dedicating one
or more turbo core(s) to IRQ processing for all hosted
VMs. The time-slice of a turbo core is magnitudes
smaller than that of a regular core hence achieving neg-
ligible IRQ processing latency. vTurbo involves a VM
scheduling policy that enforces fair sharing of both reg-
ular and turbo cores among VMs. Our evaluation of a
vTurbo prototype shows that it vastly improves network
and disk I/O throughput and consequently application-
level performance for hosted VMs.

8 Acknowledgments
We thank our shepherd, Jonathan Walpole and the anony-
mous reviewers for their insightful comments and sug-
gestions. This work was supported in part by NSF grants
0855141, 1054788, and 1219004. Any opinions, find-
ings, and conclusions in this paper are those of the au-
thors and do not necessarily reflect the views of the NSF.

References
[1] Amazon Elastic Compute Cloud (Amazon EC2). http://

aws.amazon.com/ec2/.
[2] Apache Olio. http://http://incubator.apache.

org/olio/.
[3] CPU isolation extensions. http://lwn.net/Articles/

270623/.
[4] IOzone Filesystem Benchmark. http://www.iozone.

org/.
[5] The Iperf Benchmark. http://www.noc.ucf.edu/

Tools/Iperf/.
[6] J. McCalpin. The STREAM benchmark. http://www.cs.

virginia.edu/stream/.
[7] Lookbusy-a synthetic load generator. http://www.devin.

com/lookbusy/.
[8] Microsoft Cloud Platform (Microsoft Azure). http://www.

windowsazure.com/.
[9] The Netperf Benchmark. http://www.netperf.org.

[10] CHENG, L., AND WANG, C.-L. vbalance: Using interrupt load
balance to improve i/o performance for smp virtual machines. In
ACM SoCC (2012).

[11] DONG, Y., YU, Z., AND ROSE, G. SR-IOV networking in Xen:
architecture, design and implementation. In WIOV (2008).

[12] GAMAGE, S., KANGARLOU, A., KOMPELLA, R. R., AND XU,
D. Opportunistic flooding to improve TCP transmit performance
in virtualized clouds. In ACM SoCC (2011).

[13] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ACM ASPLOS
(2012).

[14] HIREMANE, R. Intel virtualization technology for directed I/O
(Intel VT-d). Technology@ Intel Magazine 4, 10 (2007).

[15] HU, Y., LONG, X., ZHANG, J., HE, J., AND XIA, L. I/o
scheduling model of virtual machine based on multi-core dynam-
ical partitioning. In ACM HPDC (2010).

[16] KANG, H., CHEN, Y., WONG, J. L., SION, R., AND WU, J.
Enhancement of Xen’s scheduler for MapReduce workloads. In
ACM HPDC’11 (2011).

[17] KANGARLOU, A., GAMAGE, S., KOMPELLA, R. R., AND XU,
D. vSnoop: Improving TCP throughput in virtualized environ-
ments via acknowledgement offload. In ACM/IEEE SC (2010).

[18] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M.,
AND VAHDAT, A. Chronos: predictable low latency for data
center applications. In ACM SoCC (2012).

[19] KESAVAN, M., GAVRILOVSKA, A., AND SCHWAN, K. Differ-
ential Virtual Time (DVT): Rethinking I/O service differentiation
for virtual machines. In ACM SoCC (2010).

[20] LARSEN, S., SARANGAM, P., HUGGAHALLI, R., AND KULKA-
RNI, S. Architectural breakdown of end-to-end latency in a tcp/ip
network. International Journal of Parallel Programming 37, 6
(2009), 556–571.

[21] LEE, M., KRISHNAKUMAR, A. S., KRISHNAN, P., SINGH, N.,
AND YAJNIK, S. Supporting soft real-time tasks in the Xen hy-
pervisor. In ACM VEE (2010).

[22] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing
network virtualization in Xen. In USENIX ATC (2006).

[23] MENON, A., SCHUBERT, S., AND ZWAENEPOEL, W. Twin-
Drivers: semi-automatic derivation of fast and safe hypervisor
network drivers from guest OS drivers. In ACM ASPLOS (2009).

[24] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP receive
performance. In USENIX ATC (2008).

[25] PATNAIK, D., KRISHNAKUMAR, A., KRISHNAN, P., SINGH,
N., AND YAJNIK, S. Performance implications of hosting enter-
prise telephony applications on virtualized multi-core platforms.
Tech. rep., IPTComm, 2009.

[26] PESTEREV, A., STRAUSS, J., ZELDOVICH, N., AND MORRIS,
R. T. Improving network connection locality on multicore sys-
tems. In ACM EuroSys (2012).

[27] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-YEHUDA,
M. IsoStack: Highly efficient network processing on dedicated
cores. In USENIX ATC (2010).

[28] WALDSPURGER, C., AND ROSENBLUM, M. I/O virtulization.
In Communications of the ACM (2012).

[29] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. In USENIX OSDI (2002).

[30] XU, C., GAMAGE, S., RAO, P. N., KANGARLOU, A., KOM-
PELLA, R. R., AND XU, D. vslicer: Latency-aware virtual
machine scheduling via differentiated-frequency cpu slicing. In
ACM HPDC (2012).

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 255

When Slower is Faster: On Heterogeneous Multicores for Reliable Systems

Tomas Hruby Herbert Bos Andrew S. Tanenbaum
The Network Institute, VU University Amsterdam

{thruby,herbertb,ast}@few.vu.nl

Abstract

Breaking up the OS in many small components is attrac-
tive from a dependability point of view. If one of the
components crashes or needs an update, we can replace it
on the fly without taking down the system. The question
is how to achieve this without sacrificing performance and
without wasting resources unnecessarily. In this paper,
we show that heterogeneous multicore architectures allow
us to run OS code efficiently by executing each of the
OS components on the most suitable core. Thus, compo-
nents that require high single-thread performance run on
(expensive) high-performance cores, while components
that are less performance critical run on wimpy cores.
Moreover, as current trends suggest that there will be no
shortage of cores, we can give each component its own
dedicated core when performance is of the essence, and
consolidate multiple functions on a single core (saving
power and resources) when performance is less critical
for these components. Using frequency scaling to emu-
late different x86 cores, we evaluate our design on the
most demanding subsystem of our operating system—the
network stack. We show that less is sometimes more and
that we can deliver better throughput with slower and,
likely, less power hungry cores. For instance, we support
network processing at close to 10 Gbps (the maximum
speed of our NIC), while using an average of just 60% of
the core speeds. Moreover, even if we scale all the cores
of the network stack down to as little as 200 MHz, we
still achieve 1.8 Gbps, which may be enough for many
applications.

1 Introduction

More and more hardware vendors are developing hetero-
geneous multicore architectures. Well known examples
include the so-called big.LITTLE [1] ARM, the NVIDIA
Tegra-3 [2], its recently announced successor Tegra 4,
and the x86-compatible Xeon Phi [4]. The big.LITTLE

ARM combines two big Cortex-A15 cores with two little
Cortex-A7 on the same die, and Samsung recently an-
nounced a 4 + 4 version [5]. The Tegra-3 is a Cortex-A9-
based quad-core CPU that includes a fifth ”companion”
Cortex-A9 that is slower (capped at 500MHz) and less
power hungry. For sheer number of cores, the 50+ core
x86-compatible Intel Xeon Phi processor is especially
impressive. It serves as an extension of many little cores
to accompany the host’s big cores and lives on a separate
PCIe card.

In all three cases, the different cores share a large subset
of the instruction set architecture (ISA), so that the same
code can easily run on any of the cores in the system. The
main difference of the cores is their microarchitecture
which is designed for different optimal operation points.
This means that the LITTLE slower, simpler, and in-order
cores (designed for power efficiency at low frequencies)
cannot deliver performance equal to the big ones which
are out-of-order and operate at higher frequencies. The
same is true for the Tegra and Xeon Phi. For instance,
the host x86 processors feature out-of-order cores with a
deep pipeline while the Xeon Phi cores are much simpler,
in-order Pentium cores with shallow pipelines to allow for
efficient 4-way hyper-threading. In addition, they feature
new vector instructions to support scientific workloads.

The research community has advocated such hetero-
geneity for many years [15] to make processing more
efficient, in terms of both performance and power. How-
ever, the focus was primarily on applications, leaving the
operating system by the wayside. This is remarkable, be-
cause the operating system performs a significant amount
of work on behalf of the applications [23, 21].

Moreover, the changes to the system remain mostly
limited to making execution on different cores possible
and to finding the best schedule. Exceptions include the
proposal by Strong et al. [28] to migrate long-running
system calls to system cores—cores more suitable for
running OS workloads. FlexSC[26], meanwhile, aims to
remove the overhead of switching between applications

256 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

and the system by running each on different cores. As a
side effect, the system can run on core(s) that differ from
those that host applications.

The NewtOS operating system described in this paper
is a UNIX-like multiserver system that offers these major
benefits:

High reliability For instance, our operating system sup-
ports dynamic updates without any downtime and
survives crashes of core OS components. We de-
scribed these aspects in [11, 7], and [10], and will
not discuss them further in this paper.

High performance Building on a design described
in [11], we show that we support network processing
at 10 Gbps on COTS hardware (this paper).

The unique features of multiserver systems, composed
of independent user space servers, typically trade reliabil-
ity for performance. With many processes involved, the
communication and context switching to share the proces-
sor constitute a significant overhead. NewtOS [11], a high-
performance derivative of MINIX 3, shows that it is possi-
ble to mitigate this overhead by dedicating cores to system
servers, which communicate through asynchronous chan-
nels. With their own cores, the system servers can run
whenever needed from a warm cache, and without having
to compete with other processes or wait for the kernel
to schedule them. Moreover, the system’s asynchronous
communication channels allow the system servers to work
independently and thus increase the parallelism within
the system and streamline the processing. As a result, we
were able to support TCP-based network processing at up
to 5 Gbps [11]. Since then, we have further improved our
design. We will show in Section 4 that we now support
TCP at close to 10 Gbps—the maximum speed of our
network card.

The cores of common platforms are designed for
generic usage and over-provisioned [20] for running OS
code. Dedicating cores results in a very coarse grained
resource assignment, which leads to inefficient use of
the available hardware. Looking at current trends, we
anticipate more designs in the big.LITTLE fashion, which
will have plenty of smaller, slower, in-order cores with a
higher number of threads, accompanied by big, fast cores
that can efficiently use the instruction level parallelism of
application code. However, the big cores will become a
minority.

In this paper, we explore how such architectures can
help to balance performance and resource consumption.
Specifically, we show that we can run the OS compo-
nents on multiple slower cores, while still achieving high
performance. Alternatively, the system can consolidate
components on a few cores (saving power and resources)
and still achieve reasonable performance.

Our contributions are:
1. We explore the hardware design space by emulating

the future platforms on current hardware using fre-
quency scaling to find out how fast the processors
should be and what type of cores would suit systems
the best.

2. We show that our system can deliver the same or
better performance with smaller, simpler and slower
cores—without compromising reliability. Our case
study shows it is suitable for high-speed networking.

3. The system has a potential to dynamically recon-
figure itself to use the most appropriate resources
and free resources it does not need for a particular
workload.

In the rest of the paper we discuss our motivations and
the background in Section 2. We present details of the
NewtOS design in Section 3. We explore the design space
and evaluate various setups of our system in Section 4
and we put it in perspective of related work in Section 5.
Finally, we conclude in Section 6.

2 Big cores, little cores and combinations

Heterogeneous processor architectures are rapidly becom-
ing popular. In this section, we focus on Intel products
and sketch some of the properties of the architectures and
analyze some trends in this field.

2.1 BOCs and SICs
We start our discussion with a comparison of fast cores
and slow cores. Specifically, the first two columns of
Table 1 compares the Intel Core i7 “Bloomfield” with the
Knights Ferry processor. The Core i7 is a prime example
of a big out-of-order core (BOC) with a design that is
geared for high single threaded throughput and produced
by 45nm technology. In contrast, the cores on the Knights
Ferry (45nm) are much simpler in-order cores (SICs) that
provide only a fraction of the i7’s performance.

Given the estimated die size of the Knights Ferry, the
table shows the space reduction of the simple cores com-
pared to the big i7 cores. Compared to the i7, the Knights
Ferry die hosts 8× the number of cores and 16× the num-
ber of threads. It is worth noting that the difference in
die size per core is 3× (and 6× per thread). While the
cache size per core is obviously smaller, threaded cores
can compensate for this [22]. Finally, the difference in
the peak clock speed is equally remarkable.

The last column of Table 1 shows data for the successor
of Knights Ferry, a recently released product called Xeon
Phi. Its core count is even larger, but its die size is not
public. Intel markets it as a “50+ core beast” and released
up to 62 cores on a single die. With each core hosting

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 257

Core i7 Bloomfield (45nm) Knights Ferry (45nm) Xeon Phi (22nm)

Die size 263mm2 est. 700mm2 not released

Cores / threads 4 / 8 32 / 128 50+ / 200+

Die area per core / thread 65.7/32.9mm2 21/5.5mm2 not released

Clock speed max 3.33 GHz 1.2 GHz 1 GHz

LL cache size 8 MB 8 MB 25+ MB

out-of-order in-order in-order

Table 1: Comparison of Core i7, Knights Ferry and Xeon Phi

Transistor count Die size

4-core i7 + GPU 1.4 bil. 160mm2

62-core Xeon Phi 5 bil. not released

(a) Transistor count

i7 cores # i7 threads # Phi cores # Phi threads

4 8 44 176
8 16 27 108
12 24 10 40

(b) Core i7 and Xeon Phi configurations

Table 2: Given the known transistor counts shown in (a)
and a 22nm production process, we can roughly project
the options for different configurations that merge Core i7
and Xeon Phi cores (b)

4 threads of execution, this amounts to 200+ threads on
a single chip. Interestingly, Xeon Phi is still a cache
coherent design, unlike one of its research predecessors—
the single chip cloud (SCC).

2.2 Configurations of BOCs and SICs
It is likely that future designs will see interesting new
combinations of BOCs and SICs. For instance, rather
than keep it as a separate co-processor, Intel may well
merge its Xeon Phi with other Intel cores on a single
die [17], in the same way that GPUs and general purpose
cores have merged on a single die. What sort of proces-
sor should we expect? Clearly, there are many options.
In this section, we explore possible combinations in an
approximate manner.

Table 2 shows different combinations of Core i7 “Sandy
Bridge” and Xeon Phi cores, taking into account the num-
ber of transistors for a quad-core Core i7 in 22nm tech-
nology as well as the number of transistors of a 62-core
Xeon Phi produced by the same technology. The Core i7
die may also contain an integrated GPU. Given these tran-

sistor counts, Table 2b shows different configurations that
would fit on a die with mixed cores. The simple division
also accounts for each core’s cache share as caches take
up a big portion of the die size. Each line represents a con-
figuration with the 5 billion transistor budget of Xeon Phi
die where some of the 62 cores are replaced by i7 cores.

Finally, for the sake of completeness, Table 2b also
shows the resulting number of threads. The number of
threads matters, because we will see that for OS function-
ality it is often not needed to dedicate a full core to each
component. Instead, a simple container for a process’
context is good enough, as long as we can let the hard-
ware do the context switching (and not the software) and
we can suspend and resume efficiently with instructions
like MWAIT and MONITOR. A hardware thread is well-
suited to serve as a container. It has a set of replicated
registers and, depending on the architectures, hardware
switches the threads automatically when the active one
stalls or it tries to schedule a different thread every cycle.

As consolidating multiple components on a single core
saves resources, more threads are attractive. Moreover,
many platforms today still do not offer enough cores for us
to be able to dedicate one to each component—although
the number of cores per die is growing steadily. By using
threads instead, we can implement our design even on
today’s platforms.

For instance, NewtOS has about 30 system processes in
its default installation out of which about 10 are important
for performance. These include the process manager, the
memory manager, the storage stack, the network stack,
the file systems, the disk and the network drivers. The
calculation in Table 2b shows that even with twelve i7
cores, there would be enough threads to dedicate one
to each of our system’s processes. Note that based on
previous research [20, 18], the Xeon Phi cores are most
likely a better match for the system processes than the i7
cores. The platform would therefore still offer plenty of
big cores for applications, while the small multithreaded
cores would optimize the resources for the system.

An alternative to chips preconfigured with a fixed num-

3

258 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

SC

TCP

UDP

IP

PF
DRV

DRV

DRV

Proc

Proc

Proc

Synchronous
Asynchronous

Synchronous IPC
Asynchronous Channels

Figure 1: Design of the NewtOS network stack

ber of BOCs and SICs, are architectures that can merge
smaller cores into bigger ones [12]. Another example
is MorphCore [13], an architecture which can switch a
core type between a i7-like BOC and a heavily threaded
Phi-like SIC in run time.

3 NewtOS

The crux of this paper is the following: while evaluating
the performance of the stack, we realized that it actually
delivered higher throughput when we scaled the frequency
of some cores down. In addition, we found that the per-
formance of fairly slow cores is good enough for many
use cases. We present an OS that explicitly exploits these
properties.

Specifically, NewtOS is a high-performance clone of
MINIX 3 that provides the same reliability with much re-
duced overhead. For instance, we completely redesigned
the network stack based on new communication principles
that allow different components to execute independent
request simultaneously. This distinguishes NewtOS from
other multiserver operating systems and increases the net-
work throughput from hundreds of megabits per second
to gigabits.

3.1 The NewtOS network stack
The heart of the NewtOS network stack is LwIP [8], a
simple and portable network stack for embedded systems
used by many research projects. Note that this stack is
not designed for high performance but rather for its small
memory footprint. As a result, its performance is not
directly comparable to highly tuned stacks of commodity
systems. Nevertheless, we support network processing at
10 Gbps even though we use slow cores.

One of the main design goals of NewtOS is reliability.
Thus, we allow even core components of the operating sys-
tems to be replaced on the fly, without taking the system
down (and often with no noticeable disruption at all) [9].
For instance, we can replace our implementation of IP or
the network driver while keeping all existing network con-
nections. Similarly, if one of its components crashes, the

OS recovers automatically and often transparently [11].
To make this possible, we split the stack into several

components (TCP, UDP, IP, drivers and packet filters) to
reduce the chance that an error in the stack may lead to a
crash of the entire stack. Likewise, we isolated functions
that are easy to restart from those which are not due
to large dynamic state. Besides IP, TCP, and UDP, the
network stack supports an optional BSD packet filter (PF).
The syscall server is the component that provides a POSIX
interface to user processes. Figure 1 shows individual
parts of the stack.

All shaded components in Figure 1 are fully asyn-
chronous, while the syscall server translates synchronous
system calls from user processes to asynchronous mes-
sages within the stack. The syscall server is the only
process of the stack which frequently uses traditional
rendez-vous based communication provided by the kernel.
All other components communicate using point-to-point
channels, which are shared user space memory queues ac-
companied by fast signaling. This mechanism is located
almost purely in user space to take the kernel out of the
loop (removing all overhead due to context switches, and
pollution of TLBs, caches, and branch predictors).

We take advantage of the x86-specific MWAIT instruc-
tion to suspend execution of cores. Thus, we need not
send high-overhead interprocessor interrupts, but wake
up a waiting core by a mere memory write. Unfortunately,
MWAIT is a privileged instruction in Intel chips1. If it
were not, there would be no need for the kernel for normal
mode of operation. We see it as a hardware deficiency.

Our most efficient communication model runs each
component on its own dedicated core, so scheduling is
not needed and the component can run at anytime out of a
warm cache. However, we also allow components to share
a core with other processes. In such a case, the scheduler
informs the components and they transparently fallback to
notifications, a standard method provided by microkernels.
It delivers special void messages in a similar way to how
devices send interrupts to the processor.

It is useful to emphasize that the key performance prob-
lems that plagued multiserver systems in the past have
been the high overheads due to context switching and
scheduling. While the research community heavily opti-
mized the interprocess communication on microkernels
like L4 [19] to achieve much better performance, neither
of these bottlenecks could ever be eliminated on a unipro-
cessor. However, dedicating a core to each component
fixes both. Further details of the design of the network
stack and the fast communication are discussed in [11].

3.2 Dynamic reconfiguration

In contrast to monolithic systems, NewtOS resembles a
distributed system. Such systems can embrace diversity

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 259

and accommodate to a changing environment. This is also
true for NewtOS. Each system component can run on a
dedicated core or share it with other process and the core
can be either big or little. Although we dedicate cores
for peak performance, we can consolidate processes on a
single core or even a thread if they are not used heavily.

For instance, most of today’s traffic uses the TCP pro-
tocol, and dedicating a core to the UDP component is
probably overkill. On the other hand, when UDP is used
heavily (e.g., for video streaming), NewtOS can migrate
UDP to its own core. Similarly, the network stack is not
used at all times in many deployments, or at least not at
its peak throughput. Thus, we can pin all its components
to a single dedicated core, or even have it share a core
with other processes most of the time. When the workload
changes and the system detects an overload of some cores,
it can redistribute itself to find the best configuration.

We argue that in many cases SICs are best for the
operating system, while BOCs are better suited for appli-
cations. However, this is not true always and depends on
the situation. For instance, for a web server-like workload,
running the server processes on threaded SICs probably
delivers higher throughput than using a small number of
threads on BOCs.

Even if it allows the stack to run at high speeds, dedicat-
ing the BOCs to the network stack is probably not a good
idea and the resources can be used more efficiently, unless
we run, for example, a complicated intrusion detection
algorithm in the packet filter. Likewise, it seems unwise
to sacrifice the BOCs to the storage stack. Storage needs
to do many unpredictable lookups with little instruction
level parallelism while briskly delivering data to the ap-
plications and writing them back to a disk. It is likely that
we can do so on slower cores, saving the BOCs for the
applications. Phrased differently, the components of the
system should get the resources they need and no more.

Besides good performance, power consumption is also
important. Here also, we should provision a system for
its peak performance, while using no more resources than
needed during quieter times. The system on a heteroge-
neous platform can find its sweet spot using only a handful
of cores. On platforms with fine-grained power gating,
the system can turn off the unused cores and thus save
power. Likewise, picking the right type of cores is crucial
to balance the performance per Watt ratio. As we show in
the evaluation in Section 4, slower cores frequently result
in only small drop in performance whereas the potential
for power savings is significant.

We do not consider the scheduling in this paper. As
there is a lot of work on scheduling in such environments
(discussed in Section 5), we are solely interested in the
performance and efficiency of different configurations
and designing the scheduler for NewtOS is future work.

3.3 Non-overlapping ISA

At this moment, we limit ourselves to heterogeneous ar-
chitectures with an overlapping ISA [15]. In this section,
we argue that by virtue of its design our system has the
potential to embrace architectures with different ISAs too.
We do not currently have a machine with non-overlapping
ISAs on the same processor to evaluate our solution, but
we briefly sketch how we can use existing features to
support such platforms.

Specifically, we can use NewtOS’ live update func-
tionality to change the version of a component to run
on a different architecture. We originally developed live
update to allow us to fix buggy components with new,
patched versions without the need of shutting the system
down. Doing so greatly reduces maintenance of the sys-
tem, disruption of its operation, and the time between
diagnosing a bug and application of the fix. However, we
can also replace a component with the same component
compiled for a different ISA.

The update is fairly straightforward since both versions
are based on the same code. Mere recompilation with
different compiler settings produces the desired version.
Moreover, the transition from one ISA type to another is
simple because it is done only when the state is stable and
the memory layout of data structures on both architectures
is likely the same. Finally, we initiate the transition only
at the top of the component’s main loop, so that we can
mostly forget about different layouts of the stack. In
case of a discrepancy between the memory layout for
each of the ISA versions, we provide an automatically
generated transition function [10]. In practice, changing a
component to a new architecture is simpler than updating
a component to a new version. In contrast to a proper
update, both versions for the different ISAs use identical
data structures which may differ by offsets and alignment,
but not by different items in structures. The system may
provide a version for different ISAs when installed or use
just-in-time compilation to generate one when need. If
migration between ISAs is frequent, the system can cache
a version for each to speed up the migration.

We can use the same mechanism as an optimization
for overlapping ISAs too. Some cores may have a feature
which allows the system code to run faster. For instance,
file systems can take advantage of checksum instructions
to verify data read from a disk or advanced instructions
to encrypt the data. In such cases, the system compo-
nent does not rely on the extra instructions for its correct
operation, but can benefit from them if available.

4 Evaluation on a high-performance stack

We now evaluate the network stack of NewtOS on a dual
socket quad-core Intel Xeon E5520 with hyper-threading.

5

260 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

The peak clock speed of the chips is 2267 MHz and it
is possible to scale it down to 1600 MHz in steps of
133 MHz. According to ACPI, power consumption of
each chip at its maximal frequency may be as much as
80W and at the lowest frequency 34W. Unfortunately, it
is not possible to scale frequencies of the cores indepen-
dently and all cores of each chip run at the same speed.

However, modern Intel processors like the E5520 can
still scale each core independently using thermal throt-
tling2 to allow further scaling in steps of 12.5% of the
clock speed. Thermal throttling means that by setting
the chip to 1600 MHz, it is possible to scale down to
200 MHz in the same-sized steps. Although the core still
runs at the base frequency (1600 MHz), some cycles are
”thrown away” and the execution slows down proportion-
ally. We can do this for each core individually, however
both threads on the same core are throttled equally. Thus,
the Xeon E5520 allows us to explore both threading, and
high/low frequency trade-offs. While we cannot compare
in-order versus out-of-order microarchitectures, we be-
lieve that a 200 MHz core is slow enough to match the
performance of wimpy cores.

To remove bandwidth limitations, and to show that a
multiserver system can scale to multigigabit range, we
implemented a driver for the i82599 10G Intel network
chip. The driver is fairly simplistic but has standard of-
floading features for the outgoing traffic. We connect our
machine to a Linux 3.7.1 system running on a 12-core
AMD Opteron 6168 at 1.9 GHz.

Our test case is the same as in [11] which we used to
stress the system when demonstrating its reliability. We
run an iperf server on the Linux machine and connect
from NewtOS. Iperf is a standard tool for measuring
and tuning network performance. The clients send data as
fast as possible, trying to saturate the network hardware,
the buses, the memory, or the CPU. We verified that the
Linux machine is able to receive at 10G by connecting
from Linux running on the same machine as we use to
run NewtOS. We use multiple streams to get the best per-
formance. LwIP does not support TCP window scaling,
and is therefore not able to have enough data in transition
to saturate the 10G link on a single stream.

4.1 Test configurations

We experimentally evaluated several configurations of the
network stack to determine the most demanding compo-
nents of the stack. Not surprisingly, TCP ranked highly.
Based on these experiments, in performance-critical sce-
narios, the OS must choose between the two basic setups
shown in Figure 2. We will evaluate them across a range
of clock settings.

In both cases we place all processes of the core system
(OS) on the first CPU and the network stack components

OS
&

SYSCALL

TCP
IP

IXGBE

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

(a) Configuration #1 - dedicated cores

OS
&

SYSCALL

TCP

IP
&

IXGBE

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

(b) Configuration #2 - hyper-threading

Figure 2: Test configurations - large squares represent the
quad-core chips, small squares individual cores and ‘&’
separates processes running on different hyper-treads.

involved in processing TCP traffic on the remaining 3
cores of the same chip. These components are TCP, IP
and the 10G ethernet driver (IXGBE). Communication
between components on different chips is slower as they
do not share cache.

The syscall server shares its core with the rest of the
system (OS), but runs in a different thread (denoted by
the ‘&’ symbol). It extensively uses kernel communi-
cation, but uses the CPU lightly. Nevertheless, it needs
its own thread to use the fast signaling when translating
synchronous messages from the clients to the TCP com-
ponent and back. Otherwise, TCP would need to use
notifications for correct operation when replying to the
syscall server, resulting in a serious performance hit.

In both configurations, TCP has its own dedicated core,
the spare hyper-thread is idle. The two configurations dif-
fer in only one thing. The first configuration (Figure 2a)
also dedicates a full core to IP and the driver while the re-
spective other threads are idle. The second configuration
(Figure 2b) places both IP and the driver on the same core,
but runs them in different threads. The rationale behind
this choice is that TCP is the most demanding component
while IP and the driver have similar CPU utilization as
we demonstrate in the remainder of this section. We de-
note the second configuration with HT for employment
of hyper-threading.

The test clients run on the remaining cores and threads.
In other words, in configuration #1 (Sections 4.3 and 4.4),
they all run on the other quad-core chip, while in configu-
ration #2 (Section 4.5), they also run on one of the cores
of the first chip. The scheduler distributes them equally.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 261

MHz drop Mbps drop TDP(W) drop

2267 – 8641 – 80 –

1867 18% 8152 6% 48 40%

1600 30% 7840 9% 34 57%

Table 3: Performance loss versus potentially saved power

4.2 Methodology of measurements

Throughout our experiments, we measure two basic val-
ues: (1) CPU utilization for each component, and (2) bi-
trate. We use time stamp counters to time the events. Intel
guarantees that they are synchronized across all cores
and tick at a constant rate regardless of frequency scaling.
Each component has its log for events which we process
after a test run finishes.

To measure the CPU utilization, we mark an event right
before the kernel call which suspends the core and right
after the call returns. In fact, this measures time actively
spent in each component, so the actual CPU utilization is
higher. Measuring the time this way is closer to using a
single long latency instruction instead of a kernel call.

4.3 Frequency scaling 2267–1600 MHz

The first experiment is to explore how configuration #1
behaves when we change the frequency of the chip. We
present the measurements in Table 3. The first line rep-
resents the baseline: all the cores run at the peak clock
speed and the chip draws maximum power. As expected,
we see that the bitrate drops when the clock speed goes
down. As the drop is fairly small, we show only one
intermediate value. The last line stands for the lowest
frequency and power consumption.

Observe that scaling the cores down to the lowest fre-
quency can save up to 57% of power, but the drop in
throughput is not nearly as significant, a mere 9%. There
are many cases in which 7.8 Gbps is more than enough
while the opportunity to save 46 Watts is important. Also
note that at maximum power the throughput is 8.6 Gbps.
Later in this section we show that it is possible to throttle
the cores even more and deliver better throughput than at
the peak clock speed.

The CPU utilization measurements show that running
the stack on high frequencies is probably suboptimal.
The TCP component uses the core at approximately 70%
while IP and the driver use their cores below 40%. The
components spend much of their time polling the com-
munication channels. If there is no work to do, they poll
for a little while longer and eventually call the kernel to
block them on MWAIT.

T
C

P
 t
h
ro

u
g
h
p
u
t
(G

b
p
s
)

%
 o

f
p
e
a
k
 p

e
rf

o
rm

a
n
c
e
 o

f
a
ll

c
o
re

s
n
o
rm

a
liz

e
d
 t
o
 a

ll
a
t
1
6
0
0
M

H
z

TCP core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput
resources

 0

 2

 4

 6

 8

 10

200 400 600 800 1000 1200 1400 1600
 0

 20

 40

 60

 80

 100

Figure 3: Throughput compared to the combined perfor-
mance of the resources in use — the best combinations

4.4 Throttling below 1600 MHz
To demonstrate how our system behaves on much slower
cores we use thermal throttling to artificially slow the
cores down. We start our measurements by scaling all
3 cores to the minimum. Since TCP is the component
which uses its core the most, we scale it up by one step
for each new measurement and we try to match it with the
best setting for the other 2 cores. Our experience is that
if we increase the speed of the TCP core and the bitrate
does not improve proportionally, we must speed up the
other cores by one step too. Adding more does not help
and may even lead to throughput degradation. We present
our results for the best configurations in Figure 3, which
compares the bitrate (the thin line) and the performance
of the cores we need (the bars). In this case, 100% is the
combined performance of all 3 cores running unthrottled
at 1600 MHz. The thick line connects tops of the bars
to highlight how the throughput scales with the added
resources.

The important observations in Figure 3 are :

• Scaling the 3 cores to 12.5% of their total perfor-
mance (200 MHz) delivers 1.8 Gbps which is enough
for many applications like video streaming, web
browsing or online gaming.

• The stack achieves approximately the same or higher
throughput (7.9 Gbps) at 50% of resource utilization
(bar 1200 MHz) than when all cores run unthrottled
(7.8 Gbps as we reported in Table 3).

• Using TCP core clocked at 1600 MHz and the other
two at 600 MHz is just 60% of performance of all of
them running at 1600 MHz and only 40% of all run-
ning at 2267 MHz. This “low-power” configuration
exceeds the performance of all cores at 1600 MHz
as well as at 2267 MHz.

We emphasize that results are average bitrates of each
test run. The average throughput at 60% of the combined

7

262 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 o

f
e

a
c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP | IP | IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 | 200 400 | 200 | 200 600 | 200 | 200 800 | 400 | 400 1000 | 400 | 400 1200 | 600 | 600 1400 | 600 | 600 1600 | 600 | 600
 0

 20

 40

 60

 80

 100

Figure 4: Configuration #1 – CPU utilization of each core throttled to % of 1600 MHz.

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 o

f
e

a
c
h

 c
o

re
 n

o
rm

a
liz

e
d

to
 u

n
th

ro
tt

le
d

 c
o

re
s

TCP | IP | IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 | 200 400 | 200 | 200 600 | 200 | 200 800 | 400 | 400 1000 | 400 | 400 1200 | 600 | 600 1400 | 600 | 600 1600 | 600 | 600
 0

 20

 40

 60

 80

 100

Figure 5: Configuration #1 – CPU utilization normalized to cores at 1600 MHz unthrottled.

resources (the rightmost result in Figure 3) reaches up
to 9.1 Gbps with peaks approximating 10 Gbps. Slower
sometimes really is faster!

Figure 4 presents CPU utilization of each core. The
utilization is with respect to each core’s throttling and
each set of bars stands for one configuration. The sets
form three clusters determined by the speed of the slower
cores. The three sets in the first cluster show how the
utilization of the IP and driver cores increases as the
higher frequency permits TCP to process more data. In
the third set the utilization of the slower cores approaches
100% and exceeds utilization of the TCP core. Therefore
we must match speeding up TCP by speeding up the
others too, if the current throughput is not enough. The
same pattern repeats in each of the clusters.

Although the relative utilization of the TCP core drops
slightly, Figure 5 clearly shows that the CPU time ob-
tained by TCP directly determines the final throughput.
Figure 5 presents the same data as Figure 4, but normal-
ized to a core running unthrottled. The important obser-
vation is that the utilization of the other two cores does
not grow equally fast. The main reason is that unlike TCP,
IP and the driver do not touch the TCP payload. TCP
must copy all the data from the client applications to the
address space of the stack. It is a lengthy operation which
thrashes caches and makes the core stall while the time is
reported as used. The copy overhead can be significant,
between 60 and 70%.

Interestingly, the faster the core, the higher the over-
head. The explanation is that the difference between
CPU speed and memory speed grows leading to more
stalls. Without the copy overhead, CPU utilization would
be comparable to the other two components. For com-
pleteness, we mention that some of this overhead can
be reduced by letting the network devices transfer data
directly from and to the user space buffers.

We did not measure throttling for higher clock speeds
than 1600 MHz, because the results show that increasing
the speed does not yield significant benefits, and because
we want to make the point that lower clock speeds are
good enough for even the most demanding OS compo-
nents. Although we can only guess how much energy
would our emulated low power cores use, for example,
Intel reports that the thermal design power is less or equal
to 3.5W for its Atom N2600 processors at 1.6GHz.

4.5 Hyper-threading

The same set of experiments for configuration #2 evalu-
ates the effect of threaded cores. Threads are not equal to
full cores as they share the same pipeline. Their advan-
tage is that they allow the core to use cycles which would
be otherwise wasted when the pipeline stalls due to slow
memory. If the code running on one of the threads has a
high cache hit rate and good branch prediction, execution
of additional threads has diminishing returns. However,
we do not expect system code to behave optimally. Mes-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 263

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 (

%
)

o
f

e
a

c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP core throttle (%) | IP & IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 400 | 400 600 | 400 800 | 600 1000 | 800 1200 | 800 1400 | 800 1600 | 1000
 0

 20

 40

 60

 80

 100

Figure 6: Configuration #2 (HT) – CPU utilization of each core throttled to % of 1600 MHz.

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 (

%
)

o
f

e
a

c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP | IP & IXGBE core throttled clock speed (MHz)

TCP
IP + IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 400 | 400 600 | 400 800 | 600 1000 | 800 1200 | 800 1400 | 800 1600 | 1000
 0

 20

 40

 60

 80

 100

Figure 7: Configuration #2 (HT) – CPU utilization of each core normalized to 1600 MHz.

T
C

P
 t
h
ro

u
g
h
p
u
t
(G

b
p
s
)

N
o
rm

a
liz

e
d
 C

P
U

 u
s
a
g
e
 (

%
)

TCP core throttled clock speed (MHz)

HT
no HT

HT
no HT

 0

 2

 4

 6

 8

 10

200 400 600 800 1000 1200 1400 1600
 0

 20

 40

 60

 80

 100

Figure 8: Comparison of configuration #1 (no HT) and
#2 (HT). Lines represent bitrate, bars represent CPU uti-
lization normalized to 3 cores at 1600 MHz

sages created on different cores are not in the remote
cache until read for the first time and the CPU can hardly
guess which execution path the code takes in the next loop.
Therefore system code should benefit from threading.

Based on the previous measurements of configura-
tion #1 and the fact that a thread is not a full-blown core,
we expected that the core which hosts IP and the driver
should run at least at double the speed of a core hosting
either IP or the driver to deliver the same throughput. Fig-
ure 6 shows that the actual clock speed we require is some-
times equal to, but mostly less than what we expected.
Figure 7 shows the normalized values. The crosshatched
bar represents the utilization of IP and the driver running

on the same core. Since each component also accounts
the time when their threads are not active the utilization
of a single core could exceed 100%. Therefore, the bar
represents mean value of both threads.

The main reason why we could run at lower clock
speeds than we originally expected, is that running more
threads on the same core, uses the cycles of the core more
efficiently and reduces the amount of sleep time. Since the
execution of both processes is interleaved, there is a higher
probability that while a processes’ thread is inactive, the
other processes of the stack create some new jobs. Thus,
when the thread activates again, instead of finding the
work queues empty, the process can carry on. The benefits
of sharing a core between IP and the driver is the easiest to
observe when comparing the experiments with the slowest
cores. Although using two cores at 200 MHz is just 66%
of the resources of 3 dedicated cores at the same speed,
the throughput is 77% or 1.4 Gbps.

Figure 8 compares the performance of configurations
#1 and #2. As long as the variance in the bitrate is low,
using the threaded core outperforms configuration #1 with
an extra core. The bars present the combined CPU uti-
lization of both configurations normalized to all 3 cores
running unthrottled at 1600 MHz. In all cases the nor-
malized utilization is lower for configuration #2 while the
performance is higher when TCP core runs at or below
1000 MHz. As the transmission of data gets more bursty,
the ability to use more cycles per time unit on the dedi-
cated cores to get the work done quicker, outweighs the

9

264 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Immediate return
from kernel

kernel
userspace

(a) Job arrives between deciding to sleep and halting the core

MWAIT
blocks

MWAIT
unblocks

kernel
userspace

(b) Job arrives when execution is suspended on MWAIT

MWAIT
blocks

Execution resumes
after MWAIT

IRQ

Reenable IRQ line

kernel
userspace

IRQ handler

(c) Driver - an IRQ arrives when execution is suspended

Figure 9: Sleep overhead in different situations. The thick
line represents transition between execution in user space
and kernel in time. Arrows mark job arrivals, loops denote
execution of the main loop and spirals denote polling.

benefits of threading. Higher bitrate leads then to higher
CPU utilization.

4.6 Why is slower faster?

When a job queue is empty, we can either keep on polling
which is fine only when jobs arrive frequently. Otherwise
the cores use energy while not doing any useful work.
The common (and probably right) thing to do is to put the
cores to sleep when there is no work to do. Idly waiting
for new jobs to arrive is costly when we sleep at the wrong
moments, because we reduce the time we could have used
for processing until the overhead due to sleeping becomes
so high that we observe the “slower is faster” effect.

As we cannot predict the future, we may put a core to
sleep just before a new job arrives (Figure 9a). As we still
use a kernel call for sleeping, the call introduces some
latency, even though the execution does not block and
returns to user space immediately. The way back through
the kernel is not free. It is even more expensive when
a job arrives just after suspending the core (Figure 9b)
as MWAIT has a relatively long latency, in the order
of microseconds. Nevertheless, blocking on MWAIT is
much faster than using traditional kernel IPC. Especially,
since such IPC would slow down the sending core too.

The worst case is when an interrupt wakes up a driver
core. The interrupt handling routine adds up to the
MWAIT latency. In addition, the interrupt line should
stay disabled until the driver masks the interrupt in the

Clock speed (MHz) Bitrate (Gbps)

2267 4.3

1600 3.4

200 0.4

Table 4: Bitrate vs. CPU clock speed on a single core

device. At that point, it has to reenable the interrupt line,
which incurs another trip to the kernel (Figure 9c). Thus,
drivers are the most sensitive to frequent sleeping. The
solution may be to run the driver in the privileged mode
of a virtual machine.

Polling harder eliminates some of the “slower is faster“
effect. However, designing a polling algorithm which
adapts to unpredictable conditions is complicated. The
ideal solution is to use an efficient sleep instruction in
user space. On the other hand, sleeping will always have
some latency. The take-away message is the following:
to avoid the expensive idle time, the scheduler should
pick the cores and hyper-threads on which it places the
components carefully and scale them so that they are
always highly used—with little opportunity to sleep.

4.7 Stack on a single core
In case of shortage of cores due to high demand from
applications, or when cores are turned off to save power,
the entire network stack of NewtOS can keep operating
on a single core. Table 4 presents measurements of the
stack’s performance as a function of the core speed. The
stack has a throughput of up to 4.3 Gbps on a big fast core
and 400 Mbps on a 200 MHz wimpy core. The through-
put of the slow core is good enough for many common
activities, but the fast core cannot scale further. More
importantly, a network stack running on a single core has
a much higher latency. If a process has work to do, it hogs
the core until it exhausts its time quantum while others are
on hold. Then the scheduler is free to pick any runnable
process of the stack which increases non-determinism
in the execution. Running the stack on dedicated cores
removes these deficiencies and the throughput of a single
fast core is similar to the configuration with a TCP core
at 600MHz and IP and driver cores at 200MHz.

5 Related work

Kumar et al. proposed single-ISA heterogeneous mul-
ticores for power reduction [15] and to improve perfor-
mance of multithreaded workloads [16]. They demon-
strated that applications need a good mix of single-
threaded performance and high throughput. Due to the

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 265

diversity in application code, heterogeneous platforms
outperform homogeneous ones with the same die size.
This makes the heterogeneity promising for the future.
Although we do not focus primarily on applications but
on the operating system code, the similarity is that we
also exploit the fact that each system component has its
own requirements for optimal execution. Moreover, the
system components are user space processes like applica-
tions. However, the system code differs from applications,
thus its optimal requirements are different too.

Operating systems are key to leveraging the heteroge-
neous platforms as only the scheduler can make decisions
where each application runs, therefore the schedulers got
the most attention. Kumar et al. [16] proposed a whole
range of sampling heuristics that permute threads on cores
to find the best assignment. As the execution of applica-
tions changes during different phases, Becchi et al. [6]
proposed a dynamic algorithm which constantly measures
the IPC ratio of threads and tries to run on the big cores
those threads that would benefit the most.

Permuting the threads and sampling them on all types
of cores is an overhead. Therefore Koufaty et al. [14]
designed a scheduler which monitors execution of each
thread on its current core only. It uses existing low over-
head performance monitoring counters to collect perfor-
mance related data which the system can use to estimate
what type of a core is the most suitable for the given
thread. This algorithm relies on a model which translates
the performance statistics to the bias of each thread to a
certain type of a core.

Most heterogeneous scheduling algorithms use the
speed up factor, the ratio between how fast an application
runs on a small and a big core. Saez et al. [25] suggest a
more comprehensive utility factor of how effectively the
whole mix of running application uses the machine.

Instead of using available performance counters to feed
data into the models which predict the performance of the
threads on different types of cores, hardware monitoring
and prediction engines [27] and performance impact esti-
mators [29] were proposed as hardware extensions. The
hardware estimates the possible speed-up on its own and
the scheduler can use this direct feedback to decide which
applications would benefit from running on the big cores
and which can run on the small ones.

In contrast to this work, we do not focus on the perfor-
mance of applications, instead our main focus is on the
system. First of all, our system can use all the different
heuristics or hardware estimations to schedule application
on the cores which are not dedicated to the system. Sec-
ond, our system is a collection of user space processes and
the scheduler can use the same or similar techniques to
find their optimal placement. On the other hand, execution
of the system differs in several aspects. Each component
is responsible for a small subset of all the system tasks,

therefore they have little variance during their execution
as the requests they serve are similar. The system code
follows the same patterns which differ from application
code. The scheduler’s goal is not to let the system finish
as quickly as possible, but to deliver optimal service to
the changing mix of applications and workloads using the
available resources. In contrast to the applications, which
are opaque for the system, the system designer knows
more about the system components and the components
themselves can help the scheduler by providing various
hints. For instance, a component can detect and signal
when the recipient of its messages cannot keep up and
thus may benefit from a faster core. Similarly, applica-
tions can give hints to the system, for instance, when the
estimated time of downloading a file is in minutes, the
application can tell the system, that it is not a sudden
spike in the load and reconfiguring is worthwhile.

Mogul et al. proposed operating system friendly cores
in [20], primarily to save power. They argue that many
features which the operating systems do not use draw a
lot of power while not contributing to performance of the
operating system. They propose that the system should
run on the optimized cores and the execution should trans-
fer from the application cores to the system cores when
necessary. The migration is a bottleneck which they ad-
dress in [28]. Migrating the execution means that the
cache locality is poor. In contrast to their experiments
with Linux, we have a system which is more suitable
for heterogeneous platforms. NewtOS moves execution
only by sending a message to another core and benefits
from cache locality of the code and data of the component
running on the core. Of course, locality of the user data
passed between the cores is poor, however, in many cases
the components do not need to touch the data until the
DMA of a device transfers them. Cache locality of the
messages is also poor, but this data should not be cached
after the message is sent in the first place. Unfortunately,
the current hardware does not allow us such a fine-grained
control over cache and data transfers. Strong et al. [28]
also use networking for evaluation. They model the power
usage of the hypothetical cores while we use frequency
scaling to approximate performance of such a hardware.

Netmap [24] and OpenOnload [3] projects demon-
strated high bandwidth networking in user space. In con-
trast to NewtOS, both need a driver in a monolithic kernel.
Although most of the faults crash only the application,
there is still a chance that a bug in the driver can bring the
whole system to a halt. Netmap shows that a 900 MHz
core is good enough to transfer 10 Gbps of small pack-
ets between the device and the user space application,
however, netmap only deals with routing and does not
offer a generic networking support to applications. On
the other hand, OpenOnload transparently intercepts any
application requests and uses a library with custom made

11

266 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

hardware to transfer data directly between applications
and devices. We endorse this approach as it would remove
the copying overhead between applications and our stack.

6 Conclusions

We have demonstrated that a processor’s fast cores may
not be ideal for system workloads and that less can be
more in some situations. We presented a network stack
evaluation of a reliable and dependable system. The re-
sults support our claim that it is possible for such a system
to perform well, using much more constrained resources
than usually available. We use current hardware to ap-
proximate future processors and we show the potential
benefits. Unlike many other researchers, we do not focus
on the applications. The operating system plays a key
role in the execution of applications and we should give it
equal attention. However, performance should not be the
only criterion, the system is also responsible for security,
reliable execution and easy maintenance. NewtOS design
recovers from crashes and allows administrators to update
its components while it is running. Although our case
study covers only one part of a generic operating system,
we are confident that the findings apply to other parts and
to other systems as well.

Acknowledgments

This work has been supported by the ERC Advanced
Grant 227874 and EU FP7 SysSec project. We would like
to thank Valentin Priescu for implementing the frequency
scaling driver. Likewise, we would like to thank Dirk
Vogt for implementing the IXGBE driver for MINIX 3.

References
[1] ARM - big.LITTLE Processing. http://www.arm.com/products/

processors/technologies/biglittleprocessing.php.

[2] NVIDIA - Variable SMP architecture. http://www.nvidia.
com/content/PDF/tegra_white_papers/tegra-whitepaper-
0911b.pdf.

[3] OpenOnload. http://www.openonload.org/.

[4] The Intel Xeon Phi Coprocessor. http://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-detail.html.

[5] Samsung to outline 8-core big.LITTLE ARM processor in February.
http://www.engadget.com/2012/11/20/samsung-to-outline-8-
core-big-little-arm-processor-in-february/, Nov. 2012.

[6] BECCHI, M., AND CROWLEY, P. Dynamic Thread Assignment on Metero-
geneous Multiprocessor Architectures. In Proceedings of the 3rd confer-
ence on Computing frontiers (2006), CF ’06.

[7] CRISTIANO GIUFFRIDA, L. C., AND TANENBAUM, A. S. We Crashed,
Now What? In Proceedings of the 6th International Workshop on Hot
Topics in System Dependability (2010).

[8] DUNKELS, A. Full TCP/IP for 8-bit architectures. In International Confer-
ence on Mobile Systems, Applications, and Services (2003).

[9] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S. Safe and Au-
tomatic Live Update for Operating Systems. In Proceedings of ASPLOS-
XVIII (2013).

[10] GIUFFRIDA, C., AND TANENBAUM, A. S. Safe and Automated State
Transfer for Secure and Reliable Live Update. In Proceedings of the Fourth
International Workshop on Hot Topics in Software Upgrades (2012).

[11] HRUBY, T., VOGT, D., BOS, H., AND TANENBAUM, A. S. Keep Net
Working - On a Dependable and Fast Networking Stack. In Proceedings of
Dependable Systems and Networks (DSN 2012) (Boston, MA, June 2012).

[12] IPEK, E., KIRMAN, M., KIRMAN, N., AND MARTINEZ, J. F. Core Fu-
sion: Accommodating Software Diversity in Chip Multiprocessors. In Pro-
ceedings of the 34th annual international symposium on Computer archi-
tecture (2007).

[13] KHUBAIB, SULEMAN, M. A., HASHEMI, M., WILKERSON, C., AND
PATT, Y. N. MorphCore: An Energy-Efficient Microarchitecture for High
Performance ILP and High Throughput TLP. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture.

[14] KOUFATY, D., REDDY, D., AND HAHN, S. Bias Scheduling in Hetero-
geneous Multi-Core Architectures. In Proceedings of the 5th European
conference on Computer systems (2010), EuroSys ’10.

[15] KUMAR, R., FARKAS, K. I., JOUPPI, N. P., RANGANATHAN, P., AND
TULLSEN, D. M. Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction. In Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture (2003).

[16] KUMAR, R., TULLSEN, D. M., RANGANATHAN, P., JOUPPI, N. P., AND
FARKAS, K. I. Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. In Proceedings of the 31st annual
international symposium on Computer architecture (2004), ISCA ’04.

[17] LATIF, L. IDF: Intel is looking at ARM’s Big Little archi-
tecture. http://www.theinquirer.net/inquirer/news/2205764/
idf-intel-is-looking-at-arms-big-little-architecture.

[18] LI, T., AND JOHN, L. K. Operating system power minimization through
run-time processor resource adaptation. Microprocessors and Microsys-
tems 30, 4 (2006).

[19] LIEDTKE, J., ELPHINSTONE, K., SCHÖNBERG, S., HRTIG, H., HEISER,
G., ISLAM, N., AND JAEGER, T. Achieved IPC Performance (Still The
Foundation For Extensibility), 1997.

[20] MOGUL, J. C., MUDIGONDA, J., BINKERT, N., RANGANATHAN, P.,
AND TALWAR, V. Using Asymmetric Single-ISA CMPs to Save Energy
on Operating Systems. IEEE Micro 28, 3 (May 2008).

[21] NELLANS, D., BALASUBRAMONIAN, R., AND BRUNV, E. A Case for
Increased Operating System Support in Chip Multiprocessors. In In Proc.
of 2nd IBM Watson P=ac 2 (2005).

[22] OLUKOTUN, K., HAMMOND, L., AND LAUDON, J. Chip Multiprocessor
Architecture: Techniques to Improve Throughput and Latency. 2007.

[23] REDSTONE, J. A., EGGERS, S. J., AND LEVY, H. M. An Analysis of
Operating System Behavior on a Simultaneous Multithreaded Architecture.
In Proceedings of ASPLOS-IX (New York, NY, USA, 2000).

[24] RIZZO, L. Netmap: A Novel Framework for Fast Packet I/O. In Pro-
ceedings of the 2012 USENIX conference on Annual Technical Conference
(2012), USENIX ATC’12.

[25] SAEZ, J. C., FEDOROVA, A., KOUFATY, D., AND PRIETO, M. Lever-
aging Core Specialization via OS Scheduling to Improve Performance on
Asymmetric Multicore Systems. ACM Trans. Comput. Syst. 30 (Apr. 2012).

[26] SOARES, L., AND STUMM, M. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In Proc. of Symp. on Oper. Sys. Des.
and Impl. (2010).

[27] SRINIVASAN, S., ZHAO, L., ILLIKKAL, R., AND IYER, R. Efficient Inter-
action Between OS and Architecture in Heterogeneous Platforms. SIGOPS
Oper. Syst. Rev. 45, 1 (Feb. 2011), 62–72.

[28] STRONG, R., MUDIGONDA, J., MOGUL, J. C., BINKERT, N., AND
TULLSEN, D. Fast Switching of Threads Between Cores. SIGOPS Oper.
Syst. Rev. 43 (April 2009).

[29] VAN CRAEYNEST, K., JALEEL, A., EECKHOUT, L., NARVAEZ, P., AND
EMER, J. Scheduling heterogeneous multi-cores through Performance Im-
pact Estimation (PIE). In Proceedings of the 39th Annual International
Symposium on Computer Architecture (2012), ISCA ’12.

Notes
1MWAIT is optionally unprivileged in AMD chips starting with

family 10h, but we use Intel due to hyper-threading and better scaling.
2It is usually possible to scale AMD chips to lower speeds than

Intel ones (e.g., from 1.9 GHz to 800 MHz). However, the Intel-specific
mechanism of thermal throttling allows us to emulate much lower speeds

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 267

IAMEM: Interaction-Aware Memory Energy Management

Mingsong Bi
Intel Corporation

mingsong.bi@intel.com

Srinivasan Chandrasekharan
University of Arizona

schandra@cs.arizona.edu

Chris Gniady
University of Arizona

gniady@cs.arizona.edu

Abstract

Energy efficiency has become one of the most important
factors in the development of computer systems. As ap-
plications become more data centric and put more pres-
sure on the memory subsystem, managing energy con-
sumption of main memory is becoming critical. There-
fore, it is critical to take advantage of all memory idle
times by placing memory in low power modes even
during the active process execution. However, cur-
rent solutions only offer energy optimizations on a per-
process basis and are unable to take advantage of mem-
ory idle times when the process is executing. To al-
low accurate and fine-grained memory management dur-
ing the process execution, we propose Interaction-Aware
Memory Energy Management (IAMEM). IAMEM re-
lies on accurate correlation of user-initiated tasks with
the demand placed on the memory subsystem to accu-
rately predict power state transitions for maximal energy
savings while minimizing the impact on performance.
Through detailed trace-driven simulation, we show that
IAMEM reduces the memory energy consumption by
as much as 16% as compared to the state-of-the-art ap-
proaches, while maintaining the user-perceivable perfor-
mance comparable to the system without any energy op-
timizations.

1 Introduction

Modern computer systems ranging from netbooks to
server clusters are relying on large system memory to
provide high performance for data intensive applications.
While a computer system contains many energy hungry
components, the energy consumption of main memory is
becoming more significant and can surpass energy con-
sumption of other components. For example, as much as
40% of the total system energy is consumed by the mem-
ory subsystem in a mid-range IBM eServer machine [14].
The demand for higher memory capacity is not limited to
data servers. Even portable computers are experiencing
a rapid growth in memory capacity to accommodate user
demand for higher processing capability and richer mul-

timedia experiences. As a result, current portable sys-
tems, e.g. notebooks, are commonly sold with 8GB of
main memory or more, and ultraportable systems such
as netbooks with 4GB.

Energy optimization of the memory subsystem is be-
ing addressed at both hardware and software levels. At
the hardware level, energy efficiency is primarily gained
through advances in manufacturing processes to create
denser modules and lower per-bit energy consumption.
In addition, low-power states are also added to the mod-
ern SDRAM and are exposed to the system software,
enabling OS-driven energy management. While energy
management that utilizes multiple power states can be
implemented in hardware, it is usually delegated to the
operating system. The operating system has a detailed
view of the running applications and the demand they
place on the system, and therefore, allows for more so-
phisticated energy management. While the additional
context available at the OS level provides better energy
management possibilities, the task of designing an effi-
cient energy management technique is not easy due to the
long power-state transition delays that can be exposed to
the application execution.

Performance and the overall energy efficiency may
suffer if the overheads of power state transitions are not
addressed properly, since the entire system has to stay
on longer and consume additional energy. In addition,
the user may even be irritated to the extent that he or
she completely disables the energy management mech-
anisms. Fortunately, maximal memory performance is
usually not necessary to meet the user’s performance ex-
pectations. For example, CPU or I/O bound tasks in
interactive applications may not be noticeably degraded
when the memory is operating in a low-power state. Fur-
thermore, the perceived performance of real-time appli-
cations such as video players, games, or teleconferenc-
ing may not be affected by the power state transitions,
as long as the system maintains perceptual continuity
for the user. Therefore, it is critical to distinguish the
memory-intensive tasks that may expose transition de-
lays to the users from the tasks with low memory ac-
tivity. Subsequently, the former tasks must be executed

268 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

with high memory performance, while the latter can be
executed with lower performance to improve energy ef-
ficiency.

To take advantage of these opportunities, we pro-
pose Interaction-Aware Memory Energy Management
(IAMEM), a highly accurate and transparent mechanism
for memory energy management in interactive systems.
Compared to the existing mechanisms: (1) IAMEM pro-
vides energy optimizations within the running process
that the user is interacting with as well as all other pro-
cesses in the system, as compared to previous approaches
that only improved energy efficiency of memory oc-
cupied by processes waiting for execution [8, 13]; (2)
IAMEM is a unified approach that addresses energy ef-
ficiency of both the buffer cache and the virtual mem-
ory, while previous approaches only proposed individ-
ual solutions for either the buffer cache or the virtual
memory [2, 8, 13]. Subsequently, we make the follow-
ing contributions in this paper: (1) identify and quan-
tify the memory behavior of common interactive appli-
cations and show large opportunity for improvement; (2)
utilize high-resolution context of user interactions to ac-
curately predict memory demand for tasks initiated by
the user; (3) propose IAMEM, a unified energy man-
agement mechanism for the entire memory subsystem;
(4) compare IAMEM with the existing state-of-the-art
mechanisms through a detailed study.

2 Motivation

Current trends in providing larger on chip CPU caches
result in main memory seeing fewer accesses from the
CPU, which creates longer memory idle times. Subse-
quently, the majority of memory energy is consumed in
the idle state. Energy consumption of main memory can
be significantly reduced by transitioning memory devices
to a low-power state during the idle periods. However,
accessing memory in a low-power state incurs high tran-
sition latency, and as a result, degrades the system per-
formance and may increase the overall energy consump-
tion. Therefore, it is crucial to ensure that the associated
performance degradation can be hidden behind the appli-
cation execution and not exposed to users.

A simple way to provide memory energy manage-
ment is to keep the memory devices occupied by cur-
rently running process in a high-power state and power
down all other memory devices. This per-process en-
ergy management is employed by Power-Aware Virtual
Memory (PAVM) [8]. In this approach, the memory de-
vices used by the newly scheduled process are powered
up to provide high performance for the running process,
during the context switch, while the other memory de-
vices occupied by non-executing processes are kept in a
low-power state to save energy. While this per-process

�
��

�

�
�
�

�
��

�

�
�
�

�
��

�

�
�
�

�
��

�

�
�
�

�
��

�

�
�
�

��

���

���

���

���

����

����� ��� ��� ���
�	�

�����������	������������������� ����������

�
�
�
�
��

��
��
��

�
��
�

Figure 1: Distribution of tasks with memory in high
and low power states. Shaded bar represents the frac-
tion of short tasks extended over 50ms, while shaded-
crossed bar represents the fraction of long tasks extended
by more than 50ms.

approach provides significant benefits for a multitask-
ing environment, it fails to address the energy consump-
tion within a single process. Furthermore, current multi-
core CPUs with hyper-threading support can have tens
of processes concurrently executing and accessing a wide
range of memory addresses, rendering PAVM ineffective.
To improve energy efficiency in such scenarios, we need
a finer-granularity and more aggressive energy manage-
ment that is able to reduce energy consumption within a
single process during the process execution.

2.1 Per-Task Energy Management

Fortunately, the full performance is usually not needed
in interactive applications, since users are unable to
perceive certain amount of short delays. We can ex-
ploit that observation in designing more aggressive en-
ergy management mechanisms. Prior studies in human-
computer interaction have established the human percep-
tion threshold to be between 50-100ms, indicating that
events with durations falling within this threshold are not
perceived by the user [23]. Completing task execution
earlier than the perception threshold is meaningless since
the user will not notice this amount of time and cannot
initiate tasks any faster. Therefore, any task shorter than
the perception threshold can be potentially executed at a
lower performance level, so that its execution time can be
stretched up to, but not beyond the perception threshold.
The resulting lower power consumption can improve en-
ergy efficiency while the user’s behavior is unaffected.

To account for all possible users and prevent any po-
tential performance degradation, we assume the lower
bound of 50ms as the perception threshold for all users.

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 269

In the remainder of this paper, we refer to any task fin-
ishing within 50ms as a short task and any task running
longer than 50ms as a long task. A short task appears
instantaneous to the user even if extended up to 50ms. A
long task, however, is perceivable to the user even at the
highest performance level. Since the user would not be
able to perceive the time difference within 50ms, a long
task can be safely prolonged by up to 50ms, assuring that
the user’s think flow is not interrupted and the subsequent
behavior is not affected [3, 20]. To take advantage of the
allowed delays in interactive applications, we can poten-
tially put the entire memory subsystem into a low-power
state between memory operations and power it up upon
a memory access request. The transition latency due to
this on-demand power up may slow down a single mem-
ory access; nevertheless, from the task perspective, the
user may not notice the aggregated delays, as long as the
scaled task does not exceed the user’s perception thresh-
old as discussed above.

Figure 1 examines the scenario of keeping memory
in a low-power state (Low) between accesses for sev-
eral interactive applications and compares it to the stan-
dard system that keeps memory in a high-power state
(High). These interactive applications are described in
detail in Section 4 of this paper. The tasks from each ap-
plication are further classified into short tasks and long
tasks. Keeping memory in the low-power state can ex-
tend task execution beyond the user’s perception thresh-
old, as shown in Figure 1 by shaded area in each cate-
gory. We observe that 93% of short tasks and 58% of
long tasks stay within the user’s perception tolerance.
The longer tasks suffer more since they perform more
memory operations and as a result, expose more tran-
sition delays. At this point, we can draw two signifi-
cant observations: (1) there is a tremendous opportunity
to save energy within a running application by keeping
memory in a low-power state; and (2) some tasks have to
be executed with memory in the high performance state,
otherwise the degradation would be noticed by the user.
The observations justify the need for an intelligent mech-
anism that is able to accurately identify memory inten-
sive tasks from the majority of low-demand tasks that
can be executed at low memory performance.

The majority of tasks in interactive environments are
initiated directly by users and the performance demand
within an application exhibits a strong correlation to User
Interactions (UIs) with the application [1, 4]. In this pa-
per, we will leverage the high-resolution context of user
interactions to categorize UI-triggered tasks and corre-
late their memory behavior with the user interactions. By
utilizing this correlation, the proposed mechanisms will
select the best memory power states to match the tasks’
performance demand.

���������
������

���������
������

��������
������

���������
�����

���������
������

���������
������

���
������

����

����

���� �������

����

�����
���������������

�������

�����

������
��������

Figure 2: Power specifications for a rank consisting of 8
Micron 1Gbit DDR3-1066 devices.

2.2 Memory Power States

Synchronous Dynamic RAM (SDRAM) is widely used
in computers as main memory in the form of Double-
Data-Rate (DDR), followed by DDR2 and DDR3. We
focus on DDR3 DRAM in this paper since it is the main-
stream DRAM architecture in today’s computer systems.
DDR3 SDRAM is packaged into a DRAM module that
commonly consists of two DRAM ranks. The small-
est power management unit in DDR3 is the rank and
all devices in one rank are operating at the same power
state [18]. Each rank in a DRAM module can oper-
ate in several different power states: (1) Active Standby
state (ACT STBY): the state where memory can read or
write data without any delay; (2) Active Power Down
state (ACT PDN): the power down state that offers some
energy savings while minimizing transition delays; (3)
Precharge Standby state (PRE STBY): the intermediate
state for transitioning to a much lower energy states; (4)
Precharge Power Down Fast (PRE FAST): the fast power
down state where DLL’s are still locked; (5) Precharge
Power Down Slow (PRE SLOW): the slow power down
state where DLL’s are not locked anymore; In both
PRE FAST and PRE SLOW states several subcompo-
nents of a rank are disabled to reduce power, such as I/O
buffers, sense amplifier, row/column decoder, etc.; And
finally (6) Self Refresh state (SELF REF): in addition to
previous states, the external clock and on-die termination
are disabled to reduce power consumption even further.

Figure 2 illustrates the power specifications for a
DDR3-1066 rank [19, 17], including the power con-
sumption, the power state transition, and the asso-
ciated resynchronization latency. Memory I/Os can
only be performed with memory in a high-power state
(ACT STBY); therefore, the rank in low-power states
(ACT PDN, PRE STBY, PRE FAST, PRE SLOW or

3

270 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Core 0

Shared L3 Cache

Core 1 Core 2 Core 3

Integrated
Memory

Controller

Integrated
GPU

Controller

Track
Number of
L3 Misses

Set reg. for
Dynamic
Rank Power
Down

DDR3

SoftwareHardware

Perf.
Counter

CPU Die

DDR3

Figure 3: Architecture of Core i CPU.

SELF REF) has to be transitioned to ACT STBY state
before performing any I/O, potentially exposing a high
resynchronization delay to the application. Large num-
ber of resynchronizations may cause overall delays long
enough to become perceptible to the user and degrade
the performance. Therefore, it is critical to control the
amount of power state transitions per UI-triggered task.

2.3 Hardware Support

Energy management at the operating system level re-
quires support from hardware to control memory power
states and monitor system behavior in detail. Figure 3
shows Intel’s most recent Core i CPU with integrated
memory controller for low-overhead power state man-
agement and monitoring. In addition, the Core i CPU
provides a mechanism called Dynamic Memory Rank
Power Down to power down memory ranks automati-
cally after a specified memory idle time has elapsed [11].
Subsequently, the operating system only needs to set up
the associated register with the desired timeout value to
enable this feature. The integrated memory controller
will then perform the power state transitions automati-
cally, after the preset timeout expires.

Detailed system monitoring is further provided by the
Core i CPU through a set of registers called performance
counters, which are crucial for monitoring memory ac-
cesses. Under normal operations, virtual memory ac-
cesses are invisible to the operating system, while only
occasional page faults results in OS being invoked. Per-
formance counters, however, enable the OS to monitor
memory activity when applications are performing mem-
ory I/Os, such as the number of CPU cache misses that

result in main memory accesses. However, exact timing
of each memory request, that would allow us to deter-
mine memory access burstiness, is not available.

3 IAMEM Design

Observing that there exists a strong correlation between
user interactions and the required performance, we pro-
pose Interaction-Aware Memory Energy Management
for entire memory space in interactive systems. IAMEM
will transparently exploit UI events to speculate about the
desired performance, and dynamically manage the mem-
ory power states to meet the task demand. Subsequently,
we will discuss the following components in this section:
(1) Unified energy management mechanisms that address
all types of accesses to physical memory; (2) High-detail
and low-overhead monitoring and detection of tasks trig-
gered by user interactions; (3) Accurate classification
and correlation of tasks and the associated processing de-
mand; (4) Online training and prediction for determining
the desired memory power for upcoming tasks; and (5)
Optimizations to prevent perceivable performance degra-
dation.

3.1 Memory Space
Physical memory in modern operating systems is divided
into three categories: (1) kernel space that is strictly
reserved for the OS kernel, its data structures, device
drivers, etc.; (2) the buffer cache for caching previously
accessed disk blocks to improve the file system perfor-
mance; and (3) user space that is allocated as Virtual
Memory (VM) for user processes. The majority of mem-
ory space is dynamically allocated to the buffer cache
and virtual memory of running processes, based on the
current demand for each type of memory.

Memory ranks used for the buffer cache can be ef-
ficiently managed in server environments by hiding
power-state transition overheads behind the kernel pro-
cessing time [2]. While the mechanism worked well in
server workloads where the buffer cache occupies large
space spanning several ranks, it has limited applicability
for interactive applications where the buffer cache occu-
pies smaller space and usually shares the rank with the
kernel data structures. Subsequently, upon a first ker-
nel memory access, the rank is powered up making large
portion of the buffer cache accessible without further de-
lays. Even if the buffer cache occupies several ranks,
interactive applications, in general, put lesser pressure
on the buffer cache than server applications, such that
only a small fraction of overall accesses may require
powering up additional ranks. Therefore, we consider
memory space occupied by the kernel data structures and
the buffer cache as a single kernel memory space and

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 271

do not distinguish them further. Subsequently, we pro-
pose unified energy management mechanisms that man-
age all memory spaces based on user interaction patterns
to guarantee user-perceivable performance while maxi-
mizing energy savings.

3.2 UI and Task Monitoring
X Window Server manages interactions with client ap-
plications in Linux GUI environment. UI elements are
contained in windows organized in a window tree associ-
ated with the application. IAMEM relies on a monitoring
layer (X Monitor) between the X Server and client appli-
cations to uniquely identify individual UI elements [4],
as shown in Figure 4. Both keystrokes and mouse inter-
actions with the application are monitored. The unique
ID of a given UI element is generated from the element’s
position within its containing window and that window’s
position within the window tree. Subsequent interactions
with a particular UI element generate the same interac-
tion ID, and the same categorization for the task to fol-
low. The operation of the UI capture mechanism is en-
tirely transparent to the user and does not require any
modification to the applications.

Every user interaction results in a task that requires
a certain amount of processing to accomplish the goal.
The task can be short, such as keystroke capture and dis-
play on the screen, or long that involves large amounts of
CPU activity, memory I/Os, and even other device I/Os.
To reduce the overhead of task detection, IAMEM as-
sumes that a task completes as soon as the OS idle pro-
cess (swapper process in Linux) begins running and the
task is not blocked by I/O, or when the application re-
ceives a new UI event [1, 16]. IAMEM uses the Time
Stamp Counter to accurately measure the CPU cycles
taken to process the task in user and kernel mode, which
also include cycles for memory accesses. In addition,
IAMEM uses the performance counter to measure the
number of accesses to main memory, during task exe-
cution, by counting the number of misses in the last level
CPU cache.

3.3 UI and Task Correlation
IAMEM classifies tasks by the individual interaction IDs
of the triggering UI events. To predict the memory power
demand for each task category, IAMEM utilizes a pre-
diction table implemented as a hash table indexed by
the interaction IDs. Once the completion of a task is
detected, an α aged average method is used to update
and record the task processing demand described by the
execution time and the number of memory references.
The α aged average method captures past behavior of
the interaction and also allows quicker adaptation to new

Scheduler

Mouse Display

X Server

X Monitor

App 1 App 2

Memory

Kernel

Prediction Table
UI1 Time Count

Keyboard CPU

IAMEM Daemon

Memory Refs.
UI2

… … … …

Time Memory Refs. Count

Figure 4: IAMEM design architecture.

behavior patterns, if the memory behavior of the inter-
action changes. Figure 4 illustrates the prediction table
with the following variables for each interaction ID: (1)
a weighted sum of all previous tasks’ computation time
Time; (2) a weighted sum of all previous tasks’ mem-
ory references MemoryRe f s; and (3) a weighted count
of all observed task instances Count. For the most recent
task with computation time T and memory references M,
those three table variables are updated as follows with a
predefined weight α (α <= 1):

Time = α ∗Time+T (1)

MemoryRe f s = α ∗MemoryRe f s+M (2)

Count = α ∗Count +1 (3)

Note that T is recorded as the actual computation time
with memory in the active state. When memory tran-
sitions occur, the time spent in power state transitions
should be deducted from the actually monitored time.

3.4 Power State Prediction
Each time a UI event occurs, IAMEM performs a ta-
ble lookup using the captured interaction ID. It first pre-
dicts the incoming task’s processing demand as the av-
erage of the retrieved demand history. To maintain the
user-perceivable performance, an appropriate deadline
D is selected, which is either 50ms for short tasks, or
the task’s computation time, with memory in the active
state, plus 50ms for long tasks. Based on this dead-
line, IAMEM calculates PS, the lowest possible power
state of a memory rank, to fit the task execution within
the deadline when all predicted memory accesses en-
counter power state transitions. The prediction algo-
rithm is shown in Figure 5. The resulting PS gives
us the needed power state to accomplish the task be-
fore the deadline and can be any of the five states:
Active Standby (ACT STBY), Active Powerdown
(ACT PDN), Precharge Powerdown Fast (PRE FAST),

5

272 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Tavg = Time/Count;
Mavg = MemoryRe f s/Count;

i f (Tavg <= 50ms)
D = 50ms;

else
D = Tavg +50ms;

i f (Tavg +Mavg ∗LSELF REF < D)
PS = SELF REF ;

else i f (Tavg +Mavg ∗LPRE SLOW < D)
PS = PRE SLOW ;

else i f (Tavg +Mavg ∗LPRE FAST < D)
PS = PRE FAST ;

else i f (Tavg +Mavg ∗LACT PDN < D)
PS = ACT PDN;

else
PS = ACT ST BY ;

Figure 5: The power-state prediction algorithm for an
upcoming task. LSELF REF , LPRE SLOW , LPRE FAST and
LACT PDN are the transition latencies from SELF REF,
PRE SLOW, PRE FAST and ACT PDN state to
ACT STBY state, respectively.

Precharge Powerdown Slow (PRE SLOW), or Self Re-
fresh (SELF REF). PRE STBY is not considered as a
viable state for the predictor as ACT PDN offer bet-
ter energy efficiency and lower delays than PRE STBY.
PRE STBY should only be used as an intermediate con-
necting state when a lower power state (PRE SLOW,
PRE FAST and SELF REF) is selected, but not as a
steady end state to run the task. Finally, PS is set in
the memory controller which transitions a rank to the
predicted power state after any access to that rank fin-
ishes. Therefore, a rank is transitioned to ACT STBY
state upon the first access request and then transitioned
to PS after that access completes. Once a task com-
pletes and the CPU enters an idle state, all ranks are set
to SELF REF state and will remain in that state until a
new memory request arrives.

Selection of ACT STBY state indicates that the run-
ning task cannot tolerate any transition delays to finish
before the deadline and thus the task must be executed at
the highest performance. Selection of low-power states,
on the other hand, indicates that the running task can tol-
erate power-state transition delays associated with the se-
lected power state while still being able to meet the dead-
line. We should note that the calculations in Figure 5 as-
sume the worst case scenario where memory I/Os are not
clustered but arrive one at a time, since we are unable to
capture the exact access patterns but only the total num-
ber of accesses during the task execution. Subsequently,

the calculated delays are the maximum predicted delays
the task may encounter, minimizing the possibility that
the tasks would continue past the deadline. If memory
accesses are bursty, arriving together, the actual exposed
delays will be lower.

To avoid exposing potentially large delays to the users
while still providing some energy savings, we utilize
the ACT PDN state during the training of the predictor,
when the entry in the prediction table is not found. The
ACT PDN state significantly reduces energy consump-
tion as compared to ACT STBY while keeping the de-
lays low. Finally, interaction IDs are unique across ap-
plications and thus can be maintained in a single table in
the kernel across executions for all applications, further
minimizing the impact of training.

3.5 Improving Prediction Granularity
IAMEM prediction mechanism described earlier utilizes
only a single number of memory references to all mem-
ory spaces. Once the prediction is made, both user and
kernel memory are maintained in the same predicted
power state. If this state turns out to be ACT STBY
state, user memory occupied by the given task and the
entire kernel memory will be fully powered during the
task execution. This behavior may be detrimental to en-
ergy efficiency, if for example, the task is computation-
ally intensive with low kernel activity. Subsequently, we
extend the design of IAMEM by using two performance
counters to monitor references to user and kernel mem-
ory individually. We further split MemoryRefs variable
in Figure 4 into two fields UserRefs and KernelRefs. We
note that user memory and kernel memory including the
buffer cache are allocated into separate memory ranks to
maximize management efficiency.

Similar to the previous algorithm, a dual prediction al-
gorithm is proposed. In the dual prediction algorithm
IAMEM first calculates the average task length Tavg, the
average number of user memory references Mu and ker-
nel memory references Mk. Then based on the allowed
task extension E, IAMEM calculates the lowest com-
bination of power states for user memory PSu and for
kernel memory PSk, to keep the overall transition delays
from both memory spaces below E. Finally, in the case
of multiple concurrent threads the thread with the high-
est demand for memory will dictate the power state for
memory.

3.6 Improving Monitoring Accuracy
So far, we have relied on monitoring memory accesses to
estimate the worst-case transition overheads for a given
task, by assuming that every memory access will require
a power state transition. However, some of memory ref-

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 273

erences may arrive in a cluster and encounter one power
state transition. To address this issue, we can use another
performance counter to count the actual number of power
state transitions that a given task encountered. This will
allow IAMEM to update the variables of kernel and user
memory reference in the prediction table with the actual
number of memory references that encountered power
state transitions. Subsequently, the algorithms in sin-
gle and dual prediction remain unchanged except the M
variables now correspond to the numbers of power state
transitions that occurred in user and kernel memory. Uti-
lization of the actual power state transitions accounts for
traffic burstiness and as a result, eliminates the inaccu-
racy resulting from monitoring only memory accesses in
the original design.

3.7 Preserving Performance
When a low-power state is predicted for a given task, the
accumulated transition delays could become exposed to
the user, resulting in performance degradation for longer
tasks. The delays can be significant when the long task
with high memory activity is mispredicted and the mem-
ory is kept in a low power state. To prevent excessive task
extension, we propose an early-detect optimization to de-
tect the possible user-perceivable degradation before the
task completion. Observing that the scheduler in the ker-
nel will interrupt task execution every 100ms to check if
other processes should be scheduled, we add a monitor-
ing module into the scheduler to monitor the given task
execution for potentially missed deadlines. Every time
the scheduler is invoked, the monitoring module reads
the performance counter that counts the number of power
state transitions from a low-power state to ACT STBY
state and calculates the actual delay that the current run-
ning task has encountered so far. Once the delay exceeds
the allowed 50ms extension, the monitoring module will
raise the memory power state to the next higher level. If
the next higher selection is ACT PDN state, the monitor-
ing will continue. Seeing an additional delay of 50ms,
due to the power state transitions, the memory power
state is switched to ACT STBY for the remaining task
execution. This optimization will minimize the potential
delays that are exposed to the user.

4 Methodology

We use trace-driven simulation to evaluate the proposed
IAMEM and compare it with the following mechanisms:

• PAVM. Power-Aware Virtual Memory: The exist-
ing state-of-the-art per-process mechanism which
keeps the ranks occupied by the currently running
process and the ranks occupied by kernel memory

in the ACT STBY state during the process execu-
tion, while keeping all other ranks in SELF REF.

• ODPD. On-Demand Powerdown: An existing
mechanism that keeps all ranks in the system in the
ACT PDN state during execution and makes tran-
sitions to ACT STBY on memory request arrival.
This is the special case of the Dynamic Rank Power
Down technique implemented in Intel Core i CPUs,
with the idle timeout value set to zero to minimize
energy consumption.

• ODSR. On-Demand Self Refresh: We propose a
complementary mechanism to ODPD that keeps all
ranks in the system in SELF REF and transitions to
ACT STBY upon a memory request arrival.

• ORACLE. A per-task mechanism that utilizes the
future knowledge to select optimal power states for
ranks occupied by user and kernel memory for each
incoming task.

Each of the evaluated mechanisms will put all ranks in
the system to SELF REF state when a task completes and
the system begins idling. The simulator includes a task
scheduler as well as a memory simulator. The memory
simulator includes a memory controller and two DDR3-
1066 DIMMs, each consisting of two 1GB ranks. The
ranks are allocated to minimize fragmentation of mem-
ory for running processes across multiple ranks [13]. Fi-
nally, the energy management mechanism makes mem-
ory power decisions upon each UI event and the memory
simulator executes the corresponding power-state transi-
tions for the accessed ranks and calculates energy con-
sumption according to Figure 2.

The application traces used in the simulation were col-
lected using a modified Linux kernel 2.6.30 running on
Intel Core i7-920 CPU with 4GB DDR3-1066. All traces
contain data of UI events and process activity from a
large number of usage sessions in the GNOME envi-
ronment. UI events were collected with the modified
X-Monitor, including the timestamp of each event and
the interaction ID uniquely identifying the GUI compo-
nent. Process activity traces were collected with Linux
Trace Toolkit that logs program execution details from a
patched Linux kernel. Based on the ordered event times-
tamps, we are able to simulate the dynamic execution
progress of the traced applications, so that the compu-
tation time for each UI-triggered task can be calculated
accurately.

We set up two performance counters: one for count-
ing the event MEM LOAD RETIRED.L3 MISS that oc-
curred in user mode, and the other for counting the same
event in kernel mode [11] to measure last level (L3)
cache misses. Each of the counters was read as soon
as an UI event was captured, and was read again upon
the completion of the triggered task. The difference of

7

274 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Traced Trace Num.of Num.of Num.of Average Average user Average kernel
applications length interaction IDs short tasks long tasks task length memory ref. memory ref.

AbiWord 3.1 hrs 179 22840 2080 0.02 sec 7794 2378
Gnumeric 2.9 hrs 342 7804 1416 0.05 sec 19979 5013

Anjuta 3.9 hrs 458 14300 1768 0.03 sec 4127 2457
GIMP 3.3 hrs 228 3356 2440 0.14 sec 39409 13660
LiVES 2.6 hrs 166 2728 1208 0.51 sec 67319 381907

Memtester 0.1 hrs 1 0 20 167.78 sec 264112456 10389729

Table 1: Statistics of application traces.

the two counter values is considered as the number of
references in user or kernel memory during this task ex-
ecution.

We use five commonly executed interactive applica-
tions and one benchmark, shown in Table 1: AbiWord
– a word processing application; Gnumeric – a spread-
sheet application; Anjuta – an Integrated Development
Environment for C/C++ and Java development; GIMP –
an image processing application; LiVES – an integrated
video editing and playback application; Memtester –
a memory benchmark that intensively tests the perfor-
mance of main memory. The traces were collected over
a period of several hours and the trace length is shown
in the second column. The number of interaction IDs
presents the total number of unique user interactions in
each application and serves as an indicator of the GUI
complexity for the application. In case of Memtester,
there is only one interaction to start the benchmark. Ta-
ble 1 also lists the numbers of short tasks (shorter than
50ms), long tasks (longer than 50ms), and the aver-
age task length for each application. Finally, the aver-
age numbers of memory references in user and kernel
memory specifically indicate the per-task demand on the
memory subsystem.

4.1 Performance Demand of Applications

Figure 6 shows the distribution of task processing de-
mand for each application based on ORACLE’s optimal
power selection for user and kernel memory that maxi-
mizes energy savings while eliminating delays exposed
to the user. AbiWord, Gnumeric, Anjuta and GIMP have
generally lower performance demand because most of
their tasks require users to think to complete interactive
operations such as editing text. Subsequently, user mem-
ory can stay in either SELF REF or PRE SLOW state for
a majority of the time during the task execution.

On the other hand, LiVES work on large video clips,
resulting in significantly higher demand for memory per-
formance. As a result, user memory has to spend more
of its time in the higher performance states (PRE FAST,
ACT PDN and ACT STBY) to prevent delays from be-
ing exposed. Finally, Memtester is a memory intensive

�
���

������

�
���

������

�
���

������

�
���

������

�
���

������

�
���

������

���

���

���

���

���

���

������� ����
	�
������

������ �������

��
�

��
��

��
���

��
�

�

����

Figure 6: Task performance demand based on the ORA-
CLE’s optimal power.

benchmark that constantly reads and writes the memory
and requires the maximum performance. Therefore, user
memory must stay in the ACT STBY state all the time to
prevent user perceived delays.

Figure 6 also shows that the performance requirements
from kernel memory is lower than user memory. This is
because the applications usually invoke few system calls
and perform most processing in their own virtual address
space, creating lower kernel memory activity as shown in
Table 1. Subsequently, kernel memory can stay for 77%
of the time in SELF REF state for AbiWord, Gnumeric,
Anjuta, and GIMP. However, LiVES and Memtester de-
mand higher performance from kernel memory and ker-
nel memory must stay in the high power state for the ma-
jority of the time to prevent performance degradation.

5 Evaluation

5.1 Energy
Figure 7 shows the average per-task memory en-
ergy consumption for each mechanism and application.
The energy bars are divided into energy consumed in
five power states: ACT STBY, ACT PDN, PRE FAST,
PRE SLOW, and SELF REF. The energy consumption

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 275

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

���

���

���

���

���

��

������
	 ������� �������� �������� ��������

���

�
��
���
�
��

��
��

��
� ��

Figure 7: Average per-task memory energy consumption for processing each task normalized to ORACLE.

Applications ORACLE PAVM ODPD ODSR IAMEM
AbiWord 1093.05 1503.50 1364.87 1028.45 1105.24
Gnumeric 1119.14 1444.48 1309.74 979.28 1118.74

Anjuta 1276.92 1698.20 1573.95 1245.92 1342.80
GIMP 1262.46 2029.42 1769.18 1100.90 1411.61
LiVES 1648.19 2313.06 1921.93 1202.21 1787.75

Memtester 5022.28 5025.04 3803.16 1547.72 4998.94

Table 2: Total memory energy consumption (in Joules) during the entire application runtime.

of each mechanism accounts for all ranks in the system
during the task execution, and is normalized to ORA-
CLE.

PAVM always keeps user and kernel memory in
ACT STBY state during process execution, therefore
consuming the most energy, 187% more than ORACLE.
ODPD follows PAVM with 119% more energy consump-
tion than ORACLE, because it keeps all memory in
ACT PDN state during the task execution and it is clearly
more than necessary for most tasks to eliminate user per-
ceived delays, as show in Figure 6. Additionally, ODPD
does not attempt to optimize energy as other mecha-
nisms, which only transition the accessed ranks to the
appropriate state. IAMEM closely matches the energy
consumption profile of ORACLE through sophisticated
demand matching prediction, yielding close to optimal
energy efficiency. Subsequently, IAMEM shows less
than 14% difference in energy consumption from OR-
ACLE, reducing the energy consumption of PAVM and
ODPD by 59% and 47% respectively. In the best case oc-
curring in AbiWord and Anjuta, where PRE SLOW and
SELF REF states combined can fit 94% of the time for
user memory and 98% of the time for kernel memory,
as shown in Figure 6, IAMEM yields as much as 69%
improvement in energy efficiency as compared to PAVM
and ODPD.

ODSR consumes the least amount of energy when

we only consider main memory, yielding 26% less en-
ergy consumption than ORACLE, since all ranks are
kept in SELF REF state that has the lowest power de-
mand. However, executing tasks with lower energy con-
sumption than ORACLE is inefficient as it will expose
delays to the user and may further increase the energy
consumption of the entire system due to the longer run-
time. Furthermore, ODSR misses the goal of this pa-
per for transparent energy optimizations that do not ex-
pose delays to the user. This scenario also occurs for
ODPD in Memtester. As shown in Figure 6, Memtester
requires ACT STBY state for most of the execution time
to avoid performance degradation. However, ODPD uti-
lizes ACT PDN, and exposes delays to the user. IAMEM
still performs almost the same as ORACLE in this case,
since it keeps using ACT STBY state for user memory
as required, while recognizing the relatively less demand
for kernel memory performance and using the lower
ACT PDN state when necessary.

While Figure 7 shows the energy consumption for
processing tasks, it does not reflect the memory energy
consumption over the entire execution time since the
system idle time is not included. Each of the mecha-
nisms puts all memory ranks in SELF REF state when
the system becomes idle, consuming the same amount
of idle energy. Therefore, the overall improvements in
energy efficiency originate from the energy savings ob-

9

276 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

tained during the task execution. Table 2 shows the to-
tal memory energy consumption during the whole pro-
gram execution, including the idle time, for each appli-
cation and each mechanism. As we can see, even con-
sidering the total execution time of several hours long
(Table 1), IAMEM still gains significant energy savings
over PAVM and ODPD, and matches energy consump-
tion of ORACLE with less than 3% difference. For the
first five applications, IAMEM consumes 25% and 15%
less energy as compared to PAVM and ODPD, respec-
tively. IAMEM energy reduction drops in Memtester due
to the full power demand from the extremely memory-
intensive tasks. Nevertheless, IAMEM still offers slight
energy savings as compared to PAVM in this case.

5.2 Performance

While reducing energy consumption is important, preser-
vation of the performance is the goal of this research.
Performance degradation can negate any energy savings
and negatively affect the user experience. Figure 8 shows
the average task length for each application and each
mechanism normalized to ORACLE. The task runtime is
divided into: 1) task processing time; and 2) the power-
state transition time due to the transitions from the lower
power state to ACT STBY state.

We notice that ORACLE introduces some amount of
transition time into the task processing time as compared
to PAVM that maintains the original task runtime. How-
ever, the shorter runtime in PAVM does not translate into
better performance since users are not able to notice the
shorter task completion and initiate any subsequent inter-
actions. ORACLE always selects the best power state to
fit the task execution within the user’s perception thresh-
old. The included power-state transition time in ORA-
CLE is not exposed to the user, keeping the user behavior
unchanged just like in PAVM. Similarly, ODPD executes
most tasks at the higher performance level than desired,
resulting in excess energy consumption as shown in Fig-
ure 7. Therefore, a task that is executing longer than its
execution in ORACLE exposes noticeable delay to the
user, while running the task faster is not energy efficient.

Due to the large transition latency (971.96ns) from
SELF REF state, ODSR incurs the most performance
degradation, prolonging task execution by 54% on av-
erage as compared to ORACLE. Memtester exposes the
worst case for ODSR with 160% more delay exposed
to the user. Memory intensive tasks in Memtester re-
sult in noticeable delays even in case of ODPD, which
only encounters 6ns transition latency for each memory
access. IAMEM dynamically recognizes memory inten-
sive tasks and provides appropriate power state similarly
to ORACLE, only exposing slightly more than 1% delay
to the user for each application. Combining the results

Figure 9: Energy consumption of IAMEM with single
and dual prediction.

from Figure 7 and Figure 8, we observe that IAMEM
is the most energy efficient mechanism and almost per-
fectly matches the behavior of ORACLE. This indicates
that utilization of the interaction context allows IAMEM
to accurately predict the demand placed on the system
and achieve near-optimal energy efficiency without per-
formance degradation.

5.3 The Need for Dual Prediction

Figure 7 showed IAMEM with dual prediction for user
memory and kernel memory separately, as described in
Section 3.5. Alternatively, IAMEM may also view user
and kernel memory as a whole, predicting only a sin-
gle power state for both memory spaces. Figure 9 com-
pares the average per-task energy of IAMEM with single
power prediction (IAMEMC), normalized to ORACLE.
This separation allows us to study the contribution of en-
ergy consumed by user and kernel memory to the total
per-task energy consumption.

As shown in Figure 6, difference in demand for kernel
and user performance allows IAMEM to reduce energy
consumption in both kernel and user spaces. Therefore,
IAMEM reduces the combined energy consumption of
user and kernel memory by 3%, on average, as compared
to IAMEMC. This benefit of the dual prediction justifies
the need for predicting power individually for user and
kernel memory.

5.4 Delay Reduction with Early-Detect

Preserving performance and bounding delays exposed to
the user is critical for overall energy efficiency and the
user’s satisfaction. Therefore, IAMEM adopts the early-

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 277

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

���

���

���

���

���
��������������� ���������������

������
��������������	��	��

�
�
�
�
�
�
��

�
�
��
�
�
�
��

���

Figure 8: Average per-task length normalized to ORACLE.

detect optimization which uses the scheduler to check
every 100ms as discussed in Section 3.7. This optimiza-
tion will eliminate significant performance degradation
for the long running tasks. Table 3 compares the average
exposed delays of the long running tasks (longer than the
100ms scheduler interval) for IAMEM with and without
this optimization. The delays shown only count the extra
times that exceed the allowed 50ms extension and may
be noticed by the user. We can see that IAMEM with
this optimization significantly reduces the amount of de-
lays exposed to the user for long running tasks. The final
small extension above 50ms is at the lower end of the
perception threshold range (50-100ms), and will be un-
noticeable to the user.

Alternatively, we can remove the optimization since
IAMEM without early-detect still manages to keep the
delays reasonable that may not be noticed by most users.
In addition, IAMEM without early-detect would reduce
the per-task energy consumption in Figure 7 by addi-
tional 2%, on average. However, the goal of this research
is to maximize energy savings without affecting the user
experience. The early-detect optimization is critical in
achieving this goal, and we subsequently included it in
IAMEM implementation and all previous results reflect
the inclusion of this optimization.

6 Related Work

Energy management for main memory can be imple-
mented in hardware, software, or the combination of
both. Hardware level approaches generally utilize the
memory controller to monitor the memory traffic as well
as the access pattern, and make the power state transi-
tions for specific memory devices based on the observed
energy-saving opportunities. Lebeck et al. [12] studied
the interaction of page placement with static and dy-
namic hardware policies to reduce memory power dissi-

Num.of Num.of Delay Delay
Application long delayed w/ w/o

running long early- early-
tasks running detect detect

AbiWord 1808 380 4.5 ms 5.0 ms
Gnumeric 800 220 7.6 ms 9.8 ms

Anjuta 984 120 3.5 ms 13 ms
GIMP 1536 408 13 ms 15 ms
LiVES 760 188 10.8 ms 11.7 ms

Memtester 14 2 51 ms 53 ms

Table 3: Average delays of the delayed long running
tasks in standard IAMEM with the early-detect optimiza-
tion and alternative design without the optimization.

pation. The cooperation between the hardware and the
OS was also studied in [12]. Subsequently, Pisharah
et al. [22] proposed another approach to save memory
energy by introducing a hardware called Energy-Saver
Buffers to hide the resynchronization costs when reac-
tivating memory modules. Fan et al. [7] further in-
vestigated memory controller policies for manipulating
DRAM power states in cache-based systems and devel-
oped an analytic model that approximates the idle time
of DRAM chips using an exponential distribution. Fur-
thermore, observing that significant energy is consumed
when memory is actively idle during DMA transfers,
Pandy et al. [21] proposed several energy management
mechanisms to improve the concurrency level between
multiple I/Os to maximize the memory utilization.

Hardware-level energy management may suffer from
inaccuracy and may cause unexpected performance
degradation. Software-level energy management, on the
other hand, can provide more detailed context of exe-
cution to make timely power state transitions. Delaluz
et al. [5] proposed a compiler-directed approach to clus-
ter the data across memory banks and insert power-state

11

278 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

transition instructions into programs by profiling. How-
ever, compiler-directed schemes can only work on a sin-
gle application at a time and demand sophisticated pro-
gram analysis support. To address the issue, Delaluz et
al. [6] also proposed an operating system based solution
where the OS scheduler directs the power state transi-
tions by keeping track of accesses for each process in the
system. Subsequently, Huang et al. [8] proposed Power-
Aware Virtual Memory that manages the power states of
memory devices on a per-process basis. A cooperative
software-hardware mechanism [10] was further proposed
to combine PAVM and the underlying hardware. Huang
et al. [9] also proposed memory-reshaping mechanisms
that coalesce short idle periods into longer ones through
page migration to maximize energy savings. Targeting
the buffer cache, Bi et al. [2] utilized the OS I/O handling
routines to hide the delays due to memory power state
transitions to minimize the impact of aggressive energy
management. Finally, Li et al. [15] proposed a mecha-
nism to guarantee the performance by temporarily dis-
abling memory energy management.

7 Conclusion

As current applications are becoming more data-centric,
computer systems are equipped with larger capacity and
higher performance main memory. As a result, energy
consumption of main memory is significantly increasing.
In this paper, we addressed interactive systems where
most tasks are initiated by the user, and presented the
design of IAMEM, a unified approach to manage the en-
ergy consumption of the entire memory space. By cor-
relating the memory performance demand to the user in-
teractions, IAMEM is able to accurately select suitable
memory power states for UI-triggered tasks, saving en-
ergy while preserving the performance of the system. We
have shown that compared to the state-of-the-art mech-
anisms, IAMEM saves 28%-68% of the memory energy
consumed for task processing, resulting in up to 16% re-
duction of the total memory energy consumption during
the entire program execution. In addition to the signifi-
cant energy savings, IAMEM also successfully maintains
the user-perceivable performance by hiding delays asso-
ciated with energy management.

8 Acknowledgement

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0844569.

References
[1] BI, M., CRK, I., AND GNIADY, C. Iadvs: On-demand perfor-

mance for interactive applications. In HPCA (2010).

[2] BI, M., DUAN, R., AND GNIADY, C. Delay-hiding energy man-
agement mechanisms for dram. In HPCA (2010).

[3] CARD, S. K., ROBERTSON, G. G., AND MACKINLAY, J. D.
The information visualizer, an information workspace. In CHI
’91 (New York, NY, USA, 1991), ACM, pp. 181–186.

[4] CRK, I., BI, M., AND GNIADY, C. Interaction-aware en-
ergy management for wireless network cards. In SIGMETRICS
(2008).

[5] DELALUZ, V., KANDEMIR, M., VIJAYKRISHNAN, N., SIVA-
SUBRAMANIAM, A., AND IRWIN, M. J. Hardware and software
techniques for controlling dram power modes. IEEE Transactions
on Computers 50, 11 (2001), 1154–1173.

[6] DELALUZ, V., SIVASUBRAMANIAM, A., KANDEMIR, M., VI-
JAYKRISHNAN, N., AND IRWIN, M. J. Scheduler-based dram
energy management. In DAC (2002), ACM, pp. 697–702.

[7] FAN, X., ELLIS, C., AND LEBECK, A. Memory controller poli-
cies for dram power management. In ISLPED ’01 (New York,
NY, USA, 2001), ACM, pp. 129–134.

[8] HUANG, H., PILLAI, P., AND SHIN, K. G. Design and imple-
mentation of power-aware virtual memory. In ATEC ’03 (Berke-
ley, CA, USA, 2003), USENIX Association, pp. 5–5.

[9] HUANG, H., SHIN, K. G., LEFURGY, C., AND KELLER, T.
Improving energy efficiency by making dram less randomly ac-
cessed. In ISLPED (New York, NY, USA, 2005), ACM, pp. 393–
398.

[10] HUANG, H., SHIN, K. G., LEFURGY, C., RAJAMANI, K.,
KELLER, T. W., HENSBERGEN, E. V., AND III, F. L. R.
Software-hardware cooperative power management for main
memory. In PACS (2004), vol. 3471, Springer, pp. 61–77.

[11] INTEL. Intel core i7-800 and i5-700 desktop processor series,
2009. Intel Documentation.

[12] LEBECK, A. R., FAN, X., ZENG, H., AND ELLIS, C. Power
aware page allocation. SIGPLAN Not. 35, 11 (2000), 105–116.

[13] LEE, M., SEO, E., LEE, J., AND KIM, J.-S. Pabc: Power-aware
buffer cache management for low power consumption. IEEE
Transactions on Computers 56, 4 (2007), 488–501.

[14] LEFURGY, C., RAJAMANI, K., RAWSON, F., FELTER, W.,
KISTLER, M., AND KELLER, T. W. Energy management for
commercial servers. Computer 36, 12 (2003), 39–48.

[15] LI, X., LI, Z., ZHOU, Y., AND ADVE, S. Performance directed
energy management for main memory and disks. Transactions
on Storage 1, 3 (2005), 346–380.

[16] LORCH, J. R. Using user interface event information in dynamic
voltage scaling algorithms. In MASCOTS (2003), pp. 46–55.

[17] MICRON. Ddr3 memory power calculator. Micron Documenta-
tion and Support.

[18] MICRON. 1gb: x4, x8, x16 ddr3 sdram features, 2009. Micron
Documentation and Support.

[19] MICRON. Calculating memory system power for ddr3, 2009. Mi-
cron Tech Notes.

[20] MILLER, R. B. Response time in man-computer conversational
transactions. In AFIPS ’68 (Fall, part I) (New York, NY, USA,
1968), ACM, pp. 267–277.

[21] PANDEY, V., JIANG, W., ZHOU, Y., AND BIANCHINI, R. Dma-
aware memory energy management. In HPCA (2006), IEEE
Computer Society, pp. 133–144.

[22] PISHARATH, J., AND CHOUDHARY, A. An integrated approach
to reducing power dissipation in memory hierarchies. In CASES
(New York, NY, USA, 2002), ACM, pp. 88–97.

[23] SCHNEIDERMAN, B. Designing the user interface: strategies for
effective human-computer interaction. Addison-Wesley, 1998.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 279

XLH: More effective memory deduplication scanners
through cross-layer hints

Konrad Miller Fabian Franz
Marc Rittinghaus Marius Hillenbrand Frank Bellosa

Karlsruhe Institute of Technology (KIT)

Abstract
Limited main memory size is the primary bottleneck for
consolidating virtual machines (VMs) on hosting servers.
Memory deduplication scanners reduce the memory foot-
print of VMs by eliminating redundancy. Our approach
extends main memory deduplication scanners through
Cross Layer I/O-based Hints (XLH) to find and exploit
sharing opportunities earlier without raising the dedupli-
cation overhead.

Prior work on memory scanners has shown great oppor-
tunity for memory deduplication. In our analyses, we have
confirmed these results; however, we have found mem-
ory scanners to work well only for deduplicating fairly
static memory pages. Current scanners need a consider-
able amount of time to detect new sharing opportunities
(e.g., 5 min) and therefore do not exploit the full sharing
potential. XLH’s early detection of sharing opportunities
saves more memory by deduplicating otherwise missed
short-lived pages and by increasing the time long-lived
duplicates remain shared.

Compared to I/O-agnostic scanners such as KSM, our
benchmarks show that XLH can merge equal pages that
stem from the virtual disk image earlier by minutes and is
capable of saving up to four times as much memory; e.g.,
XLH saves 290 MiB vs. 75 MiB of main memory for two
VMs with 512 MiB assigned memory each.

1 Introduction

In cloud computing, virtual machines (VMs) permit the
flexible allocation and migration of services as well as the
consolidation of systems onto fewer physical machines,
while preserving strong service isolation. However, in
that scenario the available main memory size limits the
number of VMs that can be colocated on a single machine.

There may be plenty of redundant data between VMs
(inter-vm sharing), e.g., if similar operating systems
(OSes) or applications are used in different VM instances.

Moreover, previous studies have shown that the memory
footprint of VMs often contains a significant amount of
pages with equal content within a single instance (self-
sharing) [3]. In both cases, memory can be freed by col-
lapsing redundant pages to a single page and sharing it in
a copy-on-write fashion. However, such pages cannot be
identified using traditional sharing mechanisms (see § 6.1)
as the isolation of VMs leads to the so-called semantic
gap [8]; that is lost semantic information between abstrac-
tion layers. The host, for example, does not know which
ones of the guests’ memory pages represent file contents.

Prior work has made deduplication of redundant pages
possible and thereby lowered the memory footprint of
guests. In the following, we use host interchangeably
with virtual machine monitor (VMM), hypervisor, or host
OS to describe the system layer underneath the guest OS.

Paravirtualization closes the semantic gap through
establishing an appropriate interface between host and
guest [6, 18] to communicate semantic information. This
implies modifying both host and guest.

Such an interface has previously been used to help
deduplicating named memory pages—memory pages
backed by files: Satori [18] successfully merges named
pages in guests employing sharing-aware virtual block
devices in Xen [2]. Paravirtualization-based approaches
have only been used selectively and rudimentarily to make
sharing of anonymous memory (e.g., heap/stack memory)
possible, through hooking calls such as bcopy [6].

Applying these modifications to all guests and keep-
ing them compatible with the latest developments at the
kernel and hypervisor level is at least a great burden. It
might not even be possible at all to modify commercial
or legacy guests due to license restrictions or the lack of
source code. Moreover, the lack of semantic information
that the host has about guest activities is actually one of
the key features of virtualization: The host does not know
nor needs to know the OS, file system, etc. inside the
VM.

1

280 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Memory scanners mitigate the semantic gap by scan-
ning for duplicate content in guest pages [1, 25]. They
index the contents of memory pages at a certain rate, re-
gardless of the pages’ usage semantics.

Scanners have their downside when it comes to effi-
ciency. Especially the merge latency, the time between
establishing certain content in a page and merging it with
a duplicate, is higher in systems based on content scan-
ning compared to paravirtualization-based systems that
merge pages synchronously when they are established.

Memory scanners trade computational overhead and
memory bandwidth with deduplication success and la-
tency. Although the scan rate (pages per time interval) is
often variable and may be fine-tuned [10, 23], it is gener-
ally set to scan very slowly to keep the scanner’s CPU and
memory bus resource usage low. The default scan rate for
Linux/KSM is 1000 pages per second, which results in a
scan time of almost 5 minutes per 1 GiB of main memory.

XLH is our contribution that combines the key benefits
of both previous approaches. We have observed that:

• All types of memory contents (named and anony-
mous) contribute to memory redundancy.

• Many shareable pages in the host’s main memory
originate from accesses to background storage: when
multiple VMs create or use the same programs,
shared libraries, configuration files, and data from
their respective virtual disk images (VDIs).

The main contribution of this paper is to observe guest
I/O in the host and to use it as a trigger for memory
scanners in order to speed up the identification of new
sharing opportunities. For this purpose, XLH generates
page hints in the host’s virtual file system (VFS) layer,
whenever guests access their background store. XLH then
indexes these hinted pages soon after their content has
been established and thus moves them earlier into the
merging stage. In consequence, XLH can find short-lived
sharing opportunities and shares redundant data longer
than regular, linear memory scanners without raising the
overall scan rate.

We have implemented our approach in Linux’ Kernel
Samepage Merging (KSM) and evaluated its properties.
Measurements of kernel build and web server scenarios
show that XLH deduplicates equal pages that stem from
the VDI earlier by minutes and is capable of merging
between 2x and 5x as many sharing opportunities than the
baseline system. For the kernel build benchmark, XLH
performs constantly better than KSM even if the scan rate
is set 5x lower. Our evaluation shows that XLH is able
to reach its effectiveness with little to no additional CPU
overhead or loss in I/O throughput compared with KSM.

We only modify the host in our approach—XLH would
not benefit from and thus does not make use of paravirtu-
alization. In fact, due to the generality of our approach,
XLH also works for deduplicating native processes when
no virtualization is involved. Note that XLH does not
solely target disk accesses but issues hints for all I/O
that goes through the VFS interface, including network
file systems such as NFS. Overall, I/O-advised scanning
makes more effective detection of sharing opportunities
possible without the need to modify guests.

The remainder of this paper is structured as follows:
We analyze semantic and temporal memory duplication
properties in the following Section 2 to back up and mo-
tivate our approach. We then review Kernel Samepage
Merging (KSM)—the memory scanning basis for our
implementation—in Section 3 before we describe our
approach and the implementation of our prototype thor-
oughly in Section 4. In Section 5, we present the results
of our evaluation. We give an overview of related work on
memory deduplication in Section 6. Finally, we conclude
and depict future research directions in Section 7.

2 Analysis of Memory Duplication

Whether the use of deduplication techniques is effective
or not depends mainly on the target workload. Using
memory deduplication does improve a system’s memory
density if the memory footprint of the hosted applications
is sufficiently similar. This is generally the case if the
same OS, similar programs/libraries and/or data are used.

Duplication quantity An empirical study on memory
sharing of VMs for server consolidation performed by
Chang et al. found that the amount of redundant pages
can be as low as 11% but also as high as 86% depend-
ing on the OS and workload [7]. Gupta et al. measured
the amount of duplicated memory across three VMs and
found that almost 50% of the allocated memory could
be saved through memory deduplication [12]. We have
performed a study ourselves and found 110 MiB of redun-
dant memory in typical desktop workloads (LibreOffice,
Firefox). We moreover measured 400 MiB (39%) of re-
dundant data in one of our benchmarks (§ 5.2).

Duplication sources The sources of duplicated pages
and their distribution vary greatly between workloads.
Barker et al. measured the number of identical page
frames in Ubuntu Linux 10.10 while running a typical
set of desktop applications. In their study, over 50% of
identical page frames stem from process heaps. They
furthermore identified shared library based pages to be
the second largest source of duplication (43%) [3]. In a
study performed by Kloster et al., between 64% and 94%

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 281

of redundant data were located in page caches [14]. In
our own aforementioned analysis of desktop workloads
70% of the duplicate pages were part of the page caches
while 14% of the duplicates were not backed by files
(anonymous). The last 15% were either free or reserved
(e.g., driver pages). Although it seems to be favorable
to focus on named pages, as many sharing opportunities
can be found in page caches, a significant amount of
duplicates may stem from anonymous memory regions.
In consequence, for a deduplication system to be effective,
it needs to exploit sharing opportunities from all sources.

Temporal characteristics of duplicates In our kernel
build benchmarks, 80% of all encountered sharing oppor-
tunities lived between 30 seconds and 5 minutes. In this
scenario, using brute-force scanning to detect short-lived
sharing opportunities is not effective. Additionally, it
wastes sharing potential by identifying longer-lived shar-
ing opportunities late in the scan process. Figure 1 depicts
the significance of the merge latency on how many pages
are shared at any given point in time: The later memory
is indexed by the scanner, the later a shared page can be
established. Indexing sharing opportunities earlier adds
to the sharing potential and to longer sharing time-frames.

Saved
Pages

1
1121

KSM
XLH

Equal
Pages

t

2

Page can be deduplicated
XLH visits page KSM visits page

Figure 1: Memory scanners index pages after an expected
value of half a scan cycle. XLH visits I/O pages immedi-
ately after they are established. If a duplicate is not found
until a large proportion of the mean sharing time is over,
the deduplication effectiveness is lowered significantly.

3 Memory Scanning with KSM

Our prototype is based on Kernel Samepage Merging
(KSM) [1] which is a popular memory deduplication ap-
proach in the Linux kernel. KSM single-threadedly scans
for and merges equal main memory pages. It is not bound
to VMs but works on anonymous memory regions of any
process. However, KSM only regards specifically advised
pages (madvise) as mergeable. QEMU [4] invokes the
appropriate call for the memory of each VM.

Page States Every advised page in the host is in one
of three states: (1) frequently fluctuating, (2) sharing
candidate yet potentially unstable, and (3) shared.

Data Structures KSM allocates a tree-node containing
information such as a checksum and sequence number
linked to every advised virtual page in the host. Pages that
have changed between scan rounds (1) are not recorded
or regarded in the scan process until their modification
frequency decreases. The tree-nodes of all other pages
are linked together into two red-black trees using their
pages’ full content as the key/index. The unstable tree
(2) records pages that do not change frequently and are
in consequence suitable sharing candidates. They are
neither shared yet, nor protected from being written to—
their content is thus not stable and may be modified after
insertion. The stable tree (3), in contrast, stores pages that
have already been merged and marked copy-on-write.

Scan Process KSM searches for pages that do not
change frequently by gradually calculating a hash value
for every page. If the calculated hash differs from the
one recorded in the previous scan round, the record is
updated but the page is not inserted into either of the
trees (1). If the hash value has not changed between scan
rounds, the associated page is inserted into the unstable
tree (2), employing its content as key. If the unstable tree
already contains a page with the same content, the pages
are merged, marked read-only, and inserted into the stable
tree (3). For any subsequently scanned page, KSM first
checks if its content matches a page in the stable tree, in
which case the pages are merged immediately.

When all advised pages have been scanned, the unsta-
ble tree is dropped and the process is repeated. Only the
hash values and the stable tree remain.

4 I/O-Advised Deduplication with XLH

In the following paragraphs we discuss how XLH gener-
ates (§ 4.1), stores (§ 4.2), and processes (§ 4.3) dedupli-
cation hints interleaved with the periodic memory scan.
KSM uses the full page content as the index into its trees.
Writing to pages in the unstable tree is not prohibited;
such writes, however, may break the reachability in the
subtree of that page, thereby lowering the deduplication
effectiveness. We present two solutions in § 4.4.

4.1 Generating Deduplication Hints

When a VM reads data from a virtual disk image (VDI),
the virtual DMA controller in the host handles the request
and reads the physical disk on behalf of the guest (Fig-
ure 2). Our assumption is that the target of that DMA
transaction is a page in the guest’s page cache and thus a
good sharing candidate. We assume the same for writes:
When a page cache page in the guest is flushed to disk—a
new file is created or an old file is written— the host trans-

3

282 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

lates this into a write to the VDI. XLH detects these op-
erations and generates deduplication hints for the source
and target guest pages. In contrast to read operations on
non-cached files, writes in the guest may be not imme-
diately visible to the host as they can be delayed by the
guest’s page cache. Generally, the delay is much shorter
than the time to the next visit of a traditional memory
scanner, however.

Hypervisor

Host OS

App App

Guest OS Guest OS
Native
App

VDI File VDI File Physical
Disk

Guest
VFS Read

VDMA
Read
Host

VFS Read
Real DMA

Read

XLHHint

Figure 2: Host-VFS read and write operations are used to
trigger hints for the main memory scanner.

As opposed to previous I/O-based approaches, we did
not modify the guests in any way. Our mechanism even
works for regular, non-VM processes, thereby enabling
XLH to also deduplicate main memory efficiently in na-
tive environments (e.g., when using Zero-Install appli-
cations). Note that our approach is generic and may be
applied to other environments as well, e.g., the Win32 file
API layer. Moreover, the hint generation is fully decou-
pled from the deduplication process; there might as well
be more than one hint source and other triggers for hints,
e.g., from a page fault handler.

4.2 Storing Hints and Coping with Bursts
Hints need to be stored until they are asynchronously
processed by the memory scanner. Memory scanners
adhere to a certain scan rate, which is generally set to a
low value (e.g., 1000 pages per second) to keep the overall
impact of the scanner on the system performance within
reasonable bounds. This way, however, memory scanners
cannot always keep up with processing the number of
incoming hints. The hint rate may be constantly higher
than the scan rate, leading to an ever-growing buffer and
suggesting the use of a pruning mechanism. Moreover,
I/O is bursty; in consequence, I/O-based hints are also
issued in bursts. Some million hints can be generated in a
matter of seconds leading to a long backlog of hints and
thus to outdated hints by the time the scanner gets to them.
This effect calls for an aging mechanism.

We have at first stored our hints in an unbounded queue.
When running our benchmarks, the system eventually fell
behind to a state in which it could not find any sharing
candidates through the hinting mechanism at all, as the
hinted pages had already changed their content before
they were processed.

A bounded circular hint-stack (Figure 3), however,
proved to be an appropriate data structure to store hints
with low overhead. The hint-stack keeps the history of
the last unprocessed stack size disk accesses.

E
D
C
B
ABase

Top 2x push
F
E
D
C
B
G

Base
Top

3x pop
D
C
BBase

Top

Figure 3: Storage of hints in the bounded circular stack.

Due to the nature of a bounded circular stack, XLH
always processes the newest hints first while old hints are
overwritten when the stack is full—an automatic pruning
and aging mechanism which turned out to be fast and
robust. Periodic maintenance is not required.

The stack size is configurable through procfs. In our
benchmarks we found that XLH shares most pages if a
full stack can be processed by the memory scanner within
about 15 to 30 seconds. At KSM’s default scan rate this
results in a stack size of about 8k to 16k entries.

4.3 Processing Deduplication Hints
Our hint processing loop, depicted in Figure 4, runs in-
terleaved with the full system scan spurts (wake-ups) that
KSM already implements. XLH shares the global rate
limit set for KSM and produces roughly the same CPU-
load as an unmodified KSM with the same settings.

The interleaving ratio is configurable; hint runs hint-
processing spurts are interleaved with scan runs scan
spurts. A ratio of 0:1 corresponds to the original KSM
implementation. Our default ratio is 1:1. Using this policy,
XLH can guarantee that the linear scan, which can catch
non-I/O sharing opportunities, does not starve due to a
flood of hints.

Periodic scan

Hints left?

Get next
hint

Search in
stable tree

Page
found?

Merge page

Search in unstable
data structure

Page
found?

Merge pages and
move to stable tree

Insert page into un-
stable data structure

Calculate page hash

Page
modified?

Update hash

Yes

Get next
page

Processing
a hint?

No

YesYes

No

No

NoYes

No

Yes

Figure 4: The high-level workflow of our new hint pro-
cessing loop. When all hints have been processed before
the scan rate is exceeded, XLH continues with the linear
KSM scan to keep the rate constant.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 283

When XLH is in a scan spurt, it runs the traditional
linear scanning policy, only. In a hint-processing spurt,
however, XLH processes hints as long as it has hints left
and it has not exceeded its scan allowance. The remaining
scan slots are then used for the linear scan.

Our mechanism first checks whether the hinted page’s
content is already in the stable tree. In this case, XLH
remaps the page to the one in the stable tree and frees the
hinted page. If the hinted page is not in the stable tree,
XLH calculates the checksum of the page’s content and
checks the unstable data structure. If a sharing partner is
found, XLH merges the pages and moves the resulting
page into the stable tree. If XLH cannot find a sharing
candidate it adds the page to the unstable data structure.

4.4 Degeneration of the Unstable Tree
The original KSM implementation has a heuristic that
keeps frequently written pages from being inserted into
the unstable tree. Only pages that keep the same hash
value between consecutive scan rounds are considered
(see Section 3). XLH however adds pages to the unstable
data structure when processing hints that do not have a
sharing partner at that point in time.

As pages are not marked read-only on insertion into the
unstable tree but remain writable for the VM, the location
in the tree is purely based on the content the page had
at the time of its insertion. If pages in the unstable tree
are subsequently modified, the tree may degenerate and
entire branches may become unreachable (see Figure 5).

CK… HJ…

MG… DZ… … DZ…

not reachable

reinsert

EA…
BA…

modified

Figure 5: Nodes in the unstable tree may become un-
reachable due to modification of the contained pages. In
this example, the first byte of the content of a page has
changed from ’EA...’ to ’BA...’ leading to a second page
with the content starting with ’DZ...’ to be inserted a
second time. The page duplication is not detected.

Although, the pages associated with virtual DMA op-
erations are generally part of the guest’s page cache, and
are thus modified infrequently (see Section 2), the effect
of the degeneration is not negligible and reduces the effec-
tiveness of the merging stage. Even running Linux with
an unmodified KSM reveals that almost 70% of the nodes
cannot be reached in the unstable tree after a full scan, due
to page modifications after insertion (kernel benchmark).

In KSM, a very radical approach is chosen to clean up
broken branches of the unstable tree: When a full scan has
been performed, the entire unstable tree is dropped and a

new one is built from scratch. KSM’s repair mechanism
is slowed down by our modifications as the number of
full memory scan cycles per time decreases: The scan
rate stays constant, but multiple hints can and will be
issued on the same pages during a scan cycle leading to
multiple visits of pages within a scan round. As XLH
worsens the unstable tree’s degeneration we provide two
possible solutions in our implementation and compare
their characteristics in § 5.4:

Read-Only Unstable Tree Nodes One way to counter
the more likely degeneration of the unstable tree is to
mark hinted pages that are inserted into the unstable tree
as read-only. This way XLH can use write faults on
hinted pages as a signal to remove these pages from the
unstable tree and thereby prevent the tree from degen-
erating when hinted pages are modified. That is not the
same mechanism as breaking COW pages, which happens
when writing to a page in the stable tree. The page does
not need to be copied but is only marked read-write and
removed from the unstable tree.

Unstable Hash Table An alternative option is to re-
place the unstable tree with a hash table. When a page
in the table is modified, the reachability of other pages in
the hash table is not affected as there are no inner nodes
that can be broken. However, we have to pay attention to
the runtime effects of a hash table. Traditional hash tables
work well for a fixed working set size.

5 Evaluation

We were particularly keen to see whether XLH can merge
more pages with an overhead that is comparable to KSM,
our baseline system. Consequently, we chose the amount
of main memory that is saved when deduplicating dif-
ferent workloads with fixed computational and memory
overhead settings as our prime metric in the evaluation.
After describing our benchmark setup in § 5.1, we ex-
plore the deduplication effectiveness for several different
workloads in § 5.2. As we wanted to get results that are
relatable to prior publications, we have chosen two of
the benchmarks that were used to evaluate Satori [18]:
Compiling the Linux kernel and the Apache web server
performance when serving static files to httperf [19]. We
have also mixed both benchmarks. Additionally, we have
measured how long it takes for the baseline system as well
as XLH to deduplicate the almost static memory footprint
when solely booting many VMs.

We have confirmed that the overhead stays in the area
of the baseline system using three metrics: Time spent
in the deduplication stage, total time the benchmarks re-
quire from start to completion, and the CPU usage (via

5

284 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

top) during the execution. To push our hint generation
and storage implementation to its limit, we have comple-
mented our kernel build and Apache benchmarks with
the file system benchmark bonnie++ [9]. Details can be
found in § 5.3.

Finally, we have explored the runtime impact of our
two solutions to the degenerating unstable tree problem.
In § 5.4, we show that both solutions lead to comparable
deduplication performances.

5.1 Benchmark Setup
We integrated XLH in Linux 3.4 and use QEMU [4]
with KVM—a popular virtualization environment—in
our benchmarks. KSM already provides data structures,
mechanisms and the linear scanning policy for memory
deduplication. We extended the Linux kernel by only
around 600 SLOC.

All benchmarks have been conducted on a PC with an
Intel i7 quad-core processor, 24 GiB RAM, and an SSD.
Ubuntu 11.04 served as the host and also as the guest OS.
Guests were assigned one VCPU each.

Unless specifically stated otherwise, we use the param-
eters in Table 1 for our benchmarks. The mapping of the
sleep-time between spurts and the number of slots in the
hint buffer are listed in Table 2. Intuitively, one would
need a larger hint buffer for longer wake-up intervals as
more hints aggregate between runs. Recall that XLH uses
the fixed size of the hint buffer for pruning outdated hints.

Parameter Value Description
scan run 1 Interleave each scan spurt. . .
hint runs 1 . . . with one hint spurt

pages to scan 100 # of pages to scan on wake-up
hash table size 256 K # of unstable hash slots

RAM size 512 MiB Size of virtual main memory

Table 1: Default settings in our various benchmarks.

sleep time 20 ms 100 ms 200 ms
stack size 40960 8192 4096

full scan time 44 s 220 s 440 s

Table 2: The mapping of sleep time and hint buffer slots
in our benchmarks. The time of a full scan cycle for two
VMs with 512 MiB each is also shown.

In our experiments, we first determine the maximum
available sharing opportunities without merging pages to
show how far from the optimum the different approaches
are. That is achieved with a kernel module comparable
to Exmap [5], which once per second dumps page table
information and page content digests. Then we re-run
the experiments with different configurations of KSM

and XLH. Internal information and statistics such as the
number of exploited sharing opportunities are directly
dumped from the deduplication code through sysfs.

5.2 Deduplication Effectiveness
The goal of XLH is to increase the memory density of
virtualized environments by identifying sharing oppor-
tunities more quickly. When equal pages are identified
earlier, the time that those pages are shared is extended.
Furthermore, new sharing opportunities can be detected
and shared which were previously not exploited due to
slow scan cycles.

The metric we use to compare XLH with the baseline
system KSM is the merge effectiveness at equal scan rates
and thus at equal load settings. We define the merge
effectiveness as the number of merged pages at a certain
point in time after starting the benchmark. A steeper rise
in those graphs indicates that more pages are merged in a
given time interval, which is a consequence of fewer pages
being checked before merging a page. A higher level in
those graphs indicates a greater amount of saved memory
and thus a better approach in terms of effectiveness.

In the following benchmarks, we compare XLH in
both implementation flavors, read-only tree (XLH RO)
and hash table (XLH HT), which have been described in
§ 4.4, with the KSM scanner in its vanilla implementation
(KSM) as well as with an improved KSM version that
marks the unstable tree read-only to mitigate unstable tree
degeneration (KSM RO).

Booting many VMs One of the main reasons to do
memory deduplication in a virtualization scenario is to
be able to quickly consolidate many VMs on a single
physical machine. TravisCI [22] spawns a new VM for
every compute job they run for customers. Jobs often
run shorter than 5 minutes, however. XLH performs par-
ticularly well when it comes to booting VMs as most of
the boot process consists of loading secondary storage
contents (programs, libraries) into main memory.

We have booted 25 VMs in parallel, starting 10 sec-
onds apart. When using XLH all VMs were fully booted
after 530 seconds using approximately 5 GiB of physical
memory. With KSM, the total boot time has been almost
exactly the same. However, up to this point KSM had
only merged 53% of the sharing opportunities that XLH
had had merged.

Kernel Build We have compiled the Linux kernel in
two VMs on the same host. Before performing the bench-
mark, we have fully booted the VMs and waited until the
static sharing opportunities were shared. The resulting
deduplication effectiveness for the kernel build at different
scan rates is depicted in Figure 6.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 285

100 MiB

200 MiB

300 MiB

400 MiB

500 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

20 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

300 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

100 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

200 ms wake-up time

XLH HT
XLH RO

KSM
KSM RO

Figure 6: Kernel build merge performance with varying
wake-up times. The first two graphs also show the maxi-
mum sharing opportunities.

In this benchmark, our extension always performs sig-
nificantly better than KSM. For a short wake-up interval
of 20 ms XLH shares almost all available sharing oppor-
tunities. Even with those very aggressive settings, where
KSM occupies about 70% of a CPU core for its scan pro-
cess, XLH can merge 2x to 5x as many pages as KSM.
Both KSM and XLH are currently not multi-threaded and
thus limited by the speed of a single CPU core. For longer
wake-up intervals XLH also deduplicates 2x to 3x more
effectively. In this benchmark, XLH even deduplicates
more effectively than KSM if it scans 5 times slower
(Figure 7).

The following numbers are taken from the 20 ms bench-
mark: XLH detects and shares almost 10 times as many
new sharing opportunities in total (172000 vs. 17500).
When considering the sharing opportunities that both sys-
tems detect, XLH detects those opportunities 243 seconds
earlier (median) than KSM. The histogram of the time

100 MiB

200 MiB

300 MiB

400 MiB

500 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

Opportunities
XLH HT (100 ms)

KSM (20 ms)

Figure 7: XLH performs constantly better than KSM in
the kernel build even if the scan rate is 5x lower.

that pages remain shared while running the benchmark
(Figure 8) shows that we can find many additional, short-
lived sharing opportunities that KSM is not capable of
detecting.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Interval in Minutes

XLH HT
KSM

Figure 8: Histogram depicting the time. Sharing opportu-
nities stay shared throughout the kernel-build benchmark.

Apache We have set up an Apache web server to serve
random files in each one of two VMs. One httperf instance
per server requests files in a predefined order.

The request order cannot be randomized directly in
httperf. To make this benchmark less deterministic than
the previous kernel build, we emulate random access pat-
terns by statically shuffling the file names of the generated,
served files in the servers. This way, when httperf accesses
the same file name on both instances, different files will be
returned; files with the same content will in consequence
be returned at different times in the benchmark.

The total size of the served files exceeds the size of the
page cache in each VM. Yet, parts of the guests’ page
caches overlap and therefore sharing opportunities exist
even though file accesses are random.

We have configured httperf to establish 24000 con-
nections per VM and to request 20 objects per second
through each one of the connections from the Apache
web servers. The merge performance of different scan
rate configurations can be found in Figure 9.

When XLH cannot keep up with processing the stream
of requests and constantly drops hints, our effectiveness
is lowered significantly. XLH needs to process matching
hints from both virtual machines in order to merge the

7

286 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

20 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

100 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

200 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

Figure 9: Apache/httperf merge performance.

two pages. Dropping one of the potential merge partners
is enough to make the deduplication dependent on the
linear scanner to find the other page in time. The effect
of dropped hints can be easily seen when reducing the
request rate. If XLH can process most of the hints, we get
almost perfect results for all three scan rates (Figure 10).
In this benchmark we have scaled the number of requests
per second down to 1/4 of the original setting for 100 ms
wakeup time and to 1/8 for 200 ms wakeup time.

Just like in the kernel benchmark, almost 10 times as
many new sharing opportunities are detected and shared
in the full-speed 20 ms benchmark (242233 vs. 22012).
In this scenario, XLH detects those sharing opportuni-
ties 215 seconds earlier than KSM in the median. The
histogram of the time that pages remain shared while
running the benchmark is depicted in Figure 11.

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

20 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

100 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

200 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

Figure 10: Apache/httperf merge performance with scaled
request rates: No hints are dropped in these benchmarks.

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Interval in Minutes

XLH HT
KSM

Figure 11: Histogram depicting the time, sharing oppor-
tunities stay shared throughout the apache benchmark.

Mixing Scenarios We have also run a benchmark in
which both previously described benchmarks were exe-
cuted at the same time. One VM was compiling the kernel
while the other one was serving files with Apache.

In our benchmarks we can see a draw between vanilla
KSM and XLH when mixing benchmarks (Figure 12).

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 287

That also reflects in the total number of sharing oppor-
tunities detected. XLH merges only 11% more sharing
opportunities than KSM in the 20 ms benchmark (19483
vs. 17573). Theoretically however, KSM may be as much
as twice as good as XLH with an interleaving ratio of 1:1
in case of completely useless hints. We have not encoun-
tered such results, though. In such a case, the user of the
system may fine tune XLH through the interleaving ratio
to mitigate this effect. Moreover, in cloud computing
environments such as Amazon EC2, the provider may
colocate VMs with similar memory footprints. Although
the total number of shared pages is comparable, XLH
merges pages 110 seconds earlier in the median. The his-
tograms of XLH’s and KSM’s sharing time look similar
in this benchmark (Figure 13).

100 MiB

125 MiB

150 MiB

175 MiB

 0 120 240 360 480 600 720 840 960D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

XLH RO (20ms)
XLH RO (100ms)

KSM RO (20 ms)
KSM RO (100 ms)

Figure 12: Merge performance with mixed workloads.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Interval in Minutes

XLH HT
KSM

Figure 13: Histogram depicting the time, sharing oppor-
tunities stay shared throughout the mixed benchmark.

5.3 Deduplication Efficiency

XLH does not trade memory bandwidth and CPU cycles
for the gained effectiveness; KSM can already do this
within limits if set to scan aggressively.

Total Runtime Overhead The runtime variation be-
tween XLH and the default KSM was below 1% in our
kernel build and Apache experiments. That is also true
for the throughput that we have measured with httperf. To
support the claim that XLH does not increase the system’s
load further than KSM with equal scan rates, we have mea-
sured the CPU consumption of the scanner thread when
building the Linux kernel (Table 3).

Approach 20 ms 100 ms 200 ms
XLH HT 67.05% 33.61% 16.94%
XLH RO 66.19% 34.13% 16.17%
KSM 68.75% 27.47% 16.32%
KSM RO 68.92% 28.12% 17.52%
Average 67.72% 30.83% 16.74%

Table 3: CPU consumption: mean calculated from top

measurements taken every second.

We do not raise the effectiveness by doing more work,
but by making smarter choices for when and where to
invest duty cycles. That can also be clearly seen when we
compare the number of pages that XLH needs to check
until it finds a sharing candidate. In the kernel build
scenario XLH needs to visit 2-5 pages until it finds a
sharing candidate while the linear scan needs to visit 18-
260 pages. In the Apache scenario XLH visits between
4-8 pages to find a sharing opportunity while KSM visits
16-30 pages.

Memory-Scanning Overhead XLH needs additional
memory for the hint buffer, which contains an 8-byte
pointer for each slot and locks to serialize accesses. Most
of XLH’s work is amortized by the fact that it does it in
the place of an equally costly operation of KSM. A lookup
in the stable or unstable tree costs the same whether it was
triggered by a hint or by a periodic scan. Additional CPU
cycles are needed by our hinting mechanism for storing
and retrieving hints and for marking hinted pages read-
only. Storing and retrieving hints is very cheap (O(1)).

We have confirmed that neither the VFS-based hint
trigger nor the hint buffer is a bottleneck by stress-testing
this particular subsystem via the bonnie++ [9] file system
benchmark. Figure 14 shows that the disk throughput of
our enterprise class SSD does not vary significantly when
choosing XLH over KSM.

480

500

520

540

T
h
ro

u
g
h
p
u
t

[M
/s

ec
]

Scan-Rate [ms]

Bonnie++ - Sequential Input Block - Throughput

20 100 200

XLH HT
XLH RO

KSM
KSM RO

Figure 14: Disk throughput in 30 bonnie++ runs. The
error-bars show the .05 and .95 percentiles.

9

288 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

5.4 The Unstable Tree’s Stability
KSM only inserts pages into the unstable tree if their hash
value has not changed since the last pass, whereas XLH
inserts hinted pages immediately. We have examined how
much this affects the stability of the unstable tree and the
overall memory deduplication performance.

A good metric for the stability of the tree is the ratio
between the number of nodes in the tree and the number
of nodes that can be found when searching for each node
in the tree. If a page cannot be found, it cannot be merged.
Instead, it is inserted again—this time in another place
(Figure 5). The percentage of reachable pages in the
unstable tree for the kernel build benchmark after a full
scan cycle is shown in Table 4.

Vanilla KSM Hints (all RW) Hints (hints RO)
33.6% - 53.0% 10.0% 98.9%

Table 4: Percentage of the unstable tree that is reachable
at the end of a scan cycle.

We have found that pages that are part of the page
cache are the ones that are most likely to change among
all pages in the unstable tree. That happens when a page
cache pages is written back, evicted, and replaced by
another file’s page in the guest.

Using I/O-based hints, pages from the page cache are
inserted into the unstable tree earlier than other pages.
That way, they have more time to degenerate the unstable
tree, an unwelcome side effect. To mitigate this effect, we
implemented two strategies:

Marking the Unstable Tree Read-Only One possible
strategy to keep the unstable tree from degenerating is to
mark pages that are inserted through a hint to be read-only.
To show that XLH marks the “right” pages read-only and
leaves the ones that do not degenerate the unstable tree
read-write, we have run a benchmark where our hinting
mechanism is active and all pages are unconditionally
marked read-only when they are inserted into the unsta-
ble tree. Furthermore, we have added a modified KSM
version without hinting that also marks all pages that are
inserted into the unstable tree read-only. This effectively
keeps the tree from degenerating altogether—all nodes
are always reachable. The resulting deduplication perfor-
mances are depicted in Figure 15.

In the long run, deduplication ratios depend on the qual-
ity of the unstable tree. If it degenerates, the effectiveness
of KSM drops drastically. We get much higher dedupli-
cation ratios when XLH marks all items in the unstable
tree read-only. However, there is not much benefit in also
trapping updates of pages that were added to the unstable
tree by scanning. Not marking pages read-only at all does
damage the tree.

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

 0 60 120 180 240 300 360 420 480 540 600

D
et

ec
te

d
 S

h
ar

in
g

 O
p

p
o

rt
u

n
it

ie
s

Time [s]

KSM (RW)
KSM (RO)
XLH (RW)

 XLH (only hints RO)
XLH (RO)

Figure 15: The merge performance depends heavily on
the stability of the unstable tree and the temporal locality
of unstable tree accesses.

Replacing Unstable Tree with a Hash Table Hash ta-
bles, as used in ESX [25], are a suitable choice to deal
with unstable pages without the need for marking pages
read-only or pruning degenerated data.

As KSM already calculates page hashes when scanning
for duplicates, using a page hash as index into the hash
table does not incur an extra cost. However, in contrast to
the unstable tree, the hash table cannot easily be resized
and thus does not scale well when the number of pages to
monitor for redundant data changes frequently and to a
large extent.

The performance depends highly on tuning the param-
eters to the workload at hand: If the hash table has many
fewer entries than the number of pages in the system, then
lookups become expensive due to chaining. That is also
the case in workloads that generate many pages with col-
liding hash values. Yet, we observed in our benchmarks
that the hash table approach performs as well or even
better than using a read-only unstable tree when tuned
to good values. We have used a hash table size of 256K
entries in our various benchmarks throughout the paper.

5.5 Concluding Remarks
We have shown that XLH is able to quickly deduplicate
the memory of newly booted VMs, which is especially
beneficial when sandboxing short-running jobs or migrat-
ing many VMs at once. We have further demonstrated
XLH’s superior merging effectiveness compared to con-
ventional linear memory scanners. XLH is capable of
freeing up to 5x more memory than KSM by exploiting
short-lived sharing opportunities, thereby finding 10x as
many pages with equal contents. Moreover, XHL merges
sharing opportunities 2-4 minutes earlier and thus lever-
ages existing sharing potential. We have also evaluated
XHL in an unfavorable scenario and found that it did not
worsen the sharing performance compared to KSM. We
also found XLH’s influence on workload run-time and
I/O throughput to be negligible.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 289

6 Related Work

Virtual memory allows mapping different address space
regions to the same region in physical memory. The
underlying mapping mechanism can be used to establish
communication and to allow coordination. Mapping can
also reduce the memory footprint of processes and VMs
by sharing memory regions of identical content. XLH is
a novel approach to identify pages of same content.

6.1 Sharing of Cloned Content

In traditional systems, memory is shared between pro-
cesses on two occasions: first, when the user explicitly
requests shared memory through system calls and sec-
ond, implicitly through copy-on-write (COW) semantics,
when using process forking or memory-mapped files. In
the latter case, memory pages are shared that point to the
same file control block (i.e., an inode). When a file is
copied, a new control block is created, which points to a
copy of the same content. Due to referencing a different
control block, accessing this copy via memory-mapped
files will lead to redundant data in main memory even
if the duplicated disk blocks are later merged via block-
layer deduplication. Thus, using memory-mapped files to
deduplicate memory among different VMs is not possible,
as VMs generally do not share the same file system, but
run from separate virtual disk image (VDI) files. Our
approach, in contrast, is capable of deduplicating equal
memory pages originating from different files and even
different memory sources.

When a process is duplicated via forking, the parent’s
and child’s entire address spaces are shared using COW. If
either process writes to a page afterwards, the sharing of
the target page is broken up. Android’s Cygote uses this
property to share the Dalvik VM and the core libraries
among all processes [20]. This initial cloning has also
been used to share whole guest operating systems [15, 24].
The COW semantic only allows sharing pages that already
existed before a process or VM has been forked. Our
approach exploits the full sharing potential because it also
deduplicates equal pages that are created at run time, after
forking.

6.2 Paravirtualization

An established approach to find duplicate main memory
pages that stem from background storage is the instru-
mentation of guest operating systems with the goal to
explicitly track changes. (Cellular) Disco’s transparent
page sharing uses a deduplicating COW-disk to identify
file blocks that can be mapped to the same page in main
memory due to equal content. It also hooks calls such as
bcopy to keep track of shared content [6, 11].

The Xen [2] based Satori [18] seizes this suggestion
and uses paravirtualized smart virtual disks to infer the
sharing opportunities that stem from background storage.

Collaborative memory management (CMM) [21] uses
paravirtualized Linux guests to share usage semantics of
the guests’ virtual memory system with the hypervisor.
Its focus lies on determining the working set size of the
guests, especially by telling the hypervisor which guest
pages are unused and can thus be dropped. CMM was
implemented for the IBM System zSeries.

XenFS [26] is a prototype for a file system that is shared
between VMs and makes it possible to share caches and
COW named page mappings across VMs. Two differ-
ent approaches to shared page caches are Transcendent
Memory [16, 17] and XHive [13]. Transcendent Memory
provides a key-value store that can be used by guests to
cache I/O requests in the hypervisor. XHive practically
implements swapping to the hypervisor (i.e., move pages
from the guest to the host). It gives pages that are used
by multiple VMs a better chance to reside in memory, but
outside of the VM’s quota.

All techniques in this paragraph use paravirtualization
techniques. They need to modify the guest to work. Our
approach in turn works without such modifications and
even works with non-VM processes.

6.3 Memory Scanning

The technique of periodically scanning main memory
pages for equal content and then transparently merging
those pages to share them in a COW manner was first in-
troduced in VMware’s ESX Server [25]. Linux also uses
this technique under the name Kernel Samepage Merging
(KSM) to increase the memory density of VMs [1]. ESX
is dedicated to running VMs and thus may use memory
scanning on all memory pages while KSM only scans
pages that have been advised to be good sharing candi-
dates through the madvise system call.

The KSM and ESX content-based page sharing ap-
proaches differ mainly in the way they catalog scanned
pages: ESX calculates a hash value for every page when
scanning and stores these values in a hint table. When a
match is found in the hint table, ESX first re-calculates
the hash value of the previously inserted page to check
whether the content has changed since the last calculation.
If not, the pages are compared bit-by-bit to rule out a
hash-collision. Then, equal pages are merged, and their
hash value is inserted into another table, the shared table.

KSM also calculates hash values, but only to check
whether a page has changed between scan rounds. It
does not use those hash values to infer equality between
pages. All pages that have not changed between rounds
are inserted into a tree (the full page, not the hash value);
duplicates are found on insertion (see Section 3).

11

290 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

The general trade-off that is involved when using mem-
ory scanners is CPU utilization and memory bandwidth
versus the time in which deduplication targets are identi-
fied. KSM and ESX both have a variable scan rate which
is configured through setting sleep times and a number of
pages that are scanned on every wake-up. Both KSM and
ESX suggest scan rates that are fast enough to merge long-
lived sharing opportunities with little overhead. However,
the current implementations are not well suited to find
short-lived sharing opportunities [7].

ESX scans pages in random order, while KSM scans
linearly in rounds. Although the original ESX paper [25]
states that it could be beneficial to define a heuristic for the
scan order, neither KSM nor ESX propose a well suited
policy to find sharing candidates more quickly. XLH is
such a suggestion.

Pages with similar content can be shared to a great
extend through storing compressed patches which are
applied on access page faults. Such approaches like Dif-
ference Engine [12] could be combined with XLH to
identify good candidates for sub-page sharing.

7 Conclusion

When it comes to consolidating many virtual machines
on a single physical machine, the primary bottleneck is
the main memory capacity. Previous work has shown that
the memory footprint of virtual machines can be reduced
significantly by merging equal pages. Identifying those
pages can be achieved through scanning for equal contents
in the host.

We have demonstrated that memory deduplication scan-
ners can be improved significantly when informing the
scanner of recently modified memory pages. XLH im-
plements this idea by telling KSM about I/O operations.
KSM then processes these pages preferably to deliver
superior performance compared to linear scanning.

We have discussed various challenges, such as I/O
bursts and degenerating data structures in KSM, and de-
scribed design alternatives. Our evaluation shows that
I/O-based hints can increase the effectiveness of mem-
ory scanners significantly without raising the overhead
imposed by the scanner. XLH finds more sharing oppor-
tunities than KSM and detects them earlier by minutes.
Thereby XLH exploits sharing opportunities within and
across virtual machines that were not detectable by linear
scanners before.

We believe that XLH is already beneficial for a variety
of use cases as it is. Therefore, we intend to release our
Linux kernel extension soon. We plan to closely analyze
memory duplication properties of NUMA architectures
to identify good deduplication policies for such systems
in the future.

References
[1] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing mem-

ory density by using KSM. In Linux Symposium 2009.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., ET AL. Xen and the
art of virtualization. SOSP 2003.

[3] BARKER, S., ET AL. An empirical study of memory sharing in
virtual machines. In USENIX ATC 2012.

[4] BELLARD, F. Qemu, a fast and portable dynamic translator. ATEC
2005.

[5] BERTHELS, J. Exmap memory analysis tool. http://www.

berthels.co.uk/exmap/, 2006.

[6] BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM,
M. Disco: running commodity operating systems on scalable
multiprocessors. Transactions on Computer Systems 1997.

[7] CHANG, C.-R., ET AL. An empirical study on memory sharing
of virtual machines for server consolidation. ISPA 2011.

[8] CHEN, P. M., AND NOBLE, B. D. When virtual is better than
real. In HotOS 2001.

[9] COKER, R. The bonnie++ benchmark. http://www.coker.

com.au/bonnie++/, 1999.

[10] EIDUS, I. How to use the kernel samepage merging feature, 2009.
Documentation/vm/ksm.txt in Linux Kernel v3.0.

[11] GOVIL, K., TEODOSIU, D., HUANG, Y., AND ROSENBLUM,
M. Cellular disco: resource management using virtual clusters on
shared-memory multiprocessors. SOSP 1999.

[12] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., ET AL. Differ-
ence engine: harnessing memory redundancy in virtual machines.
Communications of the ACM 2010 Volume 53.

[13] KIM, H., JO, H., AND LEE, J. Xhive: Efficient cooperative
caching for virtual machines. Trans. on Computer Science 2011.

[14] KLOSTER, J. F., KRISTENSEN, J., AND MEJLHOLM, A. De-
termining the use of Interdomain Shareable Pages using Kernel
Introspection. Tech. rep., Aalborg University, 2007.

[15] LAGAR-CAVILLA, H. A., ET AL. Snowflock: rapid virtual ma-
chine cloning for cloud computing. EuroSys 2009.

[16] MAGENHEIMER, D., MASON, C., ET AL. Transcendent Memory
and Linux. In Linux Symposium 2009.

[17] MAGENHEIMER, D., MASON, C., MCCRACKEN, D., AND
HACKEL, K. Paravirtualized paging. WIOV 2008.

[18] MIŁÓS, G., MURRAY, D. G., HAND, S., AND FETTERMAN,
M. A. Satori: Enlightened page sharing. In USENIX ATC 2009.

[19] MOSBERGER, D., AND JIN, T. httperf - a tool for measuring web
server performance. SIGMETRICS Perf. Eval. Review 1998.

[20] PATRICK BRADY. Anatomy & Physiology of an Android. In
Google I/O Developer Conference 2008.

[21] SCWIDEFSKY, M., ET AL. Collaborative memory management in
hosted linux environments. In Linux Symposium 2006.

[22] TRAVISCI COMMUNITY. TravisCI: continuous integration ser-
vice. https://travis-ci.org/, 2012.

[23] VMWARE, INC. ESX Server 3.0.1 Resource Management Guide,
2011.

[24] VRABLE, M., MA, J., CHEN, J., ET AL. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. SOSP 2005.

[25] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. SIGOPS Operating System Review 2002.

[26] WILLIAMSON, MARK. Xen Wiki: XenFS. http://wiki.

xensource.com/xenwiki/XenFS, 2007.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 291

Enabling OS Research by Inferring Interactions
in the Black-Box GPU Stack∗

Konstantinos Menychtas Kai Shen Michael L. Scott
Department of Computer Science, University of Rochester

Abstract
General-purpose GPUs now account for substantial

computing power on many platforms, but the manage-
ment of GPU resources—cycles, memory, bandwidth—
is frequently hidden in black-box libraries, drivers, and
devices, outside the control of mainstream OS kernels.
We believe that this situation is untenable, and that ven-
dors will eventually expose sufficient information about
cross-black-box interactions to enable whole-system re-
source management. In the meantime, we want to enable
research into what that management should look like.

We systematize, in this paper, a methodology to un-
cover the interactions within black-box GPU stacks. The
product of this methodology is a state machine that
captures interactions as transitions among semantically
meaningful states. The uncovered semantics can be of
significant help in understanding and tuning application
performance. More importantly, they allow the OS ker-
nel to intercept—and act upon—the initiation and com-
pletion of arbitrary GPU requests, affording it full con-
trol over scheduling and other resource management.
While insufficiently robust for production use, our tools
open whole new fields of exploration to researchers out-
side the GPU vendor labs.

1 Introduction
With hardware advances and the spread of program-

ming systems like CUDA and OpenCL, GPUs have be-
come a precious system resource, with a major impact
on the power and performance of modern systems. In
today’s typical GPU architecture (Figure 1), the GPU
device, driver, and user-level library are all vendor-
provided black boxes. All that is open and documented is
the high-level programming model, the library interface
to programs, and some architectural characteristics use-
ful for high-level programming and performance tuning.

For the sake of minimal overhead on very low latency
GPU requests, the user-level library frequently com-
municates directly with the device (in both directions)
through memory-mapped buffers and registers, bypass-
ing the OS kernel entirely. A buggy or malicious appli-

∗This work was supported in part by the National Science Founda-
tion under grants CCF-0937571, CCR-0963759, CCF-1116055, CNS-
1116109, CNS-1217372, and CNS-1239423, as well as a Google Re-
search Award.

BUS

Application-Library interface

Hardware-Software interface

User-Kernel interface

driver driver

driver

Figure 1: The GPU software / hardware architecture,
with notes on interfaces and components. Gray areas in-
dicate open system / application components while black
areas indicate black-box components without published
specifications or behaviors.

cation can easily obtain an unfair share of GPU resources
(cycles, memory, and bandwidth). With no control over
such basic functions as GPU scheduling, the kernel has
no way to coordinate GPU activity with other aspects of
resource management in pursuit of system-wide objec-
tives. Application programmers, likewise, are seldom
able to reason about—much less correct—performance
anomalies due to contention or other interactions among
the GPU requests of concurrently running applications.1

When GPUs were of limited programmability, and ev-
ery request completed in a small, bounded amount of
time, kernel control and performance transparency were
much less important. As GPUs and other accelerators be-
come more and more central to general-purpose comput-
ing, affecting thus whole-system resource management
objectives, protected OS-level resource management will
inevitably become a pressing need. To satisfy this need,
the kernel must be able to identify and delay GPU re-
quest submissions, and tell when requests complete. A
clean interface to expose this information need not com-
promise either proprietary technology or backward com-
patibility, and will hopefully be provided by vendors in
the near future.

1We use the term request to refer to a set of operations that run with-
out interruption on the GPU— typically a GPU-accelerated compute or
shader function, or a DMA request.

292 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

In anticipation of a future in which production systems
manage GPUs and other accelerators as first-class com-
putational resources, we wish to enable research with ex-
isting black-box stacks. Toward that end, we present a
systematic methodology to uncover the same (limited)
information about black-box interactions that vendors
will eventually need to reveal. This includes the ioctl

and mmap calls used to allocate and map buffers, the lay-
out of command queues in memory shared between the
library and the device, and, within that memory, the lo-
cations of device registers used to trigger GPU activity
and of flags that announce request completion. While
our inference is unlikely to be robust enough for produc-
tion use, it provides a powerful tool for OS researchers
exploring the field of GPU management.

Our work has clear parallels in white and gray-box
projects, where vendors have supported certain free and
open-source software (FOSS) (e.g., Intel contributes to
the FOSS graphics stack used in GNU/Linux), or the
FOSS community has exhaustively uncovered and re-
built the entire stack. Projects such as Nouveau for
Nvidia devices have proven successful and stable enough
to become part of the mainline Linux kernel, and their
developed expertise has proven invaluable to our initial
efforts at reverse engineering. Our goal, however, is dif-
ferent: rather than develop a completely open stack for
production use—which could require running a genera-
tion or two behind—we aim to model the black-box stack
as a state machine that captures only as much as we need
to know to manage interactions with the rest of the sys-
tem. This machine can then be used with either FOSS or
proprietary libraries and drivers. Compatibility with the
latter allows us, in a research setting, to track the cutting
edge of advancing technologies.

Previous work on GPU scheduling, including
GERM [5], TimeGraph [11], and Gdev [12], has worked
primarily with FOSS libraries and drivers. Our goal
is to enable comparable OS-kernel management of
black-box GPU stacks. PTask [13] proposes a dataflow
programming model that re-envisions the entire stack,
eliminating direct communication between the library
and device, and building new functionality above the
binary driver. Pegasus [9] and Elliott and Anderson [6]
introduce new (non-standard) system interfaces that
depend on application adoption. By contrast, we
keep the standard system architecture, but uncover the
information necessary for OS control.

2 Learning Black-Box Interactions
Our inference has three steps: (a) collect detailed

traces of events as they occur across all interfaces; (b)
automatically infer a state machine that describes these
traces, and that focuses our attention on key structure
(loops in particular); (c) manually post-process the ma-

chine to merge states where appropriate, and to identify
transitions of semantic importance. We describe the first
two steps below; the third is discussed in Section 3.

Trace Collection We collect traces at all relevant
black-box interfaces (Figure 1). The application / library
interface is defined by library calls with standardized
APIs (e.g., OpenCL). The library / driver interface com-
prises a set of system calls, including open, read,
write, ioctl, and mmap. The driver / kernel interface is
also visible from the hosting operating system, with calls
to allocate, track, release, memory-map and lock in ker-
nel (pin) virtual memory areas. For the driver / hardware
interface, we must intercept reads and writes of memory-
mapped bus addresses, as well as GPU-raised interrupts.

We collect user- and kernel-level events, together with
their arguments, and merge them, synchronously and in
(near) order, into a unified kernel trace. Using DLL redi-
rection, we insert a system call to enable kernel log-
ging of each library API call. To capture memory ac-
cesses, we invalidate the pages of all virtual memory ar-
eas mapped during a tracked application’s lifetime so that
any access to an address in their range will trigger a page
fault. Custom page fault handlers then log and reissue ac-
cesses. We employ the Linux Trace Toolkit (LTTng) [4]
to record, buffer, and output the collected event traces.

For the purposes of OS-level resource management, it
is sufficient to capture black-box interactions that stem
from a GPU library call. Events inside the black boxes
(e.g., loads and stores of GPU memory by GPU cores,
or driver-initiated DMA during device initialization) can
safely be ignored.

Automatic State Machine Inference If we consider
the events that constitute each trace as letters from a fixed
vocabulary, then each trace can be considered as a word
of an unknown language. Thus, uncovering the GPU
state machine is equivalent to inferring the language that
produced these words—samples of event sequences from
realistic GPU executions. We assume that the language is
regular, and that the desired machine is a finite automa-
ton (DFA). This assumption works well in our context
for at least three reasons:

1. Automatic DFA inference requires no prior knowl-
edge of the semantics of the traced events. For instance,
it distinguishes ioctl calls with different identifiers as
unique symbols but it does not need to know the semantic
meaning of each identifier.

2. The GPU black-box interaction patterns that we are
trying to uncover are part of an artificial “machine,” cre-
ated by GPU vendors using standard programming tools.
We expect the emerging interactions to be well described
by a finite-state machine.

3. The state machine provides a precise, succinct ab-
straction of the black-box interactions that can be used to

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 293

Event type Meaning
ioctl:0x?? ioctl request : unique hex id
map:[pin|reg|fb|sys] mmap : address space
R:[pin|reg|fb|sys] read : address space
W:[pin|reg|fb|sys] write : address space
pin locked (pinned) pages
reg GPU register area
fb GPU frame buffer
sys kernel (system) pages

Table 1: Event types and (for map, R, and W) associated
address spaces constitute the alphabet of the regular lan-
guage / GPU state machine we are trying to infer.

drive OS-level resource management. It provides a nat-
ural framework in which vendors might describe inter-
black-box interactions without necessarily disclosing in-
ternal black-box semantics.

In the GPU state machine we aim to uncover, each
transition (edge between two adjacent states) is labeled
with a single event (or event type) drawn from an event
set (or alphabet of the corresponding language). In prac-
tice, we have discovered that bigger alphabets for state
transition events lead to larger and harder to comprehend
state machines. We therefore pre-filter our traces to re-
move any detail that we expect, a priori, is unlikely to
be needed. Specifically, we (a) elide the user-level API
calls, many of which are handled entirely within the li-
brary; (b) replace memory addresses with the areas to
which they are known to belong (e.g., registers, GPU
frame buffer, system memory); and (c) elide ioctl pa-
rameters other than a unique hex id. This leaves us with
the four basic event types shown in Table 1.

Given a set of pre-filtered traces, each of which repre-
sents the execution of the target GPU system on a given
program and input, a trivial (“canonical”) machine would
have a single start state and a separate long chain of states
for each trace, with a transition for every event. This
machine, of course, is no easier to understand than the
traces themselves. We wish to merge semantically equiv-
alent states so that the resulting machine is amenable to
human understanding and abstraction of interaction pat-
terns. Note that our goal is not to identify the small-
est machine that accepts the input event samples—the
single-state machine that accepts everything fits this goal
but it does not illustrate anything useful. So we must also
be careful to avoid over-merging.

State machine reduction is a classic problem that dates
from the 1950s [8], and has been studied in various forms
over the years [2, 3, 7]. The problem is also related to
state reduction for Hidden Markov Models [14]. Several
past approaches provide heuristics that can be used to
merge the states of the canonical machine. State merging
in Hidden Markov Models, however, is more applicable
to the modeling of (imprecise, probabilistic) natural phe-

nomena than to capturing the DFA of a (precise) artificial
system. Some reduction techniques target restricted do-
mains (like the reversible languages of Angluin [2]); the
applicability of these is hard to assess.

After reviewing the alternatives, we found Biermann
and Feldman’s k-tail state merging method [3] to be in-
tuitive and easy to realize. Under this method, we merge
states from which the sets of acceptable length-k-or-
shorter event strings are the same. That is, when looking
“downstream” from two particular states, if the sets of
possible event strings (up to length k) in their upcoming
transitions are exactly the same, then these two states are
considered semantically equivalent and are merged. We
make the following adaptations in our work:

• In theory, Biermann and Feldman’s original ap-
proach can capture the precise machine if one exists.
However, this guarantee [3, Theorem 5] requires an in-
feasible amount of trace data—exponential in the min-
imum string length that can distinguish two arbitrary
states. We apply k-tail state merging on the canonical
machine produced from a limited number of event sam-
ples, which can be easily collected. Our goal is not to
fully automate precise inference, but rather to guide hu-
man understanding—to identify the transitions of impor-
tance for scheduling and other resource management.

• Our limited-sample k-tail state merging typically
leaves us with a non-deterministic machine (multiple
transitions on a given event from a given state). We
perform additional state merging to produce a determin-
istic machine. Specifically, we repeatedly merge states
that are reached from a common preceding state with the
same transition event.

• As shown in Figure 2, larger ks yield larger ma-
chines. Intuitively, this happens because of more cau-
tious state merging: the farther we look ahead, the harder
it is to find states with exactly the same sets of upcom-
ing event strings. If k is too large, the resulting machine
will have too many states to guide human discovery of
interaction patterns. If k is too small, we will merge too
many states, leading to a loss of useful semantic infor-
mation. To balance these factors, we choose a k that is
in both a size plateau (the number of nodes in the graph
does not change with small changes in k) and a node-
complexity plateau (the number of nodes with in-degree
or out-degree larger than 1 does not change). We avoid
extreme values of k, favoring machines that are neither
trivial nor unnecessarily complex. We also exploit the
assumption that repetitive API-level commands should
manifest as small cycles; we pick the smallest nontrivial
machine in which such cycles appear.

294 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0 20 40 60 80 1000

200

400

600

800

1000

1200

1400

k

N
um

be
r o

f s
ta

te
s

in
 m

ac
hi

ne
Nvidia NVS295
Nvidia GTX275
Nvidia GTX670

Figure 2: Sizes of state machines inferred by k-tail state
merging for different values of k on three GPU devices.

3 State Machine Case Study
We have applied the techniques described in Sec-

tion 2 on a system with an Intel Xeon E5520 “Ne-
halem” CPU and three Nvidia GPUs: (a) the NVS295,
with a G98 chip core (CUDA 1.1 capability), (b) the
GTX275, with a G200b chip core (CUDA 1.3 capability,
“Telsa” micro-architecture), and (c) the GTX670, with a
GK104 chip core (CUDA 3.0 capability, “Kepler” micro-
architecture). We used a stock 3.4.7 Linux kernel and the
Nvidia 310.14 driver and related libraries (CUDA 5.0,
OpenCL 1.1 and OpenGL 4.2).

As input to our k-tail state merging, we used a col-
lection of 5 traces of 4 to 9 thousand events, captured
from running parameterized microbenchmarks. The mi-
crobenchmarks allow us to vary the numbers of con-
texts (GPU-accessible address spaces, analogous to CPU
processes) and command queues (in-memory buffers
through which requests are passed to the GPU); the num-
bers and types of requests; and the complexity of those
requests (i.e., how long they occupy the GPU). The in-
ferred state machines varied not only with k (Figure 2),
but also with the model of GPU, even with the same soft-
ware stack. Guided by the process described in Section 2,
we ended up choosing k=35 for the NVS295, k=37 for
the GTX275 and k=20 for the GTX670. As the earli-
est technology, the NVS295 is easiest to describe; we
present it below.

Understanding Inferred DFAs Figure 3 presents the
automatically inferred DFA for the NVS295 GPU for
k=35; for k=34 short loops (e.g. nodes 159, 177, 178)
disappear in favor of longer straight paths, while for
smaller/larger ks, the graph becomes either too trivial or
too complex to carry useful information. The seman-
tics of each state are not yet clear; standard reverse-
engineering techniques can help us attach meaning to
both the states and the transitions by utilizing previously
elided trace details. By guiding our attention to a hand-

0

1

89

90

91

124

125

126

239

248

127

141

142

143

144
146

154

155

145

157

158

159

160

176

177

179
184

219

168

169

170

171

172

175

178

183

195

196

203

204

205

208

209

210

212

213

214

218
156

221

222

227

223

226

229

230

235

231

233

234

237

238

ioctl:0x2a

...

ioctl:0x2a ...

ioctl:0x2a

ioctl:0x2a

ioctl:0x4d

...

ioctl:0x2a

...

ioctl:0x4a

R:pin

ioctl:0x4e

map:sys

ioctl:0x57

...

ioctl:0x2b

R:pin

ioctl:0x2b

ioctl:0x4a

R:pin

ioctl:0x4a

ioctl:0x59
ioctl:0x2a ioctl:0x4a

ioctl:0x4d ioctl:0xce

umap:sys... R:pin

ioctl:0x57

...
...

...R:pin

map:pin

ioctl:0x57

R:pin

W:pin

...

ioctl:0x4a

W:reg

W:sys

ioctl:0x2a W:reg

...

ioctl:0x4a

R:pin

ioctl:0x4e

...

ioctl:0x27
R:pin

map:pin

...

ioctl:0x4a

R:pin
ioctl:0x4e

...

ioctl:0x57ioctl:0x2b

umap:sys

umap:reg

...

...

umap:pin
umap:sys

umap:reg

...

...

umap:sys

umap:reg

ioctl:0x57

ioctl:0x57

ioctl:0x34

ioctl:0x37

unmap:pin

unmap:sys

ioctl:0x27

ioctl:0x4a

ioctl:0x27

Figure 3: Inferred state machine of Nvidia NVS295 for
k=35. Node “temperature” indicates frequency of oc-
currence. For clarity, some straight-line paths have been
collapsed to a single edge (event id “. . . ”).

ful of states, and thus events in the trace, the inferred
state-machine simplifies significantly the manual effort
involved in this step. For example, we discovered that
interrupts appear, in the general case, to occur at unpre-
dictable times with respect to other events, and can be
discarded.2

Identifying the start (0) and end nodes (234, 238) of
the DFA in Figure 3 is trivial. The first ioctl event after
node 0, with id 0x2a, should be associated with the con-
text setup process (CREATE), but is not unique to this
phase. We employ previously suppressed ioctl argu-
ments to uncover unique identifiers that act as invariants
appearing only at or after setup. Unmapping events ap-
pearing in the graph’s exit path (DESTROY) can be asso-
ciated with previously established mapping calls through
their arguments (map(0xDEAD) �= unmap(0xBEEF)).
Realizing that important mappings have been setup or
destroyed, allows us to expect (or stop waiting for) new
GPU access requests.

The “epicenter” of the graph of Figure 3 is clearly
node 159, so we focus on cycles around it. Since
our traces can create and setup multiple contexts, com-
mand queues, etc, ioctl events with id 0x2a and un-

2Options such as the cudaDeviceBlockingSync flag of the
CUDA API can direct the GPU to raise an interrupt at request comple-
tion. This option may allow completion to be detected slightly earlier
than it is with polling, but with either mechanism the state machine re-
alizes completion as a (post-polling or post-interrupt) read, by the user
library, of a reference counter updated by the GPU.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 295

map events appear naturally around node 159 in cycles.
Longer paths, composed primarily of ioctl and map-
ping calls (e.g., including nodes 158, 169 and 176) ini-
tialize buffers, establishing appropriate memory map-
pings for structures like the command queue. We identify
and understand their form by storing and tracking care-
fully encoded bit patterns as they appear in buffers trough
the trace. We also compare elided ioctl arguments with
addresses appearing as map / unmap arguments so as to
correlate events; we can thus know and expect particu-
lar buffers to be mapped and ready for use (INIT). For
example, we understand that ioctl id 0x57 seems to
associate the bus address and the system address of a
memory-mapped area, which is a necessary command
buffer initialization step.

Next, we focus on read / write patterns in the graph
(e.g. cycle including nodes 177, 178). DMA and com-
pute requests have a clear cause-effect relationship with
the W:reg event on edge 178→159: a write to a mapped
register must initiate a GPU request (USE). Similarly, the
spin-like R:pin loop (e.g., at node 177) follows many
GPU requests, and its frequency appears affected by the
complexity of the requests; spinning on some pinned
memory address must be a mechanism to check for com-
pletion of previously submitted requests. Last, we ob-
serve repetitive W:sys events (node 178) on the (request)
path to W:reg, implying a causal relationship between
the two. By manually observing the patterns exhibited by
regularly changing values, we discover that GPU com-
mands are saved in system memory buffers and indexed
via W:reg.

The DFA inferred for the GTX275 (Tesla) GPU ex-
hibits patterns very similar to the NVS295; the previ-
ous description applies almost verbatim. However, the
newer GTX670 (Kepler) has brought changes to the soft-
ware / hardware interface: it is W:fb events that cap-
ture the making of new DMA or compute / rendering re-
quests. This means that the memory areas that seem to be
causally related to GPU request submission are now ac-
cessible through the same region as the the frame buffer.
Subtle differences in the use of W:reg can be noticed
in the indexing pattern demonstrated by the W:fb argu-
ments. In all other aspects, the Kepler GPU state ma-
chine remains the same as in previous generations, at
least at the level of observable cross-black-box interac-
tions.

The GPU Driver State Machine Figure 4 presents a
distilled and simplified state machine (left) that captures
the behavior common to our three example GPUs, and
the OpenCL API calls that push the DFA into various
states (right). For clarity of presentation, we have omit-
ted certain global state and transition identifiers. Cor-
respondences for other libraries (OpenGL, CUDA) are

System Interface

CREATE

INITUSE

DESTROY

init

starting

ioctl:0x2a

ioctl

mmap
prepared

ioctl:0x4e

mlock
prepared

ioctl:0x27

mapped

mmap

bus-addr
set

ioctl:0x57

accessed

pinned

mlock

R/W

exiting

fini

ioctl unmap

User Interface

begin

create
clCreateContext,

clCreateCommandQueue,
clCreateBuffer,

...

DMA
clEnqueueWriteBuffer,

...

run
clEnqueueNDRangeKernel,

...

wait
clFinish,
...

release
clReleaseMemObject,

...

end

Figure 4: Semantically rich user-level API events can be
mapped to state transitions at the system level.

similar. We have confirmed the validity of this state ma-
chine using realistic OpenCL / GL and CUDA applica-
tions. There exist only quantitative differences in the
traces collected from 3D and compute libraries, such as
the number and size of buffers mapped or variability in
some elided ioctl parameters. Such differences do not
alter the higher-level GPU driver model produced.

A GPU accelerated application typically begins with a
sequence of ioctl, memory mapping and locking calls
to build a new context (CREATE) and associate with it a
set of memory areas (INIT). A small set of those, typi-
cally a command buffer and a circular queue of pointers
to commands (the ring buffer), comprise the GPU com-
mand queue—a standard producer consumer communi-
cation mechanism [11]. Once initialization is complete,
stores to memory-mapped GPU registers (USE) are used
to point the GPU to new DMA and compute / rendering
requests. Spins on associated system addresses (USE)
are used to notice request completion. Cross references
among these areas and elided tracing information make
it possible to identify them uniquely. Unmapping op-
erations (DESTROY) mark the ends of lifetimes of the
command queue’s buffers, and eventually context.

Given an abstract GPU state machine, one can build
kernel-level mechanisms to intercept and intercede on
edges / events (e.g. as appearing in Figure 4) that indicate
preparation and utilization of the GPU ring buffer. Inter-
cession in turn enables the construction of GPU resource
managers that control the software / hardware interface,
independently of the driver, yet in the protected setting
of the OS kernel.

296 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

4 Conclusions and Future Work
We have outlined, in this paper, a systematic method-

ology to generate, analyze, and understand traces of
cross-black-box interactions relevant to resource man-
agement for systems such as those of the GPU soft-
ware / hardware stack. We used classic state machine
inferencing to distill the numerous interactions to just
a handful, and with the help of common reverse engi-
neering techniques, revealed and assigned semantics to
events and states that characterize an abstract black-box
GPU state machine. In the process, we uncovered details
about how OpenCL API requests (e.g., compute kernels)
are transformed into commands executed on the GPU.

The suggested methodology is not fully automated,
but significantly simplifies the clean-room reverse engi-
neering task by focusing attention on important events.
While we do not claim completeness in the inferred state
machine description, we have defined and tested almost
all combinations of run-time–affecting parameters that
the library APIs allow to be set (e.g., multiple contexts,
command queues, etc), and we have used a variety of
graphics and compute applications as input to the infer-
ence process. No qualitative differences arise among dif-
ferent APIs: the inferred results remain the same. These
experiments give us substantial confidence that the ab-
stract, distilled machine captures all aspects of black-box
interaction needed to drive research in OS-level GPU re-
source management. Validation through comparison to
FOSS stacks is among our future research plans.

While our case study considered GPUs from only a
single vendor (Nvidia), our methodology should apply
equally well to discrete GPUs from other vendors (e.g.,
AMD and Intel) and to chip architectures with integrated
CPU and GPU. As long as the GPU remains a co-
processor, fenced behind a driver, library, and run-time
stack, we expect that the command producer / consumer
model of CPU / GPU interactions will require a similar,
high-performance, memory-mapped ring-buffer mecha-
nism. Available information in the form of previously
released developer manuals from vendors like AMD [1]
and Intel [10] supports this expectation.

The developed state machine provides application pro-
grammers with insight into how their requests are han-
dled by the underlying system, giving hints about pos-
sible performance anomalies (e.g., request interleaving)
that were previously hard to detect. More important, the
machine identifies and defines an interface that can al-
low more direct involvement of the operating system in
the management of GPUs. To effect this involvement,
one would have to intercept and intercede on request-
making and request-completion events, allowing an ap-
propriate kernel module to make a scheduling decision
that reflects its own priorities and policy. We consider
the opportunity to build such OS-kernel level schedulers

today, for cutting edge GPU software / hardware stacks,
to be an exciting opportunity for the research community.

Acknowledgment
We are grateful to Daniel Gildea for helpful conversa-

tions on language inference. We also thank the anony-
mous reviewers and our shepherd Rama Ramasubrama-
nian for comments that helped improve this paper.

References
[1] AMD. Radeon R5xx Acceleration: version 1.2, 2008.
[2] D. Angluin. Inference of reversible languages. Journal of

the ACM, 29(3):741–765, July 1982.
[3] A. W. Biermann and J. A. Feldman. On the synthesis

of finite-state machines from samples of their behavior.
IEEE Trans. on Computers, 21(6):592–597, June 1972.

[4] M. Desnoyers and M. Dagenais. The LTTng tracer:
A low impact performance and behavior monitor for
GNU/Linux. In Ottawa Linux Symposium, pages 209–
224, Ottawa, Canada, July 2006.

[5] A. Dwarakinath. A fair-share scheduler for the graphics
processing unit. Master’s thesis, Stony Brook University,
Aug. 2008.

[6] G. A. Elliott and J. H. Anderson. Globally scheduled real-
time multiprocessor systems with GPUs. Real-Time Sys-
tems, 48(1):34–74, Jan. 2012.

[7] K.-S. Fu and T. L. Booth. Grammatical inference: Intro-
duction and survey. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 8(3):343–375, May 1986.

[8] S. Ginsburg. A technique for the reduction of a given
machine to a minimal-state machine. IRE Trans. on Elec-
tronic Computers, EC-8(3):346–355, Sept. 1959.

[9] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ran-
ganathan. Pegasus: Coordinated scheduling for virtual-
ized accelerator-based systems. In USENIX Annual Tech-
nical Conf., Portland, OR, June 2011.

[10] Intel. OpenSource HD Graphics Programmers Reference
Manual: volume 1, part 2, 2012.

[11] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU scheduling for real-time multi-tasking
environments. In USENIX Annual Technical Conf., Port-
land, OR, June 2011.

[12] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev:
First-class GPU resource management in the operating
system. In USENIX Annual Technical Conf., Boston, MA,
June 2012.

[13] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: Operating system abstractions to man-
age GPUs as compute devices. In 23th ACM Symp. on
Operating Systems Principles, pages 233–248, Cascais,
Portugal, Oct. 2011.

[14] A. Stolcke and S. M. Omohundro. Hidden Markov model
induction by Bayesian model merging. In Advances in
Neural Information Processing Systems 5, pages 11–18,
San Mateo, CA, 1993.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 297

Mantis: Automatic Performance Prediction
for Smartphone Applications

Yongin Kwon1, Sangmin Lee2, Hayoon Yi1, Donghyun Kwon1, Seungjun Yang1,
Byung-Gon Chun3, Ling Huang4, Petros Maniatis4, Mayur Naik5, Yunheung Paek1

1Seoul National University, 2University of Texas at Austin, 3Microsoft, 4Intel, 5Georgia Tech

Abstract
We present Mantis, a framework for predicting the per-
formance of Android applications on given inputs auto-
matically, accurately, and efficiently. A key insight under-
lying Mantis is that program execution runs often con-
tain features that correlate with performance and are au-
tomatically computable efficiently. Mantis synergistically
combines techniques from program analysis and machine
learning. It constructs concise performance models by
choosing from many program execution features only a
handful that are most correlated with the program’s exe-
cution time yet can be evaluated efficiently from the pro-
gram’s input. We apply program slicing to accurately es-
timate the evaluation cost of a feature and automatically
generate executable code snippets for efficiently evaluat-
ing features. Our evaluation shows that Mantis predicts
the execution time of six Android apps with estimation er-
ror in the range of 2.2-11.9% by executing predictor code
costing at most 1.3% of their execution time on Galaxy
Nexus.

1 Introduction
Predicting the performance of programs on smartphones
has many applications ranging from notifying estimated
completion time to users, to better scheduling and re-
source management, to computation offloading [13, 14,
18]. The importance of these applications—and of pro-
gram performance prediction—will only grow as smart-
phone systems become increasingly complex and flexible.

Many techniques have been proposed for predicting
program performance. A key aspect of such techniques
is what features, which characterize the program’s input
and environment, are used to model the program’s perfor-
mance. Most existing performance prediction techniques
can be classified into two broad categories with regard to
this aspect: automatic but domain-specific [7, 16, 21] or
general-purpose but requiring user guidance [10, 17].

For techniques in the first category, features are cho-
sen once and for all by experts, limiting the applicability
of these techniques to programs in a specific domain. For
example, to predict the performance of SQL query plans,
a feature chosen once and for all could be the count of

database operators occurring in the plan [16]. Techniques
in the second category are general-purpose but require
users to specify what program-specific features to use for
each given program in order to predict its performance on
different inputs. For instance, to predict the performance
of a sorting program, such a technique may require users
to specify the feature that denotes the number of input el-
ements to be sorted. For techniques in either category, it is
not sufficient merely to specify the relevant features: one
must also manually provide a way to compute the value
of each such feature from a given input and environment,
e.g., by parsing an input file to sort and counting the num-
ber of items therein.

In this paper, we present Mantis, a new framework to
predict online the performance of general-purpose byte-
code programs on given inputs automatically, accurately,
and efficiently. By being simultaneously general-purpose
and automatic, our framework gains the benefits of both
categories of existing performance prediction techniques
without suffering the drawbacks of either. Since it uses
neither domain nor expert knowledge to obtain relevant
features, our framework casts a wide net and extracts a
broad set of features from the given program itself to se-
lect relevant features using machine learning as done in
our prior work [25]. During an offline stage, we execute
an instrumented version of the program on a set of train-
ing inputs to compute values for those features; we use
the training data set to construct a prediction model for
online evaluation as new inputs arrive. The instrumented
program tracks various features including the decisions
made by each conditional in the program (branch counts),
the number of times each loop in the program iterates
(loop counts), the number of times each method is called
(method call counts), and the values that are assumed by
each program variable (variable values).

It is tempting to exploit features that are evaluated at
late stages of program execution as such features may be
strongly correlated with execution time. A drawback of
naïvely using such features for predicting program perfor-
mance, however, is that it takes as long to evaluate them as
to execute almost the entire program. Our efficiency goal
requires our framework to not only find features that are
strongly correlated with execution time, but to also evalu-

298 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Input
data

Feature
instrumentor Profiler

Performance metrics,
feature values

Instrumented
program

Model
generator

Predictor code
generator

Function over
selected features

Program

Predictor
code

Predictor
running time

Feature schemes

≤TH
Yes

No

Figure 1: The Mantis offline stage.

ate those features significantly faster than running the pro-
gram to completion.

To exploit such late-evaluated features, we use a pro-
gram analysis technique called program slicing [44, 46].
Given a feature, slicing computes the set of all state-
ments in the program that may affect the value of the fea-
ture. Precise slicing could prune large portions of the pro-
gram that are irrelevant to the evaluation of features. Our
slices are stand-alone executable programs; thus, execut-
ing them on program inputs provides both the evaluation
cost and the value of the corresponding feature. Our appli-
cation of slicing is novel; in the past, slicing has primarily
been applied to program debugging and understanding.

We have implemented Mantis for Android applications
and applied it to six CPU-intensive applications (Encryp-
tor, Path Routing, Spam Filter, Chess Engine, Ringtone
Maker, and Face Detection) on three smartphone hard-
ware platforms (Galaxy Nexus, Galaxy S2, and Galaxy
S3). We demonstrate experimentally that, with Galaxy
Nexus, Mantis can predict the execution time of these pro-
grams with estimation error in the range of 2.2-11.9%, by
executing slices that cost at most 1.3% of the total execu-
tion time of these programs. The results for Galaxy S2 and
Galaxy S3 are similar. We also show that the predictors are
accurate thanks to Android’s scheduling policy even when
the ambient CPU load on the smartphones increases.

We summarize the key contributions of our work:

• We propose a novel framework that automatically
generates performance predictors using program-
execution features with program slicing and machine
learning.

• We have implemented our framework for Android-
smartphone applications and show empirically that it
can predict the execution time of various applications
accurately and efficiently.

The rest of the paper is organized as follows. We
present the architecture of our framework in Section 2.

Sections 3 and 4 describe our feature instrumentation and
performance-model generation, respectively. Section 5
describes predictor code generation using program slic-
ing. In Section 6 we present our system implementation
and evaluation results. Finally, we discuss related work in
Section 7 and conclude in Section 8.

2 Architecture
In Mantis, we take a new white-box approach to automati-
cally generate system performance predictors. Unlike tra-
ditional approaches, we extract information from the exe-
cution of the program, which is likely to contain key fea-
tures for performance prediction. This approach poses the
following two key challenges:

• What are good program features for performance
prediction? Among many features, which ones are
relevant to performance metrics? How do we model
performance with relevant features?

• How do we compute features cheaply? How do we
automatically generate code to compute feature val-
ues for prediction?

Mantis addresses the above challenges by synergisti-
cally combining techniques from program analysis and
machine learning.

Mantis has an offline stage and an online stage. The
offline stage, depicted in Figure 1, consists of four com-
ponents: a feature instrumentor, a profiler, a performance-
model generator, and a predictor code generator.

The feature instrumentor (Section 3), takes as input
the program whose performance is to be predicted, and
a set of feature instrumentation schemes. A scheme spec-
ifies a broad class of program features that are potentially
correlated with the program’s execution time. Examples
of schemes include a feature for counting the number of
times each conditional in the program evaluates to true, a

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 299

feature for the average of all values taken by each integer-
typed variable in the program, etc. The feature instrumen-
tor instruments the program to collect the values of fea-
tures (f1, ..., fM) as per the schemes.

Next, the profiler takes the instrumented program and
a set of user-supplied program inputs (I1, ..., IN). It runs
the instrumented program on each of these inputs and
produces, for each input Ii, a vector of feature values
(vi1, ..., viM). It also runs the original program on the
given inputs and measures the performance metric (e.g.,
execution time (ti)) of the program on that input.

The performance-model generator (Section 4) performs
sparse nonlinear regression on the feature values and ex-
ecution times obtained by the profiler, and produces a
function (λ) that approximates the program’s execution
time using a subset of features (fi1, ..., fiK). In practice,
only a tiny fraction of all M available features is chosen
(K � M) since most features exhibit little variability
on different program inputs, are not correlated or only
weakly correlated with execution time, or are equivalent
in value to the chosen features and therefore redundant.

As a final step, the predictor code generator (Section 5)
produces for each of the chosen features a code snippet
from the instrumented program. Since our requirement
is to efficiently predict the program’s execution time on
given inputs, we need a way to efficiently evaluate each of
the chosen features (fi1, ..., fiK) from program inputs.

We apply program slicing to extract a small code snip-
pet that computes the value of each chosen feature. A
precise slicer would prune large portions of the original
program that are irrelevant to evaluating a given feature
and thereby provide an efficient way to evaluate the fea-
ture. In practice, however, our framework must be able to
tolerate imprecision. Besides, independent of the slicer’s
precision, certain features will be inherently expensive to
evaluate: e.g., features whose value is computed upon pro-
gram termination, rather than derived from the program’s
input. We define a feature as expensive to evaluate if the
execution time of its slice exceeds a threshold (TH) ex-
pressed as a fraction of program execution time. If any of
the chosen features (fi1, ..., fiK) is expensive, then via the
feedback loop in Figure 1 (at the bottom), our framework
re-runs the model generator, this time without providing it
with the rejected features. The process is repeated until the
model generator produces a set of features, all of which
are deemed inexpensive by the slicer. In summary, the
output of the offline stage of our framework is a predic-
tor, which consists of a function (λ) over the final chosen
features that approximates the program’s execution time,
along with a feature evaluator for the chosen features.

The online stage is straightforward: it takes a program
input from which the program’s performance must be pre-
dicted and runs the predictor module, which executes the
feature evaluator on that input to compute feature values,

and uses those values to compute λ as the estimated exe-
cution time of the program on that input.

3 Feature Instrumentation
We now present details on the four instrumentation
schemes we consider: branch counts, loop counts,
method-call counts, and variable values. Our overall
framework, however, generalizes to all schemes that can
be implemented by the insertion of simple tracking-
statements into binaries or source.
Branch Counts: This scheme generates, for each condi-
tional occurring in the program, two features: one count-
ing the number of times the branch evaluates to true in an
execution, and the other counting the number of times it
evaluates to false. Consider the following simple example:

i f (b == t rue) {
/ * heavy c o m p u t a t i o n * / }

The execution time of this example would be strongly
correlated with each of the two features generated by this
scheme for condition (b == true). In this case, the two
features are mutually-redundant and our performance-
model generator could use either feature for the same cost.
But the following example illustrates the need for having
both features:

f o r (i n t i = 0 ; i < n ; i ++) {
i f (a [i] == 2) {

/ * l i g h t c o m p u t a t i o n * / }
e l s e {

/ * heavy c o m p u t a t i o n * / }
}

Picking the wrong branch of a conditional to count could
result in a weakly correlated feature, penalizing prediction
accuracy. The false-branch count is highly correlated with
execution time, but the true-branch count is not.
Loop Counts: This scheme generates, for each loop oc-
curring in the program, a feature counting the number of
times it iterates in an execution. Clearly, each such feature
is potentially correlated with execution time.
Method Call Counts: This scheme generates a feature
counting the number of calls to each procedure. In case of
recursive calls of methods, this feature is likely to corre-
late with execution time.
Variable Values: This scheme generates, for each state-
ment that writes to a variable of primitive type in the pro-
gram, two features tracking the sum and average of all val-
ues written to the variable in an execution. One can also
instrument versions of variable values in program execu-
tion to capture which variables are static and what value
changes each variable has. However, this creates too many
feature values and we resort to the simpler scheme.

We instrument variable values for a few reasons. First,
often the variable values obtained from input parameters

300 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

and configurations are changing infrequently, and these
values tend to affect program execution by changing con-
trol flow. Second, since we cannot instrument all func-
tions (e.g., system call handlers), the values of parameters
to such functions may be correlated with their execution-
time contribution; in a sense, variable values enable us
to perform black-box prediction for the components of
a program’s execution trace that we cannot analyze. The
following example illustrates this case:

i n t t ime = s e t f r o m a r g s (a r g s) ;
Thread . s l e e p (t ime) ;

Similarly, variable value features can be equivalent to
other types of features but significantly cheaper to com-
pute. For example, consider the following Java program
snippet:

void main (S t r i n g [] a r g s) {
i n t n = I n t e g e r . p a r s e I n t (a r g s [0]) ;
f o r (i n t i = 0 ; i < n ; i ++) { . . . }

}

This program’s execution time depends on the number of
times the loop iterates, but the value of n can be used to
estimate that number without executing the loop in the
feature evaluator.
Other Features: We also considered the first k values
(versions) of each variable. Our intuition is that often the
variable values obtained from input parameters and con-
figurations are changing infrequently, and these values
tend to affect program execution by changing control flow.
We rejected this feature since the sum and average metric
captures infrequently-changing variable values well, and
tracking k versions incurs higher instrumentation over-
heads. There might be other features that are helpful to
prediction; exploring such features is future work.

4 Performance Modeling
Our feature instrumentation schemes generate a large
number of features (albeit linear in the size of the pro-
gram for the schemes we consider). Most of these fea-
tures, however, are not expected to be useful for the per-
formance prediction. In practice we expect a small num-
ber of these features to suffice in explaining the program’s
execution time well, and thereby seek a compact perfor-
mance model, that is, a function of (nonlinear combina-
tions of) just a few features that accurately approximates
execution time. Unfortunately, we do not know a priori
this handful of features and their nonlinear combinations
that predict execution time well.

For a given program, our feature instrumentation pro-
filer outputs a data set with N samples as tuples of
{ti,vi}Ni=1, where ti ∈ R denotes the ith observation of
execution time, and vi denotes the ith observation of the
vector of M features.

Least square regression is widely used for finding the
best-fitting λ(v, β) to a given set of responses ti by mini-
mizing the sum of the squares of the residuals [23]. How-
ever, least square regression tends to overfit the data and
create complex models with poor interpretability. This
does not serve our purpose since we have a lot of features
but desire only a small subset of them to contribute to the
model.

Another challenge we faced was that linear regression
with feature selection would not capture all interesting be-
haviors by practical programs. Many such programs have
non-linear, e.g., polynomial, logarithmic, or polylogarith-
mic complexity. So we were interested in non-linear mod-
els, which can be inefficient for the large number of fea-
tures we had to contend with.

Regression with best subset selection finds for each
K ∈ {1, 2, . . . ,M} the subset of size K that gives
the smallest Residual Sum of Squares (RSS). However,
it is a discrete optimization problem and is known to
be NP-hard [23]. In recent years a number of approxi-
mate algorithms have been proposed as efficient alterna-
tives for simultaneous feature selection and model fitting.
Widely used among them are LASSO (Least Absolute
Shrinkage and Selection Operator) [43] and FoBa [48],
an adaptive forward-backward greedy algorithm. The for-
mer, LASSO, is based on model regularization, penaliz-
ing low-selectivity, high-complexity models. It is a con-
vex optimization problem, so efficiently solvable [15,27].
The latter, FoBa, is an iterative greedy pursuit algorithm:
during each iteration, only a small number of features are
actually involved in model fitting, adding or removing the
chosen features at each iteration to reduce the RSS. As
shown FoBa has nice theoretical properties and efficient
inference algorithms [48].

For our system, we chose the SPORE-FoBa algorithm,
which we proposed [25], to build a predictive model from
collected features. In our work, we showed that SPORE-
FoBa outperforms LASSO and FoBa. The FoBa compo-
nent of the algorithm helps cut down the number of in-
teresting features first, and the SPORE component builds
a fixed-degree (d) polynomial of all selected features, on
which it then applies sparse, polynomial regression to
build the model. For example, using a degree-2 polyno-
mial with feature vector v = [x1 x2], we expand out
(1 + x1 + x2)

2 to get terms 1, x1, x2, x2
1, x1x2, x2

2,
and use them as basis functions to construct the following
function for regression:

f(v) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2.

The resulting model can capture polynomial or sub-
polynomial program complexities well thanks to Taylor
expansion, which characterizes the vast majority of prac-
tical programs.

For a program whose execution time may dynamically

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 301

change over time as the workload changes, our perfor-
mance model should evolve accordingly. The model can
evolve in two ways: 1) the set of (non-linear) feature terms
used in the model change; 2) with a fixed set of feature
terms, their coefficients β′

js change. For a relatively sta-
ble program, we expect the former changes much less fre-
quently than the latter. Using methods based on Stochas-
tic Gradient Descent [9], it is feasible to update the set of
feature terms and their coefficients β′

js online upon every
execution time being collected.

5 Predictor Code Generation
The function output by the performance model generator
is intended to efficiently predict the program’s execution
time on given program inputs. This requires a way to ef-
ficiently evaluate the features that appear in the function
on those inputs. Many existing techniques rely on users to
provide feature evaluators. A key contribution of our ap-
proach is the use of static program slicing [44, 46] to au-
tomatically extract from the (instrumented) program effi-
cient feature evaluators in the form of executable slices—
stand-alone executable programs whose sole goal is to
evaluate the features. This section explains the rationale
underlying our feature slicing (Section 5.1), describes the
challenges of slicing and our approach to addressing them
(Section 5.2), and provides the design of our slicer (Sec-
tion 5.3).

5.1 Rationale
Given a program and a slicing criterion (p, v), where v
is a program variable in scope at program point p, a slice
is an executable sub-program of the given program that
yields the same value of v at p as the given program, on
all inputs. The goal of static slicing is to yield as small a
sub-program as possible. It involves computing data and
control dependencies for the slicing criterion, and exclud-
ing parts of the program upon which the slicing criterion
is neither data- nor control-dependent.

In the absence of user intervention or slicing, a naïve
approach to evaluate features would be to simply exe-
cute the (instrumented) program until all features of in-
terest have been evaluated. This approach, however, can
be grossly inefficient. Besides, our framework relies on
feature evaluators to obtain the cost of each feature, so
that it can iteratively reject costly features from the perfor-
mance model. Thus, the naïve approach to evaluate fea-
tures could grossly overestimate the cost of cheap fea-
tures. We illustrate these problems with the naïve ap-
proach using two examples.

Example 1: A Java program may read a system property
lazily, late in its execution, and depending upon its value
decide whether or not to perform an expensive computa-
tion:

. . . ; / / e x p e n s i v e c o m p u t a t i o n S1
S t r i n g s = System . g e t P r o p e r t y (. . .) ;
i f (s . e q u a l s (. . .)) {

f _ t r u e ++; / / f e a t u r e i n s t r u m e n t a t i o n
. . . ; / / e x p e n s i v e c o m p u t a t i o n S2

}

In this case, feature f_true generated by our framework
to track the number of times the above branch evaluates
to true will be highly predictive of the execution time.
However, the naïve approach for evaluating this feature
will always perform the expensive computation denoted
by S1. In contrast, slicing this program with slicing crite-
rion (p_exit, f_true), where p_exit is the exit point
of the program, will produce a feature evaluator that ex-
cludes S1 (and S2), assuming the value of f_true is
truly independent of computation S1 and the slicer is pre-
cise enough.
Example 2: This example illustrates a case in which the
computation relevant to evaluating a feature is interleaved
with computation that is expensive but irrelevant to eval-
uating the feature. The following program opens an in-
put text file, reads each line in the file, and performs an
expensive computation on it (denoted by the call to the
process method):

Reader r = new Reader (new F i l e (name)) ;
S t r i n g s ;
whi le ((s = r . r e a d L i n e ()) != n u l l) {

f _ l o o p ++; / / f e a t u r e i n s t .
p r o c e s s (s) ; / / e x p e n s i v e c o m p u t a t i o n

}

Assuming the number of lines in the input file is strongly
correlated with the program’s execution time, the only
highly predictive feature available to our framework
is f_loop, which tracks the number of iterations of
the loop. The naïve approach to evaluate this feature
will perform the expensive computation denoted by the
process method in each iteration, even if the number of
times the loop iterates is independent of it. Slicing this
program with slicing criterion (p_exit, f_loop), on
the other hand, can yield a slice that excludes the calls
to process(s).

The above two examples illustrate cases where the fea-
ture is fundamentally cheap to evaluate but slicing is re-
quired because the program is written in a manner that
intertwines its evaluation with unrelated expensive com-
putation.

5.2 Slicer Challenges
There are several key challenges to effective static slic-
ing. Next we discuss these challenges and the approaches
we take to address them. Three of these are posed by pro-
gram artifacts—procedures, the heap, and concurrency—

302 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

and the fourth is posed by our requirement that the slices
be executable.

Inter-procedural Analysis: The slicer must compute
data and control dependencies efficiently and precisely. In
particular, it must propagate these dependencies context-
sensitively, that is, only along inter-procedurally realiz-
able program paths—doing otherwise could result in in-
ferring false dependencies and, ultimately, grossly impre-
cise slices. Our slicer uses existing precise and efficient
inter-procedural algorithms from the literature [24, 33].

Alias Analysis: False data dependencies (and thereby
false control dependencies as well) can also arise due
to aliasing, i.e., two or more expressions pointing to
the same memory location. Alias analysis is expensive.
The use of an imprecise alias analysis by the slicer can
lead to false dependencies. Static slicing needs may-alias
information—analysis identifying expressions that may
be aliases in at least some executions—to conservatively
compute all data dependencies. In particular, it must gen-
erate a data dependency from an instance field write u.f
(or an array element write u[i]) to a read v.f (or v[i])
in the program if u and v may-alias. Additionally, static
slicing can also use must-alias information if available
(expressions that are always aliases in all executions), to
kill dependencies that no longer hold as a result of in-
stance field and array element writes in the program. Our
slicer uses a flow- and context-insensitive may-alias anal-
ysis with object allocation site heap abstraction [29].

Concurrency Analysis: Multi-threaded programs pose
an additional challenge to static slicing due to the possi-
bility of inter-thread data dependencies: reads of instance
fields, array elements, and static fields (i.e., global vari-
ables) are not just data-dependent on writes in the same
thread, but also on writes in other threads. Precise static
slicing requires a precise static race detector to compute
such data dependencies. Our may-alias analysis, how-
ever, suffices for our purpose (a race detector would per-
form additional analyses like thread-escape analysis, may-
happen-in-parallel analysis, etc.)

Executable Slices: We require slices to be executable. In
contrast, most of the literature on program slicing focuses
on its application to program debugging, with the goal
of highlighting a small set of statements to help the pro-
grammer debug a particular problem (e.g., Sirdharan et
al. [40]). As a result, their slices do not need to be exe-
cutable. Ensuring that the generated slices are executable
requires extensive engineering so that the run-time does
not complain about malformed slices, e.g., the first state-
ment of each constructor must be a call to the super con-
structor even though the body of that super constructor is
sliced away, method signatures must not be altered, etc.

5.3 Slicer Design
Our slicer combines several existing algorithms to pro-
duce executable slices. The slicer operates on a three-
address-like intermediate representation of the bytecode
of the given program.
Computing System Dependence Graph: For each
method reachable from the program’s root method (e.g.,
main) by our call-graph analysis, we build a Program
Dependence Graph (PDG) [24], whose nodes are state-
ments in the body of the method and whose edges repre-
sent intra-procedural data/control dependencies between
them. For uniform treatment of memory locations in sub-
sequent steps of the slicer, this step also performs a mod-
ref analysis1 and creates additional nodes in each PDG de-
noting implicit arguments for heap locations and globals
possibly read in the method, and return results for those
possibly modified in the method.

The PDGs constructed for all methods are stitched into
a System Dependence Graph (SDG) [24], which repre-
sents inter-procedural data/control dependencies. This in-
volves creating extra edges (so-called linkage-entry and
linkage-exit edges) linking actual to formal arguments and
formal to actual return results, respectively.

In building PDGs, we handle Java native methods,
which are built with JNI calls, specially. We implement
simple stubs to represent these native methods for the
static analysis. We examine the code of the native method
and write a stub that has the same dependencies between
the arguments of the method, the return value of the
method, and the class variables used inside the method as
does the native method itself. We currently perform this
step manually. Once a stub for a method is written, the
stub can be reused for further analyses.
Augmenting System Dependence Graph: This step uses
the algorithm by Reps, Horwitz, Sagiv, and Rosay [33]
to augment the SDG with summary edges, which are
edges summarizing the data/control dependencies of each
method in terms of its formal arguments and return re-
sults.
Two-Pass Reachability: The above two steps are more
computationally expensive but are performed once and for
all for a given program, independent of the slicing crite-
rion. This step takes as input a slicing criterion and the
augmented SDG, and produces as output the set of all
statements on which the slicing criterion may depend. It
uses the two-pass backward reachability algorithm pro-
posed by Horwitz, Reps, and Binkley [24] on the aug-
mented SDG.
Translation: As a final step, we translate the slicer code
based on intermediate representation to bytecode.
Extra Steps for Executable Slices: A set of program

1This finds all expressions that a method may modify-ref erence di-
rectly, or via some method it transitively calls.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 303

Feature
instrumentor

Predictor code
generator

Javassist

Profiler

Perl Script

Model
generator

Octave

Joeq

Datalog
Analysis & Slicer

Quad2Jasmin

Jasmin

bytecode

Jasmincode

quadcode

quadcode

bytecode

Android
Executable
Generator

bytecode

DEX

APK

dx tool
from Android SDK

aapt tool
from Android SDK

Figure 2: Mantis prototype toolchain.

statements identified by the described algorithm may not
meet Java language requirements. This problem needs to
be resolved to create executable slices.

First, we need to handle accesses to static fields and
heap locations (instance fields and array elements). There-
fore, when building an SDG, we identify all such accesses
in a method and create formal-in vertices for those read
and formal-out for those written along with correspond-
ing actual-in and actual-out vertices. Second, there may
be uninitialized parameters if they are not included in a
slice. We opt to keep method signatures, hence we initial-
ize them with default values. Third, there are methods not
reachable from a main method but rather called from the
VM directly (e.g., class initializers). These methods will
not be included in a slice by the algorithm but still may
affect the slicing criterion. Therefore, we do not slice out
such code. Fourth, when a new object creation is in a slice,
the corresponding constructor invocation may not. To ad-
dress this, we create a control dependency between ob-
ject creations and corresponding constructor invocations
to ensure that they are also in the slice. Fifth, a construc-
tor of a class except the Object class must include a call
to a constructor of its parent class. Hence we include such
calls when they are missing in a slice. Sixth, the first pa-
rameter of an instance method call is a reference to the
associated object. Therefore if such a call site is in a slice,
the first parameter has to be in the slice too and we ensure
this.

6 Evaluation
We have built a prototype of Mantis implementing the in-
strumentor, profiler, model generator and predictor code
generator (Figure 2). The prototype is built to work with
Android application binaries. We implemented the feature
instrumentor using Javassist [2], which is a Java byte-
code rewriting library. The profiler is built using scripts
to run the instrumented program on the test inputs and
then the results are used by the model generator, which

is written in Octave [4] scripts. Finally, we implemented
our predictor code generator in Java and Datalog by ex-
tending JChord [3], a static and dynamic Java program-
analysis tool. JChord uses the Joeq Java compiler frame-
work to convert the bytecode of the input Java program,
one class file at a time, into a three-address-like interme-
diate code called quadcode, which is more suitable for
analysis. The predictor code generator produces the Joeq
quadcode slice, which is the smallest subprogram that
could obtain the selected features. Each quad instruction
is translated to a corresponding set of Jasmin [1] assem-
bly code, and then the Jasmin compiler generates the final
Java bytecode.

We have applied the prototype to Android applications.
Before Android applications are translated to Dalvik Ex-
ecutables (DEX), their Java source code is first compiled
into Java bytecode. Mantis works with this bytecode and
translates it to DEX to run on the device. Mantis could
work with DEX directly, as soon as a translator from DEX
to Joeq becomes available.

6.1 Experimental Setup
We run our experiments with a machine to run the instru-
mentor, model generator, and predictor code generator,
as well as a smartphone to run the original and instru-
mented codes for profiling and generated predictor codes
for slicing evaluation. The machine runs Ubuntu 11.10 64-
bit with a 3.1GHz quad-core CPU, and 8GB of RAM. The
smartphone is a Galaxy Nexus running Android 4.1.2 with
dual-core 1.2Ghz CPU and 1GB RAM. All experiments
were done using Java SE 64-bit 1.6.0_30.

The selected applications — Encryptor, Path Routing,
Spam Filter, Chess Engine, Ringtone Maker and Face De-
tection — cover a broad range of CPU-intensive Android-
application functionalities. Their execution times are sen-
sitive to inputs, so challenging to model. Below we de-
scribe the applications and the input dataset we used for
experiments in detail.

We evaluate Mantis on 1,000 randomly generated in-
puts for each application. These inputs achieve 95-100%
basic-block coverage, only missing exception handling.
We train our predictor on 100 inputs, and use the rest to
test the predictor model. For each platform, we run Man-
tis to generate predictors and measure the prediction error
and running time. The threshold is set to 5%, which means
a generated predictor is accepted only if the predictor run-
ning time is less than 5% of the original program’s com-
pletion time.

Encryptor: This encrypts a file using a matrix as a key.
Inputs are the file and the matrix key. We use 1,000 files,
each with its own matrix key. File size ranges from 10 KB
to 8000 KB, and keys are 200× 200 square matrices.

Path Routing: This computes the shortest path from one
point to another on a map (as in navigation and game ap-

304 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Application Prediction Prediction No. of detected No. of chosen
error (%) time (%) features features

Encryptor 3.6 0.18 28 2
Path Routing 4.2 1.34 68 1

Spam Filter 2.8 0.51 55 1
Chess Engine 11.9 1.03 1084 2

Ringtone Maker 2.2 0.20 74 1
Face Detection 4.9 0.62 107 2

Table 1: Prediction error, prediction time, the total number of features initially detected and the number of chosen
features.

Application Selected features Generated model
Encryptor Matrix-key size (f1), Loop count of encryption (f2) c0f1

2f2 + c1f1
2 + c2f2 + c3

Path Routing Build map loop count (f1) c0f1
2 + c1f1 + c2

Spam Filter Inner loop count of sorting (f1) c0f1 + c1
Chess Engine No. of game-tree leaves (f1), No. of chess pieces (f2) c0f1

3 + c1f1f2 + c2f2
2 + c3

Ringtone Maker Cut interval length (f1) c0f1 + c1
Face Detection Width of image (f1), Height of image (f2) c0f1f2 + c1f2

2 + c2

Table 2: Selected features and generated prediction models.

plications). We use 1,000 maps, each with 100-200 loca-
tions, and random paths among them. We queried a route
for a single random pair of locations for each map.

Spam Filter: This application filters spam messages
based on a collective database. At initialization, it col-
lects the phone numbers of spam senders from several
online databases and sorts them. Then it removes white-
listed numbers (from the user’s phonebook) and builds
a database. Subsequently, messages from senders in the
database are blocked. We test Mantis with the initializa-
tion step; filtering has constant duration. We use 1,000
databases, each with 2,500 to 20,000 phone numbers.

Chess Engine: This is the decision part of a chess ap-
plication. Similarly to many game applications, it receives
the configuration of chess pieces as input and determines
the best move using the Minimax algorithm. We set the
game-tree depth to three. We use 1,000 randomly gener-
ated chess-piece configurations, each with up to 32 chess
pieces.

Ringtone maker: This generates customized ringtones.
Its input is a wav-format file and a time interval within the
file. The application extracts that interval from the audio
file and generates a new mp3 ringtone. We use 1,000 wav
files, ranging from 1 to 10 minutes, and intervals start-
ing at random positions and of lengths between 10 and 30
seconds.

Face Detection: This detects faces in an image by using
the OpenCV library. It outputs a copy of the image, out-
lining faces with a red box. We use 1,000 images, of sizes
between 100× 100 and 900× 3000 pixels.

6.2 Experiment Results
Accurate and Efficient Prediction: We first evaluate the
accuracy and efficiency of Mantis prediction. Table 1 re-
ports the prediction error and predictor running time of
Mantis-generated predictors, the total number of features
initially detected, and the number of features actually cho-
sen to build the prediction model for each application. The
“prediction error” column measures the accuracy of our
prediction. Let A(i) and E(i) denote the actual and pre-
dicted execution times, respectively, computed on input i.
Then, this column denotes the prediction error of our ap-
proach as the average value of |A(i) − E(i)|/A(i) over
all inputs i. The “prediction time” measures how long the
predictor runs compared to the original program. Let P (i)
denote the time to execute the predictor. This column de-
notes the average value of P (i)/A(i) over all inputs i.

Mantis achieves accuracy with prediction error within
5% in most cases, while each predictor runs around 1%
of the original application’s execution time, which is well
under the 5% limit we assigned to Mantis.

We also show the effect of the number of training sam-
ples on prediction errors in Figure 3. For four applications,
the curve of their prediction error plateaus before 50 in-
put samples for training. For Chess Engine and Encryp-
tor, the curve plateaus around 100 input samples for train-
ing. Since there is little to gain after the curve plateaus,
we only use 100 input samples for training Mantis. Even
for bigger input datasets of 10,000 samples, we only need
about 100 input samples for training to obtain similar pre-
diction accuracy.

Mantis generated interpretable and intuitive prediction

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 305

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

P
re

d
ic

ti
o
n
 e

rr
o
r

(%
)

Number of training inputs

Chess Engine
Encryptor

Path Routing
Span Filtering

Ringtone Maker
Face Detection

Figure 3: Prediction errors varying the number of input
samples. The y-axis is truncated to 20 for clarity.

models by only choosing one or two among the many de-
tected features unlike non-parametric methods. Table 2
shows the selected features and the generated polyno-
mial prediction model for each application. In the model,
cn represents a constant real coefficient generated by the
model generator and fn represents the selected feature.
The selected features are important factors in execution
time, and they often interact in a non-linear way, which
Mantis captures accurately. For example, for Encryptor,
Mantis uses non-linear feature terms (f2

1 f2, f2
1) to predict

the execution time accurately.
Now we explain why Chess Engine has a higher error

rate. Its execution time is related to the number of leaf
nodes in the game tree. However, this feature can only be
obtained late in the application execution and is dependent
on almost all code that comes before it. Therefore, Mantis
rejects this feature because it is too expensive. Note that
we set the limit of predictor execution time to be 5% of
the original application time. As the expensive feature is
not usable, Mantis chooses alternative features: the num-
ber of nodes in the second level of the game tree and the
number of chess pieces left; these features can capture the
behavior of the number of leaf nodes in the game tree. Al-
though they can only give a rough estimate of the number
of leaf nodes in the game tree, the prediction error is still
around only 12%.
Benefit of Non-linear Terms on Prediction Accuracy:
Table 3 shows the prediction error rates of the models built
by Mantis and Mantis-linear. Mantis-linear uses only lin-
ear terms (fi’s) for model generation. For Encryptor, Path
Routing, and Face Detection, non-linear terms improve
prediction accuracy significantly since Mantis-linear does
not capture the interaction between features.
Benefit of Slicing on Prediction Time: Next we discuss
how slicing improves the prediction time. In Table 4, we
compare the prediction times of Mantis-generated pre-

Application Mantis pred. Mantis-linear
error (%) pred. error (%)

Encryptor 3.6 6.6
Path Routing 4.2 13.8

Spam Filter 2.8 2.8
Chess Engine 11.9 13.2

Ringtone Maker 2.2 2.2
Face Detection 4.9 52.7

Table 3: Prediction error of Mantis and Mantis-linear.
Mantis-linear uses only linear terms (fi’s) for model gen-
eration.

Application Mantis pred. PE pred.
time (%) time (%)

Encryptor 0.20 100.08
Path Routing 1.30 17.76

Spam Filter 0.50 99.39
Chess Engine 1.03 69.63

Ringtone Maker 0.20 0.04
Face Detection 0.61 0.17

Table 4: Prediction time of Mantis and PE.

dictors with those of predictors built with partial execu-
tion. Partial Execution (PE) runs the instrumented pro-
gram only until the point where we obtain the chosen fea-
ture values.

Mantis reduces the prediction time significantly for En-
cryptor, Path Routing, Spam Filter, and Chess Engine. For
these applications, PE predictors need to run a large piece
of code, which includes code that is unrelated to the cho-
sen features until their values are obtained.

Spam Filter and Encryptor are the worst cases for PE
since the last updates of the chosen feature values oc-
cur near the end of their execution. In contrast, Ring-
tone Maker and Face Detection can obtain the chosen
feature values cheaply even without slicing. This is be-
cause the values for the chosen features can be obtained at
the very beginning in the application’s execution. In fact,
the Mantis-generated predictors of these applications take
longer than PE because the generated code is less opti-
mized than the code generated directly by the compiler.
Benefit of Slicing on Prediction Accuracy: To show the
effect of slicing on prediction accuracy under a predic-
tion time limit, we compare our results with those ob-
tained using bounded execution. Bounded Execution (BE)
gathers features by running an instrumented application
for only a short period of time, which is the same as the
time a Mantis-generated predictor would run. It then uses
these gathered features with the Mantis model generator
to build a prediction model.

As shown in Table 5, the prediction error rates of the
models built by BE are much higher than those of the

306 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Galaxy S2 Galaxy S3
Application Prediction Prediction Prediction Prediction

error (%) time (%) error (%) time (%)
Encryptor 4.6 0.35 3.4 0.08

Path Routing 4.1 3.07 4.2 1.28
Spam Filter 5.4 1.52 2.2 0.52

Chess Engine 9.7 1.42 13.2 1.38
Ringtone Maker 3.7 0.51 4.8 0.20

Face Detection 5.1 1.28 5.0 0.69

Table 6: Prediction error and time of Mantis running with Galaxy S2 and Galaxy S3.

Application Mantis pred. BE pred.
error (%) error (%)

Encryptor 3.6 56.0
Path Routing 4.2 64.0

Spam Filter 2.8 36.2
Chess Engine 11.9 26.1

Ringtone Maker 2.2 2.2
Face Detection 4.9 4.9

Table 5: Prediction error of Mantis and BE.

models built by Mantis. This is because BE cannot exploit
as many features as Mantis. For Spam Filter and Encryp-
tor, no usable feature can be obtained by BE; thus, BE
creates a prediction model with only a constant term for
each of the two applications.
Prediction on Different Hardware Platforms: Next we
evaluate whether Mantis generates accurate and efficient
predictors on three different hardware platforms. Table 6
shows the results of Mantis with two additional smart-
phones: Galaxy S2 and Galaxy S3. Galaxy S2 has a dual-
core 1.2Ghz CPU and 1GB RAM, running Android 4.0.3.
Galaxy S3 has a quad-core 1.4Ghz CPU and 1GB RAM,
running Android 4.0.4. As shown in the table, Mantis
achieves low prediction errors and short prediction times
with Galaxy S2 and Galaxy S3 as well. For each applica-
tion, Mantis builds a model similar to the one generated
for Galaxy Nexus. The chosen features for each device are
the same as or equivalent (e.g., there can be multiple in-
strumented variables with the same value) to the chosen
features for Galaxy Nexus, while the model coefficients
are changed to match the speed of each device. The re-
sult shows that Mantis generates predictors robustly with
different hardware platforms.
Prediction under Background Load: Finally, we eval-
uate how the predictors perform under changing envi-
ronmental loads. Table 7 shows how much effect CPU-
intensive loads have on the performance of Mantis predic-
tors for Galaxy Nexus. The application execution times
under the background CPU-intensive load are compared
to the predicted execution times of Mantis predictors gen-

Pred. error (%) for
the x% background CPU load

Application x=0 x=50 x=75 x=99
Encryptor 3.6 7.5 10.5 21.3

Path Routing 4.2 5.3 5.8 6.7
Spam Filter 2.8 4.7 5.2 5.8

Chess Engine 11.9 13.5 15.3 15.8
Ringtone Maker 2.2 2.3 3.0 3.1

Face Detection 4.9 5.3 5.6 5.8

Table 7: Prediction error of Mantis-generated predictors
for Galaxy Nexus under background CPU-intensive loads.

erated with an idle smartphone. The background load is
generated by the SysBench package [5], which consists
of a configurable number of events that compute prime
numbers. For our evaluation, the load is configured to ini-
tially have a steady 50%, 75%, or 99% CPU usage. The
test applications run in the foreground.

As shown in the table, in most cases background load
has only a moderate effect on the accuracy of Mantis pre-
dictors. This is mainly due to Android’s scheduling pol-
icy, which gives a higher priority to the process that is
actively running on the screen, or foreground, compared
with the other processes running in the background. We
observed that when an application was started and brought
to the foreground, the Android system secured enough
CPU time for the process to run smoothly by reducing
the CPU occupancy of the background load.

However, the prediction error for Encryptor increases
as the CPU load increases. Unlike the other applications,
Encryptor creates a larger number of heap objects and
calls Garbage Collection (GC) more often. We also ob-
served that GC slows down under the heavy load, result-
ing in a slowdown of Encryptor’s total execution time.
This in turn makes it difficult for the Mantis predictor to
predict the Encryptor execution time accurately under a
heavy load. An extension of Mantis is to include environ-
mental factors (e.g., the background CPU load) as features
in Mantis prediction models.
Mantis Offline Stage Processing Time: Table 8 presents

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 307

Application Profiling Model gen. Slicing Test Total Iterations
Encryptor 2373 18 117 391 2900 3

Path Routing 363 28 114 14 519 3
Spam Filter 135 10 66 3 214 2

Chess Engine 6624 10229 6016 23142 46011 83
Ringtone Maker 2074 19 4565 2 6659 1

Face Detection 1437 13 6412 179 8041 4

Table 8: Mantis offline stage processing time (in seconds).

Mantis offline stage processing (profiling, model genera-
tion, slicing, and testing) time for all input training data.
The total time is the sum of times of all steps. The last col-
umn shows how many times Mantis ran the model genera-
tion and slicing part due to rejected features. For the appli-
cations excluding Chess Engine, the total time is less than
a few hours, the profiling part dominates, and the number
of iterations in the feedback loop is small. Chess Engine’s
offline processing time takes 12.8 hours because of many
rejected features. We leave speeding up this process as fu-
ture work.
Summary: We have demonstrated that our prototype im-
plemenation of Mantis generates good predictors for our
test programs that estimate running time with high accu-
racy and very low cost. We have also compared our ap-
proach to simpler, intuitive approaches based on Partial
Execution and Bounded Execution, showing that Mantis
does significantly better in almost all cases, and as well
in the few cases where Partial Execution happened upon
good prediction features. Finally, we showed that Mantis
predictors are accurate on three different hardware plat-
forms and are little affected by variability in background
CPU load.

7 Related Work
Much research has been devoted to modeling system be-
havior as a means of prediction for databases [16, 21],
cluster computing [8, 39], networking [12, 31, 41], pro-
gram optimization [26, 42], etc.

Prediction of basic program characteristics, execu-
tion time, or even resource consumption, has been used
broadly to improve scheduling, provisioning, and opti-
mization. Example domains include prediction of library
and benchmark performance [28, 45], database query
execution-time and resource prediction [16, 21], perfor-
mance prediction for streaming applications based on
control flow characterization [6], violations of Service-
Level Agreements (SLAs) for cloud and web services [8,
39], and load balancing for network monitoring infras-
tructures [7]. Such work demonstrates significant ben-
efits from prediction, but focuses on problem domains
that have identifiable features (e.g., operator counts in
database queries, or network packet header values) based

on expert knowledge, use domain-specific feature extrac-
tion that may not apply to general-purpose programs, or
require high correlation between simple features (e.g., in-
put size) and execution time.

Delving further into extraction of non-trivial features,
research has explored extracting predictors from execu-
tion traces to model program complexity [17], to improve
hardware simulation specificity [37, 38], and to find bugs
cooperatively [32]. There has also been research on multi-
component systems (e.g., content-distribution networks)
where the whole system may not be observable in one
place. For example, extracting component dependencies
(web objects in a distributed web service) can be use-
ful for what-if analysis to predict how changing network
configuration will impact user-perceived or global perfor-
mance [12, 31, 41].

A large body of work has targeted worst-case behav-
ior prediction, either focusing on identifying the inputs
that cause it, or on estimating a tight upper bound [22,30,
35, 36, 47] in embedded and/or real-time systems. Such
efforts are helped by the fact that, by construction, the
systems are more amenable to such analysis, for instance
thanks to finite bounds on loop sizes. Other work focuses
on modeling algorithmic complexity [17], simulation to
derive worst-case running time [34], and symbolic exe-
cution and abstract evaluation to derive either worst-case
inputs for a program [11], or asymptotic bounds on worst-
case complexity [19, 20]. In contrast, our goal is to auto-
matically generate an online, accurate predictor of the per-
formance of particular invocations of a general-purpose
program.

Finally, Mantis’s machine learning algorithm for pre-
diction is based on our earlier work [25]. In the prior work,
we computed program features manually. In this work,
we introduce program slicing to compute features cheaply
and generate predictors automatically, apply our whole
system to Android smartphone applications on multiple
hardware platforms, and evaluate the benefits of slicing
thoroughly.

8 Conclusion
In this paper, we presented Mantis, a framework that auto-
matically generates program performance predictors that

308 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

can estimate performance accurately and efficiently. Man-
tis combines program slicing and sparse regression in a
novel way. The key insight is that we can extract informa-
tion from program executions, even when it occurs late in
execution, cheaply by using program slicing and gener-
ate efficient feature evaluators in the form of executable
slices. Our evaluation shows that Mantis can automati-
cally generate predictors that estimate execution time ac-
curately and efficiently for smartphone applications. As
future work, we plan to explore how to extend Mantis to
predict other metrics like resource consumption and eval-
uate Mantis for diverse applications.

Acknowledgments
We would like to thank the anonymous reviewers for their
comments and our shepherd, Paul Leach, for his guidance.

References
[1] Jasmin. jasmin.sourceforge.net.
[2] Javassist. www.csg.is.titech.ac.jp/~chiba/

javassist.
[3] JChord. code.google.com/p/jchord.
[4] Octave. www.gnu.org/software/octave.
[5] Sysbench: a system performance benchmark. http://

sysbench.sourceforge.net/.
[6] F. Aleen, M. Sharif, and S. Pande. Input-Driven Dynamic Exe-

cution Behavior Prediction of Streaming Applications. In PPoPP,
2010.

[7] P. Barlet-Ros, G. Iannaccone, J. Sanjuas-Cuxart, D. Amores-
Lopez, and J. Sole-Pareta. Load Shedding in Network Monitoring
Applications. In USENIX, 2007.

[8] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A.
Patterson. Statistical Machine Learning Makes Automatic Control
Practical for Internet Datacenters. In HotCloud, 2009.

[9] L. Bottou. Large-Scale Machine Learning with Stochastic Gradi-
ent Descent. In COMPSTAT, 2010.

[10] E. Brewer. High-Level Optimization via Automated Statistical
Modeling. In PPoPP, 1995.

[11] J. Burnim, S. Juvekar, and K. Sen. WISE: Automated test genera-
tion for worst-case complexity. In ICSE, 2009.

[12] S. Chen, K. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D.
Schlichting. Link Gradients: Predicting the Impact of Network
Latency on Multitier Applications. In INFOCOM, 2009.

[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution between Mobile Device and Cloud.
In EuroSys, 2011.

[14] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making Smartphones Last Longer
with Code Offload. In MobiSys, 2010.

[15] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least Angle
Regression. Annals of Statistics, 32(2), 2002.

[16] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson. Predicting Multiple Metrics for Queries: Better
Decisions Enabled by Machine Learning. In ICDE, 2009.

[17] S. Goldsmith, A. Aiken, and D. Wilkerson. Measuring Empirical
Computational Complexity. In FSE, 2007.

[18] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
COMET: Code Offload by Migrating Execution Transparently. In
OSDI, 2012.

[19] B. Gulavani and S. Gulwani. A Numerical Abstract Domain Based
on Expression Abstraction and Max Operator with Application in
Timing Analysis. In CAV, 2008.

[20] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: Precise and Effi-
cient Static Estimation of Program Computational Complexity. In
POPL, 2009.

[21] C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting Query Exe-
cution Times for Autonomous Workload Management. In ICAC,
2008.

[22] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Auto-
matic Derivation of Loop Bounds and Infeasible Paths for WCET
Analysis Using Abstract Execution. In RTSS, 2006.

[23] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statis-
tical Learning. Springer, 2009.

[24] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using
Dependence Graphs. In PLDI, 1988.

[25] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik.
Predicting Execution Time of Computer Programs Using Sparse
Polynomial Regression. In NIPS, 2010.

[26] Y. Jiang, E. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and
Y. Gao. Exploiting statistical correlations for proactive prediction
of program behaviors. In CGO, 2010.

[27] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.
An Interior-Point Method for Large-Scale l1-Regularized Least
Squares. IEEE J-STSP, 1(4), 2007.

[28] B. Lee and D. Brooks. Accurate and efficient regression model-
ing for microarchitectural performance and power prediction. In
ASPLOS, 2006.

[29] O. Lhoták. Program Analysis using Binary Decision Diagrams.
PhD thesis, School of Computer Science, McGill University, 2006.

[30] Y.-T. S. Li and S. Malik. Performance Analysis of Real-Time Em-
bedded Software. Kluwar Academic Publishers, 1999.

[31] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang.
WebProphet: Automating Performance Prediction for Web Ser-
vices. In NSDI, 2010.

[32] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able Statistical Bug Isolation. In PLDI, 2005.

[33] T. W. Reps, S. Horwitz, S. Sagiv, and G. Rosay. Speeding up Slic-
ing. In FSE, 1994.

[34] R. Rugina and K. E. Schauser. Predicting the Running Times of
Parallel Programs by Simulation. In IPPS/SPDP, 1998.

[35] S. Seshia and A. Rakhlin. Game-Theoretic Timing Analysis. In
ICCAD, 2008.

[36] S. Seshia and A. Rakhlin. Quantitative Analysis of Systems Using
Game-Theoretic Learning. ACM TECS, 2010.

[37] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation Points in
Applications. In PACT, 2001.

[38] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically Characterizing Large Scale Program Behavior. In ASPLOS,
2002.

[39] P. Shivam, S. Babu, and J. S. Chase. Learning Application Models
for Utility Resource Planning. In ICAC, 2006.

[40] M. Sridharan, S. Fink, and R. Bodik. Thin slicing. In PLDI, 2007.
[41] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar.

Answering What-If Deployment and Configuration Questions with
WISE. In SIGCOMM, 2008.

[42] K. Tian, Y. Jiang, E. Zhang, and X. Shen. An input-centric
paradigm for program dynamic optimizations. In OOPSLA, 2010.

[43] R. Tibshirani. Regression Shrinkage and selection via the Lasso.
J. Royal. Statist. Soc B., 1996.

[44] F. Tip. A Survey of Program Slicing Techniques. Journal of Pro-
gramming Languages, 3(3), 1995.

[45] K. Vaswani, M. Thazhuthaveetil, Y. Srikant, and P. Joseph. Mi-
croarchitecture Sensitive Empirical Models for Compiler Opti-
mizations. In CGO, 2007.

[46] M. Weiser. Program Slicing. In ICSE, 1981.
[47] R. Wilhelm. Determining Bounds on Execution Times. Handbook

on Embedded Systems, 2005.
[48] T. Zhang. Adaptive forward-backward greedy algorithm for sparse

learning with linear models. In NIPS, 2008.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 309

I/O Stack Optimization for Smartphones

Sooman Jeong1, Kisung Lee2,*, Seongjin Lee1, Seoungbum Son2,*, and Youjip Won1

1 Hanyang University, Seoul, Korea
2Samsung Electronics, Suwon, Korea

Abstract
The Android I/O stack consists of elaborate and mature
components (SQLite, the EXT4 filesystem, interrupt-
driven I/O, and NAND-based storage) whose integrated
behavior is not well-orchestrated, which leaves a sub-
stantial room for an improvement. We overhauled the
block I/O behavior of five filesystems (EXT4, XFS,
BTRFS, NILFS, and F2FS) under each of the five dif-
ferent journaling modes of SQLite. We found that the
most significant inefficiency originates from the fact that
filesystem journals the database journaling activity; we
refer to this as the JOJ (Journaling of Journal) anomaly.
The JOJ overhead compounds in EXT4 when the bulky
EXT4 journaling activity is triggered by an fsync() call
from SQLite. We propose (i) the elimination of unnec-
essary metadata journaling for the filesystem, (ii) exter-
nal journaling and (iii) polling-based I/O to improve the
I/O performance, primarily to improve the efficiency of
filesystem journaling in the SQLite environment. We ex-
amined the performance trade-offs for each combination
of the five database journaling modes, five filesystems
and three optimization techniques. When we applied
three optimization techniques in existing Android I/O
stack, the SQLite performance (inserts/sec) improved by
130%. With the F2FS filesystem, WAL journaling mode
(SQLite), and the combination of our optimization ef-
forts, we improved the SQLite performance (inserts/sec)
by 300%, from 39 ins/sec to 157 ins/sec, compared to the
stock Android I/O stack.

1 Introduction
Smart devices, e.g., smartphones, tablets, and smart TVs,
have become mainstream computing devices and are
quickly replacing their predecessor, PCs. Smartphones
and tablets have become the dominant source of DRAM
consumption [17] and account for 45% of Internet web
browsing [18]. They are becoming the personal comput-

* This work was done while the author was a graduate student at
Hanyang University.

ing devices for a variety of applications, including so-
cial network services, games, cameras, camcorders, mp3
players, and web browsers.

The application performance of a smartphone is not
governed by the speed of its airlink, e.g., Wi-Fi, but
rather by the storage performance, which is currently uti-
lized in a quite inefficient manner [11]. Furthermore,
one of the main sources of this inefficiency is an ex-
cessive I/O activity caused by uncoordinated interac-
tions between EXT4 journaling and SQLite journaling
[14]. Despite its significant implications for the overall
smartphone performance, the I/O subsystem behavior of
smartphones has not been studied nearly as thoroughly as
those in enterprise servers [26, 23], web servers [4, 10],
OLTP servers [15], and desktop PCs [34, 8].

In this work, we present extensive measurement re-
sults to understand Android’s I/O behavior and propose
techniques to optimize the individual layers so that the
overall Android I/O stack behaves much more efficiently
when the layers are integrated. The Android I/O stack
is a collection of elaborate and mature software layers
(SQLite, EXT4, the interrupt-driven I/O of the Linux ker-
nel, and NAND-based storage), each of which has gone
through several years of development and refinement.
When the layers are integrated, the resulting I/O behav-
ior is not well-orchestrated and leaves a substantial room
for an improvement. We overhaul the I/O stack of the
Android platform from DBMS to a storage device and
propose several techniques to improve the performance.
Our contributions are as follows:
• Starting from EXT4, we performed an extensive
performance study of five filesystems (BTRFS, XFS,
NILFS, and F2FS [1]) in one of the most recent Android-
based smartphones and examined how they interact with
each journaling mode of SQLite. We found that SQLite
journaling interacts with the EXT4 journaling layer in
an unexpected way and, the EXT4 filesystem stresses
the storage device in a way that was rarely seen before.

310 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

We found that recently introduced F2FS can be a good
remedy for Journaling of Journal anomaly which current
stock Android I/O stack suffers from.
• Examining five journal modes of SQLite, we found
that Write-Ahead-Logging mode(WAL) yields the best
performance since it generates smallest amount of the
synchronous random writes amongst all SQLite journal
modes.
• We propose the use of external journaling, in which the
filesystem journal is maintained in a separate storage de-
vice to explicitly preserve the access locality induced by
the filesystem journal file access. This approach enables
the FTL layer of the NAND storage to more effectively
exploit the locality of the incoming I/O stream so that it
can reduce the NAND flash management overhead, e.g.,
garbage collection in page mapping and the log block
merge operation in hybrid mapping.
• We found that SQLite triggers a significant amount
of synchronous random write traffic when it commits
its journal file to the filesystem, a significant fraction of
which is not required. We tuned SQLite to eliminate this
random write I/O by employing fdatasync() in place
of fsync().
• NAND-based storage is sufficiently fast, and state-of-
the-art smartphones are equipped with a sufficient num-
ber of CPU cores. We developed a polling-based I/O sys-
tem for Android storage devices and studied its effective-
ness.

Combining these optimization efforts with the opti-
mal choices for the filesystem and database journaling
mode of SQLite (i.e., by F2FS, WAL journaling mode
in SQLite, using external journaling, eliminating unnec-
essary metadata commits, and polling-based I/O), we
achieved a 300% improvement in the SQLite perfor-
mance (inserts/sec) compared to the stock Android plat-
form.

The remainder of the paper is organized as follows:
Section 2 presents the background. The I/O characteris-
tics of Android is briefly described in Section 3, and the
current Android I/O stack is examined in Section 4. Sec-
tion 5 explores various filesystem choices for Android.
Section 6 provides optimization techniques for the An-
droid I/O stack. Section 7 presents the results of our in-
tegration of the proposed schemes. Section 8 describes
other works related to this study. Our conclusions are
presented in Section 9.

2 Background
2.1 Android I/O Stack
Google Android is an open-source Linux-based operat-
ing system designed for mobile devices. Figure 1 illus-
trates the architecture of Android. Android applications
are written in Java and packaged as .apk (Android Ap-
plication Package) files. Android provides a set of li-

�������
������������
����� ��� �� ���

��

��
	����
��������� �������� �������

�����
�����
������

�
������ �� � ������

�
�

���
����

����� � ���� ����
�����	�

��������� ��������	

��� �������
�����		����� ���������
�����������

��

��� � ���� ������� ���
��� ���������������
��������� ���������
������

�� ��

��������� ��
��� ���

�������

���������
������� ����������� �
�� �������� �

��

�
������� ��
��� ��
�
���
����
�
���

Figure 1: Android Architecture and Storage Partition

braries used extensively by various system components
and applications; some of the most widely used libraries
are SQLite, libc, and the media libraries. The Linux
kernel provides core services, such as memory manage-
ment, process management, security, networking, and a
driver model. Android uses the Dalvik virtual machine
(VM) with just-in-time compilation to run .dex (Dalvik
Executable) files, and an application runs on top of the
Dalvik VM.

We define the Android I/O stack as a set of software
and hardware layers used by applications for persistent
data management. The I/O stack of the Android plat-
form consists of the DBMS, filesystem, block device
driver, and NAND flash based storage device. SQLite
and EXT4 are the default DBMS and filesystem, respec-
tively. The Android platform uses interrupt driven I/O
with a CFQ I/O scheduling scheme. The eMMC and SD
card are used as internal and external storage devices, re-
spectively.

Most Android applications use SQLite to manage data
in a persistent manner. SQLite interacts with the under-
lying filesystems through the usual system calls, such as
open(), unlink(), write(), and fsync(). SQLite
uses journaling for recovery. It records rollback informa-
tion at .db-journal file. The database file and journal
file are frequently synchronized with the storage device
using fsync().

Since the release of Android 4.0.4 (Ice Cream Sand-
wich), Android only uses EXT4 to manage its internal
storage, eMMC.

2.2 AndroStep: Android Storage Analyzer
We use Androstep [9] to collect, analyze and replay the
trace in this study. AndroStep is a collection of tools de-
veloped for analyzing the storage stack behavior of An-
droid. It consists of Mobibench1, MOST2, and Mobi-
gen3. Mobibench (mobile benchmark) is an I/O work-
load generator which is specifically designed for An-

1https://github.com/ESOS-Lab/Mobibench, available at
Google playstore

2https://github.com/ ESOS-Lab/MOST
3https://github.com/ESOS-Lab/Mobibench/tree/master/

MobiGen

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 311

 0
 20
 40
 60
 80

 100

R
Facebook

W R
Twitter

W

2
2
9

2
5
6
1

2
0

5
0
4

%
 o

f
to

ta
l

Executable
SQLite(db)
SQLite(journal)

Multimedia
Resource
Others

(a) File Types

 0

 20

 40

 60

 80

 100

R
Facebook

W R
Twitter

W

2
2
9

4
8
9
8

2
2

1
0
3
3

%
 o

f
to

ta
l

Metadata Journal Data

(b) Block Types

 0

 20

 40

 60

 80

 100

W
Facebook

W
Twitter

5
7
0
4

1
5
5
8

%
 o

f
to

ta
l

Synchronous Buffered

(c) I/O Modes

 0

 20

 40

 60

 80

 100

R
Facebook

W R
Twitter

W

2
M

B

3
3
M

B

0
.7

M
B

4
M

B

%
 o

f
to

ta
l

Sequential Random

(d) Locality

 0
 20

 40
 60

 80
 100

R
Facebook

W R
Twitter

W

2
2
9

5
7
0
5

2
2

1
5
5
9

%
 o

f
to

ta
l

<=4KB
<=16KB

<=64KB
<=256KB

>256KB

(e) I/O Size

 0

 20

 40

 60

 80

 100

IRQs
Facebook

IRQs
Twitter

%
 o

f
to

ta
l

Touch
eMMC
WiFi(sdio)

GPU
Acc/Gyro
Others

(f) IRQs

Figure 2: I/O distribution of file types, block types, I/O modes, randomness, and I/O size. The number on the top of
each bar indicates the number of respective block I/O for R (Read) and W (Write), respectively.

droid workload generation. It can generate SQLite work-
load (insert, update, and delete) and filesystem work-
load (read, write, create, unlink etc). User can config-
ure SQLite journaling option, filesystem journaling op-
eration, and various filesystem I/O options, e.g., direct
vs. buffered I/O, synchronous I/O, and etc. The accuracy
of Mobibench is validated against existing widely used
benchmark IOZONE [9].

MOST (mobile storage analyzer) is a tool to collect
and to analyze the block level trace. From the block
trace, MOST can identify the block type (metadata, jour-
nal, and data), and the file type of the respective block
such as SQLite journal/database, apk, and etc. The
salient feature of MOST is that it keeps track of this in-
formation for deleted files.

In addition to Mobibench and MOST, Androstep has
a tool to record and to replay the system call trace, Mo-
bigen (Mobile Workload Generator). Mobigen is used to
collect the system calls generated from the human user
behavior for using a given application. By replaying
the system call trace, Mobigen can reproduce the human
driven I/O activities without actual human intervention.

3 I/O Characteristics of Android Applica-
tions

Prior works performed extensive study of Android I/O
characterization and found that a significant fraction of
the I/O’s are generated by SQLite operation [11, 14].
Kim et.al. [11] found that most I/Os in Android plat-
form are related to SQLite database operations. Lee
et.al [14] performed extensive I/O characterization study
and found that dominant fraction of Andriod I/O is syn-

chronous random write caused by misaligned interac-
tion between SQLite and EXT4 filesystem. We analyzed
the I/O behavior of Facebook and Twitter apps, both of
which are highly popular smartphone applications. We
present the analysis results only for Facebook and Twit-
ter apps because the results are well aligned with our
prior study on fourteen popular Android apps and ex-
hibits similar characteristics [14].

The results of the study presented here are based on
the Galaxy S3 (Samsung Exynos 4412 1.4 GHz Quad-
core, 2 GB RAM, 32 GB eMMC, Android 4.0.4 with
Linux kernel 3.0.15)4. We use MOST (Mobile Storage
Analyzer) [9] to collect and analyze the I/O trace. Figure
2 illustrates the results of the analysis. The numbers on
the top of each bar represent the number of I/O requests.
We briefly summarize our findings as follows:
• 90% of the write requests are to the SQLite

database and journal. We categorize the files
into six categories: database file (.db), journal file
(.db-journal), executables (.so, .apk, and dex),
resources (.dat and .xml), and others. We found
that SQLite and its journal file are responsible for
approximately 90% of the write I/O requests in both
Facebook and Twitter apps (Figure 2(a)).

• Writes to the EXT4 journal block constitute 30% of
all writes. We categorized the blocks in the filesys-
tem partition into three types: metadata, journal,

4We have also tested earlier smartphone models, the Nexus S (An-
droid 2.3 “Gingerbread”, 2010 Nov.) and Galaxy S (Android 2.1
“Eclair”, 2010 Mar.). We only show the Galaxy S3 results to save
space. I/O behaviors of earlier smartphone models are similar to that
of the Galaxy S3.

3

312 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

and data. 10% and 30% of all writes are for the
metadata and journal, respectively (Figure 2(b)).

• Of all writes, 70% are synchronous. Figure 2(c)
shows the number of buffered and synchronous
writes. 70% of all writes are synchronous I/O op-
erations, initiated primarily by SQLite.

• 75% of all writes are random. Figure 2(d) shows
the spatial characteristics of the write operations. In
general, random writes are unfavorable for NAND
storage devices and are considered to be a source of
performance degradation.

• 64% of the I/O operations involve data with size less
than 4 KB. Figure 2(e) shows the I/O size distribu-
tion. A dominant fraction (64%) of the I/O requests
has sizes of 4 KB. This is because in SQLite on
EXT4, every update to the database table and the
respective journaling activity are synchronized with
the storage device.

• The interrupt requests issued by the eMMC com-
prise 18% of all interrupts. Figure 2(f) shows
the interrupt requests from each device driver. We
found that the eMMC is responsible for 18% of the
interrupt requests on average.

4 Analysis of the Android I/O Stack
In this section we examine SQLite journaling and EXT4
file system journaling. We focus on how Android storage
system is affected subject to the SQLite journaling mode,
especially SQLite journaling and EXT4 journaling are
both active.

4.1 Journaling in SQLite
SQLite is the most popular persistent data management
module on the Android platform. Even multimedia play-
ers use SQLite to store configuration options such as the
speaker volume. SQLite uses journaling to provide trans-
actional capabilities for its database operations. There
are six journaling modes in SQLite: DELETE, TRUN-
CATE (default in Android 4.0.4), PERSIST, MEMORY,
write-ahead logging (WAL), and OFF. The differences
among these modes are both subtle and profound.

In DELETE, SQLite creates a journal file at the start of
a transaction and deletes it upon completion of the trans-
action. After the journal file is created, SQLite inserts
journal records and calls fsync() to make the journal
file persistent.

In TRUNCATE mode, SQLite truncates the journal
file to zero instead of unlinking it when the transaction
completes. This truncation is performed to relieve the
burden of updating the metadata (for example, the direc-
tory block and inode bitmap) involved in creating and
deleting the database journal file.

PERSIST mode takes a more aggressive approach than
TRUNCATE mode to more efficiently reduce the jour-
naling. In PERSIST mode, SQLite writes zeros at the

beginning of the database journal when the transaction
completes instead of truncating the file. When inserting
a new record into journal file, PERSIST mode uses the
existing blocks (zero-filled block), whereas TRUNCATE
mode allocates a new block. The amount of metadata
committed to filesystem journal is smaller in PERSIST
mode compared to TRUNCATE mode.

In MEMORY mode, the journal records are kept
in memory. Since MEMORY mode does not rely on
filesystem service to maintain journal records, MEM-
ORY mode does not have any variants different from the
filesystem based journal modes.

WAL journaling mode creates a separate WAL file
(.wal) and logs the database updates to the log file.
When the .wal file reaches a specified threshold size,
the outstanding logs of the .wal file are checkpointed to
the database file (.db). In WAL mode, I/O operations
tend to be sequential; therefore, this mode is good for
exploiting the nature of NAND flash storage. The OFF
journaling mode does not use journaling.

4.2 EXT4 Journaling and fsync()
EXT4 has long been the default filesystem on the An-
droid platform. For efficiency, EXT4 journaling main-
tains the log records for multiple system calls as a sin-
gle unit called a journal transaction and uses this as the
unit at which the log records in memory are committed
to filesystem journal. Normally, the overhead of journal-
ing is negligible in EXT4 because a journal transaction
consists of a large number of log records and a journal
transaction is committed to the EXT4 journal file at rel-
atively long intervals, e.g., every 5 sec. In the Android
platform, however, the journaling overhead of EXT4 be-
comes rather significant because of its frequent fsync()
calls. As we show in Section 4.3, the insert operation
in SQLite issues two or more fsync() calls within 2
msec. Each fsync() call triggers the commit of a jour-
nal transaction in which the journal transaction consists
of very few (often one or two) log records that repre-
sent the updated in-core metadata for the respective file.
Consequently, EXT4 journaling becomes very inefficient
when it is triggered by fsync().

Let us physically examine the effect of fsync() in
EXT4 journaling (ordered mode). We generated a 4 KB
write followed by an fsync() call. Figure 3(a) illus-
trates the results. In ordered mode, filesystem first up-
dates the file and commits the respective file metadata to
filesystem journal. As a result of fsync(), there occurs
three write operations to the storage. The first write in the
lower range of LBA is the data update. The second and
the third writes are for committing updated metadata to
filesystem journal; writing the journal descriptor, insert-
ing the log record(s) and writing a journal commit mark.
In Figure 3(a), the journal descriptor and log record are

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 313

�

�

��

��

� ��� ��� ��� ��� ��
��
��
���
��
��
��
�
��
� �

	��������

����

�������

�������

�

� �

(a) EXT4

�
�
��
��
��
��

� � �� �� �� ���
��
��
���
��
��
��
��
��
� �

����������

�������

�����

� �

� �
�

����������
��������

	���������

(b) BTRFS

�
�
��
��
��

� ��� ��� ��� ��� ����
��
��
���
��
��
��
�
��
� �

	���������

�������

���	�����������
���

(c) NILFS2

�
�
��
��
��

� ��� ��� ��� ��� ��� ����
��
��
���
��
��
��
��
��
� �

���������

����

�	����

� �������
�

(d) XFS

�

��

��

��

� � � � � �� �� �� �� ���
��
��
���
��
��
��
�
��
� �

�
	���	����

�������

�����

�������� �

(e) F2FS

Figure 3: Block I/O pattern: 4 KB write() followed by fsync() EXT4, BTRFS, NILFS2, XFS, and F2FS. Number
at each block I/O denotes I/O size in KB.

written in a single write operation. A single write()

system call entails two additional block write operations,
which are for updating the filesystem journal. The jour-
naling overhead is 200% in this experiment.
fsync() not only creates additional write operations

but also disintegrates the locality of the underlying work-
load. fsync() introduces more randomness to the un-
derlying traffic because of frequent journal commits;
consequently, fsync() significantly degrades the perfor-
mance as well as lifetime of NAND-based storage.

4.3 Journaling of Journal: Interaction be-
tween SQLite and EXT4

Previous study [14] reported that the excessive I/O be-
havior of Android-based smartphones is due to the un-
coordinated interaction between SQLite and EXT4, but
the detailed mechanism has not been studied. We per-
formed an in-depth analysis of the block-level I/O activ-
ity caused by SQLite and EXT4 (ordered mode). The ap-
plication inserted one record (100 Byte) into the SQLite
database table in this experiment. For comprehensive-
ness of the study, we examined four journaling modes of
SQLite: DELETE, TRUNCATE, PERSIST, and WAL.
Figure 4 shows the results. We denote the time of I/O,
the respective starting LBA, and the size. Additionally,
we specified the file where the I/O is designated.

In SQLite, the insert operation primarily consists of
two phases: (i) it logs the insert operation at the SQLite
journal, and (ii) it inserts the record to the actual database
table. SQLite calls fsync() at the end of each phase to
make the results persistent. Each fsync() call makes
EXT4 filesystem update the file (database journal or
database table) and write the updated metadata to the
EXT4 journal.

Let us begin with DELETE mode (Figure 4(a)).
SQLite creates the journal file (.db-journal), en-
ters the journal entry for the insert operation and
then calls fsync(). Upon fsync(), EXT4 writes
.db-journal to storage and commits the updated meta-
data for .db-journal to the EXT4 journal. Then,
SQLite inserts the record into the database table (.db)
and calls fsync() to force the record into storage. When
fsync() is called again, the same steps are repeated as in
the first phase. Finally, SQLite calls unlink() to delete
the .db-journal file. A single insert operation results
in nine I/Os to the storage device.

The differences among three different journaling
modes of SQLite, DELETE, TRUNCATE and PER-
SIST, lie in how SQLite treats the database journal file
(.db-journal). These differences affect the amount of
metadata committed to the EXT4 journal. When SQLite
reuses the journal file (TRUNCATE mode), EXT4 is re-
lieved from the burden of committing the metadata up-
dates caused by the creation and deletion of SQLite jour-
nal. In PERSIST mode, SQLite not only reuses the ex-
isting journal but also reuses the data blocks of the jour-
nal file. Consequently, when SQLite operates in PER-
SIST mode, EXT4 is further relieved from the burden of
committing the updated metadata involved in allocating
a new data block to SQLite journal. Let us look at our
experiment results (Figure 3). The first write operation
designated to filesystem journal in each of Figure 4(a),
Figure 4(b) and Figure 4(c) is for committing the up-
dated metadata for the SQLite journal (.db-journal)
to the EXT4 journal. The sizes of these operations are
24 KB, 16 KB, and 8 KB in DELETE, TRUNCATE, and
PERSIST modes, respectively.

In PERSIST mode, however, SQLite generates addi-

5

314 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

����������� �����������

�
�
�
�
�
��
��

� ��� � ��� ��
��
��
��
�
��
��
��
�
��
� �

	��������

�������������

	���������

����������������
������
�������

������������������
������
�������

��

�� � � �

�

�

�

�

(a) DELETE

�
�
�
�

� � � � � ��
��
��
��
�
��
��
��
��
��
� �

�����������

�������
�������

����������
���

	���������

�������
�������

�� �

�

�

��

�

�

�

����������� �����������

(b) TRUNCATE

� �� � ��

�
�
�
�
�
��
��

� ��� � ��� � ��� ��
��
��
���
��
��

��
��
�

	��������

��
������� ����������� �����������

���������� ����������

�
	��������

���

�������
�������

�� ���

�

(c) PERSIST

�

�

��

��

� ��� ��� ��� ��� ��� ��� ��� ����
��
��
���
��
��
��
��
��
�

��
���
���

���������

������������
�� �

����
	 �����
	

���������
	

(d) Write-Ahead Logging (WAL)

Figure 4: Block I/O accesses of the SQLite insert operation on EXT4 in Galaxy S3 (For four journal modes in SQLite
3.7.5: DELETE, TRUNCATE, PERSIST, and WAL mode). Number at each block I/O denotes I/O size in KB.

tional fsync() call at the end of a transaction (Fig-
ure 4(c)). This is to synchronize the zero fill operation to
the SQLite journal in the storage. PERSIST mode gen-
erates the largest number of I/O (twelve I/O operations)
among the four SQLite journaling modes.

In write-ahead logging (WAL), SQLite logs insert or
update operations in the log file (.db-wal) and calls
fsync(). Then, EXT4 filesystem updates the file (
.db-wal file) and commits the updated metadata to the
EXT4 journal. Because there is only one fsync() call,
the overhead of filesystem journaling is the least severe
and the database operation becomes the most efficient
in WAL mode among five journaling modes of SQLite.
Figure 4(d) shows the I/O trace in WAL mode. Because
SQLite must maintain a sequence of logs in the log file,
WAL mode may consume more storage space.

With an extensive analysis of the Android platform,
we observed that the EXT4 filesystem journals the
database journaling activity via fsync() calls from
SQLite. The bulky journaling mechanism (4 KB log
record) of EXT4 very frequently commits the meta-
data of SQLite database (.db) and SQLite journal
(.db-journal). As a result, EXT4 filesystem, when
used by SQLite generates excessive amount of small
writes and stresses the storage in a way that has rarely
been observed before. The overhead of the filesystem
journaling and database journaling compounds when the

operations are used together. We call this phenomenon
JOJ (journaling of journal). We also found that none
of the SQLite journaling modes are free from JOJ phe-
nomenon, but WAL mode puts the least stress on the
filesystem.

The ideal and classic remedy for the JOJ phenomenon
is to have SQLite directly manage the storage without
filesystem’s assistance or to have Android apps use the
filesystem primitive to maintain their data instead of us-
ing SQLite. These approaches mandate overhauling the
SQLite stack or asking numerous Android application
developers to use the inconvenient filesystem primitive
when writing software for Android.

5 Alternative Filesystems on Android
We analyzed the behavior of four most popular filesys-
tems to observe behavior on the Android platform:
BTRFS [24], NILFS2 [13], XFS [29], and the recently
introduced5 F2FS [1]. We ported these filesystems to the
Galaxy S3 (running Android 4.0.4). We examined the
block-level I/O behavior and the overall performance of
these filesystems.

5.1 Details of Filesystem Behavior
BTRFS [24] uses B+ tree to maintain both the data and
metadata and adopts copy-on-write to update its content.

5Oct 5, 2012

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 315

Despite the filesystem’s promising features (e.g., file
and subvolume snapshots, online defragmentation, and
TRIM support for SSD [28]), these two properties, copy-
on-write and B+ tree, make BTRFS the worst filesystem
on the Android platform. BTRFS suffers from the wan-
dering tree problem, where an update in a tree node trig-
gers cascading updates to the root of the tree [5]. Figure
3(b) shows the I/O behavior when fsync() is called af-
ter a 4 KB write. With fsync(), BTRFS writes four B+
tree logs and synchronizes the superblock to the storage
at the end. For a 4 KB write, BTRFS generates five ad-
ditional write operations when fsync() is called.

NILFS2 [13] is a log-structured file system. It merges
a set of data writes and all updated metadata into a seg-
ment and synchronizes the segment to the storage. The
size of a segment is 128 KB in NILFS2. The fsync()

operation in NILFS2 is implemented to flush the entire
logical segment. Figure 3(c) illustrates the result of a 4
KB write followed by fsync(). Each fsync() gener-
ates a 128 KB write. Despite its log-structured nature,
NILFS2 does not exploit its structural advantages be-
cause of its large segment size and inefficient segment
flush mechanism.

XFS [29] is a journaling filesystem that was origi-
nally designed for massive-scale enterprise storage. It
is expected to handle as many files in a directory as the
storage can hold, with a maximum file size of 8 EByte
(8×260). XFS uses the B+ tree-based directory structure
and supports sparse file for scalability. Despite its orig-
inal design objective of massive-scale systems, XFS ex-
hibits very good (the second best) performance in write

followed by fsync(). Figure 3(d) shows the block ac-
cess pattern of XFS. The performance advantage of XFS
arises from two sources: the number of journal writes
and the size of each journal write. The fsync() oper-
ation triggers only one journal write, which is half the
number of journal writes in EXT4. Furthermore, the size
of a journal write in XFS is 1 KB, whereas it is at least 4
KB in EXT4.

Flash-Friendly Filesystem (F2FS) is the youngest
filesystem among the five filesystems that we studied [1].
It is a log-structured filesystem specifically designed for
flash storage. F2FS categorizes incoming write requests
with similar characteristics together to mitigate the over-
head of garbage collection in flash-based storage. Un-
like the existing log-structured filesystems that collect a
sequence of writes in a single large write for filesystem
updates, F2FS can also update the storage in small units,
e.g., 4 KB. This feature makes F2FS behave very effi-
ciently in the corner-case workload, such as write()

followed by fsync(). Figure 3(e) illustrates the I/O
trace in F2FS. It has two writes: one for data and one
for inodes. The size of a write is 4 KB, whereas another
log-structured filesystem, NILFS2 generates a 128 KB

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

S R
EXT4

S R
XFS

S R
BTRFS

S R
NILFS2

S R
F2FS

 0

 50

 100

 150

 200

T
h

ro
u

g
h

p
u

t
(K

B
/s

e
c
)

IO
P

S
 (

4
K

B
)

Figure 5: Sequential and random write using fsync()

on 16GB Transcend SD card. S: Sequential (KB/sec), R:
Random (IOPS), File size: 10MB, I/O size: 4 KB.

I/O in the same situation (Figure 3(c)).

5.2 Summary: write() Followed by fsync()
We now compare the performance of five filesystems in
a typical workload in Android platform: 4 KB write fol-
lowed by fsync(). Figure 5 shows the results. XFS and
F2FS yield the best performance among the five filesys-
tems. F2FS yields the best random write performance
while the edge goes to XFS in a sequential write. The key
factor governing the performance of fsync() is the ef-
ficiency of the filesystem journaling, which we carefully
studied in Section 5.1. In XFS, the size of a log record is
1 KB, and it generates one write per one journal commit.
In EXT4, the size of a log record is 4 KB, and it gener-
ates at least two writes for each journal commit opera-
tion. For random writes, XFS and F2FS surpass EXT4
by approximately 50% and 70%, respectively. BTRFS
exhibits the worst performance in both sequential and
random writes. We will see in Section 6 that the per-
formance of SQLite operations in each filesystem is pre-
cisely proportional to the performance of write() fol-
lowed by fsync() demonstrated in Figure 5.

6 Optimization of the I/O Stack
In this section, we introduce optimization techniques to
improve inefficiency caused by JOJ phenomenon, and
examine the performance effect of individual techniques.

6.1 Eliminating Unnecessary Metadata
Flushes

Our first effort of the optimization is to reduce the
amount of metadata committed to a filesystem jour-
nal, which is caused by fsync() call in SQLite. The
fsync() operation flushes both the metadata and data
to storage. We found that fdatasync() operation is
a good alternative to fsync() [2] because it does not
flush metadata unless it is required to allow a subsequent
data retrieval to be correctly treated. In Android plat-
form, the filesystem is mounted with noatime option,
and SQLite states that it only cares the files size, not
the other attributes. Guaranteed that the underlying OS
and filesystem support fdatasync() correctly, the use
of fdatasync() does not affect the filesystem integrity.

7

316 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

B F E
EXT4

B F E
XFS

B F
BTRFS

B F
NILFS2

B F
F2FS

In
s
e
rt

 /
 s

e
c

(a) Insert/sec

 0
 50

 100
 150
 200
 250
 300
 350

B F E
EXT4

B F E
XFS

B F
BTRFS

B F
NILFS2

B F
F2FS

U
p
d
a
te

 /
 s

e
c

(b) Update/sec
Figure 6: SQLite Insert and update/sec for 1,000
database items on 16GB Transcend SD card. B: base-
line, F: fdatasync(), E: External Journal.

We examined the performance of SQLite operations
(insert and update) using five filesystems after replac-
ing fsync() with fdatasync(). Figure 6 displays the
results. The B, F, and E labels on the X-axis denote
the baseline (fsync() only), fdatasync() enhanced
version, and filesystem with external journaling, respec-
tively. Details regarding external journaling will be pre-
sented in Section 6.3.

By using fdatasync(), we achieved 17% perfor-
mance improvement with EXT4 for an insert opera-
tion. For an insert operation, SQLite performs the best
with F2FS. SQLite exhibits a 111% faster insert rate
(inserts/sec) with F2FS than with EXT4. In BTRFS
and NILFS2, the advantage of using fdatasync() is
marginal. This is because in BTRFS and NILFS2, an
insert operation causes an allocation of new blocks, in
which the metadata are flushed even with fdatasync().
Figure 6(a) illustrates the result.

The advantage of using fdatasync() is more signifi-
cant for an update operation than for an insert operation.
Figure 6(b) illustrates the result. An update is an over-
write on the existing database record from filesystem’s
point of view. In EXT4 and XFS, update operation does
not bring any changes on the metadata such as file size,
indirect blocks, free block bitmaps and etc. Therefore,
using fdatasync() in place of fsync() saves signif-
icant amount of metadata flushes. In EXT4 and XFS,
update/sec increases by 50% and 66% when fsync() is
replaced with fdatasync(), respectively. In contrast,
for copy-on-write based filesystems, e.g., BTRFS and
NILFS, fdatasync() yields little improvement because
an update operation triggers the allocation of new blocks
and subsequent metadata updates, which are flushed even

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

DTPWO
EXT4

DTPWO
XFS

DTPWO
BTRFS

DTPWO
NILFS2

DTPWO
F2FS

In
s
e

rt
 /

 s
e

c

(a) Insert, SQLite 3.7.5 (Public and Galaxy S3)

 0
 50

 100
 150
 200
 250
 300
 350

DTPWO
EXT4

DTPWO
XFS

DTPWO
BTRFS

DTPWO
NILFS2

DTPWO
F2FS

U
p

d
a

te
 /

 s
e

c

(b) Update, SQLite 3.7.5 (Public)

Figure 7: SQLite performance (with fsync()) under
varying journal modes, 1,000 database items on 16GB
Transcend SD card. D: DELETE, T: TRUNCATE, P:
PERSIST, W: WAL, O: OFF

when using fdatasync(). For an update operation,
F2FS yields the best performance among the five filesys-
tems. When we used F2FS with fdatasync(), the
SQLite performance improved by 250% compared to the
baseline platform (SQLite on EXT4 with fsync()).

6.2 Using the Optimal Journaling Mode in
SQL

The I/O performance is very sensitive to the journaling
mode of the underlying DBMS. We tested five journaling
modes (DELETE, TRUNCATE, PERSIST, WAL, and
OFF) of SQLite on each of the five filesystems (EXT4,
NILFS2, XFS, BTRFS, and F2FS) and measured the
performance of SQLite (insert and update). Figure 7
shows the results. The performance of an insert opera-
tion decreased by more than 50% when we used one of
DELETE, TRUNCATE or PERSIST compared to when
we turned off the journal. In all filesystems, WAL mode
yields the best insert/sec performance among four jour-
naling modes (Figure 7(a)).

In an update operation, WAL mode yields three times
better performance compared to the other journaling
modes in all filesystems (Figure 7(b)). It should be noted
that different from the publicly available SQLite, Galaxy
S3 version of SQLite does not create any journal file in
update operation. This yields significantly better perfor-
mance, but the update operation can be unrecoverable6.

For insert and update operations, F2FS is the best-
performing filesystem for most of the journaling modes.

6We do not include the performance result due to space limit

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 317

 0 20 40 60 80 100 120

L
o

g
ic

a
l B

lo
ck

 A
d

d
re

ss
 (

M
B

)

Time (Sec)

Journal IO

Data IO

 770

 780

 1160

 1170

Figure 8: 4 KB random write followed by
fsync()(EXT4)

When we replace EXT4 with F2FS, SQLite performance
increases at least by 67%. This is because F2FS only
generates two 4KB I/Os, one for data and the other for
metadata, whereas EXT4 generates 3 to 12 random I/Os
depending on the journal modes. For all filesystems,
WAL mode yields the best performance because all the
log data created from insert and update operations are
appended to .db-wal file and there occurs only one
fsync() call. BTRFS exhibits the worst performance
for both insert and update operations because BTRFS in-
duces more write() calls than any other filesystems due
to wandering tree behavior.

In summary, the WAL mode is the optimal journaling
mode for the Android platform from performance point
of view. Despite its performance benefits, Write-Ahead-
Logging has some issues, space requirement and recov-
ery time. These need to be dealt with in the separate
context.

6.3 External Journaling
EXT4 and XFS have an option of storing journal blocks
on a separate block device. This option is called external
journaling. We now show that external journaling can
be a viable option to remove randomness in the aggre-
gate traffic and to cluster correlated writes together to the
same storage region such that the underlying NAND stor-
age can easily exploit the locality in the traffic [16, 20].

In Figure 8, we plot the I/O traces from a 4 KB ran-
dom write followed by fsync() in the EXT4 filesystem.
The data file is in the 1160 to 1170 MB range, whereas
the EXT4 journal blocks are in the 770 to 780 MB range.
We can clearly see that the aggregate traffic consists of
an interleaved mixture of two different I/O streams; the
locality in the data region is random, whereas that in the
journal region is sequential. Separating the data and jour-
nal I/Os appears to be an obvious next step, which allows
the FTL of the underlying NAND-based storage to eas-
ily identify and to exploit the locality in the incoming I/O
stream. The recent eMMC interface standard [3] allows
physical partitioning of the internal storage. Thus, exter-
nal journaling can indeed be a practical option for future
smartphone storage.

We examined the effectiveness of external journaling
in EXT4 and XFS. We used a 16 GB Transcend SD card

Table 1: Throughput of 4 KB random write followed by
fsync() on Internal eMMC with EXT4

of
thread Scenario Idle HD Record

base poll base poll

eM
M

C 1 KIOPS 1002 981 667 756
CPU (%) 7.5 10.9 26.4 30.2

10 KIOPS 2609 2705 2136 2351
CPU (%) 11.1 12.9 30.1 33.1

 1

 10

 100

 1000

 10000

 100000

Interrupt Poll

C
o
n
te

x
t
S

w
it
c
h
e
s

(c
o
u
n
t
/
M

B
)

Involuntary
Voluntary

Total

Figure 9: Number of context switches performed in
interrupt-driven I/O (baseline) and polling-driven I/O

and internal eMMC for the data storage and the external
journal, respectively. The results are shown in Figure 6,
where E stands for external journal. External journaling
yields a significant performance improvement in EXT4;
the insert rate is improved by 30%, and the update rate is
improved by 39%. The improvement in XFS was not as
great as that in EXT4 because the journaling overhead in
XFS is not as significant as in EXT4.

6.4 Polling-based I/O
Increasing number of CPU cores and decreasing I/O la-
tency of a block device have led to a rediscovery of
the value of polling-based I/O [32, 27]. State-of-the-art
smartphones contain quad-core CPUs and NAND-based
storage latency is an order of magnitude smaller than that
of legacy hard disk drive. In this environment, interrupt-
driven I/O may hinder the performance of a system due
to context switches. When many small I/Os are gener-
ated from the block I/O layer, the I/O daemon for the
eMMC, mmcqd, is subject to significant context switch
overhead. Our results below show that this can indeed
be the case and also show that polling-based I/O can pro-
vide a superior I/O performance to interrupt driven one
without sacrificing the overall system performance.

We modify the I/O subsystem for the Android plat-
form so that the mmcqd uses polling to access the stor-
age device. There are two issues in polling-based I/O:
CPU monopolization and power consumption. We per-
form an experiment if the polling based I/O interferes
with the ongoing application, particularly CPU inten-
sive one. We ran a HD-quality (1920x1080 at 30 fps)
video recording application concurrently with our bench-
mark process. We found the soft real-time requirement of

9

318 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

video recording is well preserved even when the I/O sub-
system is driven by polling. We perform another set of
experiment to examine the power consumption behavior
of polling driven I/O subsystem. Polling-based I/O may
consume more CPU cycles and may reduce the oppor-
tunity for the CPU to stay in low-power mode. Accord-
ing to our experiment, CPU utilization increases by 4%
when we use polling based I/O. In smartphone, dominant
source of energy consumption in LCD and Wi-Fi [6, 33].
We carefully argue that energy overhead of polling based
I/O is marginal and therefore polling based I/O is not an
infeasible option.

Figure 9 shows the number of context switches made
by the mmcqd daemon for the baseline and poll-driven
I/O. We observed that the number of voluntary context
switches is reduced to 1/100 and the total number of con-
text switches is reduced to 1/50.

We examined the I/O performance under the polling-
based I/O subsystem. We ran two experiments, one for
single thread and the other for ten threads, where each
thread in the experiment generates 4 KB random write
followed by fsync(). We created ten threads to exam-
ine how polling-based I/O behaves when there are fre-
quent TLB misses. Table 1 shows the results. In the
single-thread case, the performance gain shows marginal
gain of 1-2% when CPU is idle; the performance gain
in the polling-based I/O is 13% when the smartphone is
recording HD video in the background. When there were
ten threads, the performance gain is slightly smaller, but
it still shows 10.1% performance gain while recording
HD video. As discussed in Yang et al. [32], the perfor-
mance gain will be more significant with a faster storage
medium.

6.5 Replay of Real Workload
As the final step to verify the effectiveness of the op-
timization, we examined the performance of each opti-
mization technique under a real workload. We collected
the system call trace and then replayed it with Mobigen.
We captured traces from two widely used Android appli-
cations: Twitter and Facebook.

By replaying captured I/O traces of Twitter and Face-
book, we extracted the duration of I/Os processed in the
two applications (Figure 10). The results of this study ex-
hibit similar characteristics to the results that we obtained
from the SQLite performance and write() followed by
fsync() performance. In both Twitter and Facebook ex-
ecution, F2FS performed the best.

7 Combining All the Improvements
We examined the SQLite performance on three filesys-
tems (EXT4 as the baseline, XFS, and F2FS) when ap-
plying the aforementioned three techniques7 in combi-

7External Journaling is not applicable to F2FS since it is a log-
structured filesystem

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

B P F E
EXT4

B P F E
XFS

B P F
BTRFS

B P F
NILFS2

B P F
F2FS

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

(a) Twitter

 0

 5

 10

 15

 20

 25

B P F E
EXT4

B P F E
XFS

B P F
BTRFS

B P F
NILFS2

B P F
F2FS

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

(b) Facebook
Figure 10: Compare execution-time of replaying script
using Mobigen/Mobibench. B: Baseline, P: Polling, F:
fdatasync(), E: External Journal

 0

 50

 100

 150

 200

 250

 300

 350

B P
EXT4

E F F+E+P F+E+P
XFS

F+P
F2FS

Q
u

e
ry

 /
 s

e
c

Insert Update

Figure 11: SQLite Performance for 1,000 database items.
16GB Transcend SD card. B: Baseline, P: Polling, F:
fdatasync(), E: External Journal. TRUNCATE mode

nation. SQLite journaling mode was set to TRUNCATE
(default).

Figure 11 illustrates the results. The baseline perfor-
mance represents the current I/O performance: 39 in-
serts/sec and 102 updates/sec. Applying fdatasync(),
external journaling, and polling-based I/O all together,
SQLite on EXT4 showed 53% and 130% performance
gains for insert and update operations, respectively.
XFS and F2FS bring greater performance enhancements.
F2FS with fdatasync() and polling-based I/O yields
the best SQLite performance: the performance of the in-
sert and update operations improved by 130% and 250%,
respectively, compared to the baseline.

Finally, we combined all of the proposed techniques.
We used WAL (write-ahead logging) SQLite journaling
mode and examined the SQLite performance on three
filesystems. Applying everything (fdatasync(), ex-
ternal journaling, polling-based I/O, and WAL SQLite

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 319

Table 2: Performance measurements of vertical Android I/O Stack. Measurement shows performance of SQLite
insert/sec and update/sec on 16GB Transcend SD card.

Optimizations EXT4 XFS F2FS
Insert/sec Update/sec Insert/sec Update/sec Insert/sec Update/sec

Baseline 39 102 60 149 83 171
fdatasync() (F) 46 156 60 251 88 354

External Journal (E) 51 143 82 179 - -
Polling (P) 39 109 61 153 85 226

WAL mode (W) 76 100 75 153 149 155
F + E + P 60 245 84 265 89 358

F + E + P + W 92 113 86 188 157 175

journaling mode), we achieved a 150% performance im-
provement (from 39 inserts/sec to 92 inserts/sec) for
SQLite on EXT4. When we used F2FS instead of
EXT4 in the Android I/O stack, applying everything, we
achieved a spectacular 300% performance improvement
for SQLite (from 39 inserts/sec to 157 inserts/sec). Table
2 summarizes the results.

8 Related Work
Storage I/O characterization has been extensively stud-
ied in various computing environments. Ruemmler et
al. [26] analyzed the disk I/O in three different HP-UX
systems and demonstrated that a majority of the I/O op-
erations are writes and that the majority of writes (67-
78%) are for metadata, with user-data I/O representing
only 3-41% of all accesses. Roselli et al. [25] reported
that file accesses follow a bimodal distribution: some
files are written repeatedly without being read, whereas
other files are almost exclusively for reading. Zhou et
al. [34] found that the read/write ratio in the filesystem
is 80%/20% and that the majority of write I/Os are ran-
dom. Harter et al. [8] studied the I/O behavior of the
Mac OS filesystem and demonstrated that sequential I/O
on a file rarely results in sequential I/O on a block de-
vice because of the complex XML-based document for-
mat. Prabhakaran et al. [22] provided a thorough anal-
ysis of journaling filesystems, such as EXT4, ReiserFS,
JFS, and NTFS, and explained the events that cause data
and metadata to be written to the journal. Piernas et
al. [21] suggested separating the metadata from the data
and demonstrated that this separation may improve the
filesystem’s performance.

There are a variety of interesting studies regarding
smartphones, ranging from analyzing user behavior [7]
to measuring power consumption [6], security [31, 30],
and storage performance [11]. Kim et al. [11] demon-
strated that the conventional wisdom that storage band-
width is higher than network bandwidth must be recon-
sidered for smartphones. They demonstrated that stor-
age performance does indeed affect the performance of
application and operating system because the network
bandwidth has increased significantly. Kim et al. [12]

proposed a new buffer cache replacement scheme that
provides a better sequential access in NAND storage de-
vices. Lee et al. [14] analyzed the I/O behavior of eleven
smartphone applications and found that the journaling ef-
forts of SQLite and EXT4 compound with each other and
result in excessive random write operations. To mitigate
the overhead of random writes in NAND-based storage,
Min et al. [19] proposed merging multiple random writes
into a single write in the log-structured filesystem. This
approach does not work on the Android platform where
individual random writes are synchronized to the storage.

Yang et al. [32] demonstrated that in ultra-low la-
tency devices using next-generation non-volatile mem-
ory, polling can deliver a higher performance than the
traditional interrupt-driven I/O.

9 Conclusions
Modern OSes adopt a layered architecture that guar-
antees the independent operation of each layer; how-
ever, neglecting the underlying mechanisms produces a
considerable amount of overhead related to the storage
device. The well-designed SQLite and EXT4 compo-
nents have unexpected effects on NAND-based storage
devices when combined together because they produce
many small, random, and synchronous write I/Os due to
their misaligned interaction. We thoroughly analyzed the
I/O stack (DBMS, filesystem, and block device driver)
of Android. We examine the block level I/O behavior
of SQLite operation under its five journal modes with
five different filesystems in combinatorial manner. By
removing frequent updates of the metadata, dislocating
the EXT4 journal to separate storage, and using polling-
based I/O, we have achieved a significant performance
improvement in the insert and update rates. With the
F2FS filesystem, WAL journaling mode (SQLite), and
the combination of our improvements, we have observed
an overall performance increase of 300% in SQLite per-
formance.

10 Acknowledgements
We would like to thank our shepherd Steve Ko, and
anonymous reviewers for insightful comments and sug-

11

320 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

gestions. This work is sponsored by IT R&D pro-
gram MKE/KEIT. [No.10035202, Large Scale hyper-
MLC SSD Technology Development], and by IT R&D
program MKE/KEIT. [No. 10041608, Embedded system
Software for New-memory based Smart Device].

References

[1] F2FS patch on LKML. https://lkml.org/lkml/2012/10/

5/205.

[2] Linux programmer’s manual for fdatasync. http:

//www.kernel.org/doc/man-pages/online/pages/

man2/fsync.2.html.

[3] EMBEDDED MULTI-MEDIA CARD(e-MMC), ELECTRICAL
STANDARD (4.5 Device), June 2011.

[4] ARLITT, M., AND WILLIAMSON, C. Internet web
servers: Workload characterization and performance implica-
tions. IEEE/ACM Trans. on Networking (ToN) 5, 5 (1997), 631–
645.

[5] BITYUTSKIY, A. Jffs3 design issues, Nov. 2005.

[6] CARROLL, A., AND HEISER, G. An analysis of power consump-
tion in a smartphone. In Proc. of the USENIX Annual Technical
Conference (Boston, MA, US, June 2010).

[7] FALAKI, H., MAHAJAN, R., KANDULA, S., LYMBEROPOU-
LOS, D., GOVINDAN, R., AND ESTRIN, D. Diversity in smart-
phone usage. In Proc. of the 8th international conference on Mo-
bile systems, applications, and services (2010), ACM, pp. 179–
194.

[8] HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A file is not a file: un-
derstanding the I/O behavior of apple desktop applications. In
Proc. of SOSP (2011), T. Wobber and P. Druschel, Eds., ACM,
pp. 71–83.

[9] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON, Y. An-
drostep: Android storage performance analysis tool. In ME13:
In Proc. of the First European Workshop on Mobile Engineering,
Aachen, Germany (Feb. 26 2013), vol. 215 of Lecture Notes in
Informatics, pp. 327–340.

[10] KANT, K., AND WON, Y. Server capacity planning for web traf-
fic workload. IEEE Trans. on Knowledge and Data Engineering
11, 5 (Sep 1999), 731–747.

[11] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In Proc. of the 10th USENIX Conference
on File and Storage Technologies, San Jose, CA, USA, February,
2012.

[12] KIM, H., RYU, M., AND RAMACHANDRAN, U. What is a good
buffer cache replacement scheme for mobile flash storage? In
Proc. of the 12th ACM SIGMETRICS/PERFORMANCE, London,
UK (2012), ACM, pp. 235–246.

[13] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KIHARA,
S., AND MORIAI, S. The linux implementation of a log-
structured file system. SIGOPS Oper. Syst. Rev. 40, 3 (July 2006),
102–107.

[14] LEE, K., AND WON, Y. Smart layers and dumb result: Io charac-
terization of an android-based smartphone. In EMSOFT 2012: In
Proc. of International Conference on Embedded Software, Tam-
pere, Finland (Oct. 7-12 2012).

[15] LEE, S., MOON, B., AND PARK, C. Advances in flash memory
ssd technology for enterprise database applications. In Proc. of
the 35th SIGMOD international conference on Management of
data, Providence, USA (2009), ACM, pp. 863–870.

[16] LEE, S., SHIN, D., KIM, Y.-J., AND KIM, J. Last: Locality-
aware sector translation for nand flash memory-based storage sys-
tems. SIGOPS Oper. Syst. Rev. 42, 6 (2008), 36–42.

[17] LEIMBACH, C. Dram share in tablets growing to the detriment
of pcs. DRAM Dynamics, issue 23, Sep 2012.

[18] MEEKER, M. Kpcb internet trends year-end update. Kleiner
Perkins Caufield & Byers, Dec 2012.

[19] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y.-I. SFS:
Random write considered harmful in solid state drives. In Proc.
of the 10th USENIX conference on File and storage technologie
(San Jose, CA, USA, Feb. 2012).

[20] PARK, D., AND DU, D. Hot data identification for flash-based
storage systems using multiple bloom filters. In Proc. of Mass
Storage Systems and Technologies (MSST), 2011 IEEE 27th Sym-
posium on (may 2011), pp. 1 –11.

[21] PIERNAS, J., CORTES, T., AND GARCIA, J. M. The design of
new journaling file systems: The dualfs case. IEEE Trans. on
Computers 56, 2 (2007), 267–281.

[22] PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file sys-
tems. In Proc. of the USENIX Annual Technical Conference, Gen-
eral Track, Anaheim, CA, USA (2005), pp. 105–120.

[23] RISKA, A., AND RIEDEL, E. Disk drive level workload charac-
terization. In Proc. of the USENIX Annual Technical Conference,
General Track (2006), USENIX, pp. 97–102.

[24] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux b-tree
filesystem. IBM Research Report (July 2012).

[25] ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A com-
parison of file system workloads. In Proc. of the USENIX Annual
Technical Conference (Berkeley, CA, June 18–23 2000), pp. 41–
54.

[26] RUEMMLER, C., AND WILKES, J. UNIX Disk Access Patterns.
In Proc. of Winter USENIX (1993), pp. 405–20.

[27] SALAH, K., AND QAHTAN, A. Implementation and experimen-
tal performance evaluation of a hybrid interrupt-handling scheme.
Computer Communications 32, 1 (2009), 179–188.

[28] SHIN, D. About SSD. In Proc. of the USENIX Linux Storage and
Filesystem Workshop (LSF08), San Jose, CA (2008).

[29] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C.,
NISHIMOTO, M., AND PECK, G. Scalability In The Xfs File
System. In Proc. of the USENIX Annual Technical Conference
(Berkeley, CA, USA, 1996), USENIX Association, pp. 1–1.

[30] VENNON, T. A study of known and potential malware threats.
Tech. rep., SMobile Global Threat Center, Feb 2010.

[31] VIDAS, T., VOTIPKA, D., AND CHRISTIN, N. All your droid
are belong to us: A survey of current android attacks. In Proc. of
the 5th USENIX conference on Offensive technologies, San Fran-
cisco, CA (2011), USENIX Association, pp. 10–10.

[32] YANG, J., MINTURN, D., AND HADY, F. When poll is better
than interrupt. In Proc. of the 10th USENIX Conference on File
and Storage Technologies, San Jose, CA, USA, February, 2012.

[33] YOON, C., KIM, D., JUNG, W., KANG, C., AND CHA, H.
Appscope: Application energy metering framework for android
smartphone using kernel activity monitoring. In Proc. of the
USENIX Annual Technical Conference (Boston, MA, US, June
2012).

[34] ZHOU, M., AND SMITH, A. J. Analysis of personal computer
workloads. In Proc. of the 7th International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunica-
tion Systems, MASCOTS (1999), pp. 208 –217.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 321

How to Run POSIX Apps in a Minimal Picoprocess
Jon Howell, Bryan Parno, John R. Douceur

Microsoft Research, Redmond, WA

Abstract
We envision a future where Web, mobile, and desktop

applications are delivered as isolated, complete software
stacks to a minimal, secure client host. This shift imbues
app vendors with full autonomy to maintain their apps’
integrity. Achieving this goal requires shifting complex
behavior out of the client platform and into the vendors’
isolated apps. We ported rich, interactive POSIX apps,
such as Gimp and Inkscape, to a spartan host platform.
We describe this effort in sufficient detail to support re-
producibility.

1 Introduction
Numerous academic systems [5, 11, 13, 15, 19, 22,

25–28, 31] and deployed systems [1–3, 23] have started
pushing towards a world in which Web, mobile, and
desktop applications are strongly isolated by the client
kernel. A common theme in this work is that guarantee-
ing strong isolation requires simplifying the client, since
complexity tends to breed vulnerability.

Complexity evicted from the client kernel takes up res-
idence in the apps themselves. This shift is beneficial: It
lets each app vendor decide independently which com-
plexity is worth the risk of vulnerability, and one ven-
dor’s decision in favor of complexity does not undermine
another’s decision to favor security. Of course, requiring
each app vendor to implement a complete software stack
is impractical, so we expect this complexity to migrate to
app frameworks that app vendors can choose among, just
as web developers choose among an ever evolving set of
app frameworks on the server.

The minimality of the client interface must not inhibit
the richness required by applications such as desktop
productivity apps. New client application models often
fail due to the burden of migrating every app–and ev-
ery library–to run under a new model. Thus, we argue
that shifting app delivery to a minimal-client model re-
quires an inexpensive app migration path from complex-
host frameworks such as POSIX and Windows.

On the other hand, support for richness should not sac-
rifice the small size and tight specification of the isolation
interface. The web’s current client execution interface
has repeatedly failed to achieve strong app isolation, due
to an interface bloated with HTML, DOM, JPG, PNG,
JavaScript, Flash, etc. in pursuit of richness.

The recent Embassies system provides a concrete ex-
ample of how to achieve both security and richness si-

Libraries
Application Function # Examples
Abiword word processor 63 Pango,Freetype
Gimp raster graphics 55 Gtk,Gdk
Gnucash personal finances 101 Gnome,Enchant
Gnumeric spreadsheet 54 Gtk,Gdk
Hyperoid video game 6 svgalib
Inkscape vector drawing 96 Magick,Gnome
Marble 3D globe 73 KDE, Qt
Midori HTML/JS renderer 74 webkit

Table 1: A variety of rich, functional apps transplanted
to run in a minimal native picoprocess. While these
apps are nearly fully functional, plugins that depend on
fork() are not yet supported (§3.9).

multaneously [16]. It pushes the minimal client host in-
terface to an extreme, proposing a client host without
TCP, a file system or even storage, and with a UI con-
strained to simple pixel blitting (i.e., copying pixel arrays
to the screen). In support of rich apps, Embassies’s mini-
mal interface specifies execution of native binary code.
Native code is an important practical choice, because,
we assert, it is the lack of native code that has forced
each prior system based on language safety to evolve a
complex trusted interface that provides access to native
libraries [8, 10, 17, 20]. This complexity undermines the
intent to provide strong security.

While native code is a target that every compiler can
hit, it seems daunting to port arbitrary POSIX apps to
such a minimal interface. Such apps expect to run on a
complex host with hundreds of system calls and dozens
of system services, reflecting decades of development.

However, our experience suggests this task is far eas-
ier than one might expect. Interactive apps use relatively
little of the complexity available in modern host plat-
forms. More importantly, rather than alter the app, the
functions that are required can often be emulated behind
the POSIX interface. This technique works without even
recompiling the hundreds of libraries involved. The em-
ulation work can be shared easily across many applica-
tions, making the porting work scalable. The broad se-
lection of rich apps that our system supports (see Table 1)
demonstrates the generality of the approach.

Contributions. This paper demonstrates the tractability
of porting rich POSIX apps to a minimal environment,
thus enabling them to run on a multitude of minimal
client hosts [13, 16, 18, 22, 31]. We give a full account-

322 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

ing of the porting task, including which functionality is
required and where corners can be cut. This includes
low-level details, such as an exhaustive list of syscalls
handled, to enable reproducibility and to eliminate any
ambiguity about complexity hidden under the hood. Ul-
timately, we hope that this will expedite other efforts to
adopt these techniques and hence achieve rich applica-
tions atop minimal, strongly-isolating client kernels.

2 Background: Minimal Client Facilities
In this work, we aim to transplant apps from a rich

POSIX interface to a minimal client kernel. To ground
the discussion, we target the minimal Embassies pico-
process interface [16], since it takes minimality to an
extreme. If we can port an app to Embassies, we can
certainly port it to a client with a richer interface.

The Embassies application binary interface (ABI) pro-
vides execution primitives that support an app’s internal
computation, cryptographic primitives to facilitate pri-
vacy and integrity, primitives for IPC and network com-
munication, and user interface (UI) primitives for user
interaction.
Execution. The execution primitives include:

• Calls to allocate memory and free memory.
To simplify the specification and to make the ABI
portable to most host environments, the app speci-
fies only the amount of memory required; it has no
control over the addresses returned by the allocator.

• create thread accepts only the thread’s initial
program counter and stack pointer; the application
provides the stack and any execution context.

• exit thread destroys the current thread.
• A simplified futex-like [6] synchronization schedul-

ing primitive, the zutex. zutex wake is a race-
free scheduling primitive that supports app-level ef-
ficient synchronization primitives. The correspond-
ing zutex wait is the only blocking call in the
ABI; it allows an app to yield the processor.

• clock returns a rough notion of wall-clock time.
• set timer sets a timer, in clock coordinates, that

wakes a zutex on its expiration. Each picoprocess
has only one timer; the app must multiplex it.

• get alarms returns a list of three distin-
guished zutexes representing external events, one
for each of receive packet, ui event, and
timer expired. Waiting on these zutexes is how
threads block on external activity.

• A call to create a new picoprocess.

Cryptographic Infrastructure.
• random provides a supply of cryptographically

strong entropy.
• app key provides a machine-specific, application-

specific secret. Apps use this key, along with cryp-
tographic libraries, to store and recover private in-
formation despite starting from a public binary.

Communication. All communication outside the pro-
cess, whether IPC to another process on the local ma-
chine, or remote to an Internet host, follows IP seman-
tics: Data is transferred by value (a logical copy), so
that the suspicious recipient needn’t worry about concur-
rent modification; addressing is non-authoritative; deliv-
ery admits loss and duplication; packet privacy and in-
tegrity are not guaranteed. Just like servers on the Inter-
net, apps build up integrity and privacy themselves using
cryptography. To underscore these semantics, all com-
munication in Embassies–remote or local–is done via IP.

• get addresses assigns the process one IPv4
and one IPv6 address.

• allocate packet allocates memory for an out-
going packet; this allocation is distinguished from
allocate memory to enable zero-copy transfer.

• send packet delivers a packet, interpreting its
argument as an IP header and payload.

• receive packet returns an allocated and de-
queued packet, or NULL if the queue is empty.

• free packet frees an allocated packet.
User Interface.

• ui event returns a dequeued UI event (keystroke
or pointer motion), or NULL if the queue is empty.

• Some calls that manage viewports, letting them be
transferred among applications, or letting one ap-
plication sublet a region of its viewport to another
application. In every case, even where nested, each
viewport is owned by a single app; no app can in-
spect or modify the pixels of another app’s view-
port. Details can be found elsewhere [16].

• map canvas allocates a framebuffer to back a
viewport. This allocation is distinguished from
allocate memory to enable fast pixel blitting.

• update canvas informs the client kernel that a
region of the framebuffer has been updated, and that
its pixels should be blitted to the display.

These calls comprise the entire Embassies ABI; all of
the functionality described in the rest of the paper is im-
plemented in terms of these primitives.

3 The POSIX Emulator
A conventional POSIX application employs dozens of

libraries, access to a rich system call interface, and by
way of those system calls, access to other rich services,
such as the X server’s graphics functions and the dbus
desktop configuration object broker.

To execute applications expecting this rich POSIX en-
vironment, our POSIX emulator cleverly repurposes ex-
isting libraries and programs atop the execution environ-

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 323

libpthread.solibc.so

copy of
ld-linux.so

entry
point

relocate self

fetch ROM image

POSIX ABI
file descriptors

poll,
select

VFS interface

ROM
file system

tmpfs pipes

IP multiplexer

Embassies ABI

Virtual File System
mounts, path resolution

timer
multiplexer

time

IP ifc. UI blitter ifc.timer ifc.

UI hook

VFS hook

IP hook

libpng12.so

libz

libcairo.so

gimp

libgthread.so

...

...

...

...
...

...

stack allocations heap allocations

misc.
functions

IP interface

Clock interface

Figure 1: The POSIX Emulator. To Embassies, the emulator (the large, L-shaped boundary) is a binary string whose entry point
is its first byte, and which may call back into a set of low-level interfaces provided by the Embassies ABI. Internally, the emulator
loads the app’s read-only image, maps it into a virtual filesystem, and calls into a copy of ld-linux.so. That loader, using
the emulated POSIX ABI, reads the app executable and additional ELF libraries into memory. The glibc libraries’ syscalls are
redirected to the emulator’s POSIX interface. Non-POSIX hooks provide connections for UI and TCP services implemented outside
of the emulator (Figure 2).

ment’s minimal services (§2). Figure 1 gives a structural
overview of how the emulator maps the entire POSIX in-
terface down to Embassies’s picoprocess interface.

Below, we provide a functional exposition of this em-
ulation, starting with application launch.

3.1 Application Launch
Embassies provides minimal support for app launch,

merely loading and starting a vendor-specified boot block
of code. Specifically, the host (1) maps the applications’
boot block into an arbitrary region of address space, (2)
sets up a minimal stack, and (3) places in a register the
address of a dispatch table for the Embassies ABI (§2).

Within its boot block, the POSIX emulator (1) re-
locates its symbols, using a small piece of position-
independent code, (2) allocates an adequate stack, and
(3) establishes a dispatch function to emulate the POSIX
syscall interface (§3.2) and virtual file system (§3.3).

Next, the emulator must load the app and its libraries
into memory. In a full Linux implementation, the kernel
would interpret the app’s ELF binary format, map the
app binary into memory, map the loader ld-linux.so
into memory, and then jump to the loader. The loader
would then enumerate dynamic library references within

the ELF image, map these libraries into memory, link
the images together (resolving symbolic references), and
then jump to the app’s entry point.

Embassies, however, provides neither a file system
from which to map files nor a kernel willing to parse ELF
binaries. Thus, our emulator must perform these tasks,
which it does by invoking ld-linux.so, an image of
which is included in the emulator’s boot block. The em-
ulator calls ld-linux.so and passes the app’s path as
an argument, which instructs the loader to map the app
(and its libraries) into memory. POSIX calls made by
ld-linux.so are serviced by the emulator (§3.2).

To call the loader, the emulator creates a suitable
argv (naming the ELF executable), an envp (e.g.
pointing DISPLAY at 127.0.0.1:6), and an auxv (some
constants to convince libraries they’re running on Linux).

3.2 Intercepting System Calls
The loader, as well as other libraries in the glibc suite,

are at the bottom of the library stack; these are the li-
braries that make actual POSIX syscalls. In principle,
other libraries could also include direct syscall instruc-
tions, but in practice, we have never observed this; in-
stead, they simply use libc’s syscall symbol.

3

324 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

We want to exploit the functionality of the glibc suite,
but glibc’s system calls will fail in an Embassies process;
they must be intercepted and replaced with calls to the
syscall emulation layer. In principle this can be achieved
by creating an alternate “sysdep” personality for glibc.
In practice, at least for the x86 architecture, we found
it easiest to apply a binary rewriting pass to each of the
libraries in the glibc suite, patching every system call in-
vocation (i.e., each occurrence of int $0x80) with a
call to a dispatch function that we inserted at the end of
the library.

The dispatch function in each library must, in turn, be
patched dynamically to call into the emulator’s syscall
dispatcher. To identify libraries in need of such dynamic
patching, we modified the libraries’ ELF headers to label
the dispatch function. As libraries are mmaped into the
app’s address space, a filter file system in the VFS layer
(§3.3) detects the modified ELF signature and transpar-
ently updates the dispatch function to point at the emula-
tor’s syscall dispatcher.

3.3 Virtual File System
Much of the POSIX ABI concerns file naming and file

descriptors, which provide access to a variety of func-
tions. Thus, like a Unix POSIX implementation, the em-
ulator contains a virtual file system (VFS) abstraction.

VFS components include a read-only app image, a
RAM-based writable temporary filesystem (tmpfs) that
implements POSIX scratch directories like /tmp, and
named pipes (Unix-domain sockets). The writable
tmpfs directories provide the namespace for the Unix-
domain sockets. There are also the virtual files that em-
ulate POSIX special files. These comprise the /proc
files of Section 3.8.1 and an emulated /dev/random
which passes entropy up from the client kernel’s
random facility.

The emulated VFS contains an overlay mount table to
weave these file systems together.
3.3.1 The Read-Only Application Image

The most important VFS component is the read-only
binary image, whence libraries and data files are fetched.

A Linux app expects to fetch its libraries and read-only
data files by name from a (shared) file system via read
and mmap. In Embassies, such files come from a private
app image whose integrity has been verified.

To support this, the developer packages every file the
app requires into a single tar-style image file. The emu-
lator fetches this file from an untrusted cache on the local
machine, delegating to the cache the complexity of fetch-
ing the image from an upstream cache or origin server
and exploiting commonality with other apps [14]. The
reply appears in memory as a single (jumbo) IP packet.
The emulator ensures integrity by comparing the image’s
hash to a fixed hash value embedded in the boot block.

accept recvfrom
bind recvmsg
connect send
getpeername sendmsg
getsockname sendto
getsockopt setsockopt
listen shutdown
recv socket

Table 2: Socket Calls. These calls are plumbed through the
VFS interface to either the Unix named pipes implementation
or the TCP stack.

The image file transmission protocol supports partial
fetches, so that the app can start with only a subset of the
image, and then later page in additional components.
3.3.2 Supported Interfaces

POSIX defines a wide, complex interface for interact-
ing with the file system, so implementing the entire in-
terface would be quite labor intensive. Fortunately, to
support the varied applications from Table 1, it suffices
for the VFS to support the following functions.

First, there is the core interface open, close,
ftruncate, and ftruncate64; and the metadata
interface stat, lstat, fstat, and access. VFS
file descriptors track file pointers for read, write,
writev, and lseek. Directory functions mkdir,
getdents, getdents64, (hard) link, and unlink
are only implemented in the tmpfs. The socket calls
(Table 2) are routed through the VFS to the Unix pipe
and TCP (§4.2) implementations.

The emulator also implements file handle functions
dup, dup2, pipe, and pipe2. pipe connects two file
descriptors with a blocking pipe with no presence in the
VFS namespace. Functions fsync and fdatasync
are no-ops. Most of fcntl and fcntl64 are no-ops,
except F DUPFD, which calls the dup implementation.

3.4 Mmap Support
POSIX mmap is versatile, but in practice it is used in

only a few idiomatic ways.
First, mmap(MAP ANONYMOUS) is used to allocate

blank memory at an address chosen by the kernel. The
emulator transforms these calls into Embassies memory
allocations.

Second, apps use mmap explicitly to map in non-
executable data files. These calls also give the emulator
freedom to choose the target address, so the emulator al-
locates fresh memory and uses a memcpying read im-
plementation to simulate the effect of the mmap.

Finally, apps use mmap implicitly when they dynam-
ically link executable libraries, either at load time via
ld-linux.so or at runtime via dlopen. Some of
these calls do expect to control the resulting data place-
ment, a degree of control that Embassies does not pro-
vide when allocating memory.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 325

Fortunately, the loader does not really care where a
given library ends up; it just requires that the data seg-
ment of the library appears at the correct offset from
the text segment. To this end, the loader’s first mmap
call does not specify a target address; instead, it speci-
fies a length sufficient to reserve enough address space
to cover all the segments in the file. The loader’s subse-
quent mmap calls (e.g., for the data segment) do specify
a target address, but the target address is always within
the memory range allocated by the initial mmap call.

Thus, the emulator can support this final class of mmap
calls by simply using the Embassies interface to allo-
cate the initial memory region (which does not specify a
particular address), and then confirming that subsequent
mmaps (that do specify an address) fall within the initial
memory allocation. As long as they do, the emulator can
take the appropriate action, e.g., it can zero-fill the spec-
ified region for the binary’s .bss section or copy in the
contents of the mmaped file.

This approach is clearly “less portable”, in the sense
that a POSIX app could in theory call mmap with an ad-
dress outside of any preexisting allocation. Fortunately,
we have not yet encountered any applications that rely on
this functionality.
3.4.1 Fast mmap

The approach above is adequate for correct POSIX
emulation, but for the apps we tested, where the bulk
of the image comprises mmap-loaded libraries, it incurs
many megabytes of memcpys, adding noticeable delay
(150 ms) to the app start time. We corrected this perfor-
mance problem by page-aligning mmapable libraries in
the image tar file (§3.3.1), and servicing mmap requests
by yielding the memory region from the VFS to the app.

Of course, this means that the region can not be read
or mmaped later in the program’s execution; if a program
needs to map a file multiple times, we either store mul-
tiple copies in the image file (often worth the space), or
mark the region “precious”, inhibiting the optimization.

Fast-mmap files must be stored in the image in their
in-memory layout, not their on-disk ELF layout, includ-
ing necessary blank space to position the data and bss
segments. The blank spaces are, of course, easy to com-
press during transmission.
3.4.2 Other Memory Calls

Most POSIX memory allocations appear as anony-
mous mmap calls. The emulator tracks such requested re-
gions, freeing the underlying Embassies allocation once
the entire region has been munmapped.

Embassies provides no read/write/execute memory
protections, so the emulator simply ignores mprotect,
madvise, and msync. It also rejects mremap.

Unfortunately, ld-linux.so and libc both make
initial memory allocations with the ancient brk inter-

face. Why? We cannot say; the best solution would
be to eradicate these deprecated calls. Instead, as a
workaround, the emulator assumes that virtual mem-
ory has no cost, generously over-allocates on the initial
brk(0) call, and services each subsequent brk exten-
sion by releasing more of the initial allocation.

3.5 Clock and Timers
The emulator provides the various flavors of POSIX

time: time, gettimeofday, and clock gettime.
It translates all of these from the nanosecond precision
clock supplied by the client kernel. That clock provides
rate but no offset information; hence all of our apps think
the current time is 2011. We use ntpdate to acquire a
clock offset, although we have not yet attended to the
security implications.

Embassies supplies the process with a single timer,
which signals the process by firing a zutex, and thus can
be reset in a race-free way. The emulator has the respon-
sibility to multiplex this one timer into as many alarms
as it needs to implement POSIX timeout interfaces. It
does so using a tree of upcoming deadlines, for scalabil-
ity. We found the clock multiplexer to be surprisingly
subtle, with many race conditions that lead to deadlocks.
It was helpful to diagram the detailed mapping between
the host timer state and the state of the guest timer list.

3.6 Synchronization Primitives
The Embassies client kernel provides a single uni-

fied synchronization abstraction, the zutex, that is used
both for internal waiting on other threads and waiting on
external events (the network or the clock). This central
abstraction is a simplified futex [6]. Like the futex,
the zutex is actually a race-free scheduling primitive in
support of efficient synchronization.

The basic POSIX futex maps readily onto the zu-
tex, with the emulator folding in timeout behavior (§3.5).
Many extra POSIX behaviors are neutered. For example
highly concurrent servers use FUTEX CMP REQUEUE
to avoid convoys, but our emulator simply wakes
the requested threads and lets them requeue them-
selves. The emulator rejects FUTEX WAKE OP
and FUTEX WAIT BITSET with an error, alerting
libpthread to revert to the basic behavior.

The nanosleep call and POSIX multiple-wait prim-
itives select, newselect, and poll are all mapped
into zutex wait operations, again with timeout behav-
ior constructed by the emulator. POSIX blocking oper-
ations, like a read on an empty pipe, wait on zutex-
signaled events.

3.7 Network Multiplexing
Embassies provides each process with a single zutex

to signal the arrival of IP traffic. Thus, the emulator
must collect incoming IP packets and multiplex them

5

326 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

inside the app. The emulator itself uses IP to fetch its
image (§3.3) and for querying time servers (§3.5). The
emulator’s network stack demultiplexes IP and UDP, and
delivers TCP packets to the LWIP library (§4.2).

3.8 Threads
POSIX uses clone to express both thread creation

and process fork (§3.9). The emulator pattern-matches
the thread-creation idiom and sets up the new thread’s
initial thread-local store (TLS). Because Embassies’
create thread conveys only a stack pointer, the em-
ulator constructs a stub stack to pass the POSIX param-
eters and the caller’s designated stack to the new thread.
It records metadata about the new thread to correctly
implement CLONE CHILD CLEARTID upon POSIX’s
thread-exit call.

The POSIX process-exit call, exit group, signals
the zone host (§4) that a zone has exited.
3.8.1 Supplying the Stack Address

Several applications rely on garbage collection li-
braries that need to know the address of the top (but not
the bottom) of the current thread’s stack. This is exposed
in Linux POSIX through pseudofiles in /proc.

At first blush, it appears that the stack bottom address
is also needed. For example, Libwebkit’s JavaScriptCore
garbage collector queries libpthreads for the stack
bottom address. However, the GC does not use the bot-
tom address directly; instead, it adds RLIMIT STACK to
yield the top address. Since libpthreads determines
the bottom address by subtracting RLIMIT STACK from
the top address it obtains from /proc/self/maps,
any sane value for RLIMIT STACK will work correctly.
We used 8 MB.

The stack top value returned by /proc/self
/maps, on the other hand, does matter: It is how a con-
servative garbage collector learns the extent of the stack.
Another garbage collector, libgc, looks for the stack
top in /proc/stat/self. We install special VFS
nodes at those names which return the appropriate stack
top value for the current thread.

To identify which thread is querying the interface, the
emulator snoops the app’s thread-local store (TLS) reg-
ister; that is, it uses grey-box assumptions about how
glibc manages the TLS. For all threads other than the
main thread, the emulator records each stack address as
its thread is created by the clone syscall. For the main
thread, the emulator allocated the stack (§3.1) and thus
knows its address.

3.9 Unimplemented: Fork
Some apps employ the fork/exec pattern; e.g.,

Inkscape uses it for its plug-in modules. This pattern
does not translate well to the minimal Embassies envi-
ronment, since Embassies’s memory management facili-
ties are far too simple. The current emulator implemen-

chmod sched setparam
chown sigaction
fchmod sigprocmask
rename umask
sched get priority max sched setscheduler
sched get priority min

Table 3: Failure-oblivious calls return either EINVAL or
ENOSYS, which the caller handles gracefully.

fchown set tid address
flock setitimer
fstatfs setpriority
inotify init setrlimit
inotify init1 shmget
ioctl statfs
ipc sysfs
readlink times
sched getaffinity xi sched yield
set robust list xi timer create
xi sched rr get interval

Table 4: Neutered calls simply return 0 (success).

tation does not support fork at all, leaving Inkscape’s
plug-ins inoperative.

An expedient approach, if the code is sufficiently id-
iomatic, is to emulate the fork with a thread, and perhaps
intercept and neuter close calls from the child “pro-
cess” preparing to exec. The exec call would launch a
new zone (§4), or if fault-containment is desired, a new
picoprocess (§2).

Alternatively, since the fork/exec pattern is usu-
ally implemented in a widely-used library, such as glib’s
g spawn, one could modify this higher-level library to
map fork’s semantics cleanly onto the creation of a new
zone or picoprocess.

3.10 Neutered System Calls
The remaining syscalls are either unused by interactive

apps, or can be simply rejected or neutered. This section
identifies such syscalls in the interest of completeness.

Many calls (Table 3) can be rejected, returning
ENOSYS or EINVAL, and the libraries that call them ei-
ther handle the failure gracefully, fall back to an alternate
POSIX mechanism, or ignore the result and trundle along
obliviously [24].

Other syscalls can be neutered with brazen lies: When
the caller actually checks the return code, we may need
to return 0 (“success”) even if we don’t actually emu-
late the promised semantics (Table 4). Other functions
require slightly more credible lies: The emulator fills in
some plausible constant values to placate the caller (Ta-
ble 5). For instance, the clock getres call should
provide some information about clock quality (§3.5), but
we just claim a 500 ms resolution. As another exam-
ple, we found no software that used chdir, so getcwd
simply returns “/”.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 327

clock getres getpid
getcwd getppid
getegid getresgid32
getegid32 getresuid32
geteuid getrusage
geteuid32 getuid
getgid getuid32
getgid32 sched getparam
getpgrp uname
sched getscheduler

Table 5: Deluded calls return slightly fancier lies than 0.

3.11 Additional Program Requirements
Emulating the POSIX ABI is minimally intrusive to

the apps, but a few conflicts remain.
3.11.1 Address Freedom

We have already seen that Embassies’s refusal to let
apps specify specific locations for allocated memory re-
quires the boot block to relocate itself (§3.1) and requires
a delicate hand in servicing mmap (§3.4).

It also means that every executable must be relocat-
able or position independent. Every Linux shared li-
brary is relocatable, but for no discernible reason, ex-
ecutables are not relocatable by default. We address
this by rebuilding each app’s top-level executable with
the -pie (“position-independent executable”) compiler
flag. Although this requires tampering with the app’s
build system (§6.1), it is required only for the top-level
application, not any libraries; and in most cases, passing
DEB CFLAGS=-pie to dpkg-buildpackage does
the job. The change is nowhere near as invasive as trying
to change to static linkage (§6.1).
3.11.2 The TLS Register

On the architecture we experimented on, the arcane
x86-32 instruction set architecture, a paucity of general-
purpose registers leads POSIX compilers to employ a
disused segment register %gs as a thread-local stor-
age (TLS) pointer. This usage gets compiled into ev-
ery library and application binary. Since the idiom has
no security-sensitive semantics, we opted to provide a
store-gs call in the x86-32 Embassies ABI; the emu-
lator uses it to implement set thread area.

A better solution would be to either recompile or bi-
nary rewrite every binary to eliminate %gs references.

4 Zones: Programs as Libraries
Besides kernel services, POSIX apps often expect ac-

cess to higher-level services provided by daemon pro-
grams like X windows, a window manager (e.g., twm),
or a configuration manager, like the dbus desktop bus.
We satisfy such apps by including these services inside
the apps that need them, rather than in the client kernel’s
TCB (which would add them to every app’s TCB).
X, twm, and dbus are designed as independent

X twm gimp
stack
allocations

heap
allocations

LWIP

zone host

POSIX emulator
VFS hook
IP hook

UI ifc.

pi
pe

Figure 2: Multiple POSIX apps coexist in one picoprocess
as zones. Each zone comprises a noncontiguous partition of
the address space. Each has its own copies of libraries, like
libc, and its own stack and heap allocations. Programs that
expect POSIX pipe IPC, such as an X session, see the same
behavior within the picoprocess.

POSIX processes. Rather than convert them into li-
braries, we found it expedient to create a general mecha-
nism for loading multiple programs into a single picopro-
cess. This is easier than it sounds, because each program
separately allocates memory and file descriptors, which
carves the resource namespaces into interleaving parti-
tions. We call such partitions “zones” (Figure 2).

Embassies’s refusal to allow memory allocations at
specific addresses works to our advantage when imple-
menting zones, since it precludes zones from demanding
overlapping allocations. It is zones that use the emulated
Unix pipes (§3.3). For example, the X zone listens on
/tmp/.X11unix/X0, and the xlib client library in the
main application zone binds to it there.

The vestigial brk interface (§3.4.2), however,
presents a hurdle. Two threads in different zones may
concurrently extend different brk heaps. The brk inter-
face assumes hidden per-process state, which becomes
per-zone state. The good news is that we can infer
which zone is making the request, and hence which per-
zone state to consult, because each request should appear
within the address space set aside for that zone’s brk.

The bad news is that, on 32-bit hardware, virtual
address space is scarce enough to warrant preserving,
which means allocating only appropriately-sized brk re-
gions for each zone. This is tricky because the initial
call from each zone is a stateless brk(0), from which
the emulator cannot infer the identity of the calling zone.
Our expedient solution forces the zones to start up se-
quentially. A more elegant solution would identify the
calling zone by its TLS or stack pointer, or (better yet)
eliminate brk calls from libc.

7

328 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

4.1 Example Zones
The X server presents a complex security boundary,

and this complexity conflicts with Embassies’s goal of a
minimal client kernel TCB. Therefore we use X only in-
side the picoprocess, in a zone, disregarding its security-
sensitive multiplexing functions and exploiting only its
rasterization function. The rendered frame buffer that
X produces is blitted to the user’s display through Em-
bassies’s pixel-level UI interface.

Some apps, like Gimp, use a plethora of palette win-
dows. For expediency, we add a twm window man-
ager zone into such apps, to allow manipulation of the
palettes within the surface of the app’s single display re-
gion. With more effort, one could coordinate multiple
windows via Embassies’s window management, perhaps
using a technique like Nitpicker’s [9].

Gnome desktop apps expect to connect to the dbus
daemon to find other components and learn configura-
tion settings. This tight coupling among applications has
no cost in a trusted-everything system, but is too risky
for mutually untrusting apps. Hence we do not repro-
duce the connected dbus; instead, we link a copy of the
daemon into each app to expediently satisfy the client
library. With more effort, one could strip the dbus de-
pendencies out of each app.

4.2 Extension Hooks
The emulator sits below libc, and hence cannot ex-

ploit libc. Coding without libc is painful; thus where
possible, we push functionality out of the emulator into
layers above. To facilitate this modularity, the emulator
exports four hooks via unused syscall numbers.

Specifically, as alluded to above, we use an X zone
to translate app UIs into easily blitted pixel regions.
A modified X server within the zone supplies the
graphical user interface. It uses one extension hook,
ex get dispatch table, to gain access to the raw
Embassies UI functions. It uses a second extension hook,
ex open zutex as fd, to wrap the UI notification
zutex in a POSIX file descriptor, enabling the extension
to smoothly integrate into X’s existing poll loop.

All unhandled IP traffic, including TCP traffic, is
handed off to a TCP stack based on lwIP [7] that re-
sides in the zone host. The lwIP stack is a loadable
module, attaching to the emulator’s IP multiplexer via
ex add default handler and servicing requests
for SOCK STREAM sockets via ex mount vfs.

5 Debugging Strategies
The key premise of this work is that most apps use

only a fraction of POSIX functionality. This paper cata-
logs these functions in detail precisely because the chal-
lenge is in discovering which functions matter.

Most of the effort in emulating the right subset of

POSIX involves figuring out why a segfault occurred in a
library dozens of layers below the app. To assist the prac-
titioner who wishes to extend this approach, this section
identifies our most valuable debugging strategies.

It is important to plumb error messages out of the pi-
coprocess. Our insecure debug-mode Embassies monitor
offers an extended ABI with debug channels that record
to files. The emulator routes stdout and stderr to them.

Since most of our changes occur behind the POSIX in-
terface, it is very effective to compare system call traces;
divergences often identify root causes. We capture a ref-
erence trace in Linux with strace, and add a corre-
sponding debug facility at the emulator’s entry point. It
emits a trace file using another debug output channel.

Of course, a debugger is invaluable. Our debug-mode
monitor runs apps as Linux processes. It routes Em-
bassies syscalls out through a pipe to a coordinating pro-
cess, but leaves the conventional POSIX syscall interface
intact, enabling gdb to connect to the process.

However, gdb has no access to symbols. The emu-
lator does not use POSIX mmap to map in ELF files,
so gdb’s inspection of Linux-provided metadata in
/proc/pid/maps is fruitless. To bridge this gap, the
emulator records a trace of file open and mmap opera-
tions via another debug channel. A script transforms the
trace into a gdb add-symbol-file script, solving
the symbol problem.

Similarly, gdb’s usual mechanism for discovering
new threads fails when thread creation is handled by the
emulator. Thus, the debug monitor provides another ex-
tension by which the emulator signals thread creation,
and the debug monitor generates the appropriate trap
(int $0x3) to alert gdb.

We haven’t yet implemented gdb stubs for our secure
monitors, because once an app runs correctly in the de-
bug monitor, it rarely fails in the secure monitors. In the
rare failure cases, we found it sufficient to study a core
file (a snapshot at the moment of failure). Each secure
monitor has a debug mode in which a picoprocess ex-
ception generates an ELF-format core dump.

The debug monitor also provides an extension to query
CPU time (POSIX times()), and a sampling profiler,
for diagnosing performance problems. An example dis-
covery was that the emulator was returning bogus stat
values, causing a font library to deem its cache file in-
valid, causing it to re-scan thousands of individual font
files at app start.

Finally, gathering the appropriate file set for the read-
only app image is tedious. To expedite, the emulator can
start in “gullible mode”, where rather than fetch an im-
age, it passes every open request path out to a lookup
server located on the development machine where the
original POSIX app is installed. That server hashes the
corresponding file, injects the file contents into the cache,

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 329

and returns the path to the emulator. By this means, the
emulator demand-loads the app’s required files; it also
captures a trace of these loads, which serves as a mani-
fest for generating the app image.

6 Discussion
Our goal is to reuse conventional interactive desk-

top applications in a new minimal runtime environment.
Ideal reuse would use unmodified binaries; required
modifications can be ranked based on their invasiveness.

Transparently emulating required behavior below the
POSIX interface has proven to be very inexpensive; the
main cost is discovering which features actually warrant
implementation (§5). Our experience suggests that the
emulator is asymptotically nearing completeness.

The choice to give apps no control over their memory
layout, which makes Embassies implementable on any
host, is slightly invasive; it requires relinking the top-
level app binary, which is easy in practice (§3.11.1).

The Embassies environment demands some point
changes higher in the software stack, including the bind-
ing of X to the Embassies UI interface (§4.1) and the
replacement of implicit kernel communication with ex-
plicit protocols (§6.3). Such changes do require source
modification of specific packages, but very few such
changes are required, compared with the hundreds of li-
brary packages ported.

The Embassies impositions do preclude running some
unmodified binaries, such as closed-source apps. Closed-
source libraries with Embassies-compatible semantics,
such as a PDF-rendering library, may be usable, though.

6.1 Dynamic vs. Static Linking
In our previous experience with the Xax project [13],

we found that modifying a package’s build system was
frustratingly difficult, generally much harder than modi-
fying the source code and using the package’s build sys-
tem to remake it. Most packages use common source
languages such as C or C++, but it seems every package
uses a different build scheme.

Engineering choices in Xax required statically linking
each app with all of its libraries. Because that changed
how apps and libraries build, the task ranged from dif-
ficult to all-but-impossible, and required new work for
nearly every package.

Thus, in the present work, we elected instead to
keep applications dynamically linked, and to press
ld-linux.so into service for runtime linking. We
found that this expedient substantially reduces the inva-
siveness of porting, as essentially every intermediate li-
brary is readily usable in binary form.

6.2 Limitations
Our experience iterating the emulator to support sev-

eral apps suggests that the emulator is asymptotically
nearing completeness, ready to support most desktop
productivity apps. In most cases where we have intro-
duced a lie or neutered behavior into the emulator, it is
because we have examined the corresponding call site
in libc, and we were able to conclude that the lie com-
pletely satisfies that code path. This approach occasion-
ally backfires when a different call site finds the lie un-
convincing, but these occurrences are rare.

System configuration tools are unlikely to port well,
since our approach destroys tight application coupling,
for example by neutering dbus. We accept this limita-
tion as fundamental to Embassies’s goal of making apps
more autonomous.

Embassies presently has only paper designs for audio
and GPU facilities. Apps that integrate multiple pro-
grams with fork() are not currently supported (§3.9).

6.3 Inter-Application Protocols
This paper focuses on moving apps from a rich, trust-

ing, shared environment to the isolated picoprocess.
However, interesting apps still communicate with the
outside world. Some inter-app communication is already
based on IP: The apps we used discover printers and send
jobs with the Internet Printing Protocol [12], so printing
works correctly without special support.

However, how should apps replace communication
patterns once done locally? For example, suppose one
app produces data another app wishes to read. We ex-
pect such communications, once supplied by a complex
trusted platform (e.g., the OS), to be replaced by IP-
based protocols. Just as in the Internet, IP-based pro-
tocols are bilateral: Both participants have the opportu-
nity to decide how much of the protocol they are willing
to implement, and to select vulnerability-resistant im-
plementations. The Embassies paper [16] addresses this
question in greater detail.

7 Evaluation
7.1 Porting Effort

The most salient proof of effectiveness for our tech-
niques is in the results: We are able to run many rich
apps without even recompiling them (Figure 3). Instead,
we binary-rewrite glibc to redirect the POSIX interface,
use libraries as unmodified binaries, and relink the top-
most executable to make it relocatable. That such non-
invasive techniques are successful with eight interactive
apps built on disparate library stacks is strong evidence
that they will generalize easily to most interactive apps.

Figure 4 shows lines of code [30] in the components
and patches to existing programs. Most of the effort is in
the VFS implementation in the emulator.

9

330 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 3: POSIX emulation handles diverse, rich applications, e.g., the Midori Web renderer,
Gimp, Marble, Inkscape, and Gnumeric. Not shown are Abiword, Gnucash, and Hyperoid.

component SLOC
emulator 29156
zone host 1328
lwIP patches 477
X patches 660
twm patches 0

Figure 4: Lines of code
in system components.

7.2 Performance
For compute-bound tasks, the emulator is not in-

volved, and apps run at native speeds. We verified this
by running, on both Linux and Embassies, image rota-
tions in Gimp and a subset of the SunSpider JavaScript
benchmark [29] in Midori. As anticipated, in both cases
the difference is negligible, within 2% (cv = 1%).

Informally, we have observed some emulated activi-
ties run faster than their Linux equivalents. For example,
filesystem interactions with temporary files outperform
Linux because they avoid a kernel-mode transition.

The application launch mechanism precludes the use
of the OS buffer cache, but we recapture much of that
performance in the Embassies environment [14, Fig. 14].
App starts are 50–100 ms slower than Linux; the largest
bottleneck is verifying the integrity of fetched content.

7.3 Coverage
We have demonstrated a layer that emulates a small

subset of Posix behavior, and we have shown this to be
sufficient to run a diverse set of productivity apps. How-
ever, perhaps exercising the apps more aggressively or
running additional productivity apps would require sub-
stantially more Posix-level emulation. To bound the de-
gree to which more emulation could be required, we
compare the set of syscalls visited dynamically with the

set reachable statically. This analysis is approximate,
because some syscalls (e.g., ioctl) aggregate multiple
behaviors, and our static analysis tool is rather coarse.

Figure 5 shows the results. Columns are syscall num-
bers (sorted for contiguity); rows are applications. The
upper eight apps are those we support (Table 1); the
lower eight are other Linux apps to aid extrapolation.
System calls in region (d) are supported as described in
this paper: as meaningful, failure-oblivious, neutered, or
deluded calls. Syscalls in region (x) are observed dynam-
ically when the app is run on Linux but not when run on
our emulator. For example, because shmget is neutered
in the emulator, shmat and shmctl never appear dy-
namically. If the lower eight apps in Figure 5 were run on
our emulator, these syscalls might be obviated for analo-
gous reasons, but we do not know this for certain.

The 27 syscalls in region (s) are reachable statically,
but not observed dynamically. Five are never called be-
cause a better version is emulated (stat64 for stat).
Another 7 are trivial variations of existing emulation
(ppoll for poll), and 12 (those unique to muse and
stella) are neuterable (mlock, setgid32). We saw 3
calls in the lower eight apps that likely require imple-
mentation: utimes, symlink, and mknod.

Our static analysis is imperfect, as evidenced by ten
calls reached dynamically but not discovered statically.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 331

Figure 5: An approximate static coverage check validates
that emulating most Linux system calls is not necessary.

Nonetheless, the broad agreement between static analy-
sis and dynamic observation suggests that our emulation
is largely complete. Of Linux’s 333 syscalls, 203 are
observed neither by dynamic tracing nor by static analy-
sis. This lends credence to our claim that a broad range
of productivity apps can be supported without emulating
the majority of Linux functionality.

8 Related Work
8.1 Application Models

Java was offered as an alternative to the clunky mid-
1990s web programming interface [10]. Absent native
code, Java had to either rewrite every framework an app
could want, or import and abstract existing frameworks
as native libraries. Practicality demanded applying the
latter technique; even the early UI toolkit AWT [33] ab-
stracted over the host UI at a high level. The result was
a Java client with a complex implementation that shared
the host’s vulnerabilities, and isolation that depended on
a complex and growing security interface [21].

As Java largely failed to replace the HTML web app
model, HTML thrived, evolving a notion of isolation
[15, 32] fundamental to web apps. However, pressure
to enhance functionality has progressively grown client
complexity, undermining the promise of isolation [16].

The Slinky system proposed distributing POSIX apps
as static binaries, enabling app developers to precisely
specify their dependencies [4]. They extended the Linux
kernel to detect and exploit implicit page sharing while
preserving the semantics of static executables. Their ap-
proach treats shared libraries as a configuration problem.
It inspired our work; we extend the Slinky insight to
autonomy-preserving isolation against adversarial neigh-
boring apps. This not only requires avoiding late-bound
library sharing, but also demands eliminating the com-

plex shared graphics stack (X or an HTML DOM ren-
derer). Since simplicity is a priority, we eliminate even
the shared buffer cache, requiring a sharing implementa-
tion different than that used in Slinky [14].

8.2 Porting Applications
Several years ago, our Xax project [13] demonstrated

that rich stacks of libraries could be readily transplanted
from a conventional operating system environment to
provide useful functionality even from inside a pico-
process attached to a web browser. This paper reports
on a more thorough implementation that supports com-
plete, rich, interactive applications. Xax gave a high-
level overview of the porting effort, enumerating five cat-
egories of techniques used to emulate the missing OS or
to trigger alternative behavior in the transplanted library.
This paper aims to completely demystify the process.

The Drawbridge effort demonstrated that similar tech-
niques could be used for code based on the Windows
commodity OS stack [22]; that project required intro-
ducing additional techniques, such as hoisting the GDI
graphics rasterizing library from the OS kernel to be-
come a library inside the picoprocess. The Drawbridge
system assumes a non-minimal host that includes a file
system, buffer cache, and TCP stack.

The task at hand is reminiscent of the Exoker-
nel’s motto, “exterminate all operating system abstrac-
tions” [18]. Like Exokernel, Embassies minimizes ab-
stractions in the host platform; but where the Exoker-
nel evicted abstractions to expose new performance op-
portunities, Embassies aims to produce a simple, rarely-
changing host with a minimal attack surface. Therefore,
Exokernel techniques, such as those for sharing storage,
do not translate well to Embassies apps.

Google’s Native Client system [31] includes ports of
dozens of libraries, but does not support complete inter-
active applications. The difference in target assumption–
that applications will run as web plug-ins, rather than re-
placing web apps altogether–has led the project to a dif-
ferent ABI, security model, and execution model. These
choices necessitate a modified C compiler, which in turn
requires fussing with libraries’ build environment (§6.1),
a task we found difficult to scale. However, once those
issues are resolved, the approach in the present paper
should readily enable the conversion of POSIX apps into
NaCl plug-ins.

9 Conclusion
This paper showed how to support rich POSIX appli-

cations on top of a minimal picoprocess interface. Such
support can be achieved by providing a POSIX emula-
tion layer and by binding existing programs, like lwIP,
X, and twm into the application itself. The POSIX em-
ulation layer is not nearly as complicated as a conven-

11

332 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

tional POSIX implementation (e.g., Linux); in fact, this
paper exhaustively lists every syscall emulated and every
program adaptation required. Such emulation is possible
in part because many POSIX functions exist to support
scalability and performance more relevant to server ap-
plications (e.g., databases and web servers) and hence
are unused by interactive apps. Thus, not only is it feasi-
ble to adapt POSIX applications to a sparse environment,
it is reproducible. We hope these results will encourage
others to adapt the existing world of rich POSIX-based
applications to even the most minimal of client execu-
tion environments.

References
[1] ANDROID OS. http://www.android.com/.
[2] APPLE. iOS6, 2013. http://www.apple.com/

iphone/.
[3] BARTH, A., JACKSON, C., REIS, C., AND

THE GOOGLE CHROME TEAM. The secu-
rity architecture of the Chromium browser.
http://www.adambarth.com/papers/2008/
barth-jackson-reis.pdf, 2008.

[4] COLLBERG, C., HARTMAN, J. H., BABU, S., AND

UDUPA, S. K. Slinky: static linking reloaded. In USENIX
ATC (2005).

[5] COX, R. S., GRIBBLE, S. D., LEVY, H. M., AND

HANSEN, J. G. A safety-oriented platform for Web ap-
plications. In IEEE Symp. on Security & Privacy (2006).

[6] DREPPER, U. Futexes are tricky. Tech. rep., Red Hat,
Nov. 2011.

[7] DUNKELS, A. lwIP - a lightweight TCP/IP stack. http:
//savannah.nongnu.org/projects/lwip/,
2013.

[8] ECMA. Standard ECMA-262: ECMAScript
language specification. http://www.
ecma-international.org/publications/
standards/Ecma-262.htm, June 2011.

[9] FESKE, N., AND HELMUTH, C. A Nitpicker’s guide to a
minimal-complexity secure GUI. In IEEE ACSAC (2005).

[10] GOSLING, J., JOY, B., AND STEELE, G. Java™ Lan-
guage Specification. Addison-Wesley, 1996.

[11] GRIER, C., TANG, S., AND KING, S. T. Secure web
browsing with the OP web browser. In IEEE Symposium
on Security and Privacy (2008).

[12] HASTINGS, T., HERRIOT, R., DEBRY, R., ISAACSON,
S., AND POWELL, P. Internet Printing Protocol/1.1:
Model and Semantics. RFC 2911 (Proposed Standard),
Sept. 2000. Updated by RFCs 3380, 3382, 3996, 3995.

[13] HOWELL, J., DOUCEUR, J. R., ELSON, J., AND

LORCH, J. R. Leveraging legacy code to deploy desk-
top applications on the web. In OSDI (2008).

[14] HOWELL, J., ELSON, J., PARNO, B., AND DOUCEUR,
J. R. Missive: Fast appliance launch from an untrusted
buffer cache. Tech. Rep. MSR-TR-2013-9, Microsoft Re-
search, Jan. 2013.

[15] HOWELL, J., JACKSON, C., WANG, H. J., AND FAN,
X. MashupOS: Operating system abstractions for client

mashups. In HotOS (May 2007).
[16] HOWELL, J., PARNO, B., AND DOUCEUR, J. Em-

bassies: Radically refactoring the web. In NSDI (2013).
[17] JANG, D., VENKATARAMAN, A., SAWKA, G. M., AND

SHACHAM, H. Analyzing the crossdomain policies of
Flash applications. In IEEE Web 2.0 Security and Privacy
Workshop (W2SP) (2011).

[18] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,
NO, H. M. B., HUNT, R., MAZIÈRES, D., PINCK-
NEY, T., GRIMM, R., JANNOTTI, J., AND MACKENZIE,
K. Application performance and flexibility on Exokernel
systems. In SOSP (1997).

[19] MICKENS, J., AND DHAWAN, M. Atlantis: Robust, ex-
tensible execution environments for Web applications. In
SOSP (2011).

[20] MICROSOFT. Silverlight. http://www.
microsoft.com/silverlight/.

[21] NEVILLE, P. S. Mastering Java security policies and
permissions. http://www2.sys-con.com/itsg/
virtualcd/java/archives/0501/neville/
index.html, 2004.

[22] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J.,
OLINSKY, R., AND HUNT, G. C. Rethinking the library
OS from the top down. In ASPLOS (2011).

[23] REIS, C., AND GRIBBLE, S. D. Isolating Web Pro-
grams in Modern Browser Architectures. In ACM Eu-
roSys (2009).

[24] RINARD, M., CADAR, C., DUMITRAN, D., ROY,
D. M., LEU, T., , AND BEEBEE, JR., W. S. Enhancing
server availability and security through failure-oblivious
computing. In OSDI (2004).

[25] TANG, S., MAI, H., AND KING, S. T. Trust and Protec-
tion in the Illinois Browser Operating System. In OSDI
(2010).

[26] WANG, H. J., FAN, X., JACKSON, C., AND HOWELL,
J. Protection and communication abstractions for web
browsers in MashupOS. In SOSP (Oct. 2007).

[27] WANG, H. J., GRIER, C., MOSHCHUK, A., KING,
S. T., CHOUDHURY, P., AND VENTER, H. The multi-
principal OS construction of the Gazelle web browser. In
USENIX Security Symposium (2009).

[28] WANG, H. J., MOSHCHUK, A., AND BUSH, A. Conver-
gence of desktop and web applications on a multi-service
OS. In USENIX HotSec Workshop (2009).

[29] WEBKIT. SunSpider JavaScript Benchmark. Ver-
sion 0.9.1 at http://www.webkit.org/perf/
sunspider/sunspider.html, 2012.

[30] WHEELER, D. A. SLOCCount. Software distribution.
http://www.dwheeler.com/sloccount/.

[31] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH,
R., ORMANDY, T., OKASAKA, S., NARULA, N., AND

FULLAGAR, N. Native client: A sandbox for portable,
untrusted x86 native code. In IEEE Symposium on Secu-
rity & Privacy (2009).

[32] ZALEWSKI, M. Browser security handbook: Same-
origin policy. Online handbook. http://code.
google.com/p/browsersec/wiki/Part2.

[33] ZUKOWKSI, J. Java AWT Reference. O’Reilly, 1997.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 333

Network Interface Design for Low Latency Request-Response Protocols

Mario Flajslik
Stanford University

Mendel Rosenblum
Stanford University

Abstract
Ethernet network interfaces in commodity systems are

designed with a focus on achieving high bandwidth at
low CPU utilization, while often sacrificing latency. This
approach is viable only if the high interface latency is
still overwhelmingly dominated by software request pro-
cessing times. However, recent efforts to lower software
latency in request-response based systems, such as mem-
cached and RAMCloud, have promoted network inter-
face into a significant contributor to the overall latency.
We present a low latency network interface design suit-
able for request-response based applications. Evalua-
tion on a prototype FPGA implementation has demon-
strated that our design exhibits more than double la-
tency improvements without a meaningful negative im-
pact on either bandwidth or CPU power. We also inves-
tigate latency-power tradeoffs between using interrupts
and polling, as well as the effects of processor’s low
power states.

1. Introduction
Historically, network card latency has been overshad-

owed by long wide area links and slow software, both of
which easily bring the overall latency into the millisec-
ond range. More recently, datacenter applications have
emerged with more rigorous latency requirements, thus
inspiring efforts to reach low latency on commodity sys-
tems. An example of such datacenter applications are
various database and caching services that operate from
main memory, such as memcached [6]. Moreover, there
are ongoing efforts to build ultra low latency software,
such as the RAMCloud project [22]. RAMCloud is a
durable storage system boasting latency goals of 5-10 us
round trip, inside a commodity datacenter.

There are economic reasons that lead us to believe that
the commodity low latency trend will continue for the
foreseeable future, and will not be limited to the high per-
formance niche. The ability to do evermore processing
and continuously add new features is essential to many
software companies’ differentiation strategies, thus be-
ing the driving force behind generating revenue. These
companies’ services must run within a small latency bud-
get, demanding commodity technology that provides low
latencies.

On the academic front there has been an analogous,
and likely correlated, interest in low latency. Some soft-
ware efforts were already mentioned, but other disci-
plines also contribute. For example, network and inter-
connect research yielded ideas for bufferless switching
[1] and new network topologies [16]. We position our
work between network and software research, right on
the interface connecting the host and the network.

We adopt a clean slate approach to the problem and
build the lowest latency request-response system that we
can. Following the clean slate approach, we developed a
very simple, and very fast, minimal object store evalua-
tion application that supports only two operations: GET
and SET. The minimal object store application exhibits
low absolute latency, but it also has low latency vari-
ability. Due to this application choice, the latency focus
shifts onto the network interface design, which is our pa-
per’s main contribution. We focus on two latency sources
in the network interface: 1) control communication and
data transfer between the CPU and the network card; 2)
processor idle state wakeup times and power manage-
ment.

Our interface, NIQ (Network Interface Quibbles), was
designed after a detailed investigation of reasons behind
latency inefficiencies in current network cards, as de-
scribed in Section 2. We found that one of our key objec-
tives must be to minimize the number of transitions over
the PCIe interconnect. This is especially true for small
packets, which are prevalent in request-response proto-
cols. In Section 3 we describe how combining existing
techniques (e.g. embedding small packets inside descrip-
tors) with new ideas (e.g. custom polling, creative use
of caching policies) leads to a low latency interface that
does not sacrifice bandwidth.

To evaluate NIQ in detail and compare it to other pos-
sible solutions, we built a configurable FPGA-based net-
work card. This network card is configured and con-
trolled by a user-space NIQ driver that provides zero
copy capabilities and offers direct application access
through bypassing the kernel stack. Evaluation system is
described in Section 4, together with bandwidth and la-
tency performance analysis. CPU idle state power mea-
surements and power-latency tradeoffs of interrupts and
polling are presented in Section 5.

Ideally, total network latency would be dominated by

1

334 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

wire propagation delay which is limited by the speed of
light to around 5 nanoseconds per meter. Assuming total
round trip distances of under 200 meters inside the data-
center, total time spent on the wire is under one microsec-
ond. The ultimate challenge is to bring network card la-
tencies into the same range. In the meantime, our NIQ
achieved the best round trip latency (client-server-client,
with a network cable in between) of 4.65 us. However,
much of that time is inherent to the hardware components
we had available. In Section 7 we discuss the possibility
of round trip latencies under 2.3 us with state of the art
components and an ASIC implementation.

2. Network Interface Card Design
When implementing request-response protocols on

commodity systems, attempts at low latency often run
into a system designed for a wide area network where
latency is secondary to achieving high bandwidth. We
find current designs to be lacking in latency performance,
even though they are well suited for high bandwidth sys-
tems that are dominated by software latency. Our motiva-
tion are new low latency systems, such as the RAMCloud
project [22], that have software overheads in the one mi-
crosecond range. As a comparison, one round trip time
through an idle linux kernel networking stack measures
at 32-37 us. This measurement includes one receive and
one transmit path between the NIC driver and the user
application for UDP (32 us) and TCP (37 us) packets.
In this section we highlight the network controller chal-
lenges to achieving low request-response latency on ex-
isting systems.

To illustrate the problems addressed in this paper,
we examine in detail how one would build a request-
response based system on top of a current commodity
10G Ethernet NIC. We assume an Intel 10G x520-DA2
adapter [14] because we have access to one, but other
network controllers, such as Broadcom NetXtreme, ex-
hibit similar behavior [11, 4].

A typical network card is connected to the host system
over PCI Express (PCIe) and contains these components:
DMA engine, ring buffers, Ethernet MAC and PHY, plus
additional features (offload engines, QoS, virtualization,
etc.). The DMA engine connects directly to the PCIe
interface and transfers data between the host memory and
the ring buffers on the NIC. Performance of the MAC and
the PHY, as well as the PCIe interconnect, contribute to
overall performance, but in this paper we focus on the
interface between the NIC and the host. This interface is
defined by the functionality of the ring buffers and how
they are managed by the NIC and the host driver. We
describe the interactions between the host and the NIC
by stepping through the packet transmit and the packet
receive process, shown in Figure 1.

NICCPU

ti
m
e

RAM

end

start1

NIC CPU RAM

2

3

3

45

6

4

5

6

2

1

Figure 1: Timing of TX (left) and RX (right) steps.

2.1. Transmit steps
When a client application decides to make a request, it

formats a request packet and sends it to the server. The
NIC transmit interface requires adding packet metadata
(i.e. the packet descriptor) to the main memory descrip-
tor ring shared between the CPU and the NIC (step 1 in
Figure 1 left). To inform the NIC of a newly available
transmit descriptor, the CPU does an uncached I/O write
to the ”doorbell” register on the NIC (first part of step
2). The NIC, then, uses its DMA engine to fetch the next
transmit descriptor (last part of step 2). The DMA engine
is also employed to fetch the contents of the packet that
is ready for transmission, based on information obtained
in the packet descriptor (step 3). Overall, it takes two
and a half PCIe round trips to get from software transmit
initiation to the packet being available in the NIC.

Described use of the descriptor ring buffer provides
decoupling between the CPU and the NIC, thereby al-
lowing the CPU to get ahead of the NIC in the number of
transmitted packets. Bursts of packets from the CPU are
effectively queued in the ring buffer which is drained by
the NIC as fast as the network allows. This decoupling is
key to achieving high bandwidth.

At this point the packet is on the wire and on its way
to the server, but there is still some necessary client
NIC bookkeeping. When a packet is handed to the NIC
for transmission, its memory cannot be reused until the
DMA is completed. Upon DMA completion, the NIC
sets a flag in host memory indicating that the packet
buffer may be reused (step 4). Typically, there is space
reserved for this flag in the packet’s descriptor entry in
host memory. Following step 4, an interrupt is generated
(step 5) that triggers the CPU completion handling (step
6) and thus completing the transmit process. Bookkeep-
ing (steps 4-6) is not in the critical latency path of the
request-response protocol, but it must be done promptly
to prevent the client from running out of resources (e.g.
memory space, or flow control credits).

2.2. Receive steps
Before the NIC can receive any packets, it must be

loaded with information about available receive packet
buffers in main memory. A descriptor ring buffer is used

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 335

to keep the available receive descriptors, similar to the
transmit descriptor ring. Prior to any packets arriving, the
driver allocates multiple receive packet buffers, creates
receive descriptors pointing to those buffers, and trans-
fers the descriptors to the NIC (steps 1 and 2 in Figure 1
right).

Once the client’s request packet finds its way through
the network, it arrives at the server’s NIC. Upon packet
arrival, the NIC reads the next available descriptor en-
try to determine where to deposit the packet. After de-
positing the packet into the host memory using the DMA
engine (step 3), the NIC notifies the CPU of the packets
arrival. The appropriate packet descriptor ring entry is
repurposed as a completion entry, now containing packet
length and a flag indicating there is a new valid packet
(step 4).

Just as they did in the transmit case, the ring buffer
structures allow the NIC to run ahead of the CPU and
deposit packets faster than the CPU can process them,
at least in bursts. The CPU must read the ring comple-
tion entry to discover the location and size of the arrived
packet. To avoid dedicating a CPU core to monitoring
the completion ring, operating systems prefer to config-
ure the card to interrupt the CPU as a form of a com-
pletion notification (step 5). Under high loads, the NIC
might generate too many interrupts for the host to han-
dle, thereby putting the receiver at risk of a livelock. One
of the mechanism that mitigates this problem is interrupt
coalescing in the NIC [26], where the NIC can coalesce
several received packets together by deferring receive no-
tifications and eventually triggering only one interrupt
for several received packets. Under low load this method
adds significant latency (even hundreds of microseconds)
because interrupt generation is in the critical receive la-
tency path. As an alternative to interrupts, the host can
operate in a polling mode, continuously reading the next
expected completion ring entry until it becomes valid.
Modern operating systems alternate between polling and
interrupt modes depending on the load, thus avoiding the
receiver livelock issue [21] regardless of interrupt coa-
lescing.

Finally, the CPU reads the receive descriptor (step 6)
and the received packet, which is then forwarded to the
application layer for processing. Also, at this point the
CPU allocates a new receive buffer and updates the NIC
with a new receive descriptor to replace the one that was
just used. After processing the request, the server ap-
plication formats a reply packet and sends it back to the
client following the same transmit-receive sequence that
was just described, thus completing one request-response
round trip. Overall, 16 one-way transitions over PCIe
links take place between client initiating a request and
receiving a response from the server. Out of the 16 one-
way transitions, 12 are synchronous, which means they

NICCPU

ti
m

e

RAM

end

start1

NIC CPU RAM

3

4

5

6

end

start1 2

3
3

4 5
6

21

2 3
4 5

6

5

5

small
packet

large
packet

Figure 2: NIQ timing of small and large packets.

have to be completed before the next one can begin, thus
affecting the overall latency.

3. NIQ: Interface Design
To resolve our Network Interface Quibbles, we pro-

pose a new network interface design, NIQ, that enables
low latency implementations of request-response proto-
cols. We achieve that goal by focusing on small packets
and reducing the number of PCIe transitions.

The key insight with regard to the nature of request-
response protocols is that at least half of the network
packets are very small. This is true because either the
read request, or the write response contain no data. An-
other important general insight is that network latency of
short packets is generally more critical than the latency
of large packets. Whenever large chunks of data are in-
volved, inherent serialization and software processing la-
tencies are higher, lessening the importance of other la-
tency sources.

Network card design described in Section 2 and il-
lustrated in Figure 1 is particularly inefficient for small
packets because it requires a total of eight PCIe tran-
sitions for send and receive combined. Crossing over
the PCIe interconnect is costly in terms of latency (over
0.9 us round trip is our system), therefore we focus on
minimizing the number of PCIe transitions. In the best
case scenario, only two transitions would suffice: one for
transmission and one for reception. We present an inter-
face that accomplishes the best case for small packets,
but also provides good results for larger packets.

3.1. Small Packets
NIQ exploits the fact that modern processors are op-

timized around cache-line size transfers. Minimum size
Ethernet packets are 60 bytes in length, thereby fitting
into a 64 byte cache line. Note that minimum Ethernet
size is usually said to be 64 bytes, but that includes the 4-
byte FCS (Frame Check Sequence), although it does not
include the preamble and the start delimiter. All mod-

3

336 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

ern network cards generate and strip the FCS in hard-
ware and never expose it to higher layers, reducing the
effective minimum packet size to 60 bytes. Observa-
tion that minimum size packets fit inside a 64 byte cache
line serves as an important guideline to designing the
small packet interface. Processors are already optimized
for communication using cache lines, so we assume that
small packets are minimum size 60 byte Ethernet pack-
ets. Expanding the interface to support, for example, two
cache-line size packets is very much possible, and we
discuss it in Section (Section 7). Timing of the small
packet transmit and receive sequences is illustrated in the
top part of Figure 2, with step numbers corresponding to
Figure 1.

To achieve the ideal goal of one PCIe transition on
transmit and one transition on receive, NIQ interface
folds all critical steps from Figure 1 into just a single
step. Folding of the transmission steps into one is ac-
complished by embedding the entire small packet within
the transmit descriptor. Moreover, we do not employ
the DMA engine to transfer the descriptor, but instead
the descriptor is transferred by the CPU directly to the
network card. Our transmit descriptors are one cache
line wide, with flags indicating whether an entire small
packet is embedded in it, or it is a traditional descriptor
with packet address and length.

On the receive side, folding of the steps is achieved by
embedding the entire small packet inside the completion
entry. Upon reception, the entire small packet is trans-
ferred within a cache line wide completion, instead of
copying it into a host buffer via the DMA engine. As-
suming the use of polling (discussed later in this section),
the completion containing the data also serves as a notifi-
cation, thus successfully folding all critical receive steps.

As an additional benefit of transferring small packets
in this fashion, no host memory buffers are consumed on
transmit or receive. Since no host memory is consumed,
there is no need to allocate or free any buffers, thus re-
ducing the total amount of software bookkeeping. It is
still necessary to exchange flow control credit informa-
tion between the network card and the host, but that can
be batched and done less frequently.

As was already mentioned, both transmit descriptors
and receive completions are 64 bytes wide. To efficiently
communicate with the network card in cache line size
units, we utilize the cache hierarchy and write-gathering
buffers. All memory that is written by the CPU is
mapped as write-gathering (also called write combining),
while the memory that is read by the CPU is mapped as
cacheable. This is a departure from standard practices
of mapping I/O memory as uncacheable, but it is similar
to graphics cards practice of using write-gathering policy
for mapping frame buffers.

Any write by the CPU made to a write-gathering ad-

dress bypasses the cache hierarchy and goes into one of
CPU’s write-gathering buffers. Once the entire cache
line is written, or a memory-ordering instruction (such as
sfence) is executed, the entire cache line is flushed over
PCIe to the network card [12]. Combining the writes in
a buffer close to the CPU core improves CPU bandwidth
and PCIe bandwidth. In fact, it would not be feasible for
the CPU to use uncached writes to write the descriptor
over PCIe 8 bytes at a time. Each PCIe packet incurs
up to 28 bytes of header overhead across all layers [23],
resulting in a 77% overhead. The number of overhead
bytes is the same regardless of data payload size, making
64 byte transfers more efficient.

The cacheable mapping of completion entries enables
us to issue cache misses to the network card, transfer-
ring the entire 64 byte completion in one PCIe packet.
Moreover, the method of polling the network card puts
the completion entry all the way into the first level cache,
where it is ready for immediate processing. In order to
force the cache miss, an appropriate clflush instruction is
executed before the polling read. One of the implications
of using a cacheable memory type in this fashion is that
read side-effects are not allowed in the NIQ. For exam-
ple, a NIQ address location might be read multiple times,
either speculatively or due to a cache eviction. Therefore,
we cannot rely on reads to inform us when the CPU has
processed the data, but instead we require explicit flow
control notifications.

3.2. Large Packets
For large packets NIQ still uses cache lines for com-

munication, but entire packets no longer fit within a de-
scriptor. Instead, we follow the traditional approach of
employing the DMA engine to transfer packet data, as
discussed in Section 2. Descriptors and completions are
still cacheable and 64 bytes wide, but instead of embed-
ding the entire packet (like in the small packet case), they
only contain the first 48 bytes of the packet, which in-
cludes headers. Putting the headers inside the descrip-
tor/completion enables an efficient implementation of
header splitting on transmit/receive.

Header splitting on transmit is necessary to enable
zero-copy techniques often used in low latency system
implementations. If the header cannot be split from the
payload, it is necessary to copy the packet data into an
intermediate memory buffer before transmit. To avoid
copying the header and the data into a single buffer,
the network card’s DMA engine can be programmed
to transfer them separately and join them before they
leave the card. However, programming the DMA engine
to perform two transfers typically requires two separate
transmit descriptors. Our interface enables header split-
ting with just a single transmit descriptor. Splitting the
header on reception can also be beneficial, because the

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 337

Completion
valid

CPU NIC

PCIe Rd
delay

Notification
latency

NICCPU

Notification
latency

Completion
valid

RTTPCIe

PCIe Rd

Reply

ti
m

e

Figure 3: Notification timing diagram without (left) and
with (right) PCIe read delay.

header is available for CPU processing as soon as the
completion is read, as they are in the same cache line.

We have explored and evaluated the option of using the
CPU to transfer entire large packets through the write-
gathering buffers, but we found the CPU bandwidth
penalties increase significantly with packet size (up to
70% penalty for largest packets). Even though the small
packet interface provides lower latency, it is entirely pos-
sible to send small packets through the large packet inter-
face. This is recommended when strict packet ordering is
important because a small packet that is sent through the
small packet interface is allowed to pass a large packet
and leave the network card out of order. Allowing small
packets to bypass large packets is meant as a feature,
since it can easily save over 1 us of transmit time for the
small packets. It is entirely possible to enforce strict or-
dering on the interface, but since the underlying network
doesn’t guarantee packet ordering, we choose to allow
reordering.

There is some necessary bookkeeping of host mem-
ory buffers taking place off the latency critical request-
response path, much like we discussed in Section 2. On
the transmit path, this processing is batched for efficiency
reasons and an interrupt scheme employing interrupt co-
alescing is used to notify the CPU of the necessary book-
keeping. NIQ uses interrupts for bookkeeping notifica-
tion, but for critical notifications it employs a custom
polling scheme, which we describe next.

3.3. NIQ polling
For the NIQ interface we designed a custom polling

technique that we refer to as NIQ polling. Instead of
polling the host memory, NIQ polling repeatedly issues
reads over PCIe to the network card, thus avoiding com-
municating through the main memory. Additionally, the
replies from the network card are put directly into the
first level cache, thereby avoiding a cache miss.

The goal of the NIQ polling notification scheme is to
minimize notification latency. We define notification la-
tency as the time between a new valid completion en-
try being ready in the NIQ and when that completion
is ready for processing in the CPU. When repeatedly

polling the network card (illustrated on the left of Fig-
ure 3), notification latency is between half a PCIe round
trip and one and a half round trip. The expected notifica-
tion latency value is one PCIe round trip because it may
take up to one whole round trip time between the com-
pletion being ready and the CPU polling read arriving at
the network card.

To lower the expected notification latency we intro-
duce a PCIe read delay time inside the network card.
When there are no new valid completions, the network
card holds on to the polling read for one PCIe read de-
lay time before eventually replying with an invalid en-
try, instead of replying immediately. However, if a new
completion is ready, a reply is generated immediately,
thereby significantly reducing the expected notification
latency (up to 2x reduction). This process is illustrated
on the right of Figure 3. As an added benefit of PCIe read
delay, fewer invalid entries get transferred over PCIe,
also reducing the number of invalid entries the CPU must
process.

Choosing the correct value for PCIe read delay is a
balancing act between minimizing expected notification
latency and avoiding triggering any deadlock prevention
or watchdog mechanisms that could be triggered by a
delayed memory read. Expected notification latency is
inversely proportional to 1+(PCIe read delay), and we
found that a PCIe read delay value of about 20 PCIe
round trips gives good latency performance. This de-
lay value is well clear of triggering any operating sys-
tem watchdog mechanisms, but we have encountered an
interesting interaction with Intel’s implementation of si-
multaneous multithreading, known as hyper threading.
While a hyper thread is waiting on the polling read to re-
turn, one would expect its sibling thread to make full use
of the execution units and other shared resources, lead-
ing to NIQ polling being an even more attractive solu-
tion. However, we found that when using NIQ polling
and delaying the read response for longer than around
4 us (or 10000 cycles), the sibling hyper thread makes
no forward progress. We attribute this phenomenon to
a deadlock/starvation prevention mechanism that detects
the polling thread has not made progress for a long time
(while waiting on the poll read), and upon detection pre-
ventatively stalls the sibling thread. For this reason we
do not use hyper threading.

Polling in this way permanently consumes one PCIe
read credit, but is unlikely to cause any issues on the PCIe
bus because the PCIe spec allows for read delays of at
least 10 ms [23]. Next, we discuss alternatives to our
NIQ polling technique.

3.3.1. Interrupts vs. host polling vs. mwait
Historically, there was a huge speed mismatch be-

tween the I/O devices and the CPU, making interrupt

5

338 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

schemes necessary and efficient. It would be unfeasi-
ble for the single core CPU to wait several milliseconds
for an I/O device to complete an operation. However,
modern network cards are much faster and modern CPUs
have multiple cores, thus changing the balance. One
would still like the CPU core to be able to do other pro-
cessing while waiting on the network device, but often
there is nothing else to do. This reasoning coupled with
poor latency performance of interrupts is what makes
polling an attractive option.

We find three main reasons for poor interrupt latency
performance. Firstly, we measure a 1.4 us delay between
when the interrupt controller is instructed to generate an
interrupt, and the linux interrupt handler is executed. The
second latency penalty comes from the necessary inter-
thread communication between the interrupt handler and
the user application thread. The inter-thread communi-
cation is necessary because implementing the entire user
application (i.e. consuming and generating packets) in-
side an interrupt handler is impractical at best. The third
reason interrupts have a bad latency reputation is power
management, and specifically CPU idle states. While
waiting for an interrupt the CPU is not busy (unlike when
polling) and often reaches a deep idle state with an exit
time in tens of microseconds. We investigate the power
management tradeoffs further in Section 5.

Polling on the host memory location is a good low la-
tency alternative to interrupts. When using host memory
polling, the CPU reads the memory location of the next
expected completion entry in a tight loop until that lo-
cation becomes valid. Because the reads are done in a
tight loop, the memory location is cached and reads re-
turn quickly for as long as the completion entry is invalid.
Due to reads hitting in the cache, the CPU must do a lot
of useless work processing invalid entries, realizing they
are invalid, and reading them again. When the network
card actually updates the completion entry, the cache line
gets invalidated and the CPU incurs a cache miss when it
tries to read it. To avoid spinning on a memory location
in a tight loop, the CPU can issue a monitor instruction
for that cache line, followed by an mwait instruction that
halts the processor to save power [12]. As soon as the
monitored cache line is invalidated by the network card’s
write, the CPU is woken up to process the completion.
Section 5 provides experimental evaluation of latency-
power tradeoffs between interrupts and polling.

4. Object Store Evaluation
In this section we evaluate latency and bandwidth per-

formance of a NIQ implementation. Our implementation
is based on a dual socket system with Intel Westmere
processors and a NetFPGA [29] board, as shown in the
block diagram in Figure 4. The system has a minimum
PCIe read round trip latency of 930 ns, which includes

CPU

E5620

PCIe

MEMORY

DESC DATA CMPL

TX

RX

TX

RX

NIC

DESC DATA CMPL

10G EthernetMAC PHY

DMA
engine

CTRL
STATS

IOH

x520

10G Eth

10G Ethernet

PCIe

QPI

Figure 4: Block diagram of the test system.

the FPGA and the host machine, but is mostly dominated
by the FPGA. NetFPGA Ethernet PHY and MAC round
trip latency is 868 ns + 0.8 ns/byte, giving a range of 920
ns to 2.08 us for smallest to largest packets. All mea-
surements in this section are based on a request-response
roundtrip of a single-threaded minimal object store appli-
cation. The object store application was built to provide
only the essential set of features for conducting the eval-
uation, thus shifting the evaluation focus onto the NIQ.
For latency experiments, client and server are running on
different processors, but on the same system, both using
the same NetFPGA card with a copper twinax network
cable providing a loopback link. Running on the same
system, and thus in the same time domain, makes it pos-
sible to obtain detailed latency breakdowns. To avoid
interference under high load, bandwidth experiments are
run on two separate systems, with the client using a com-
modity network card, while the server still runs on NIQ.

NIQ is directly compared to an Intel x520 network
card. To make the comparison fair, the x520 user-space
driver was modified and integrated into the object store
application so it can be used in the same way as the
NIQ driver. For the reasons of implementation simplic-
ity, physical addresses are made available to the applica-
tion by using a kernel module that allocates 1 MB chunks
of contiguous physical memory, which are further frag-
mented and managed by the application itself. Our ap-
plication protocol runs on top of Ethernet and IP to cor-
rectly emulate a datacenter environment where a packet
must travel through switches and IP routers. Most mea-
surements are conducted on GET requests, except where
otherwise indicated, because GETs are assumed to be an
order of magnitude more frequent [3].

4.1. Latency evaluation
Here we present latency measurements on an unloaded

system. In the unloaded system each request is sent in

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 339

A B C D E F G H I J K

NIC NIQ • • • • • • • • • •
x520 •

RX

small pkt • • • • • • • •
niq poll • • • • • •
host poll • • •
interrupt •
mwait •

TX

small pkt • • • • • • • •
hdr split • • • • • • • • • •
no DMA •
doorbell • • •
Table 1: Design configuration variants.

isolation from other requests in an effort to get consistent
best case latency breakdown. Experiments with a loaded
system are presented in the next subsection. All of the
NIQ latency experiments are conducted with both client
and server using the NIQ interface. Reference x520 ex-
periments are done with client and server using the Intel
x520 network card.

Our NIQ prototype can easily be configured to oper-
ate in different modes (e.g. polling, interrupts, header
splitting on/off, small packet optimization on/off). We
present latency performance of configurations listed in
Table 1. For each configuration in Table 1, a match-
ing latency range can be found in Figure 5. The bottom
end of each latency range corresponds to a GET request
round trip of a small object (4 bytes), while the upper end
of the latency range corresponds to a large object (1452
bytes). Configuration A is our best NIQ configuration,
as described in Section 3. Reference configurations J
and K correspond to the Intel NIC design described in
Section 2, with the exception that they use host memory
polling instead of interrupts. In configuration K, NIQ
prototype is configured to behave the same as the x520
NIC (configuration J) and they both exhibit similar laten-
cies. This validates our choice of comparing our design
with the x520 card, since for the same configuration NIQ
and x520 perform similarly.

Configurations B through I are all unique and differ
from configuration A in only one parameter, enabling us
to quantify the benefits of each configuration parameter.
In Figure 5 we demonstrate that our NIQ polling tech-
nique has the lowest latency, especially compared to an
interrupt scheme (configuration C) that exhibits the high-
est latency. The same Figure 5 shows latency effects of
small packet optimizations, as well as the effect of using
a doorbell register scheme to initiate a descriptor DMA
transfer. Even though, for large requests only, configu-
ration F has a marginal latency advantage over config-
uration A, we dub configuration A as best. This is be-
cause configuration F uses the CPU to transfer data to

Figure 5: Design configurations’ latency ranges for
minimum to maximum size packets.

the NIQ, instead of utilizing the DMA engine, which in-
curs a CPU bandwidth hit of over 3.5x for large requests.
Header splitting provides small latency gains (up to 0.24
us) and it enables zero copy transmit, thereby improving
bandwidth by over 20% for the largest requests.

To obtain further insight into the latency breakdown,
we instrumented the userspace driver code to timestamp
the request-response pairs at various points using the
rdtsc instruction. For the timestamps to be accurate,
we place every rdtsc instruction in-between two memory
barriers, thus causing a total instrumentation overhead of
0.35 us compared to times presented in Figure 5. We
are able to get one way request time measurements be-
cause the server and the client run on the same physical
machine, but on different processors.

Figure 6 shows latency breakdowns for GET request
(subplot a) and SET request (subplot b) running on NIQ.
GET and SET breakdowns are similar, with a difference
that the server returns a SET reply before touching any
object data, leading to a constant server application la-
tency with respect to object size. Replies containing ob-
jects that are 12 bytes or smaller, fit into a minimum size
packet (after accounting for the 48 byte header), thus al-
lowing the server to use the small packet transmit path
and achieve lower latency (shown in the inset of Figure
6a).

While NIQ is optimized for small packets, it also per-
forms well with large packets. A comparison between
Figures 6a and 6c illustrates that NIQ and the x520 card
latencies scale similarly with object size, but NIQ con-
sistently provides lower latency. Figure 6d illustrates
why we choose to transfer large packets using the DMA
engine (subplot a), rather than stream writes using the
CPU (subplot d). In subplot d, the server driver time dra-
matically increases with packet size, reducing the server
bandwidth by up to 3.5 times. However, streaming CPU

7

340 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 6: Detailed request latency breakdown.

writes might be a practical solution for transmitting pack-
ets that are just over the minimum size, where latency
benefit is large and bandwidth penalty low. The saw-like
artifacts in subplot d are very specific to our implemen-
tation and are the result of the host running out of PCIe
credits when the object size is not an integer number of
cache lines. Writing a partial cache line is implemented
using multiple 8-byte writes, thus requiring more PCIe
credits.

4.2. Bandwidth evaluation
Another important performance aspect is how NIQ be-

haves under heavy load, which we explore next. To gen-
erate enough load to saturate the server that is running
the NIQ based single-threaded object store application,
we use a multithreaded client running on top of the x520
card. This way we are able to make sure the bottleneck is
the server running NIQ, therefore measuring NIQ band-
width and NIQ latency under heavy load.

Figure 7 shows the server throughput on the outgo-
ing link, which is also the bottleneck link since it carries
larger packets than the inbound link. For large packets

the throughput is limited by the physical link speed of 10
Gbps, but small and medium packet throughput is limited
by the server processing power. There is an initial NIQ
throughput drop in Figure 7 that occurs when the request
object size is over 12 bytes. The drop is caused by the
necessary descriptor assembly and additional bookkeep-
ing required by objects that don’t fit in small packets.
As object size increases further, physical link bandwidth
limitation causes a drop in throughput inversely propor-
tional to the object size, for both NIQ and x520. Medium
size packets’ throughput is roughly constant with varia-
tions that are within one cache miss, and thus difficult to
account for.

Interestingly, NIQ manifests higher throughput than
the x520 card implementation. This observation implies
that even though engineering for high bandwidth often
compromises latency, the converse is not true; engineer-
ing for low latency is very favorable to achieving high
bandwidth.

To further explore latency impact of high request
loads, we plot the latency vs. load graph in Figure 8. For
load generation, we model request arrivals as a Poisson

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 341

Figure 7: Server throughput results.

Figure 8: Server latency vs. load.

process by making the time between generated requests
follow an exponential distribution. Figure 8 shows load-
latency curves for minimum and maximum size objects,
for both NIQ and x520 implementations. As predicted
by the queueing theory, latency exponentially increases
with load, and it does so in a similar fashion for all ex-
perimental setups.

5. Latency vs. Power Analysis
In this section we investigate latency and power im-

pacts of processor power management. Our experiments
have demonstrated that it is critical to properly use power
management states to achieve low latency. We focus on
a subset of Intel’s power management states [10] that are
relevant to our application, namely core idle states (c-
states), package idle states (pc-states) and performance
states (p-states). These states are Intel’s implementa-
tion of platform independent mechanisms defined in the
ACPI specification [8].

Core and package idle states lower the CPU power
consumption during the idle periods at a cost of incurring

Figure 9: CPU latency-power tradeoffs for: mobile
class Ivy Bridge (left/red), desktop class Sandy Bridge
(middle/green) and server class Westmere (right/blue).

some wakeup latency when the CPU transitions back
from idle to active. Package idle states control the power
of the ”uncore” logic (e.g. memory controller, shared
caches, QPI links), while core idle states manage the
cores (c0-active; c1-clock gated; c3-local cache flushed;
c6-power gated). Wakeup latencies are on the order of 50
us for the deepest c-states, and up to 100 us for deep pc-
states. Processor performance states (p-states) are active
states tied to different processor clock frequencies that
result from frequency-voltage scaling. Lower frequen-
cies burn less power and incur higher execution time, but
they do not add to wakeup latency because the processor
can execute instructions in any p-state.

5.1. Experimental evaluation
We experimentally determine wakeup latencies and

power consumption for three classes of Intel proces-
sors (mobile Ivy Bridge 3610QM, desktop Sandy Bridge
2600K and server Westmere E5620). Power is measured
on the 12 volt rail that feeds into the CPU voltage regula-
tors and thus includes any inefficiencies those regulators
might introduce (typical regulator efficiency is around
85%). Wakeup latencies are measured from an FPGA
board connected to a PCIe slot to avoid any instrumenta-
tion code interfering with the measurements. The FPGA
generates a ping request to an idle CPU (in low power
state) and measures how long it takes to receive a reply.
Overall latency displayed in Figure 9, thus, includes one
wakeup latency plus some small code execution time and
one PCIe round trip overhead (overall overhead is less
than 1 us). In this experiment the FPGA generates one
ping request every 5 ms, allowing the processor plenty
of time to completely reach any idle state. Each point
in Figure 9 represents power and wakeup latency for a
given (package pc-state, core c-state) pair. Power value
is the processor idle power in the given idle-state pair,

9

342 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 10: Wakeup latency for a mobile Ivy Bridge pro-
cessor in transition from active to PC7 state.

while wakeup latency is the time it takes the processor
to exit its idle state and be ready to execute instructions.
Multiple active-state points (pc0, c0) correspond to dif-
ferent performance states (i.e. different clock frequen-
cies). Active states have zero wakeup latency, so (pc0,
c0) points in Figure 9 show latency measurement over-
heads and corresponding power consumptions.

It can take several milliseconds for a processor with
complex power management (e.g. mobile Ivy Bridge)
to go from being active to being steadily in the deepest
idle state. Since it can take milliseconds to reach a stable
state, we must explore the wakeup latency and power of
a processor that is in transition form active to deep idle.
In Figure 10, a mobile Ivy Bridge processor is in transi-
tion from active state to pc7 (power gated cores, memory
controller shut off, shared cache flushed and disabled).
The figure shows how the wakeup latency depends on the
actual idle time of the processor, as the processor is inter-
rupted after CPU idle time into the transition from active
to pc7. One can notice several plateaus corresponding to
major processor components being shut down, as well as
the overall complexity of the low power transition pro-
cess. It is evident that the wakeup latency is lower if
the transition process is interrupted early (e.g. only 4 us
wakeup if interrupted 5 us into the pc7 transition). How-
ever, the proposition of frequently waking the processor
before it completely reaches its intended idle state can
be costly in terms of power, as shown in Figure 11. This
figure shows the average power of a mobile Ivy Bridge
processor that is trying to reach an idle state (pc1, pc3,
pc6, pc7), but is always interrupted after CPU idle time.
One can see from the figure that deep idle states are more
efficient only if the CPU is actually idle for longer peri-
ods of time. Power numbers presented in Figure 11 were
obtained from the RAPL interface registers [12] and each
experiment’s CPU idle time in Figure 10 was randomized
to avoid unwanted artifacts due to periodicity.

Figure 11: Average CPU power of a mobile Ivy Bridge
processor in transition from active to idle state, but being
interrupted after CPU idle time.

Effects shown in Figure 10 can also affect DMA laten-
cies on processors with integrated memory controllers.
The memory controllers are put into an idle state by the
processor, but a DMA read requires them to access main
memory. Any delay of over 10 us between the processor
starting a transition into pc6 and the DMA engine initi-
ating a read is likely to increase DMA latency by over
10x.

5.2. Application notification performance
Upon new packet reception, the NIC generates a noti-

fication to the application that a new packet is available.
This notification can be an interrupt, a write to a prede-
fined memory location that is actively polled by the CPU,
or a combination of both. The notification mechanism is
at the center of power-latency tradeoffs discussed here.
To achieve lower power consumption while waiting for a
notification, the CPU can enter an idle state. However, if
the CPU running the application is idle when the notifica-
tion is received, wakeup latency is incurred, as discussed
previously.

In Figure 12 we present latency and idle power mea-
surements for interrupt and polling notifications on a
desktop class system. We consider a case of using inter-
rupts and placing the entire application code inside the
kernel interrupt handler. However, this is feasible only
for the simplest of cases where the application process-
ing can be done extremely quickly. A more plausible
setup is the one where the kernel interrupt handler wakes
up a user process that does the bulk of the processing.
We find that signaling from the interrupt handler to the
user process introduces more than several microseconds
of additional latency, even though both interrupt based
mechanisms are equally power efficient.

The lowest latency is achieved using mwait/polling
from inside the user space process. With this mecha-

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 343

Figure 12: Latency vs. power tradeoffs of different notification mechanisms.

nism, in non-active states (pc6, pc3, pc1 in Figure 12)
the user application makes calls to a kernel module to
use monitor/mwait on a memory address that the NIQ
writes to. In the active states (pc0 in Figure 12) the ap-
plication polls that same memory address in a tight loop.
For non-deep idle states (pc0, pc1), the mwait/polling
approach increases power consumption by less than 2%
over interrupt mechanisms, while offering more than 2-
4x latency improvements. Deeper idle states (pc6, pc3)
offer over 50% reduction in combined CPU and memory
power over non-deep idle states (pc0, pc1), but they are
unusable due to a huge latency penalty.

One disadvantage of the mwait approach is that the
application process appears to the operating system as if
it is constantly running without voluntarily yielding the
CPU. This makes it impossible to take full advantage of
the tickless kernel [27], resulting in marginally higher
power usage in deep idle states, as shown in Figure 12
for states pc3 and pc6.

In conclusion, mwait/polling mechanism combined
with the pc1 idle state is a viable way to save power (55%
savings compared to highest performance states). How-
ever, deeper idle states incur too high of a latency penalty
to be used with ultra low latency applications. While
there is a power penalty to using mwait/polling instead
of interrupts, it is not as dramatic as initially expected.
We believe that the poor latency reputation of interrupts
and the high power consumption reputation of polling
are somewhat unjustified. While waiting for an interrupt,
processors are generally allowed to enter deep idle states
(e.g. pc6), but polling always keeps them busy in an ac-
tive state (pc0). This means pc6-state power and latency
are associated with interrupts, while pc0-state power and
latency are associated with polling. However, one can
select the CPU idle state for either interrupts or polling,
and Figure 12 is meant to help with that choice.

6. Related Work
Engineers have been building low latency RPC sys-

tems since long before Ethernet was a dominating link
layer protocol, as demonstrated in [32]. In that paper
authors identify network controllers as having a signif-
icant influence on the overall RPC latency. They also
express concern with the trend of NIC latencies not im-
proving nearly as fast as their bandwidth capabilities.
These trends have continued with NIC bandwidth in-
creasing 1000-fold since then, but round trip RPC laten-
cies improved only 10-100 times. Ironically, most of the
latency improvement came from the decrease in serial-
ization latency, which is directly tied to bandwidth (e.g.
64 byte packet at 10 Mbps has serialization latency of
51.2 us, while at 10 Gbps it is only 51.2 ns). The same
authors [32] compared DMA based Ethernet controllers
with FIFO-based ATM controllers. They concluded that
DMA based controllers work well for large packets, but
for small packets they prefer a simple FIFO interface that
is directly accessed by the host. Similarly to our ap-
proach, they go on to advocate building future network
controllers with a hybrid interface to best suit both small
and large packets. Twenty years later, with computing
shifting into datacenters, we find that many of the good
ideas from the past are being adapted to fit current needs.

Even though Infiniband has traditionally been favored
in high performance computing, recent work has shown
that 10G Ethernet can also achieve good latency perfor-
mance [24]. To complement this finding, high perfor-
mance switch and NIC vendors have built 10G Ethernet
switches capable of 0.3-0.5 microsecond latencies [7, 2]
and network adapters capable of 1.3 microsecond laten-
cies [20]. These proprietary components have promptly
found their way into vertically integrated solutions for
low latency applications, such as online trading systems
[30]. We view our work as an integral part of the over-

11

344 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

all efforts to openly discuss, understand and build low
latency datacenter systems on commodity hardware.

Researching the interactions between the cache hier-
archy and I/O data transfers [31, 9, 13] has resulted in an
implementation by Intel that claims to improve their net-
work controller latency by 10-15% [13]. Previous work
on power management of datacenter servers [18, 19] has
been promising, but it assumes that latencies in hun-
dreds of microseconds are acceptable. On the software
research front, there are efforts that improve the average
and tail latencies of existing datacenter applications, such
as memcached and web search [15]. With a clean slate
approach, the RAMCloud project [22] is driving the to-
tal round trip request-response latency into the 5-10 us
range, applying significant efforts to reducing the soft-
ware overheads. Kernel network stack overheads are typ-
ically removed by circumventing the network stack com-
pletely and accessing the network card through a user-
level driver [17, 5, 28]. User-level drivers are typically
hardware specific and do not provide the OS protection
mechanisms that applications are accustomed to. There
is ongoing work on the netmap framework [25] that pro-
vides low latency of a user level access in conjunction
with the benefits of an operating system. This software
research complements our work by accentuating the need
for low latency network interfaces.

7. Discussion and Conclusion
Our approach in this paper is a clean slate approach

where we assume the applications are written in a way
to take advantage of NIQ. For an existing application to
benefit from NIQ, it would need to be modified to use
the NIQ user space library to send and receive packets. It
is also possible to implement the NIQ driver as a kernel
module, thus enabling application multiplexing, but we
do not explore this option in the paper. Some of the soft-
ware low latency techniques used in the NIQ implemen-
tation can also be used with most other network cards
(e.g. polling, kernel bypass, header splitting). To make
the evaluation comparison fair, we have implemented
those techniques for both NIQ and the Intel x520 card.
On the other hand, some of the techniques are unique to
NIQ and require support form the driver, hardware and
the host system (e.g. delayed PCIe reads, mapping NIQ
memory as cacheable).

NIQ performance results presented in Section 4 are
limited by the FPGA implementation. We implemented
NIQ prototype on an FPGA development board utiliz-
ing available standard components, such as MAC, PHY
and the PCIe core. However, those available components
exhibit relatively high latencies, when compared to the
lowest possible with today’s technologies. We are able
to extrapolate what the overall request-response latency
would be, if the system is built with state of the art com-

ponents. One small packet round trip through our PHY
and MAC components measures at 920 ns, while the best
ASIC components take only 300 ns, indicating 620 ns of
possible improvement in the Ethernet path. For the PCIe
estimation we take the minimum PCIe latency seen on
the Intel’s x520 card (560 ns) and compare it to the min-
imum NIQ PCIe latency (930 ns). Additionally, we mea-
sure an extra 190 ns of possible savings when running on
one of the newest available server processors with an on-
chip PCIe controller, for a total PCIe round trip savings
of 560 ns. Since our minimum request-response latency
(4.65 us) includes two Ethernet and two PCIe round trips,
we infer possible request-response times of under 2.3 us,
thereby doubling our performance.

We demonstrate that it is possible to fit a basic GET
request within a minimum size (60 B) packet using bi-
nary object keys. Many existing object store systems use
string keys instead of binary object keys, which gener-
ally makes GET requests bigger than a single cache line.
One solution to this would be to use a hash on the string
object keys to convert them into binary keys. However,
it is also possible to extend the NIQ small packet inter-
face to support larger packets (e.g. two cache line size
packets) on receive and transmit. On the transmit side,
writing a two-cache-line packet using the write-gathering
memory mapping is as simple as writing two cache lines
back-to-back. On the receive side, however, the change
would be more extensive. One simple solution to support
larger packet on the small packet interface is not to com-
municate complete headers between NIQ and the CPU.
Instead, NIQ checks and drops redundant header fields
on receive (e.g. destination mac address, type fields,
etc.), thus enabling bigger Ethernet packets that still fit
into one cache line. Another possible solution is to use
two sibling hardware threads (hyperthreads) to issue two
polling cache misses, with replies eventually ending up
in the same L1 cache ready for processing. A similar so-
lution might involve explicit prefetches (using the SSE
instruction), or even automatic adjacent line prefetching,
to get more than one cache line at a time from NIQ to
the CPU. Finally, one might simply use the host polling
technique; especially on a new SandyBridge-EP platform
with DDIO [13], where it would perform well.

In its current prototype form, NIQ interface can only
be accessed by a single thread at a time, thus limiting
possibilities for parallelism. As future work we intend to
extend the NIQ interface to support multiple queues, thus
supporting multithreading and increasing performance
through parallelism.

We also discuss two extreme solutions for building a
low latency request-response applications (e.g. object
store). One solution is to implement the entire applica-
tion in the NIQ. This becomes problematic as soon as
two or more memory accesses are needed, such as a hash

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 345

table lookup and a data read, because memory accesses
over PCIe exhibit high latency. The second solution is to
completely integrate the network card with the proces-
sor. This is an attractive option from the latency point of
view, with an open question of how exactly would the in-
tegrated controller be connected to the processor. Unless
the latency of that interconnect is negligible, such design
would still benefit from our findings.

In conclusion, we have designed, implemented and
evaluated a network interface solution for low latency
request-response protocols. We demonstrate significant
latency gains by focusing on minimizing the number of
transitions over the PCIe interconnect, particularly for
small packets. Moreover, we designed and made a case
for a custom polling notification technique by evaluat-
ing its latency and power performance. We also investi-
gated processor power management implementation and
the impact it has on latency. Finally, our system’s latency
gains did not come at the expense of bandwidth, but there
was an increase in implementation complexity.

References
[1] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B.,

VAHDAT, A., AND M., Y. Less is more: Trading a little band-
width for ultra-low latency in the data center. In Proceedings of
USENIX NSDI conference (2012).

[2] ARISTA NETWORKS. 7100 Series Switches: http:

//www.aristanetworks.com/en/products/7100series,
July 2012.

[3] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53–
64.

[4] BROADCOM CORPORATION. Broadcom NetXtreme R⃝ 57XX
User Guide, April 2012.

[5] DERI, L. ncap: wire-speed packet capture and transmission.
In End-to-End Monitoring Techniques and Services, 2005. Work-
shop on (may 2005), pp. 47 – 55.

[6] FITZPATRICK, B. Distributed caching with memcached. Linux
J. 2004, 124 (Aug. 2004).

[7] FULCRUM MICROSYSTEMS. FM4000 Switches: http://

www.fulcrummicro.com/documents/products/FM4000_

Product_Brief.pdf, July 2012.

[8] HP, INTEL, MICROSOFT, PHOENIX, TOSHIBA. ACPI: Ad-
vanced Configuration and Power Interface Specification, Decem-
ber 2011.

[9] HUGGAHALLI, R., IYER, R., AND TETRICK, S. Direct cache
access for high bandwidth network I/O. In Proceedings of the
32nd annual international symposium on Computer Architecture
(Washington, DC, USA, 2005), ISCA ’05, IEEE Computer Soci-
ety, pp. 50–59.

[10] INTEL CORPORATION. Intel and Core i7 (Nehalem) Dynamic
Power Management, 2008.

[11] INTEL CORPORATION. ixgbe - Intel 10 Gigabit PCI Express
Linux driver, 2010.

[12] INTEL CORPORATION. Intel R⃝ 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3, April 2011.

[13] INTEL CORPORATION. Intel R⃝ Data Direct I/O Technology
(Intel R⃝ DDIO): A Primer, February 2012.

[14] INTEL CORPORATION. Intel R⃝ Ethernet Converged Network
Adapter X520, 2012.

[15] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M.,
AND VAHDAT, A. Chronos: predictable low latency for data
center applications. In Proceedings of the Third ACM Symposium
on Cloud Computing (New York, NY, USA, 2012), SoCC ’12,
ACM, pp. 9:1–9:14.

[16] KIM, J., DALLY, W. J., SCOTT, S., AND ABTS, D. Technology-
driven, highly-scalable dragonfly topology. In Proceedings of the
35th Annual International Symposium on Computer Architecture
(Washington, DC, USA, 2008), ISCA ’08, IEEE Computer Soci-
ety, pp. 77–88.

[17] KRASNYANSKY, M. uio-ixgbe: https://opensource.

qualcomm.com/wiki/UIO-IXGBE, July 2012.
[18] MEISNER, D., GOLD, B. T., AND WENISCH, T. F. Powernap:

eliminating server idle power. In Proceedings of the 14th inter-
national conference on Architectural support for programming
languages and operating systems (New York, NY, USA, 2009),
ASPLOS XIV, ACM, pp. 205–216.

[19] MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER,
W.-D., AND WENISCH, T. F. Power management of online
data-intensive services. In Proceedings of the 38th annual inter-
national symposium on Computer architecture (New York, NY,
USA, 2011), ISCA ’11, ACM, pp. 319–330.

[20] MELLANOX TECHNOLOGIES. ConnectX-2EN NIC:
http://www.mellanox.com/related-docs/prod_

software/ConnectX-2_RDMA_RoCE.pdf, July 2012.
[21] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating re-

ceive livelock in an interrupt-driven kernel. ACM Trans. Comput.
Syst. 15, 3 (Aug. 1997), 217–252.

[22] OUSTERHOUT, J., ET AL. The case for RAMCloud. Commun.
ACM 54, 7 (July 2011), 121–130.

[23] PCI SPECIAL INTEREST GROUP. PCI Express Base Specifica-
tion Revision 1.1. PCI-SIG, 2005.

[24] RASHTI, M., AND AFSAHI, A. 10-gigabit iwarp ethernet: Com-
parative performance analysis with infiniband and myrinet-10g.
In Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International (Mar 2007), pp. 1 –8.

[25] RIZZO, L. Revisiting network I/O APIs: the netmap framework.
Commun. ACM 55, 3 (Mar. 2012), 45–51.

[26] SALAH, K. To coalesce or not to coalesce. AEU - International
Journal of Electronics and Communications 61, 4 (2007), 215 –
225.

[27] SIDDHA, S., PALLIPADI, V., AND VEN, A. Getting maximum
mileage out of tickless. In Linux Symposium (2007), vol. 2, Cite-
seer, pp. 201–207.

[28] SOLARFLARE COMMUNICATIONS. OpenOnload: http://

www.openonload.org, July 2012.
[29] STANFORD NETFPGA GROUP. NetFPGA 10G, http://

netfpga.org, July 2012.
[30] SUBRAMONI, H., PETRINI, F., AGARWAL, V., AND PASETTO,

D. Streaming, low-latency communication in on-line trading sys-
tems. 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops (2010), 1–8.

[31] TANG, D., BAO, Y., HU, W., AND CHEN, M. DMA cache:
Using on-chip storage to architecturally separate I/O data from
CPU data for improving I/O performance. In 2010 IEEE 16th
HPCA (Jan 2010), pp. 1 –12.

[32] THEKKATH, C. A., AND LEVY, H. M. Limits to low-latency
communication on high-speed networks. ACM Trans. Comput.
Syst. 11, 2 (May 1993), 179–203.

13

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 347

DEFINED: Deterministic Execution for Interactive Control-Plane
Debugging

Chia-Chi Lin1 Virajith Jalaparti1 Matthew Caesar1 Jacobus Van der Merwe2

1University of Illinois at Urbana-Champaign
2University of Utah

Abstract
Large-scale networks are among the most complex soft-
ware infrastructures in existence. Unfortunately, the ex-
treme complexity of their basis, the control-plane soft-
ware, leads to a rich variety of nondeterministic failure
modes and anomalies. Research on debugging modern
control-plane software has focused on designing compre-
hensive record and replay systems, but the large volumes
of recordings often hinder the scalability of these de-
signs. Here, we argue for a different approach. Namely,
we take the position that deterministic network execu-
tion would vastly simplify the control-plane debugging
process. This paper presents the design and implementa-
tion of DEFINED, a user-space substrate for interactive
debugging that provides deterministic execution of net-
works in highly distributed and dynamic environments.
We demonstrate our system’s advantages by reproducing
discovery of known ordering and timing bugs in popu-
lar software routing platforms, XORP and Quagga. Us-
ing Rocketfuel topologies and routing data from a Tier-1
backbone, we show DEFINED is practical and scalable
for interactive fault diagnosis in large networks.

1 Introduction
Large-scale networks such as enterprise and ISP net-
works consist of a complex intertwining of systems
and protocol implementations distributed over wide dis-
tances. At the basis of these networks lies the control-
plane software that is responsible for controlling and
managing data flows. Like other complex software sys-
tems, control-plane software is prone to defects or bugs
introduced through human error. Indeed, studies have
shown that control-plane traffic accounts for 95 – 99%
of the observed bugs in networks [1].
One school of research has focused on applying fully au-
tomated techniques to analyze, test, and debug control-
plane software. However, while automated techniques
have been developed to localize memory faults [5] and
avoid concurrency bugs [21], the larger class of logi-
cal or semantic errors seems to fundamentally require
human knowledge to solve. To address this, most re-
search has employed recording mechanisms to assist hu-

man troubleshooters in debugging large-scale control-
plane software. Packet capture and replay tools such
as tcpdump [30] record and replay packets at individ-
ual nodes. Friday [10] correlates recordings across dis-
tributed nodes to provide system-wide reproducibility for
control-plane software. OFRewind [32] enables cen-
trally controlled record and replay of control-plane soft-
ware by leveraging the structure of OpenFlow controller
domains. Unfortunately, while these schemes improve
troubleshooter’s ability to analyze control-plane soft-
ware, the large volumes of recordings hinder the scala-
bility of these systems. In fact, even the authors of Friday
and OFRewind point out that a comprehensive recording
of all events in an entire production network is infeasible.
Consequently, troubleshooters often enable only partial
recordings in production networks, e.g., logging only
packet headers or logging only at specific network lo-
cations. However, solutions based on partial recordings
can fail to reproduce bugs triggered by nondeterminis-
tic behaviors, e.g., message orderings or unsynchronized
clocks. Troubleshooting these nondeterministic bugs is
challenging. Since a bug may happen only when certain
messages arrive at a specific node in a specific ordering,
if troubleshooters didn’t select the node to record mes-
sages beforehand, it is difficult to reproduce the bug. Two
types of nondeterministic bugs are particularly notorious
in control-plane software: ordering bugs that appear only
when certain messages occur in specific orderings and
timing bugs that appear only when certain messages are
processed at specific timings.
To address these nondeterministic bugs, in this paper, we
present a new system, DEFINED, a debugger that al-
lows a troubleshooter to analyze control-plane bugs after
detecting erroneous behaviors of a system. DEFINED
simplifies interactive control-plane software debugging
through deterministic network execution. Namely, given
the same set of external events (e.g., messages from ex-
ternal routers, failures of links and routers), we make
every node in the network always receive messages in
a deterministic ordering and timing. Accordingly, with
DEFINED, troubleshooters can adopt partial recordings
and still be able to reproduce nondeterministic bugs.

1

348 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

To enable deterministic network execution, DEFINED
eliminates all sources of nondeterministic internal events
in a network, and relies on partial recordings to record
and replay nondeterministic external events. Specifi-
cally, DEFINED ensures each node receives messages
and fires local timers in a deterministic fashion. To
provide more debugging functionality without introduc-
ing prohibitive overheads to control-plane software, DE-
FINED consists of two components: DEFINED-RB (RB:
RollBack) that instruments production networks, and
DEFINED-LS (LS: LockStep) that manages debugging
networks.
DEFINED-RB introduces minimum overheads to
control-plane software with an “optimistic” approach:
each node independently decides on a pseudorandom
sequence of events, and then lets the network execute
in an arbitrary fashion. If the order in which events
execute is different from the pseudorandom sequence,
the network is “rolled back” to an earlier state, and
played forward with the correct ordering. We introduce
a novel pseudorandom sequence to reduce to the number
of rollbacks, and hence minimize the overheads.
DEFINED-LS provides an interactive stepping function-
ality to troubleshooters in a debugging network. It allows
troubleshooters to investigate and manipulate state, and
slowly step through the operation of individual messages.
DEFINED-LS does so by forcing debugging networks to
execute in a lockstep fashion. To reproduce nondeter-
ministic bugs, DEFINED guarantees that DEFINED-LS
deterministically reproduces DEFINED-RB’s execution.
Deterministic execution [4, 6, 12, 27] and interactive
stepping [11, 13] have been widely applied in non-
control-plane software to ease interactive debugging.
These techniques, however, to our best knowledge, can-
not operate efficiently and effectively with control-plane
software. Our system, DEFINED, is a debugger for
control-plane software that address the problem of in-
teractive debugging in modern wide-area networks. To
demonstrate the utility of DEFINED in assisting trou-
bleshooters analyzing ordering and timing bugs, we use
DEFINED to reproduce the discovery of known bugs in
two popular open-source control-plane implementations,
XORP and Quagga. Our evaluation on Emulab [31] with
Rocketfuel topologies [28] and Tier-1 ISP traces shows
that very little overhead is required to make production
networks deterministic and that performance in debug-
ging networks has sufficiently low response time for in-
teractive use.

2 System Design
In this section, we describe the details of the design
of DEFINED. We first give an overview of the sys-
tem (Section 2.1). Then, we describe DEFINED-RB
(Section 2.2), which instruments a production network

to make its execution deterministic. We next show
DEFINED-LS (Section 2.3), which allows a debugging
network to be “stepped” through in a manner controlled
by a human troubleshooter. We then conclude the section
by discussing some properties and limitations of our de-
sign (Section 2.4 and Section 2.5). To keep the descrip-
tion concise, in this section, we focus on how our system
ensures deterministic message events, and in Section 3,
we will describe how DEFINED can be extended to pro-
vide deterministic timer events.

2.1 Interactive Network Debugging
We first clarify the benefits of a tool for interactive
control-plane software debugging. Under our design,
control-plane software runs on top of DEFINED, a user-
space substrate, instead of directly on an operating sys-
tem. Complementing existing log-based systems [10, 30,
32] that passively record software activities, we instru-
ment control-plane software in a production network and
actively manipulate ordering and timing of internal mes-
sage receptions. The manipulation ensures network-wide
execution is deterministic. When human troubleshooters
observe any control-plane software bug in a production
network, they can reproduce the bug deterministically in
a debugging network with only partial recordings, and
analyze it through the debugging coordinator with the
interactive stepping functionality.
Our design consists of two key components, DEFINED-
RB, which makes control-plane execution deterministic
by masking internal nondeterminism and DEFINED-LS,
which introduces distributed lockstep execution for inter-
active debugging.
DEFINED-RB: Debugging a control-plane system be-
comes much easier if the operation of that system is de-
terministic. Unfortunately, existing control-plane soft-
ware incorporates a high degree of internal randomness
in its execution, arising from varying message orderings,
delay and jitter, and other variables arising from dis-
tributed execution. To address this, our design manip-
ulates the operation of a production network itself, to re-
move all internal nondeterminism and cause it to run in
a deterministic manner.
Each node intercepts message and timer events before
delivering them to the control-plane software, and then
uses a pseudorandom ordering function to determine the
exact orderings and timings at which to send the events
up to the software. Instead of adopting a stop-and-wait
design [12], we employ speculative execution to reduce
overheads: upon each event occurrence, a node uses its
pseudorandom ordering function to check whether the
order in which the events appeared so far follows the
computed pseudorandom sequence. If the order is the
same as the pseudorandom sequence, the node delivers
the event to the control-plane software. On the other

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 349

hand, if the order is different from the pseudorandom se-
quence, the network is “rolled back” to an earlier state,
and played forward with the correct ordering. To fur-
ther optimize the performance, we construct the pseu-
dorandom ordering function according to the network
topology, so that the computed pseudorandom sequence
matches the event sequence that most frequently occurs.
Consequently, the number of rollbacks is minimized.
DEFINED-LS: The tremendous load, scale, and rates
of change of modern networks make it hard for a human
troubleshooter to build an understanding of the entire
control-plane system’s state. Debugging such a system
becomes much easier if the troubleshooter has time to in-
vestigate and manipulate state, and slowly step through
the operation of individual messages.
To achieve such interactive stepping of software in wide-
area networks, a runtime coordinator manages execution
across the distributed set of processes making up the
control-plane software. This is done by logically divid-
ing the software’s execution into a series of steps. These
steps may be chosen at various levels of granularity (per-
event or per-path-change). The coordinator then runs the
software in virtual time, executing it in a “lockstep” fash-
ion across nodes (alternating between event-sending and
event-processing phases). Distributed user-space sub-
strates replay events to their local software and collect
outbound events to be sent in the next cycle. Nodes use
a distributed semaphore to coordinate. This approach
controls execution, and deterministically reproduces the
software’s behavior by adopting the exact pseudorandom
ordering function used by the production network.

2.2 Interfacing with Production Networks
To remove internal nondeterminism from a production
network, DEFINED-RB uses speculative execution to
ensure determinism while not significantly slowing down
network execution. It does this by speculatively letting
messages be sent to the software in the order in which
they are received. To make sure the ordering can be re-
produced, nodes in the network locally compute a pseu-
dorandom ordering over these messages, and if messages
do not arrive in the computed pseudorandom order, the
node is rolled back to the point at which the first message
arrived out of sequence, and messages are then played
back in the correct order. Rolling back slows down pro-
cessing, but with appropriate selection of the pseudoran-
dom sequence, we can make rolling back rare. In partic-
ular, we design an optimized pseudorandom sequence to
match the common-case ordering of events we would ex-
pect to see in the production network. Overall, we need
to solve two problems: (i) we need to come up with a
pseudorandom ordering that matches the common-case
ordering of events; (ii) we need to perform the rollback
when the predicted ordering is violated.

W Z

X

Y

ma

da = lwx

mb

mc

db = da + lxz = lwx + lxz

dc = db + lzy = lwx + lxz + lzy

Figure 1: Example: calculating di.

Computing a message ordering: There are many ways
to compute the pseudorandom ordering, for example us-
ing straightforward hashing and permutation. However,
to ensure correctness, the pseudorandom ordering needs
to maintain causal relationships between messages. In
addition, every time the pseudorandom ordering diverges
from the production network operation, DEFINED-RB
requires a rollback. Hence, for efficiency reasons, we
would like a pseudorandom ordering function that mini-
mizes the number of rollbacks that are needed.
To do this, we construct an ordering function that reflects
the expected ordering of message arrivals. The func-
tion takes as input a set of messages {m1,m2, . . . ,mk}
received at a node n, where each message mi is anno-
tated with (i) ni, the identifier of the originating node that
generated the first message of the causal chain; (ii) si, a
strictly increasing sequence number assigned by the orig-
inating node; (iii) di, a deterministic estimate of the delay
from the originating node ni to the local node n.
To clarify the meaning of each field, Figure 1 illus-
trates how DEFINED-RB calculates ni, si, and di for
three causally related messages. For each link (ni,n j),
DEFINED-RB measures the average link delay li j before
launching the control-plane software. When a node gen-
erates a message due to external events (e.g., a withdraw
message when a link goes down), it is called the origi-
nating node of the message. The node annotates the mes-
sage with ni equal to its id, si equal to the current value
of a strictly increasing counter, and di equal to the aver-
age link delay of the outgoing link. On the other hand,
assume a node generates a message mi due to another in-
ternal message m j (e.g., a route update when receiving a
message from another node in the system), where m j is
annotated with n j, s j, and d j. The node annotates mes-
sage mi with ni equal to n j, si equal to s j, and di equal to
d j plus the average link delay of the outgoing link. In the
figure, we assume ma is generated due to external events,
while mb is generated due to ma, and mc is generated
due to mb. Then, all messages have the same originating
node W and sequence number. In addition, da equal to
lwx, and db and dc are calculated by increasing da and db
by lxz and lzy, respectively.1

1We use di to retain causal relationships by never rolling back mes-

3

350 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

When receiving messages from others, a node uses the
ordering function to first sort the messages by di values.
It then sorts messages with identical di values by their
ni values, and messages with identical ni values with
their si values. We sort messages by di before si, since
for control-plane software, messages originating from a
node can take different paths. The resulting function has
three key properties: (i) it is deterministic, as it will al-
ways compute the same outputs given the same external
events; (ii) it is consistent, as it retains causal relation-
ships between messages; (iii) it is closely matched to the
common-case ordering when originating nodes send out
messages at roughly the same time, since di indicates the
average arrival time of a message.
To further avoid long chains of rollbacks, DEFINED-
RB makes sure the ordering function is applied indepen-
dently to messages originated at roughly the same time.
To do this, we divide time into distinct steps, group ex-
ternal events appearing in a single timestep together, and
then independently impose the ordering function men-
tioned above on the messages corresponding to each
timestep. We further bound the length of each causal
chain within a timestep: messages over this bound are
assigned to the next timestep. All messages in a sin-
gle timestep correspond to a single group. Each group
is associated with a distinct group number. One node is
selected to periodically broadcast special packets called
beacons which specify the group numbers to be used by
the rest of the nodes in the network. (Leader election
algorithms [22] are used to make sure the system can
tolerate failures.) Group numbers are strictly increasing.
Messages triggered by an external event are tagged with
the current group number, while output messages gen-
erated due to an internal message are assigned the same
group number as the internal message.2

In our implementation, we assign fixed values of di based
on average link delay between nodes rather than dynam-
ically estimating it. However, if desired, the link delay
values may be periodically re-estimated, as long as they
are applied and recorded at group boundaries.

Detecting if a rollback is necessary: Each node main-
tains a sliding window history of messages it received
since the last group number update, as well as a list of
messages it sent since the last group number update. The
history is sorted by the ordering function. An entry in
the history can be removed after all messages that might
be ordered before it have arrived. Depending on the node

sages with lesser di values. Therefore, to retain causal relationships
for a message with multiple causal parents, we only need to record the
largest di value among all its parents.

2A large variation in distances from nodes to the beacon source may
cause unnecessary rollbacks. We can address this by dividing the net-
work into smaller subnetworks, and applying DEFINED-RB to each
subnetwork independently.

W Z

X

Y

mdmc

mbma

Arrival order: mb md mc ma

Computed order: mb ma md mc

timeRollback set

Figure 2: Example: detecting and performing rollback.
In this example, we assume all messages originate from
node W , and all links have the same expected delay.
Thus, the order of the messages are determined by the se-
quence numbers. We assume messages mb, ma, md , and
mc have sequence numbers 0, 1, 2, and 3, respectively.

W Z

X

Y

mdmc

mbma

V

1. mb md mc

2. rollback(md and mc)
3. ma md mc

S

U

T

Figure 3: Example: rolling back across nodes.

performance, our experience shows that in a modern pro-
duction network, we can generally remove an entry af-
ter two times the maximum propagation time across the
network.3 Whenever a node receives a new message, it
passes the contents of this window to the ordering func-
tion to determine if the new message has arrived in the
correct pseudorandom sequence.
If the message is received in the correct order, it is sent
to the software. Otherwise, the node must roll back the
node’s state to the first point where the sequences diverge
and replay received messages in the correct order. There
are two scenarios in which a node needs to roll back its
state: (i) when receiving messages that have earlier group
numbers; (ii) when receiving messages that have the cur-
rent group number, but don’t arrive in the correct pseudo-
random sequence. For example in Figure 2, if node Z re-
ceives messages in the order {mb,md ,mc,ma} (message
mb received first), but upon receiving ma it computes the
sequence {mb,ma,md ,mc}, it would need to roll back to
the point just before it received message md (i.e., it would
need to roll back messages md and mc). Note the pseudo-
random ordering is computed on every message arrival,
for example, here, the node would compute {mb} after
receiving message mb, then compute {mb,md} after re-
ceiving message md , then compute {mb,md ,mc} after re-
ceiving message mc, but then compute the final sequence
{mb,ma,md ,mc} after receiving ma.

3We only need an upper bound of the maximum propagation time.
In our implementation, we estimate this bound with the sum of the
average propagation time and four times its standard deviation.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 351

Performing the rollback: Finally, performing a roll-
back at a node may require “unsending” messages pre-
viously sent by it to its neighbors. To do this, the node
keeps a history of previous messages sent within the last
few group intervals. On rolling back, the node informs
neighbors of the range of messages that should be rolled
back. In the example in Figure 3, node Z had previously
sent node V messages {mb,md ,mc}. On performing the
rollback to before receiving md , node Z tells node V to
roll back the messages md and mc, and then sends mes-
sages {ma,md ,mc} in the correct order. This process
continues downstream: since node V had previously for-
warded messages {md ,mc}, it must instruct node U and
node T to roll them back as well. Messages at node S are
rolled back in a similar manner.
To roll back misordered messages, we restore the state of
the control-plane software, and if required, inform neigh-
bors about such a rollback to ensure that all messages
that are causally related to the rolled back messages are
themselves rolled back.

2.3 Stepping through Debugging Networks
In a network instance created to support network debug-
ging, mechanistic delays and overheads are not signif-
icant concerns. Therefore, in this environment, we in-
troduce DEFINED-LS which allows interactive stepping
by forcing the network to execute in a lockstep fashion.
This is done by explicitly queuing messages and timer
events received by a node, and playing them at coordi-
nated intervals using a predetermined ordering function
that is exactly the same as that used in the production net-
work (Section 2.2) to ensure determinism. To make the
network run in lockstep, our system instructs each node
to cycle through two phases: a transmission phase and
a processing phase. The system coordinates all nodes
with a mechanism similar to a distributed semaphore to
make sure they are in the same phase at the same time.
To ensure determinism, DEFINED-LS replays partially
logged external events according to the group numbers
they received in the production network. In a debugging
network, one group of events is replayed at a time. When
all messages are output, the next group is replayed. The
nodes use TCP for communication in order to ensure that
messages are not lost, which is necessary for determin-
ism.4

Transmission phase: In this phase, each node trans-
mits all messages generated in the previous processing
phase. That is, the node sends out messages in a send
buffer (filled in the processing phase) and stores all mes-
sages received in a receive buffer. DEFINED-LS then
uses the same ordering function used in the production

4Alternatively, we can also record these message-loss events, and
replay them in the debugging network.

network over the received messages to compute the order
in which the messages are to be delivered to the applica-
tion. Hence, the messages in the receive buffer are sorted
in the same way as they are received in the production
network, thereby ensuring the same ordering of events.
This results in the debugging network reproducing the
execution of the production network. To indicate readi-
ness to transition to the processing phase, a node sends a
marker packet when it has no further messages to send.

Processing phase: In this phase, each node processes
all messages received during the previous transmission
phase. In particular, the node sends all messages in the
receive buffer up to the control-plane software, and en-
queues the software’s generated messages into the send
buffer. The node moves to the transmission phase after
the control-plane software processes all messages in the
receive buffer.

2.4 System Properties
DEFINED has two provable properties: (i) DEFINED-
LS exactly reproduces the execution of the production
network instrumented by DEFINED-RB; (ii) even with
the presence of cascading rollbacks (i.e., rollbacks across
nodes), DEFINED-RB eventually terminates. The first
property is the core of our system, as it provides repro-
ducibility of network execution. The second property
guarantees there will be no deadlocks when a production
network is instrumented by DEFINED-RB. We present
proofs of these two properties in a technical report [18].

2.5 Limitations
Supporting incremental deployment: DEFINED as-
sumes control over all devices that need to be debugged.
For example, when using our design to debug an Open
Shortest Path First (OSPF) network, all OSPF-speaking
routers should be instrumented with DEFINED. This
may pose a challenge in environments in which the net-
work operator can only instrument subsets the network,
or needs to interface with adjacent networks not un-
der the operator’s control. Similar issues can also oc-
cur between the interactions of control plane and data
plane, e.g., external rollbacks might be required when
the control-plane software attempts to modify the data-
plane forwarding table. To deal with these situations,
DEFINED records inputs at interfaces with external sys-
tems. Our system can then replay these partial record-
ings at a later point in time to reproduce execution. In
addition, we can avoid external rollbacks by employing
buffers at border nodes as proposed in earlier work [14].

Inferring causality in closed-source software: An-
other assumption of our design is that the source code of
the software is available, as our design requires the abil-
ity to infer causal relationships between incoming mes-

5

352 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

sages and outgoing ones. Despite this assumption, DE-
FINED is still highly useful for control-plane software
developers as we will demonstrate with case studies in
Section 4. In fact, it took a graduate student only one
day to instrument the control-plane software in these case
studies. In addition, if developers are willing to incor-
porate DEFINED in their software, their customers can
still experience the benefits of deterministic network ex-
ecution even when the shipped software is closed-source.
Moreover, work on tracing information flow through ap-
plication binaries [7] can help enable our design directly
on closed-source software.

Imposing determinism on a single node: To provide
deterministic network execution, DEFINED also needs
to eliminate internal nondeterminism triggered by events
on a local node (e.g., thread scheduling, memory reorder-
ing). In Section 4, we describe a specific implementation
that removes internal nondeterminism triggered by local
events from XORP and Quagga. Fortunately, existing
works [2–4] provide more general solutions to this prob-
lem, and DEFINED can be combined with these works to
ensure determinism of general control-plane software.

3 Implementation
To simplify deployment and operate with existing soft-
ware bases, we implement DEFINED as a user-space
“shim layer” in the form of a library consisting of func-
tion wrappers to intercept message sending, message re-
ceiving, and timer calls.
Our implementation addresses three key challenges:

Providing interfaces to mark causal relationships:
As discussed in Section 2.2, DEFINED-RB must deter-
mine which messages sent by the control-plane software
are causally related to messages that are received by the
software. This information is used to determine which
messages need to be “unsent” when the pseudorandom
sequence is violated. Our implementation overcomes
this challenge by providing interfaces for developers to
tag a message with a unique identifier when it is origi-
nated, and extract the identifier from the message when
it is received. With our design in Section 2.2, develop-
ers only need to mark “immediate” causal relationships
between messages (causal relationships of messages that
are triggered by the same external event). Then, DE-
FINED will use these immediate relationships to gener-
ate the correct annotated fields and sort messages in the
correct order. When instrumenting XORP and Quagga,
we track all immediate causal relationships by passing
the identifier of an incoming message from message re-
ceiving functions, to message processing functions, and
finally, to message sending functions. This is done by
instrumenting these message related functions in the ap-
plication software with an extra parameter.

Rolling back: After obtaining a pseudorandom order-
ing, a node needs to rollback the state of the software
when the ordering is violated. To do this, nodes perform
three steps: (i) check-point states between message re-
ceipts, (ii) restore a particular state, and (iii) play back
messages in the given pseudorandom ordering.
To accomplish these steps, DEFINED employs the
fork() system call. When a message is received, the
node inserts the message into the history as described in
Section 2.2 and, at the same time, checks if the pseu-
dorandom ordering is violated. If the message arrival
complies with the ordering, the node invokes the fork()
system call. Then, a piece of shared memory is estab-
lished between the parent and child processes for noti-
fications of possible rollbacks. If the received message
violates the ordering, the node uses the shared memory
to instruct the process ID it wishes to roll back to. As
discussed in previous literature [24], a normal fork() is
not sufficient to ensure determinism. Specifically, DE-
FINED also saves the state of any open files and pending
signals, and manipulates process and thread IDs. After
restoring its state, the node plays back the received mes-
sages according to the pseudorandom ordering.
While using fork() may seem somewhat heavyweight,
we found its overhead to be low enough in our imple-
mentation that pursuing other techniques did not seem
necessary for common environments (modern OSs use
copy-on-write to reduce overheads). If desired, the over-
head of rollback may be reduced further, for example
by only calling fork() for every several messages, and
rolling back to the last fork() before the sequences di-
verge, or by using standard application-specific check-
pointing techniques (we investigate some optimizations
in Section 5).
Dealing with timers: The mechanisms described above
are sufficient to reproduce message events. However, to
reproduce timer events in our design, we need to ensure
the rate at which the process perceives time as progress-
ing is the same, every time the system is run. To do this
we run control-plane software in virtual time: instead of
triggering timers with the system clock, we make timers
expire according to a counter that advances determinis-
tically with respect to the message events. This enables
timer events to be reproduced in our system. However,
we would like to ensure that we do not substantially
change behavior of the protocol when doing this. For
example, consider the flap damping algorithm in Bor-
der Gateway Protocol (BGP) [23], which “holds down”
unstable routes for a certain period of time. When we
run flap damping in virtual time, we would like BGP
to hold down routes for a similar amount of time, to
avoid making the network less or more stable. To achieve
this, we use a virtual time that is deterministically repro-
ducible, yet progresses at a rate similar to “real” wall-

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 353

clock time. We do this by using a deterministic counter
for virtual time that is advanced on receipt of every bea-
con message, with the rate of advancement between bea-
cons equal to the configured beacon inter-arrival time. In
our implementation, we broadcast one beacon message
every 250 ms, corresponding to one unit of virtual time.

4 Case Studies
To demonstrate the practicality of DEFINED, we instru-
ment the BGP module in XORP 0.4 and the Routing In-
formation Protocol (RIP) module in Quagga 0.96.5 with
our system. We use DEFINED to reproduce discovery of
two known bugs in these control-plane implementations:
an ordering bug in the BGP path selection process and
a timing bug in the RIP timer refresh procedure. These
case studies demonstrate how an operator might utilize
DEFINED to troubleshoot control-plane bugs after ob-
serving erroneous behaviors. We then conclude this sec-
tion with a discussion of our experience.
Ordering bug in XORP BGP path selection: A BGP
module should select the best path among all paths it
receives from its peers. To do so, it checks all valid
paths against a list of rules. There are dozens of rules
in the BGP path selection process, but to understand
the XORP bug, we need to know only three of them.
First, the selection process compares the AS path length
of each path, and those with shortest AS path length
are selected as preferable paths. Then, these preferable
paths are grouped by the neighboring AS of each path.
Within each group, paths with lowest multi-exit discrimi-
nator (MED) are selected. All selected paths are checked
against the last rule that compares the interior gateway
protocol (IGP) distance of the paths. Finally, the path
with the lowest IGP distance is selected as the best path.
One peculiar aspect of this process is the MED rule. Be-
cause the rule checks the MED attribute only within a
group of paths that have the same neighboring AS, it cre-
ates a non-transitive ordering among paths. For exam-
ple, as illustrated in Figure 4, an AS with three routers
R1, R2, and R3 peers with another two ASs at external
routers ER1, ER2, and ER3. These external routers ad-
vertise three paths p1, p2, and p3. Through neighboring
routers R1 and R2, these paths eventually arrive at R3.
All three paths have the same AS path length, while p1
and p2 have the same neighboring AS. In addition, p1
has a MED attribute of 10, p2 has 5, and p3 has 20. Fi-
nally, p1 has an IGP distance of 10, p2 has 30, and p3
has 20. Under these settings, when R3 considers only a
pair of paths each time, p2 wins over p1, p3 wins over
p2, but p1 wins over p3. Thus, to avoid choosing a less
preferable path, a BGP module on R3 should compare all
valid paths whenever the process is executed and select
p3 as the best path.
Version 0.4 of the XORP BGP module, however, makes a

ER1
ER2 ER3

R1

R3

R2
p1

p2
p3

Figure 4: An illustration of a known bug in the BGP
module of XORP 0.4.

mistake here. When receiving an incoming path, it only
compares the path with the current best path. As a re-
sult, the outcome of the selection process implementa-
tion can differ across executions: if the ordering of in-
coming paths at R3 is p1, p2, and p3, then p3 is selected
as the best path; unfortunately, if the ordering of the in-
coming path is p1, p3, and p2, then p2 is incorrectly se-
lected as the best path.
Using only partial recordings on border routers and gdb
to troubleshoot this bug, an operator enables logging for
both external and internal network nondeterminism at R1
and R2 in Figure 4. When the bug is triggered, the op-
erator replays log contents to reproduce the bug within
a debugging network. However, because internal nonde-
terminism is recorded only at border routers, the set of
paths can still reach router R3 in a nondeterministic fash-
ion. The operator faces complications when experiment-
ing with execution in the debugging network due to the
inability to mirror behavior of the production network.
To address this, we use DEFINED to troubleshoot this
XORP bug. We first use six machines to emulate the
network depicted in Figure 4 and load them with the ver-
sion of XORP containing the bug. We intercept nonde-
terministic system calls from XORP to remove internal
nondeterminism triggered by local events. We then run
the production network until the bug occurs. During the
process, we are only required to enable partial recordings
of external events at R1 and R2 but not recordings of in-
ternal events. Upon identifying the bug, we then activate
DEFINED-LS in the debugging network. Since our sys-
tem ensures that execution of both these networks match
precisely, when we replay the logged external events and
run the debugging network, the bug immediately occurs.
We then use DEFINED-LS’s stepping functionality, to
find the exact point at which XORP begins behaving in-
correctly. After understanding the bug, we implement
a patch for XORP and validate it in the debugging net-
work. Finally, we install the patch in the production net-
work. Deterministic execution again guarantees that all
workarounds we create in the debugging network will
behave the same way in the production network.

Timing bug in Quagga RIP timer refresh: To handle
network dynamics, RIP maintains a timer for each route

7

354 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

R1

R2(Main)

R3(Backup)

Destination

Figure 5: An illustration of the known timing bug in the
RIP module of Quagga 0.96.5.

in its routing table. When receiving route announce-
ments, if the route is already in the routing table, RIP
updates the timer for the route. When a timer expires,
RIP removes the route from the routing table. This mech-
anism ensures that the routing table contains only valid
paths.
One subtle point of this process is that when comparing a
route announcement with a route in the routing table, RIP
must check both the destination field as well as the next-
hop field. The Quagga RIP module, however, makes a
mistake by only considering the destination field. As
a result, the implementation contains a timing bug that
triggers a black hole when certain route announcements
are received at particular timings.
As illustrated in Figure 5, a router R1 connects to two
other routers R2 and R3. Both R2 and R3 provide R1
routes to the same destination, and R2 serves as the main
router, while R3 is the backup. All routers are running
RIP, so what should happen is that R1 maintains the route
through R2 in its routing table and refreshes the timer
only when receiving announcements from R2. When R2
goes down, due to the lack of periodic announcement,
the timer for the route will eventually time out. Then, R1
will remove the route through R2 from its routing table
and pick up the route through R3.
However, because the RIP implementation in Quagga
0.96.5 checks only the destination field when comparing
announcements with routes in the routing table, R1 will
refresh the timer for the route through R2 when receiv-
ing announcements from not only R2 but also R3. In this
case, when R2 goes down, two scenarios can happen. If
announcements from R3 reach R1 after the route through
R2 times out, then R1 correctly picks up the new route
through R3. Unfortunately, if announcements from R3
reach R1 before the route through R2 times out, then R1
will incorrectly refreshes the route through R2 in the rout-
ing table. Even worse, the periodic announcements from
R3 will keep the invalid route through R2 in the routing
table and effectively create a black hole.
Using partial recordings of only message events and gdb
to troubleshoot this bug can take a lot of time and re-
sources, due to nondeterministic timer events embedded
in control-plane software. For example, when using gdb,
a human troubleshooter will experience timers going off
unexpectedly while stepping through one instance of the
Quagga RIP module on one of the routers. Moreover, to

be able to reproduce the bug, it is also challenging for the
human troubleshooter to manually coordinate the timing
of message receipt and timer expirations.
We use four machines to emulate the network in Fig-
ure 5 and load them with the version of Quagga con-
taining the bug. Fortunately, the same approach we used
to troubleshoot the BGP path selection bug can address
the RIP timer refresh bug, since timing events were also
triggered deterministically in networks instrumented by
DEFINED. As a result, during the debugging process,
timers will not go off unexpectedly even when we step
through the network execution at different paces.
Discussion: As shown in these case studies, DEFINED
actively manipulates the ordering and timing of internal
network events, and it makes control-plane software eas-
ier to test and debug. Another property that comes with
the active manipulation, however, is that some network
execution paths will never occur, and hence, some bugs
will never appear in an instrumented network. For ex-
ample, as we were debugging the XORP bug, we no-
ticed that if the ordering function in DEFINED sorted
the paths in the order of p1, p2, and p3, the bug would
not happen in the production network nor in the debug-
ging network. This property, though, still protects instru-
mented networks from the bug, since the deterministic
network execution guarantees that the bug will never ap-
pear.5 Nevertheless, a troubleshooter may choose to not
instrument the production network with DEFINED-RB,
but to still leverage the interactive stepping functionality
of DEFINED-LS. Fortunately, we can apply different or-
dering functions in DEFINED-LS, and then we will be
able to examine all possible execution paths in the de-
bugging network.

5 Evaluation
While DEFINED simplifies the task of control-plane de-
bugging, it comes with several costs. In order to measure
this overhead, we leverage Emulab [31] and take a two-
pronged approach. First, to evaluate the performance of
DEFINED in a practical setting, we perform experiments
using topologies from Rocketfuel [28] and traces from a
Tier-1 ISP (Section 5.2). Then, to study scalability of our
system, we present results under a wide range of topolo-
gies and workloads (Section 5.3).

5.1 Methodology
We first give an overview of our experimental approach:
Topologies and traces: To improve the realism of our
evaluation, we leverage topologies measured with Rock-
etfuel and OSPF traces collected at a Tier-1 ISP network.

5On the other hand, it is possible that DEFINED avoids some net-
work execution paths with particular performance characteristics. In
this case, an operator can modify the ordering function to force such
paths to occur, potentially trading performance for more rollbacks.

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 355

We use PoP-level topologies from Rocketfuel including
Sprintlink (43 nodes), Ebone (25 nodes), and Level3 (52
nodes). (Results from these topologies are similar, so we
only present Sprintlink results due to space constraints.)
Then, the OSPF traces are collected from a Tier-1 ISP
area 0 network consisting of 324 nodes during a 2 week
period (November 1st to 14th, 2009), resulting in 651
OSPF network events. We post-process these traces to
reproduce the network dynamics over time, and then re-
play this workload in our experiments by randomly map-
ping events onto Rocketfuel topologies. Finally, to inves-
tigate the performance of DEFINED at scale, and over a
wider range of topologies, we consider synthetic graphs
constructed by the BRITE topology generator. Over-
all, we focus most of our experiments on intra-domain
routing as opposed to inter-domain routing, as the lower
propagation delays and tighter requirements on fast reac-
tion make our overheads more visible. Unless otherwise
specified, we run our implementation with the XORP
OSPF router daemon, version 1.6.

Metrics: Since DEFINED-RB and DEFINED-LS have
different purposes, we are concerned with different “suc-
cess metrics” for each. As DEFINED-RB instruments a
production network, we measure its control, delay, and
memory overheads. On the other hand, as DEFINED-LS
is designed for use in a debugging network for interac-
tive stepping, overheads are of less concern (though re-
tain some importance). Hence, we measure its response
time for user-driven commands (e.g., a step command).

5.2 Performance
To characterize the performance overheads of DE-
FINED, we replay network traces against our implemen-
tation deployed on Emulab. We evaluate the design on
several scales. First, we collect network-level results on
our implementation in the Rocketfuel Sprintlink topol-
ogy. We then gather node-level microbenchmarks to un-
cover the sources of bottlenecks in our implementation.

Network-wide experiments: First, we replay the Tier-1
ISP workload against our XORP-based implementation
and measure the control overhead per node, for each
event in the trace. Figure 6a shows that a small num-
ber of nodes experience more control overhead than oth-
ers, as the rollback procedure requires additional control
packets to be exchanged between nodes. Fortunately, in
all cases, the percentage of these nodes is less than 1%.
Then, we measure the time for the network to converge
(the time from when a failure is detected, to when all
nodes are updated with their correct routing state). To
stress our design, we reduce XORP’s hello and retrans-
mit intervals to be as small as possible (1 second). We
compare against an unmodified XORP implementation.
We found no statistically significant difference between

the two. However, to improve stability, XORP’s default
OSPF configuration introduces a 1-second delay between
when routing messages are received and when they are
propagated on (due to the retransmit timer). To inves-
tigate whether this delay was the reason why our per-
formance overheads could not be seen, we modified the
XORP code to eliminate this 1-second delay. After doing
this, the delays became more apparent: Figure 6b shows
the network-wide convergence time is still close between
the two, but our implementation has additional delay in
a small number of cases, resulting in a longer tail. In
addition, this figure also demonstrates that our technique
in imposing local determinism on control-plane software
(Section 4) has negligible overhead.
Finally, we measure the response time of DEFINED-LS,
as it is designed to support interactive debugging and
should respond quickly to commands from the human
troubleshooter. Figure 6c shows the cumulative distribu-
tion function of the response time to execute a single step
command of DEFINED-LS (where a single step is mea-
sured as the time to complete a transmission phase and
a processing phase as described in Section 2.3). In this
scenario every step requires less than a second.

Single-node experiments: To investigate the source
of the tail, we instrumented a single node of our im-
plementation to collect microbenchmarks. We compare
XORP running under DEFINED-RB with an unmodified
instance of XORP. In particular, we measure the amount
of time required to perform a rollback (Figure 7a), as
well as the time required to process packets without roll-
backs (Figure 7b). We found that rollback code was trig-
gered rarely, but, as expected, when it was triggered, it
introduced overhead. To reduce the rollback overhead,
instead of using fork() calls as described in Section 3
(FK), we manually intercepted memory writes (MI) us-
ing /proc/<pid>/mem to directly access the memory
of the process to emulate application-specific memory
management, and measured the overhead to only copy
changed bytes between the processes.6 With this opti-
mization, the median overhead for rollback is reduced to
around 0.6 ms (Figure 7a), making non-rollback over-
head the bottleneck. The variance observed in this figure
comes from the variance of fork() calls and the number
of events to be rolled back. Note that even the unopti-
mized implementation of rolling back may be tolerable
for certain protocols, e.g., BGP uses a timer to intention-
ally slow convergence for scalability purposes.7

To reduce the non-rollback overhead, we investigate two
optimizations. First, we try pre-forking (PF): instead of
performing the fork when the new packet arrives (TF),

6We use this optimization to identify the optimal bound of roll-
backs. It is not necessary for a system to do so to adopt DEFINED.

7The MRAI timer determines the minimum time between advertise-
ments of routes to a particular destination from a single BGP device.

9

356 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Packets per Node

XORP
DEFINED-RB

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Convergence Time [s]

XORP
DEFINED-RB

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Response Time [s]

DEFINED-LS

(c)

Figure 6: Network-level results of Sprintlink topology with Tier-1 OSPF traces: (a) control message overheads of
DEFINED-RB; (b) delay of DEFINED-RB; (c) response time of DEFINED-LS.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20 25 30 35

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Processing Time [ms]

DEFINED-RB(MI)
DEFINED-RB(FK)

(a)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Processing Time [ms]

XORP
DEFINED-RB(TM)
DEFINED-RB(PF)
DEFINED-RB(TF)

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Memory [MB]

XORP
DEFINED-RB(PM)
DEFINED-RB(VM)

(c)

Figure 7: Node-level results of Sprintlink topology with Tier-1 OSPF traces: (a) rollback overhead, (b) non-rollback
overhead, and (c) memory overhead of DEFINED-RB.

we perform the fork after the packet is processed (to
prepare for the next packet). This causes forking to be
performed during idle cycles. However, this does not
completely remove the forking overhead, as due to copy-
on-write, the memory copy associated with the fork is
still delayed until the next packet is received. Hence,
as a heuristic, we overload malloc() to manually touch
memory (TM) on the heap when performing the pre-fork.
This improves performance further (Figure 7b).
Finally, to achieve its benefits, our approach also in-
curs some additional memory overhead. Figure 7c shows
the amount of virtual memory allocated to each process
(VM). We find it increases linearly with the number of
forked processes. However, some of this memory is not
instantiated in practice due to page sharing. To measure
the precise amount of physical memory allocated, we
monitor memory writes in /proc/<pid>/mem in Linux
(PM), and plot the memory actually instantiated by the
process. Since these processes share the vast majority
of memory contents, the amount of memory inflation is
small (less than 2% during the entire run).

5.3 Scalability
To investigate the performance of DEFINED at scale,
and over a wide variety of workloads, we leverage
BRITE topologies and synthetic events to investigate the
sensitivity of our results to network size and event rate.8

8Based on the nature of the bug, debugging can become difficult ex-
tremely fast as the network size increases. For nondeterministic bugs,

Control overhead: We first measure the control over-
head with BRITE topologies of varying sizes (Figure 8a).
We found that the delay-sensitive pseudorandom order-
ing optimization described in Section 2.2 (OO) signifi-
cantly reduces the number of rollbacks (and hence mes-
sage overhead) of DEFINED-RB compared to random
orderings (RO). Regardless of the network size, each
node only needs to process at most 2 additional pack-
ets on average when using the optimized ordering (com-
pared to the unmodified XORP instance).

Delay overhead: Figure 8b shows the network-wide
convergence time of DEFINED-RB compared to the un-
modified XORP instance. Overall, we find that while
DEFINED-RB has a longer tail in its convergence time
distribution (Figure 6b), the average convergence time
between the two instances is comparable. In addition,
the optimized ordering (OO) again outperforms random
orderings (RO).

Response time: To evaluate DEFINED-LS, we measure
how its response time scales with network size. Figure 8c
shows that while the delay of DEFINED-LS increases
with network size, it increases slowly. In addition, even
when the network size grows to 80 nodes, the average
delay remains below 0.8 seconds.

Event rates: Finally, to investigate how DEFINED-RB
scales with event rates, we vary the number of events per
second and measure the convergence time. Figure 8d il-

a dozen nodes can already make debugging difficult.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 357

 0
 10
 20
 30
 40
 50

 20 40 60 80

Nu
m

be
r o

f P
ac

ke
ts

Number of Nodes

DEFINED-RB(RO)
DEFINED-RB(OO)

XORP

(a)

 0
 2
 4
 6
 8

 10

 20 40 60 80

Co
nv

er
ge

nc
e

Ti
m

e
[s

]

Number of Nodes

DEFINED-RB(RO)
DEFINED-RB(OO)

XORP

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 20 40 60 80

Re
sp

on
se

 T
im

e
[s

]

Number of Nodes

DEFINED-LS

(c)

 0
 1
 2
 3
 4
 5
 6
 7

 2 3 4 5 6 7 8 9 10

Co
nv

er
ge

nc
e

Ti
m

e
[s

]

Events per Second

DEFINED-RB

(d)

Figure 8: Scalability over network size: (a) control message overheads, and (b) delay of DEFINED-RB; (c) response
time per step of DEFINED-LS. Scalability over event rate: (d) convergence time of DEFINED-RB.

lustrates that the convergence time increases slowly as
the number of events per second increases, and the aver-
age convergence time is only a little bit over 2 seconds
when there are 10 events per second. This event rate
can easily cover all scenarios we observe in the Tier-1
traces. Nevertheless, when dealing with a higher rate
of events, DEFINED-RB can decrease its beacon inter-
vals to reduce the number of rollbacks and provide better
scalability (as described in Section 2.2).

6 Related Work
DEFINED builds upon existing works and provide new
primitives to support debugging of control-plane soft-
ware in large-scale networks. We leverage works on dis-
tributed algorithms [14, 22] to construct the foundations
of our design. Our work builds on two key areas:
Deterministic execution: DDOS [12] is the closest
work to our design. Similar to DEFINED, DDOS in-
troduces deterministic network execution by manipulat-
ing message orderings. DDOS runs the distributed soft-
ware in virtual time, annotates each message with a vir-
tual timestamp, and orders the messages by the source
nodes’ predefined identification numbers. When the dis-
tributed software tries to read a message from the net-
work, DDOS blocks the read request until the correct
message arrives. While DDOS provides deterministic
network execution to general software, the blocked reads
introduced by the algorithm can slow down software that
requires constant communications, such as control-plane
software. DEFINED improves the software’s perfor-
mance in a production network by leveraging speculative
execution and introducing an innovative message order-
ing that minimizes the number of rollbacks.
Jefferson introduced the concept of Virtual Time [14] to
provide synchronization for distributed software. Virtual
Time is used to determine the ordering of messages, and
rollbacks are used to make sure that messages are indeed
processed in that order. However, the concept of Vir-
tual Time cannot directly and efficiently be generalized
to all software. In DEFINED, the message ordering that
uses group numbers and estimated delays solidifies and
optimizes the Virtual Time idea in the context of control-
plane software.

Mechanisms enabling deterministic execution of paral-
lel programs have long been the focus of extensive re-
search. DPJ [6], Dthreads [19], Kendo [25], Tern [8],
Determinator [2], and dOS [4] have focused on pro-
viding deterministic execution of parallel software with
different approaches. DPJ supports determinism at the
language level, which ensures more control over the
software, but sacrifices generality. On the other hand,
Dthreads, Kendo, and Tern offer determinism at the li-
brary level, and Determinator and dOS provide deter-
minism at the OS level. These designs allow the system
to handle a wider range of software. DEFINED takes
a step further and guarantees deterministic execution of
distributed control-plane software. We leverage a user-
space library design, which allows us to support a wide
range of control-plane software.
Instead of providing deterministic execution, sev-
eral works such as Flashback [29], Friday [10],
OFRewind [32], Pip [26], ReVirt [9], TTVM [16], and
WiDS Checker [20] use comprehensive recordings to
ensure reproducibility of execution. However, as the
authors of Friday and OFRewind point out, the large
storage requirements for logs are one of the limitations
of these works. This limitation hinders these works
from scaling to large systems, because processing a large
amount of logs is prohibitively expensive. Our work
targets large-scale networks, where maintaining compre-
hensive logs may not be tractable.
Finally, DEFINED leverages speculative execution,
which has been previously used in many systems, for
example databases [15] and multi-processor environ-
ments [17]. Our work studies the applicability and effi-
ciency of such speculative techniques in large-scale net-
works. We, further, give several optimizations to reduce
the overhead of rollbacks.

Interactive control: DEFINED not only ensures that
a production network executes in a reproducible fash-
ion, but also enables the network operators to con-
trol the execution in a debugging network. Interac-
tive control has been used previously in several works.
PDB [13] combines gdb with another tool, DISH, to in-
teractively launch, manage, and troubleshoot distributed
processes. The effect is similar to using multiple gdb

11

358 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

instances to troubleshoot multiple processes simultane-
ously. Similarly, Clairvoyant [33] supports source-level
troubleshooting in wireless sensor networks by binding
one gdb instance to each node. ndb [11] leverages the
OpenFlow architecture to provide debugging primitives
to software in Software-Defined Networks. Our work
complements these techniques by introducing interactive
debugging primitives targeting large-scale control-plane
software and enabling deterministic network execution.

7 Conclusion
The high complexity of large-scale networks coupled
with the rich variety of faults they undergo will require
humans to be “in-the-loop” to diagnose complex prob-
lems for the foreseeable future. To address this, we pro-
posed techniques for interactive debugging of control-
plane software. We specifically addressed two key chal-
lenges, namely, deterministic network execution and in-
teractive stepping. Our solution draws from previous
work and also proposes new algorithms. We validated
our work through a user-space “shim-layer” implemen-
tation and extensive evaluation using topologies from
Rocketfuel and traces from a Tier-1 ISP. Our results show
the practical feasibility and scalability of our approach.
Specifically, we leveraged our system to reproduce dis-
covery of known bugs in XORP and Quagga, and showed
its benefits over the common debugging method that uses
partial recordings and gdb.

Acknowledgements
We would like to thank our shepherd Meg Walraed-
Sullivan for insightful comments and suggestions. We
would also like to thank anonymous reviewers for valu-
able feedback. This work was supported by NSF CNS-
10-40391 and DARPA MRC.

References
[1] G. Altekar and I. Stoica. Focus Replay Debugging Effort on the

Control Plane. In HotDep, 2010.
[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient System-

Enforced Deterministic Parallelism. In OSDI, 2010.
[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.

CoreDet: A Compiler and Runtime System for Deterministic
Multithreaded Execution. In ASPLOS, 2010.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
Process Groups in dOS. In OSDI, 2010.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs
in the Real World. Commun. ACM, 53(2):66–75, Feb. 2010.

[6] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakil-
ian. A Type and Effect System for Deterministic Parallel Java. In
OOPSLA, 2009.

[7] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding Data Lifetime via Whole System Simula-
tion. In USENIX Security, 2004.

[8] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable Deterministic
Multithreading through Schedule Memoization. In OSDI, 2010.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. In OSDI, 2002.

[10] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Fri-
day: Global Comprehension for Distributed Replay. In NSDI,
2007.

[11] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McK-
eown. Where is the Debugger for my Software-Defined Network?
In HotSDN, 2012.

[12] N. Hunt, T. Bergan, L. Ceze, and S. D. Gribble. DDOS: Taming
Nondeterminism in Distributed Systems. In ASPLOS, 2013.

[13] IBM. PDB parallel debugger. http://www-03.ibm.com/

systems/software/parallel/index.html.
[14] D. R. Jefferson. Virtual Time. ACM Trans. Program. Lang. Syst.,

7(3):404–425, July 1985.
[15] D. R. Jefferson and A. Motro. The Time Warp Mechanism for

Database Concurrency Control. In ICDE, 1986.
[16] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating

systems with time-traveling virtual machines. In USENIX ATC,
2005.

[17] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: Efficient Online Multiprocessor
Replay via Speculation and External Determinism. In ASPLOS,
2010.

[18] C.-C. Lin, V. Jalaparti, M. Caesar, and J. Van der Merwe. DE-
FINED: Deterministic Execution for Interactive Control-Plane
Debugging. Technical report, UIUC, 2013.

[19] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient De-
terministic Multithreading. In SOSP, 2011.

[20] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker: Combating
Bugs in Distributed Systems. In NSDI, 2007.

[21] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants. In ASPLOS, 2006.

[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., 1996.

[23] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route
Flap Damping Exacerbates Internet Routing Convergence. In
SIGCOMM, 2002.

[24] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative Execu-
tion in a Distributed File System. In SOSP, 2005.

[25] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient
Deterministic Multithreading in Software. In ASPLOS, 2009.

[26] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,
and A. Vahdat. Pip: Detecting the Unexpected in Distributed
Systems. In NSDI, 2006.

[27] S. R. Sarangi, B. Greskamp, and J. Torrellas. CADRE: Cycle-
Accurate Deterministic Replay for Hardware Debugging. In
DSN, 2006.

[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topolo-
gies with Rocketfuel. In SIGCOMM, 2002.

[29] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flash-
back: A LightWeight Extension for Rollback and Deterministic
Replay for Software Debugging. In USENIX ATC, 2004.

[30] The tcpdump Team. tcpdump. http://www.tcpdump.org/.
[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems and
Networks. In OSDI, 2002.

[32] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting for
Networks. In USENIX ATC, 2011.

[33] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant:
A Comprehensive Source-Level Debugger for Wireless Sensor
Networks. In SENSYS, 2007.

12

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 359

Improving Server Application Performance via Pure TCP ACK Receive
Optimization

Michael Chan
Department of Computer Science

Stanford University
mcfchan@stanford.edu

David R. Cheriton
Department of Computer Science

Stanford University
cheriton@cs.stanford.edu

Abstract

Network stack performance is critical to server scala-
bility and user-perceived application experience. Per-
packet overhead is a major bottleneck in scaling network
I/O. While much effort is expended on reducing per-
packet overhead for data-carrying packets, small control
packets such as pure TCP ACKs have received relatively
scarce attention. In this paper, we show that ACK receive
processing can consume up to 20% cycles in server appli-
cations. We propose a simple kernel-level optimization
which reduces this overhead through fewer memory allo-
cations and a simplified code path. Using this technique,
we demonstrate cycles savings of 15% in a Web applica-
tion, and 33% throughput improvement in reliable mul-
ticast.

1 Introduction

Performance of the endhost networking stack is critical
to server scalability and perceived user application expe-
rience. Increases in network link speeds raise concerns
over CPU utilization in keeping up with wireline data
rates. This has led to various techniques such as TCP
segmentation offloading (TSO) and generic receive of-
floading (GRO), which reduce overhead for packets car-
rying application payload. In contrast, relatively little at-
tention has been given to offloading processing of small
control packets such as pure TCP ACKs. (We define a
pure ACK as a TCP segment which does not contain any
payload, only has the ACK flag set and, if options are
present, has only the timestamp option.) While control
packets represent a minor portion of network bandwidth,
the number of such packets received by a server can far
outweigh that of packets containing application payload.

In a Web video streaming application, the client sends
a small HTTP request to the server. The server responds
with megabytes of video data encapsulated in TCP data
segments. Software updates, patches and service deploy-

ment in datacenters require regular large-scale file dis-
tribution to thousands of machines. In return, the data
source receives mostly pure ACKs.

Receive-side ACK processing predominantly incurs
per-packet overhead, namely the cost of per-packet inter-
actions between the driver and NIC, traversing the net-
work stack and protocol processing. We find that per-
packet overhead is significant — 20% CPU cycles of a
video-chunk serving workload are expended on process-
ing received packets, 99% of which are pure ACKs.

We propose a network fastpath architecture for pro-
cessing small control packets. The fastpath interface pro-
vides an entry point to a significantly simplified network-
ing stack for light-weight protocol processing. In op-
timizing pure ACK processing, the key insight is that
ACKs convey only control metadata to the associated
TCP socket, so they need not be delivered as packets.
With fastpath processing, pure ACK header values are
extracted from received packets and delivered directly
to the TCP layer. This contrasts with conventional pro-
cessing, in which the received packet is encapsulated in
a packet buffer1 and then passed up the stack. Fast-
path processing allows packet buffers to be recycled for
DMA, reducing memory operations. Moreover, bypass-
ing the bulk of the conventional network stack reduces
the number of CPU cycles expended.

We implemented one instance of a fastpath optimiza-
tion for receive processing of pure ACKs, named TCP-
PARO (Pure ACK Receive Optimization), in a recent
Linux kernel. We show that it achieves real benefits for
server workloads. TCP-PARO lowers application over-
head by saving CPU cycles. By reducing per-ACK pro-
cessing latency, TCP-PARO also improves the through-
put achievable by reliable multicast.

1For example, sk buff in Linux, commonly referred to as SKB.

1

360 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 1: Breakdown of CPU cycles per Web request.

2 ACK Processing Overhead Analysis

We quantify network processing overhead with a video
chunk serving workload and show that a significant por-
tion of the overhead is due to receive-side network stack
processing of pure ACKs.

The tests are run on a testbed with two machines. Each
machine is equipped with a quad-core Intel Nehalem pro-
cessor, 4GB RAM, and a Neterion X3210 10GE adapter.
One machine runs the nginx Web server. The 4 NIC
hardware DMA engines are bound on 4 different CPU
cores, and 4 nginx worker processes are assigned to
the cores. This configuration is sufficient to saturate
the 10GE link with the generated HTTP traffic. The
other machine simulates multiple Web clients using curl-
loader. 400 clients are run over 8 CPU threads. Each
client requests a random file from a pool of 100 files
from the server, receives the file to completion and then
repeats. We perform system-wide profiling with oprofile
on the server.

Figure 1 presents a breakdown of CPU cycles spent
per Web request across various file sizes. The mea-
surements are grouped by system components, where
RX and TX represent receive-side and transmit-side net-
work stack overhead, and Memory represents memory
operations, including SKB allocations. The figure shows
that 20% cycles are spent on network receive process-
ing. Moreover, memory and SKB operations account for
18% of all cycles. The receive processing overhead is
significant, considering that the server is mostly sending
data, and the bulk of actual application payload is pro-
cessed by the TX path. However, the receive overhead
is comparable to transmit overhead, and is even bigger
when serving 4MB and 8MB files. We found that pure
ACKs comprised more than 99% of all received packets
for all file sizes, thus network receive overhead is indeed
dominated by pure ACK processing.

Link

Network

Transport

Driver

Network
Buffer

Memory
Manager

Fast path
Module

Pure ACK
Module

Parser + Demultiplexer

ACK header
values

SKBSKB

ACK

Parse packet header
(SKB and buffer reused)Copybreak

Figure 2: Network fastpath architecture.

3 Pure ACK Receive Optimization with
Network Fastpath

We propose a network fastpath architecture which pro-
vides efficient packet parsing, packet demultiplexing,
and light-weight protocol processing. We describe its
design and implementation in Linux, and optimize pure
ACK receive processing with this architecture.

3.1 Fastpath Design and Implementation

Figure 2 shows the overall structure of the network fast-
path architecture. The fastpath is a light-weight, parallel
stack with optimized components for packet parsing, de-
multiplexing and protocol processing.

The fastpath adopts a modular design. The parser and
demultiplexer module reads and parses a packet buffer
from the receive-side DMA ring. It serves as a single
entry point for network device drivers to deliver packets
into the fastpath stack. Based on header fields obtained
from the packet, the demultiplexer looks up the fastpath
processing module and the socket for which the packet
is destined. The fastpath processing module is then in-
voked on the socket with relevant fields from the received
packet.

The fastpath provides a simple, single-function API to
device drivers:

enum n e t f a s t p a t h v e r d i c t
n e t f a s t p a t h i n (s t r u c t s k b u f f ∗ skb , u32 f l a g s)

A verdict is returned to the driver to indicate pro-
cessing outcomes. If the fastpath is able to process the
packet, the CONSUMED verdict is returned. Otherwise,
the FALLBACK verdict is returned. The driver RX rou-
tine is patched as follows:

i f (n e t f a s t p a t h i n (skb , f l a g s) == CONSUMED)
go to n e x t s k b ;

e l s e
r x w i t h o r i g i n a l s t a c k (skb) ;

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 361

Fastpath informs the driver if the packet has been pro-
cessed. If not, the original stack is the fallback. This
allows gradual adoption of light-weight processing for
additional packet types without sacrificing protocol sup-
port.

Fastpath processing has two main advantages over
traditional stack processing. First, the fastpath parses a
given SKB, extracts required data and leaves the SKB
untouched. Therefore, the SKB and the associated
packet buffer can be reused for DMA. This reduces
memory allocations. In contrast, existing receive pro-
cessing clones both the packet buffer and the SKB to
ensure isolation of the buffer from concurrent DMA
writes by the NIC; Second, the fastpath stack bypasses
much of the original stack, and hence reduces cycles
expended per packet.

Synchronizing with other kernel threads: Packet
receive processing is performed in the soft-interrupt
context, which runs concurrently with other kernel
threads. A per-socket mutex is held by a concurrent
thread accessing the socket. When that thread releases
the mutex, it processes received packets in the per-socket
backlog. Fastpath similarly introduces a per-packet
backlog ring. Parsed header fields are deposited into
ring entries. When the mutex is released, the ring
entries is flushed. The ring is statically allocated on
socket creation. If the ring is full, the earliest entry is
overwritten. In our experiments, we found that a ring
size of 8 was sufficient. Because each entry is only 32
bytes, the ring adds a modest 256 bytes to socket size.

We note that network taps and Netfilter do not work
for pure ACKs when TCP-PARO is used. However,
TCP-PARO can also be disabled via sysfs should de-
bugging with traditional tools like tcpdump be required.
We believe this is a reasonable tradeoff between perfor-
mance and functionality. Moreover, it would be feasible
to interface the fastpath stack with existing debugging
facilities, though this is beyond the scope of the paper.

3.2 Pure ACK Receive Optimization

We implement TCP-PARO (Pure ACK Receive
Optimization) on top of the fastpath architecture.

Pure ACK parsing and demultiplexing: The parser
identifies packets as pure TCP ACKs, extracts the salient
header fields and looks up the TCP socket associated
with the ACK using the source and destination address/-
port pairs. The ACK processing fastpath module is
invoked with 5 header fields from the packet — TCP
sequence number, ACK number, receiver-advertised
window and two timestamp option values. Only pure

File size Copybreak
Cycles

PARO
Cycles

Savings
(%)

512KB 0.80 0.69 14.0
1MB 1.36 1.16 14.7
2MB 2.40 2.04 15.3
4MB 4.60 3.86 16.1
8MB 9.10 7.58 16.7

Table 1: Million cycles per HTTP request.

TCP ACKs are delivered to the processing module.

ACK processing fastpath module: This compo-
nent quickly processes a pure ACK at the TCP socket
level. All link and IP layer processing are omitted,
because the ACK has already been parsed and demulti-
plexed. ACK processing consists of updating the RTT
estimate for the connection, removing acknowledged
segments from the retransmission queue, performing
congestion control and transmitting new segments.

The NIC driver delivers to the fastpath packets that
have (1) passed IP checksum test, and (2) have the cor-
rect length. In our prototype, a packet is a potential pure
ACK if its length is either 54 bytes or 66 bytes, which
are lengths of pure ACKs with or without TIMESTAMP
option on Ethernet. Some NICs can identify specific
packet types, such as pure TCP ACKs, and indicate so
in the receive descriptors. The driver can indicate this
in a flag when passing the SKB to the fastpath stack,
which can skip redundant checks. We added TCP-PARO
support to two NIC drivers — e1000e for Intel’s PCI-E
Gigabit Ethernet controllers and vxge for the Neterion
X3120 10GE adapter. Each driver patch consists of 10
lines of code. The pure ACK processing fastpath module
is written in 240 lines.

Handling a mixture of pure ACKs and other
TCP segments: Whenever a non-pure ACK, such as a
SACK, is received, the original path is used for receive
processing. Moreover, if TCP-PARO discovers the
socket backlog is non-empty, it delegates pure ACKs to
the original receive path (by returning the FALLBACK
verdict to the driver). When the mutex is released, the
fastpath backlog ring is flushed, followed by the socket
backlog. This scheme ensures all packets for the socket
are processed in receive order.

3.3 Performance Evaluation
We repeated the experiments from Section 2 with TCP-
PARO. Table 1 shows the number of CPU cycles ex-
pended per Web request. Copybreak refers to the un-
optimized stack which performs SKB and packet buffer
cloning (see Section 3.1). With TCP-PARO enabled,

3

362 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 3: Breakdown of CPU cycles per Web request
with and without TCP-PARO. File size is 2MB.

CPU cycles are saved consistently across various re-
sponse sizes. The savings increases with file size. At
8MB, cycles per request is reduced by 16.7%. This is ex-
pected because with larger files more data segments are
transmitted, eliciting more pure ACKs from the clients.

To understand the sources of cycles savings, we profile
cycle expenditure in various system components. Fig-
ure 3 shows the profile for 2MB files. TCP-PARO is
effective in reducing cycles expended in Driver RX (by
25%), Network RX (by 53%) and memory operations
(by 20%). Driver RX includes cycles spent in the driver
function for polling packets and setting up fresh RX de-
scriptors for DMA. With TCP-PARO, no SKB is allo-
cated, hence the driver receive routine is lightweight.
Network RX includes cycles spent in delivering a packet
up the stack and protocol processing. Savings here are
due to executing the fastpath processing module, instead
of traversing multiple network layers. Our tests were
conducted with minimal network stack features, i.e. no
network taps or Netfilter modules. Therefore, Network
RX for Copybreak represents the minimum cycles ex-
pended in receive processing of pure ACKs. The savings
in memory operations can be explained by fewer SKB
allocations, as SKBs are reused for DMA. Unlike Copy-
break, no SKB cloning is necessary for the parsing and
ACK header delivery.

Figure 4 presents a similar functional breakdown for
number of instructions executed. A major source of
saved cycles is from reduced instruction executed. 51%
and 24% fewer instructions respectively are executed for
network receive processing and memory operations.

4 ACK Optimization for Reliable Multi-
cast

TCP-PARO can be readily integrated with TCP-based re-
liable multicast protocols, such as TCP-SMO [6]. TCP-

Figure 4: Breakdown of instructions executed per Web
request with and without TCP-PARO. File size is 2MB.

SMO is a receiver-driven single-source reliable multi-
cast extension to TCP. The sender maintains a TCP con-
trol block (TCB) for each receiver, and aggregates in-
formation across all TCBs to produce the multicast TCP
state. This state tracks the slowest receiver’s earliest
unacknowledged number and the minimum congestion
and flow control windows. Multicast data segments are
ACKed by all receivers. ACK processing at the sender
entails updating both the receiver TCB state and the ag-
gregate multicast state.

TCP-PARO integration at the sender is straightfor-
ward. The fast path processes ACKs to update the re-
ceiver TCBs and then the multicast state. The thread
multicasting data is synchronized with the kernel threads
performing ACK processing in soft-interrupt. A single
pre-allocated ring is used for backlogging pure ACKs in
the fast path.

4.1 Performance Evaluation

We study the benefits of integrating TCP-PARO with
TCP-SMO. A gigabit Ethernet network of 9 machines
connected with a single gigabit switch is used for this
study. Each machine is equipped with a Xeon E3-1230v2
processor, 16GB RAM and an Intel 82579LM on-board
gigabit NIC. The e1000e NIC driver is augmented with
TCP-PARO support. One machine acts as the multicast
sender and the rest host the receivers.

We ran the sender process and all network processing
on a single core. Figure 5 presents a boxplot comparing
the total data transfer time with and without TCP-PARO
integration into TCP-SMO. Each data point represents 50
experiment trials. TCP-PARO enables near-linear scal-
ing of reliable multicast. The average total transfer time
grows from 2.93s to 3.09s (5.6% increase) when number
of receivers nearly doubles from 88 to 168. With more
receivers, the sender needs to maintain more per-receiver

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 363

Figure 5: Data transfer time. Sender process and network
processing on one core.

Figure 6: Per-ACK overhead (160 receivers). Sender
process and network processing on one core.

state, and the multicast state updates are more expensive.
Moreover, more ACKs are received and processed by the
sender. For reference, the black dotted line shows the
best possible transfer time on the 1GE network with lin-
ear scaling and zero protocol overhead (2.7s). In con-
trast, without TCP-PARO, the total transfer time grows
from 3.02s to 3.4s, a 12.6% increase. Figure 6 breaks
down the per-ACK processing overhead into its domi-
nating components. With TCP-PARO, nearly 50% cy-
cles and instructions are saved. The savings in RX and
Memory are due to lightweight fastpath processing and
reduced memory allocations. Sync includes synchroniza-
tion operations such as atomic primitives, spinlocks and
RCU. TCP-PARO reduces synchronization overhead by
50%, because fastpath execution minimizes lock acquisi-
tions in the original stack which are unnecessary for pure
ACK processing. The residual synchronization cost is
due to the per-socket mutex. By processing ACKs faster,
the sender is able to absorb the burst of ACKs from re-
ceivers, thus reducing the transfer time.

We next investigate the potential of parallel network

Figure 7: Data transfer time. Sender process on one core.
Network processing on multiple cores.

Figure 8: Per-ACK overhead (160 receivers). Sender
process on one core. Network processing on multiple
cores.

processing on multiple cores to alleviate ACK process-
ing cost. Figure 7 shows a similar boxplot for this setting.
The total transfer time with TCP-PARO stays the same,
the time penalty growth is similar to the single-core case,
and throughput is improved by 33%. In contrast, without
optimization, the transfer time grows much more rapidly.
The performance difference can be explained by exam-
ining per-ACK overhead. In Figure 8, we observe simi-
lar cycles savings with TCP-PARO, but L2 cache perfor-
mance worsens. L2 cache misses increase by about 4%
with TCP-PARO, and by 24% with Copybreak. The dif-
ference is due to TCP-PARO’s reusing SKBs, hence re-
ducing cache miss penalities when cores attempt to deal-
locate SKBs from other cores’ slab caches. Increased
cache misses contributed to 12% extra cycles with Copy-
break, which in turn translated into 19% increase in the
median transfer time and higher variance. On the other
hand, the increase in TCP-PARO cycles was modest,
hence it did not adversely affect the sender’s ability to
quickly process ACK bursts. These results show that,

5

364 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

with cheap onboard NICs which do not offer multiple
DMA engines for parallel processing, ACK optimization
can effectively mitigate cache effects in network process-
ing, while preserving the ability to share the NIC among
multiple cores. The trend towards smaller computing
units in the datacenter suggest that ACK-heavy work-
loads can expect to benefit from the reduced interactions
with memory managers by employing fastpath-based op-
timizations like TCP-PARO.

The small testbed limited the number of receivers to
168, beyond which the receivers become the bottleneck.
Nonetheless, contrary to conventional wisdom, our re-
sults indicate that ACK-based reliable multicast can be
scaled to non-trivial receiver group sizes, and that the
ACK implosion problem can be mitigated fairly well at
the end host. We are working on further characterizing
the behavior and performance of TCP-SMO with TCP-
PARO on 10GE and other environments.

5 Related Work

Per-packet overhead has been identified as a significant
overhead in network I/O [3] [7]. Batching optimizations
have been proposed to amortize receive-side overhead
for data packets [4][8]. Our work focuses on receive pro-
cessing of small control packets, which are not suitable
for batching. Instead, we propose a fastpath architecture
which bypasses the original stack and reduces memory
allocations.

Alternative packet I/O schemes [9][5] focus on deliv-
ering packets from NICs to software. The main motiva-
tion of these schemes is to provide a high-performance
platform for building software packet processors, such
as software routers. However, they do not address packet
multiplexing to sockets, buffering, synchronization with
multiple threads and protocol processing. They are thus
orthogonal to our work.

Partial network offloading techniques such as seg-
mentation offloading and checksum offloading [2], are
widely available. Modern NICs implement even more
features in the hardware to assist with software stack pro-
cessing. Examples include filtering packets based on net-
work protocol and performing packet steering to multi-
ple cores [1]. Future NICs can further enhance fastpath
performance by implementing packet header parsing in
hardware. This could further simplify and improve the
performance of the fastpath.

6 Conclusions

In this paper, we investigated optimizing pure TCP ACK
receive processing to improve server performance. Pure
ACKs consume a small portion of network bandwidth,

and have thus received relatively scarce attention in
network optimization. However, the rapid increase in
network bandwidth, the resultant expectation of higher
client-server ratios and the potential benefits of reliable
multicast suggest that improving ACK processing effi-
ciency is a real concern in achieving high application
performance.

We designed a network fastpath architecture for effi-
cient packet delivery and protocol processing. We imple-
mented TCP-PARO on fastpath, and demostrated 16%
cycles savings in an HTTP workload. Moreover, reliable
multicast throughput improved by 33% due to reduced
ACK processing time.

With the deployment of 40GE and then 100GE, and
the desire of lowering server power and space footprint,
it is becoming more compelling to improve efficiency of
server resource usage. In particular, processing of con-
trol packets as a CPU and memory intensive operation is
likely to increase in relative cost as link speeds increase
and servers handle more clients. Optimizations such as
TCP-PARO can be expected to play an important role in
reducing the impact of control packet processing on ap-
plication performance, both on average and in overload
cases, as can arise in reliable multicast. We are currently
studying other applications of the fastpath architecture,
such as SYN flood attack detection, packet accounting
and traffic filtering.

References

[1] Section 7, Intel i350 Gigabit Ethernet Controller
Datasheet. April 2012.

[2] CHASE, J., GALLATIN, A., AND YOCUM, K. End system
optimizations for high-speed tcp. Communications Maga-
zine, IEEE 39, 4 (apr 2001), 68 –74.

[3] FOONG, A. P., HUFF, T. R., HUM, H. H., PATWARD-
HAN, J. R., AND REGNIER, G. J. TCP Performance Re-
visited. ISPASS ’03, pp. 70–79.

[4] GROSSMAN, L. Large Receive Offload Implementation in
Neterion 10GbE Ethernet Driver. In Ottawa Linux Sympo-
sium (2005), pp. 195–200.

[5] HAN, S., JANG, K., PARK, K., AND MOON, S. Packet-
Shader: a GPU-accelerated software router. SIGCOMM
’10, pp. 195–206.

[6] LIANG, S., AND CHERITON, D. TCP-SMO: extending
TCP to support medium-scale multicast applications. IN-
FOCOM ’02, pp. 1356 – 1365.

[7] LIAO, G., ZNU, X., AND BNUYAN, L. A new server I/O
architecture for high speed networks. HPCA ’11, pp. 255–
265.

[8] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP
receive performance. USENIX ATC’08, pp. 85–98.

[9] RIZZO, L. Netmap: A Novel Framework for Fast Packet
I/O. USENIX ATC’12, pp. 101–112.

6

	Table of Contents
	Message from the Program Co-Chairs
	Conference Organizers
	Optimizing VM Checkpointing for Restore Performance in VMware ESXi
	Hyper-Switch: A Scalable Software Virtual Switching Architecture
	MiG: Efficient Migration of Desktop VMsusing Semantic Compression
	Copysets: Reducing the Frequency of Data Loss in Cloud Storage
	TAO: Facebook’s Distributed Data Store for the Social Graph
	PIKACHU: How to Rebalance Load in Optimizing MapReduce On Heterogeneous Clusters
	FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based SSDs
	The Harey Tortoise: Managing Heterogeneous Write Performance in SSDs
	Janus: Optimal Flash Provisioning for Cloud StorageWorkloads
	Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store
	Lightweight Memory Tracing
	Flash Caching on the Storage Client
	Practical and effective sandboxing for non-root users
	TABLEFS: Enhancing Metadata Efficiency in the Local File System
	Characterization of Incremental Data Changes for Efficient Data Protection
	On the Efficiency of Durable State Machine Replication
	Estimating Duplication by Content-based Sampling
	Redundant State Detection for Dynamic Symbolic Execution
	packetdrill: Scriptable Network Stack Testing, from Sockets to Packets
	DeepDive: Transparently Identifying and Managing PerformanceI nterference in Virtualized Environments
	Efficient and Scalable Paravirtual I/O System
	vTurbo: Accelerating Virtual Machine I/O Processing Using Designated Turbo-Sliced Core
	When Slower is Faster: On Heterogeneous Multicores for Reliable Systems
	IAMEM: Interaction-Aware Memory Energy Management
	XLH: More effective memory deduplication scanners through cross-layer hints
	Enabling OS Research by Inferring Interactions in the Black-Box GPU Stack
	Mantis: Automatic Performance Prediction for Smartphone Applications
	I/O Stack Optimization for Smartphones
	How to Run POSIX Apps in a Minimal Picoprocess
	Network Interface Design for Low Latency Request-Response Protocols
	DEFINED: Deterministic Execution for Interactive Control-Plane Debugging
	Improving Server Application Performance via Pure TCP ACK Receive Optimization

