conference

Xiuasn

proceedings

>
7
wn
o
o
>
2
o
z

Thanks to Our USENIX ATC ’13 Sponsors

Gold Sponsors

A facebook RV 11503

Silver Sponsors

EMC “ ORACLE Google

NetAppr

Bronze Sponsors

Microsoft:

/§ Research

Media Sponsors and Industry Partners

Computer HPCwire LXer
Computing in Science IEEE Pervasive Computing No Starch Press
and Engineering IEEE Security & Privacy O’Reilly Media
The Data Center Journal IEEE Software Server Fault
Distributed Management InfoSec News UserFriendly.org
Task Force (DMTF) IT Professional Virus Bulletin

Free Software Magazine

© 2013 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primarily
for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-01-0

Thanks to Our USENIX and LISA Supporters

USENIX Patrons
Google InfoSys Microsoft Research NetApp VMware

USENIX Benefactors
Akamai EMC Hewlett-Packard Linux Journal
Linux Pro Magazine Oracle Puppet Labs

USENIX Partners

Nutanix

USENIX and LISA Partners
Cambridge Computer Google Meraki

USENIX Association

Proceedings of USENIX ATC ’13:
2013 USENIX Annual Technical Conference

June 26-28, 2013
San Jose, CA

Conference Organizers

Program Co-Chairs
Andrew Birrell, Microsoft Research Silicon Valley

Emin Giin Sirer, Cornell University

Program Committee
Mustaque Ahamad, Georgia Institute of Technology

Lorenzo Alvisi, The University of Texas at Austin
Ozalp Babaoglu, Universita di Bologna

Mike Burrows, Google

Manuel Costa, Microsoft Research Cambridge
Jason Flinn, University of Michigan

Phillipa Gill, The Citizen Lab/Stony Brook University
Robert Grimm, New York University

Hermann Hirtig, Technische Universitdt Dresden
Jon Howell, Microsoft Research Redmond
Anthony Joseph, University of California, Berkeley
Terence Kelly, HP Labs

Steve Ko, University of Buffalo

Dejan Kostic, Institute IMDEA Networks

Paul Leach, University of Washington
Boon Loo, University of Pennsylvania
Vivek Pai, Princeton University

Dave Presotto, Google

Rama Ramasubramanian, Microsoft Research
Silicon Valley

Karsten Schwan, Georgia Institute of Technology
Kai Shen, University of Rochester

Prashant Shenoy, University Massachusetts Amherst
Liuba Shrira, Brandeis University

Christopher Small, Quanta Research

Kobus van der Merwe, University of Utah

Jonathan Walpole, Portland State University

Meg Walraed-Sullivan, Microsoft Research Redmond
Alec Wolman, Microsoft Research Redmond
Bernard Wong, University of Waterloo

Yuanyuan Zhou, University of California, San Diego

External Reviewers

Deniz Altinbiiken

Maciej Kuzniar

Jose Renato Santos

Hans Boehm Adam Lackorzynski Julian Stecklina

Hyoun Kyu Cho Sandya Srivilliputtur Ioan Stefanovici

Bjorn Dobel Mannarswamy Tobias Stumpf

Ayush Dubey Sang Lyul Min Yoshio Turner
Brad Morrey

Benjamin Engel

Robert Escriva

Dejan Novakovic

Nedeljko Vasic
Marcus Volp

Goetz Graefe Pradeep Padala Carsten Weinhold
Marcus Hihnel Stan Park
Michael Roitzsch

Andy Hwang

USENIX ATC ’13:
2013 USENIX Annual Technical Conference
June 26-28, 2013
San Jose, CA

Message from the Program Co-Chairs.coiiiiiiiiiiiiiiiiiiiiiiieiireeesesrncoessensncnnnns vi

Wednesday, June 26, 2013

Virtual Machine Implementation
Optimizing VM Checkpointing for Restore Performance in VMware ESXi..........cciiiiiiiiiiinnn. 1

Irene Zhang, University of Washington and VMware; Tyler Denniston, MIT CSAIL and VMware; Yury
Baskakov, VMware; Alex Garthwaite, CloudPhysics and VMware

Hyper-Switch: A Scalable Software Virtual Switching Architecturecciiiiiiiiiiiiiinnns 13
Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner, Rice University

MiG: Efficient Migration of Desktop VMs Using Semantic Compressioncoceveeievcncereenns 25
Anshul Rai and Ram Ramjee, Microsoft Research India; Ashok Anand, Bell Labs India; Venkata N.
Padmanabhan, Microsoft Research India; George Varghese, Microsoft Research US

Computing in the Cloud

Copysets: Reducing the Frequency of Data Loss in Cloud Storage...........cciiiiiiiiiiirirnreennnns 37
Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and Mendel Rosenblum, Stanford
University

TAO: Facebook’s Distributed Data Store for the Social Graph.........ccciiiiiiiiiiiieiriincnneenes 49
Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani, Facebook, Inc.

PIKACHU: How to Rebalance Load in Optimizing MapReduce On Heterogeneous Clusters 61
Rohan Gandhi, Di Xie, and Y. Charlie Hu, Purdue University

Flash-based Storage

FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based SSDSccvvtiiiiiiireernerenrncncnnnes 67
Kai Shen and Stan Park, University of Rochester

The Harey Tortoise: Managing Heterogeneous Write Performancein SSDscoiiiiienn.. 79
Laura M. Grupp, University of California, San Diego,; John D. Davis, Microsoft Research; Steven Swanson,
University of California, San Diego

Janus: Optimal Flash Provisioning for Cloud Storage Workloadscccivtiiiiireereroseneannss 91
Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji, Francgois Labelle, Nate Coehlo, Xudong
Shi, and C. Eric Schrock, Google, Inc.

(Wednesday, June 26, continues on p. iv)

Miscellanea #1

Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store 103
Christopher Mitchell, New York University; Yifeng Geng, Tsinghua University; Jinyang Li, New York University

Lightweight Memory Tracingcouute ittt tieneeseesnssseesossssssesosssssssssssssosnsas 115
Mathias Payer, Enrico Kravina, and Thomas R. Gross, ETH Zurich

Flash Caching on the Storage Client.ccciiiiuitiiiiirreeeresesessesasossessssssssosnsas 127
David A. Holland, Elaine Angelino, Gideon Wald, and Margo 1. Seltzer, Harvard University

Practical and Effective Sandboxing for Non-root USers........cceeeeiererenrerncessesocnssssesnsas 139
Taesoo Kim and Nickolai Zeldovich, MIT CSAIL

Thursday, June 27, 2013

Data Storage

TABLEFS: Enhancing Metadata Efficiency in the Local File Systemcoiiiiiiiiiiae.. 145
Kai Ren and Garth Gibson, Carnegie Mellon University

Characterization of Incremental Data Changes for Efficient Data Protection 157
Hyong Shim, Philip Shilane, and Windsor Hsu, EMC Corporation

On the Efficiency of Durable State Machine Replication..............oiiiiiiiiiiiiiiiiiieiieennn. 169
Alysson Bessani, Marcel Santos, Jodo Felix, and Nuno Neves, FCUL/LaSIGE, University of Lisbon; Miguel
Correia, INESC-ID, IST, University of Lisbon

Estimating Duplication by Content-based Samplingcciiiiiiiiiiiiiiiiiiiiiiierneennnns 181
Fei Xie, Michael Condict, and Sandip Shete, NetApp Inc.

Miscellanea #2

MutantX-S: Scalable Malware Clustering Based on Static Featuresccciiiiiiiiiiiinnn. 187
Xin Hu, IBM T.J. Watson Research Center; Sandeep Bhatkar and Kent Griffin, Symantec Research Labs; Kang
G. Shin, University of Michigan

Redundant State Detection for Dynamic Symbolic Execution...........cooiiiiiiiiiiiiieniinennnnns 199
Suhabe Bugrara and Dawson Engler, Stanford University

packetdrill: Scriptable Network Stack Testing, from Sockets to Packetsccoiiiiiiienn.. 213
Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath Raghavan, Nandita Dukkipati, Hsiao-
keng Jerry Chu, Andreas Terzis, and Tom Herbert, Google

Virtual Machine Performance

DeepDive: Transparently Identifying and Managing Performance Interference in

Virtualized Environmentsuiitttineeeeneeeeeneeeesoeeeeooseesoseesassecssscesnssennnss 219
Dejan Novakovi¢, Nedeljko Vasié, and Stanko Novakovic, Ecole Polytechnique Fédérale de Lausanne (EPFL);
Dejan Kostié, Institute IMDEA Networks; Ricardo Bianchini, Rutgers University

Efficient and Scalable Paravirtual I/O Systemccuoiiiitiiiiieiirreenrerecsososcessssasnsass 231
Nadav Har’El, Abel Gordon, and Alex Landau, IBM Research—Haifa; Muli Ben-Yehuda, Technion IIT and
Hypervisor Consulting; Avishay Traeger and Razya Ladelsky, IBM Research—Haifa

vIurbo: Accelerating Virtual Machine I/0O Processing Using Designated Turbo-Sliced Core............. 243
Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu, Purdue University

Managing Resources

When Slower Is Faster: On Heterogeneous Multicores for Reliable Systems.ccvviieenn.. 255
Tomas Hruby, Herbert Bos, and Andrew S. Tanenbaum, VU University Amsterdam

IAMEM: Interaction-Aware Memory Energy Management...........ooeieetieeeenrecncossesosanes 267
Mingsong Bi, Intel Corporation; Srinivasan Chandrasekharan, and Chris Gniady, University of Arizona

XLH: More Effective Memory Deduplication Scanners Through Cross-layer Hints 279
Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and Frank Bellosa, Karlsruhe Institute of
Technology

Enabling OS Research by Inferring Interactions in the Black-Box GPU Stack...................o00ut. 291
Konstantinos Menychtas, Kai Shen, and Michael L. Scott, University of Rochester

Friday, June 28, 2013
Small Applications

Mantis: Automatic Performance Prediction for Smartphone Applicationscoiiiuee. 297
Yongin Kwon, Seoul National University; Sangmin Lee, University of Texas at Austin; Hayoon Yi, Donghyun
Kwon, and Seungjun Yang, Seoul National University; Byung-Gon Chun, Microsoft; Ling Huang and Petros
Maniatis, Intel; Mayur Naik, Georgia Institute of Technology; Yunheung Paek, Seoul National University

IO Stack Optimization for Smartphonescoiiiiiiiiiiiiiiiiiiiiiiirineiernencnsenresnnns 309
Sooman Jeong, Hanyang University; Kisung Lee, Samsung Electronics; Seongjin Lee, Hanyang University;
Seoungbum Son, Samsung Electronics; Youjip Won, Hanyang University

How to Run POSIX Apps in a Minimal Picoprocessoouiiiiiiiiiiiiiieiiiencneeneesnnns 321
Jon Howell, Bryan Parno, and John R. Douceur, Microsoft Research

Packets

Network Interface Design for Low Latency Request-Response Protocolsocoviiiaee. 333
Mario Flajslik and Mendel Rosenblum, Stanford University

DEFINED: Deterministic Execution for Interactive Control-Plane Debugging 347
Chia-Chi Lin, Virajith Jalaparti, and Matthew Caesar, University of Illinois at Urbana-Champaign; Jacobus Van
der Merwe, University of Utah

Improving Server Application Performance via Pure TCP ACK Receive Optimization 359
Michael Chan and David R. Cheriton, Stanford University

Message from the 2013 USENIX Annual Technical Conference
Program Co-Chairs

Welcome to the 2013 USENIX Annual Technical Conference.

Once again, we received a record number of submissions to the conference. Authors registered 321 abstracts, of
which 233 were submitted as complete papers. Of the submitted papers, 38 were submitted as short papers (no
longer than six pages), and the rest were traditional full-length papers (up to 12 pages, including references). The
program co-chairs rejected 10 papers without review for serious violations of the formatting rules (incorrect for-
matting that increased the effective available space by 5% or more).

Reviewing was single-blind, done almost entirely by the program committee, with some assistance from outsiders
with special expertise. The reviewing was done in three rounds. In the first round, every paper received two reviews.
Based on these reviews, 69 of the papers were tentatively rejected, because both reviews had overall merit scores of
one or two (on a scale of one through five) with adequate confidence levels. In round two, the remaining 154 papers
each received one more review. Finally, the 47 papers from round two that had at least one overall merit score less
than three, and at least one higher than three, were each given two additional reviews in the third round. Altogether,
we produced 700 reviews.

The program committee meeting was held in April in scenic Lombard, Illinois. Most of the committee was present
in person. In a 10-hour session, we discussed 76 of the papers, including a few low-ranked ones that individual PC
members thought merited more consideration. We accepted a total of 33 papers. Of these, six were accepted as short
papers. Three of the short papers had originally been submitted as full-length papers. Each accepted paper was shep-
herded by a PC member in preparing revisions for the final published versions that you see here.

Our committee had 30 members, plus the two co-chairs. Nine of the committee and one co-chair were from indus-
trial institutions. The committee members were allowed to submit papers; the chairs chose not to submit anything.
We followed conventional rules for conflict of interest, with conflicted members (or co-chair) leaving the room dur-
ing discussion of the conflicted papers.

The papers you see in this year’s program represent a broad diversity of current systems work. In keeping with the
goals and tradition of USENIX ATC, there is strong representation of papers with a very practical orientation, in
addition to papers with pure novel research contributions.

Besides the paper authors and reviewers, we would like to thank the USENIX staff who actually do the orga-
nization here; without their support, our jobs would have been much harder. They made it possible for us to focus
on creating the conference program, without worrying about the endless details of conference organization and
proceedings publication.

Thank you for participating in the USENIX ATC community, and enjoy the conference.

Andrew Birrell, Microsoft Research Silicon Valley
Emin Giin Sirer, Cornell University
ATC ’13 Program Co-Chairs

vi 2013 USENIX Annual Technical Conference (USENIX ATC "13) USENIX Association

Optimizing VM Checkpointing for Restore Performance in VMware ESXi

Irene Zhang*

University of Washington MIT CSAIL

Abstract

Cloud providers are increasingly looking to use virtual ma-
chine checkpointing for new applications beyond fault tol-
erance. Existing checkpointing systems designed for fault
tolerance only optimize for saving checkpointed state,
so they cannot support these new applications, which
require better restore performance. Improving restore per-
formance requires a predictive technique to reduce the
number of disk accesses to bring in the VM’s memory on
restore. However, complex VM workloads can diverge
at any time due to external inputs, background processes,
and timing variation, so predicting which pages the VM
will access on restore to reduce faults to disk is impossi-
ble. Instead, we focus on predicting which pages the VM
will access fogether on restore to improve the efficiency
of disk accesses.

To reduce the number of faults to disk on restore, we
group memory pages likely to be accessed together into
locality blocks. On each fault, we can load a block of
pages that are likely to be accessed with the faulting page,
eliminating future faults and increasing disk efficiency.
We implement support for locality blocks, along with sev-
eral other optimizations, in a new checkpointing system
for VMware ESXi Server called Halite. Our experiments
show that Halite reduces restore overhead by up to 94%
for a range of workloads.

1 Overview

The ability to checkpoint and restore the state of a run-
ning virtual machine has been crucial for fault tolerance
of virtualized workloads. Recently, cloud providers have
been exploring new applications for VM checkpointing.
For example, they want to use checkpointing to save and
power off idle VMs to conserve energy. Restoring a check-
pointed “template” VM could be used to clone new VMs
on demand, which would enable fast, dynamic allocation
of VMs for stateless workloads.

Unlike traditional fault tolerance applications, these
new applications depend on efficient restore of check-
pointed VMs. For example, using checkpointing for dy-
namic allocation of VMs depends on the ability to quickly

*Work done while all authors were at VMware.

Tyler Denniston*

Alex Garthwaite*
CloudPhysics

Yury Baskakov
VMware

start up a VM on demand. Checkpointing systems de-
signed to support fault tolerance only restore on failures,
so they optimize for checkpoint save performance instead.
As a result, previous work rarely addresses restore be-
yond basic support, so existing systems would offer poor
performance for these new applications.

Virtual machine checkpointing takes a snapshot of the
state of a VM at a single point in time. The hypervisor
writes any temporary VM state, like VM memory, to
persistent storage and then reads it back into memory
when restoring the checkpoint. Since memory images
can be large, VMware ESXi uses a technique called lazy
restore that loads the memory image from disk while the
VM runs. While the VM’s memory is partially on disk,
any access to on-disk pages causes a fault that requires a
disk synchronous access before the VM’s execution can
resume. Pauses in execution for faults to disk can quickly
degrade the usability of the VM.

Improving lazy restore performance requires a predic-
tive technique that reduces the number of faults to pages
on disk. However, it is impossible to predict which pages
the VM will access on restore; the VM’s execution might
diverge at any time due to timing differences or external
inputs, particularly with complex workloads that have
many background tasks and user applications. Previous
work [24] based on predicting which pages the VM would
access on restore could not cope with divergence, leading
to poor performance for complex workloads like Win-
dows desktop applications.

Rather than reducing the number of faults to disk by
predicting the pages that the VM will access on restore,
we instead predict the pages that the VM will access fo-
gether on restore. On each fault to disk during lazy restore,
we prefetch a few pages that are likely to be accessed with
the faulting page, rather than prefetching before the VM’s
execution begins. This technique is more resilient to di-
vergence since the prefetching decision is based directly
on pages that have been accessed by the VM after the re-
store. There is a smaller penalty for incorrect predictions
because only a few pages are prefetched at a time.

To allow for efficient prefetching on restore, we sort
pages likely to be accessed together into locality blocks
in the VM’s checkpointed memory image. On restore,

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 1

we load an entire locality block on each fault to disk.
Since the other pages in the locality block are likely to
be accessed with the faulting page, we eliminate faults to
disk for those pages. We implement this technique in a
new VM checkpointing system for VMware ESXi Server
called Halite.

Halite uses two techniques to predict the access local-
ity of memory pages. The first uses the VM’s memory
accesses during lazy save. The VM continues running
past the checkpoint while its memory is written to disk,
so the VM’s execution during lazy restore is actually a re-
execution of the VM’s execution during lazy save. While
the exact execution of the VM will vary on restore due
to divergence, there is less change to the access locality.
Pages accessed together during lazy save are likely to be
accessed together again on restore.

Since the VM may not access all of its pages during
checkpointing, we must use a second technique for pre-
dicting access locality. For the unaccessed pages, Halite
uses locality in the guest operating system’s virtual ad-
dress space to predict access locality. Pages that are
mapped together in the virtual address space are likely
to be accessed together, so locality in the virtual address
space is another good predictor of access locality.

We designed and implemented Halite as an improved
VM memory checkpointing system for VMware ESXi
5.1 [22] and included other optimizations to the current
system. Halite performs fine-grained compression of the
checkpointed memory file, so that compression can be
done in parallel on checkpoint save and only a small
amount of decompression is required for each fault to
disk on checkpoint restore. Compression increases the
effectiveness of locality blocks because more pages can
fit into each block. Unlike ESXi, Halite makes extensive
use of threads to parallelize work during checkpoint save
and restore, including threads for compression and 1/O.
Halite dynamically throttles background work during lazy
save and restore to avoid disk contention.

The next section reviews some new applications for
VM checkpointing that VMware has explored. Section 3
gives background on the current virtual machine memory
checkpointing system in VMware ESX 5.1. Section 4
describes Halite’s new memory file layout with locality
blocks. Section 5 describes the algorithms that we use
for predicting access locality. Section 6 details the other
optimizations in Halite. Section 7 gives implementation
details including the algorithm for saving and restoring
VM memory in Halite. Section 8 presents our experimen-
tal results. Section 9 gives an overview of related work,
including our previous work, and Section 10 concludes.

2 Checkpointing Workloads

The primary motivation for Halite is to improve the check-
point restore performance of ESXi, enabling a variety of

new and emerging use cases. In contrast to fault toler-
ance scenarios, where restore is uncommon and happens
only on failure, these new use cases depend on efficient
checkpoint restore.

2.1 Dynamic VM Provisioning

One of the advantages to cloud computing is the ability to
allocate the appropriate amount of computing resources
for any workload. This allocation does not have to be
static; as a workload requires more or less resources,
the number of allocated VMs can be increased or de-
creased. However, most cloud infrastructures are not able
to quickly bring more VMs online. On Amazon EC2, it
can take up to 10 minutes to bring up a VM [1]. Due to
this delay, users must keep a buffer of unused VMs to
handle spikes in requests. Running a number of idle VMs
is both a waste of resources and still may not be sufficient
to protect against severe spikes in usage.

Halite enables fast checkpoint restore from a tem-
plate VM image, similar to VM fork supported by
Snowflock [10], Kaleidoscope [2] or FlurryDB [14]. This
feature allows users to better scale their resource alloca-
tion with usage. Using a checkpointed VM image with
a running Apache server, a VM could be online and han-
dling user requests in a few seconds. Using a check-
pointed VM also offers advantages over quickly booting
a VM the applications in the VM benefit from a warm
cache and several applications can be running in the VM
without the overhead of application start up times, which
can sometimes be long. Alternatively, for some work-
loads, Halite gives users the ability to allocate a single
stateless VM for each incoming connection. Customers
have requested this feature because it is an easy solution
to ensure security between users.

2.2 Energy Conservation

Virtualization reduces energy usage with server consolida-
tion, but conserving energy consumed by idle VMs is still
a serious concern in cloud deployments. Some systems
have explored turning off servers [3] or suspending idle
VMs [5] to conserve power, but all of these systems strug-
gle with restarting servers or VMs. They use predictive
techniques to restart VMs in advance. When these tech-
niques incorrectly predict usage patterns, either energy is
wasted powering on VMs that are not needed, or users are
forced to wait for the needed VM to restart.

Halite makes it much easier to turn off idle VMs with-
out suffering from poor performance when the VM is
needed again. Using Halite, the user can checkpoint
VMs and power them off. Complex predictive models are
not required with Halite because suspended VMs can be
quickly restarted on demand.

2 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

2.3 Virtual Desktop Infrastructure

Large companies have started to move toward converting
desktop PCs into VMs running in a datacenter. These
virtual desktops are easier to maintain and reduce the
amount of hardware needed. However, since there are
more users sharing hardware, users can see performance
degradation when there are spikes in usage. In particular,
VMware has observed a “boot storm” problem, where all
users arrive at work in the morning and attempt to boot
their VMs close in time, leading to severe disk contention.
VM checkpointing can be used to mitigate this problem. If
users checkpoint their desktop VM before going home (or
an energy conservation system checkpoints it for them),
then they can simply restore their VM in the morning.
Restoring a checkpointed VM requires reading much less
from disk than a full boot, easing contention on the disk.
In addition, Halite efficiently restores the VM in much
less time than booting a VM, further reducing the disk
usage and wait time for the user.

3 ESXi Checkpointing

In order to give some background and motivation to
our work, we describe the state of the art in virtual ma-
chine checkpointing implemented in the current release
of VMware ESXi. We primarily discuss the mechanism
for checkpointing VM memory and not other VM state.

3.1 ESXi Save and Restore Algorithm

ESXi has used lazy checkpointing since VMware ESXi
4.0. Lazy checkpointing allows the VM to run while
its memory is saved or restored, reducing the amount of
downtime. ESXi implements a generic copy-on-write
scheme similar to the one described here [20] and similar
to Xen’s implementation [4]. VMware’s implementation
depends on ESXi’s memory tracing mechanism to track
write accesses, which is also used for Halite.

On checkpoint save, ESXi pauses the VM’s execution
and saves its CPU and device state. ESXi installs memory
traces on all of the VM’s pages and resumes the VM.
When the VM writes to an unsaved page, it triggers the
trace on that page. ESXi saves the page and removes the
memory trace before allowing the write to proceed.

While the VM runs, the hypervisor concurrently writes
out memory pages using a background thread. This thread
ensures that the checkpointing process finishes in a rea-
sonable amount of time. The background thread walks
the VM’s physical address space, saving any pages that
have not been already written. It removes the trace on any
page that it saves to avoid triggering the trace later. The
checkpoint save is complete when the background thread
has walked the entire address space.

ESXi supports lazy checkpoint restore using the swap
subsystem by treating a restoring VM like a VM with all
of its memory swapped. This implementation was chosen

LB LB LB LB I LB I

I Physical Page | Physical Page I

Figure 1: Block layout of checkpointed memory file.
Memory blocks (MB) consist of several pages in physical
address order. Locality blocks (LB) contain a variable
number of compressed memory blocks. Memory blocks
are grouped into locality blocks based on access locality.

for its simplicity and ease of deployment. To restore a
VM, ESXi sets up the checkpointed memory file as the
swap file and then restarts the VM at the checkpoint. On
each access by the VM, a single memory page is swapped
in from the memory file. Concurrently, a background
thread touches swapped out pages to ensure that the re-
store finishes in a reasonable period of time.

3.2 Memory File Organization

ESXi saves the VM’s memory in physical address order
from physical address O to the VM’s memory size. This
file layout is simple and requires no metadata, but is not
optimal for either checkpoint save or restore. On every
write to an unsaved page, ESXi must save the page be-
fore allowing the VM to continue executing. Since these
writes are to random memory pages, the disk accesses are
random as well. ESXi avoids having to write to disk on
each write access by buffering, but buffered pages still
cannot be written out sequentially because of the file lay-
out. These writes can degrade the VM’s performance if
the rate of writes to memory is high.

This organization is even worse for checkpoint restore.
On every access to an unrestored memory page, the VM
must pause while waiting for the page to be read from
disk. Since physical memory is inherently random ac-
cess, every access to an unrestored memory page requires
the disk to seek and read a single page, leading to poor
disk performance. Because ESXi treats the memory as
swapped, the hypervisor only reads one 4K page from
disk on each access, further degrading disk performance.

4 Halite Memory File Organization

This section describes Halite’s memory file layout. Halite
uses a significantly different memory file organization
from ESXi, with locality blocks and fine-grained com-
pression. Figure 1 shows the layout of the Halite memory
file. Locality blocks are crucial for efficient prefetching
on each fault to disk during restore.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC 13) 3

4.1 Memory Blocks

For simplicity of implementation and to reduce the size
of meta-data, Halite divides the VM’s physical memory
into fixed-size, aligned blocks of a few pages each called
memory blocks. Halite uses memory blocks as the small-
est unit of processing (i.e., compression, buffering, etc.),
so memory blocks must be small enough that there is still
some access locality in the physical address space.

We found using a memory block size of two pages
was a good trade-off in our implementation; it halves the
amount of meta-data, but remains small enough for work-
loads with poor access locality in the physical address
space like Windows applications. Larger memory blocks
sizes can be used for Linux because of its use of a buddy
allocator!, but performed poorly for Windows.

4.2 Locality Blocks

Halite groups a number of memory blocks into each lo-
cality block, based on access locality. Halite loads an
entire locality block on each fault to disk, reducing disk
accesses and increasing disk efficiency. For simplicity,
locality blocks are fixed-size. Due to the fixed size of
locality blocks, they contain a variable number of com-
pressed memory blocks and some empty space. Locality
blocks also reduce the size of meta-data needed for com-
pression because only the byte offset within the locality
block is needed. Larger locality blocks increase the effi-
ciency of the disk, but also increase the latency of each
fault to disk on restore. In our implementation, we used a
locality block size of 64KB, which we found to be a good
trade-off between efficiency and latency.

5 Access Locality Prediction

Halite uses two techniques to predict access locality for
grouping memory pages into locality blocks. The first
technique traces the execution of the VM past the check-
point during the lazy save. The first technique only works
for pages that are accessed during the lazy save, so we
combine it with a second technique that uses guest vir-
tual address locality to predict access locality. Both of
these techniques are standard in CPU prefetching [19],
although not at the 4KB page level.

5.1 Lazy Save Memory Accesses

In our previous work [24], we observed that the check-
point restore period is a re-execution of the checkpoint
save period since the VM restores back to the point in time
at the beginning of the lazy save period. Unlike working
set restore, Halite uses the VM’s memory accesses during
lazy save to predict access locality, rather than access
ordering. If the VM accessed page X, followed by page

ILinux’s buddy allocator increases access locality in the physical
address space by mapping contiguous physical addresses to virtual
addresses whenever possible.

Y during lazy save, then it is highly likely that if the VM
accesses X or Y on restore, it will also access the other,
even with divergence due to timing or different external
inputs.

Halite groups the pages that were accessed together
during lazy save into locality blocks. The first N pages
accessed by the VM are stored in one locality block, the
next N in another, where N is the size of a locality block.
The number of pages in a locality block can vary due
to compression. Halite does this sorting during the save
process by writing pages out to locality blocks as they
are accessed. Simply filling locality blocks in access
order allows Halite to fill locality blocks without post-
processing, to easily fill a locality block at a time, and to
write locality blocks out sequentially to disk as they are
filled.

For VMs with more than one virtual CPU (vCPU),
Halite separates pages into locality blocks based on the
vCPU. Since each vCPU is running a separate thread of
execution, we believe that an access to page X on one
vCPU, followed by an access to page Y on another vCPU
is not a good predictor of access locality since differences
in timing can easily cause divergence. Sorting based on
vCPU simply requires Halite to fill one locality block per
vCPU at a time.

5.2 Guest Virtual Address Space

Divergence from the VM’s execution during lazy save on
restore is unavoidable; there will be pages that weren’t
accessed during lazy save that are accessed on restore. For
pages that are not accessed during lazy save, we use guest
virtual address space locality to predict access locality.
This technique assumes that if page X and Y are adjacent
in the virtual address space, then an access to page X or
Y is a good predictor that the VM will also access the
other page. Previous work [16] has shown that the virtual
address space is a better predictor of access locality than
the physical address space.

Halite sorts pages not accessed by the VM during the
checkpoint save into locality blocks based on virtual ad-
dress. The first N mapped pages in a guest virtual address
are stored in one locality block, the next N in another.
Again, N may vary due to compression. Halite collects
page table roots as the VM runs. The background thread
in Halite walks the guest virtual address space using the
guest page tables. As the background thread scans, it fills
locality blocks in the order it encounters pages and writes
them out sequentially to disk. We only save a single copy
of each memory page. Memory pages that are mapped in
more than one guest address are saved the first time we
encounter them in a page table.

4 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

6 Halite Checkpointing Optimizations

This section introduces other improvements made in
Halite to ESXi’s checkpointing system. These optimiza-
tions include dynamic background thread throttling, com-
pression, zero page optimizations, and threading. Some of
them take advantage of Halite’s more sophisticated mem-
ory file organization, while some of them are just general
improvements to the ESXi checkpointing infrastructure.

Dynamic Background Thread Throttling The back-
ground thread in ESXi is designed to ensure that the check-
pointing process finishes, even if the VM does not access
all of its memory pages. When the VM is rapidly touch-
ing pages, disk access to the checkpointing file becomes
a bottleneck and the background thread begins to contend
with the VM. However, we observed that if the VM is
accessing pages rapidly, there is no reason for the back-
ground thread to run since the checkpointing process is
clearly still making progress. Therefore, we only run the
background thread in Halite if the checkpointing process
is not progressing, which keeps the background thread
from contending with the VM. We do this throttling for
both checkpoint save and restore.

Compression Compression reduces the size of the
checkpointing image, which reduces not only the size
on disk of the image, but also the amount of data that
needs to be moved to and from the disk for the check-
point. Reducing the disk space required can be important,
especially if the VM has a large memory size, but reduc-
ing the amount of I/O is even more important because the
disk is a bottleneck during checkpointing. Compression
also allows more memory to be prefetched on each page
fault with the same amount of I/O. In Halite, each mem-
ory block in a locality block is separately compressed.
We chose to compress memory blocks instead of whole
locality blocks to allow more parallelization and to reduce
the amount of decompression required on each page fault.
We found that using smaller blocks for compression has
minimal impact on the compression ratio.

Zero Pages ESXi scans guest memory for pages that
are completely zero and does copy-on-write sharing of
those pages. For these pages, there is no reason to read or
write the page for checkpointing, so Halite tracks these
pages and does not include them in the memory image.
Halite also does this for pages that the VM has never
touched, and therefore, are not backed in the hypervisor.

Threading Halite introduces several threads to allow
more parallel processing of memory pages. On check-
point save, these threads reduce the amount of time that
the VM has to be paused on each page fault. Halite only
needs to pause the VM long enough to copy the memory
page to a buffer; threads perform the compression and
writing the memory out to the checkpointing file. On

restore, the faulting page must be read in from disk and
decompressed synchronously, so threads cannot improve
the performance. However, Halite decompresses and re-
stores the other memory blocks in the locality block using
threads in parallel. This minimizes the work for each
prefetched page on a page fault and eliminates the work
required if the VM later accesses one of the prefetched

pages.
7 Implementation

We implemented Halite using VMware ESXi 5.1. Halite
replaces ESXi’s existing checkpointing mechanisms be-
cause they are not designed to asynchronously process
memory and restore memory that is not organized in physi-
cal address order. In addition, ESXi does not save memory
to a separate file by default; memory is normally stored
in one file with other checkpointed state. Halite required
a separate file because there is no way to anticipate the
size of the region required for checkpointed memory due
to compression. ESXi does not support compression of
the memory image. Halite only replaces the VM memory
checkpointing system, so ESXi still handles saving any
other VM state.

7.1 Halite Save and Restore Algorithm

Like ESXi, Halite uses lazy checkpointing, but Halite
does copy-on-access, rather than copy-on-write check-
pointing to capture access locality. However, Halite
buffers pages on checkpoint save and writes to disk se-
quentially, rather than randomly, so the overhead is small.
On both checkpoint save and restore, Halite tries to do
as much work asynchronously as it can. During the lazy
save period, when a trace triggers, Halite simply copies
the memory block to a buffer and removes all of the traces
on the pages in that block. Later the memory block is
compressed by a thread and copied to a locality block.
When the locality block fills up, another thread writes it
out to disk. The thread also updates the mapping to record
which locality block contains each memory block.
When the VM faults on an unrestored page, Halite
consults the map to find which locality block it needs to
fetch. The locality block might already be in memory if
it was prefetched by a previous fault. If not, Halite reads
the locality block, and decompresses and restores just the
memory block of the faulting page. The other pages in
the locality block will be decompressed by threads later.
The background thread in Halite works similarly to
ESXi, except it is throttled as described in Section 6.

8 Evaluation

Our evaluation answers several questions about the per-
formance of Halite:
e How does Halite compare to ESXi 5.1 for some
representative workloads?

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC13) 5

e How do locality blocks compare to other block orga-
nizations?

e How does compression impact the performance of
Halite for workloads with differing amounts of com-
pressibility?

e How much do locality blocks contribute to the per-
formance benefits offered by Halite?

e How does restoring a checkpointed VM using Halite
compare to a cold boot of the VM?

We evaluated Halite using a synthetic workload and
three application benchmarks. pgbench [18] is a stan-
dard database benchmark for PostgreSQL. Worldbench
is a Windows desktop application workload. We also
designed a simulated Apache [6] web server benchmark.
Our workloads represent a range of complexity from the
simple synthetic workload to the complex Worldbench
benchmark. We ran our experiments on a server with a
2.3GHz 8-core AMD Opteron processor and 24GB of
RAM. All of the VMs and checkpoints are stored on a
15,000 RPM Seagate 1TB drive running VMFS-5.

8.1 Microbenchmark

First, to evaluate the performance benefit of Halite and
its various optimizations in a controlled environment, we
created a synthetic workload generator. The benefit of the
workload generator is having control over every aspect of
the workload. VM workloads tend to be very complex,
making it difficult to isolate the source of performance
differences.

The workload sequentially accesses memory using one
thread per vCPU, with each thread accessing a separate
region of memory. We ran our workload on Red Hat 6
Enterprise Server in a VM with 4 vCPUs and 2GB of
RAM. The workload has a working set size of 256MB. It
allocates 1GB of memory for the test and fills that memory
with data that is 50% compressible. In order to increase
physical memory fragmentation, the workload allocates
memory in a 16 page stride. Workload performance is
measured by the time needed to access 100,000 pages.
We checkpointed the VM in the middle of the workload
test run, then restored the checkpoint and recorded the
time to complete the test. The VM restores back to the
start of the checkpointing, so the result does not include
any overhead from creating the checkpoint. We separately
discuss the cost of checkpoint save in Section 8.3.

8.1.1 Checkpoint Restore Overhead

We tested the overhead imposed by checkpoint restore
on the microbenchmark for several different test config-
urations. We tested the current implementation of VM
checkpointing in ESXi against Halite with all of its opti-
mizations. We also measured the impact of locality blocks
compared to other block organization schemes. We used a
version of Halite without any memory file optimizations,

[’S3
(=1

2

o
(=]

o
(=}

Checkpointing Overhead (secs)
353 D
S S

(=]

ESXi Random P-A A-L

Halite

Block Organizations
(Halite, no compression)

Figure 2: Synthetic workload performance for the current
ESXi implementation, Halite with different memory file
organizations and Halite with memory file optimizations.
The middle bars give Halite performance for an uncom-
pressed memory file using (from left to right) random
blocks, physical address blocks (P-A) and access local-
ity blocks (A-L). Performance is given as the increase in
runtime caused by the checkpoint restore (lower is better).

such as compression and the zero page optimization, but
with different block organizations. We do not use com-
pression in this test, so each file block holds 8 memory
blocks or 16 pages. Thus, on each fault to disk, 15 other
pages in the block are “prefetched” from disk. We tested
three organizations: memory pages grouped into blocks
randomly (random blocks), memory pages grouped by
physical address (physical address blocks) and locality
blocks.

Random blocks should be the lower bound worst-case
performance; on each fault to disk, 15 random pages are
loaded along with the faulting page. Physical address
blocks use the same memory file organization as the cur-
rent ESXi implementation, but group 16 pages into a
block to read for each fault to disk instead of a single
4KB page. This organization simulates the performance
of ESXi if we had added Halite’s other optimizations, but
kept the memory file organization. The test using locality
blocks simulates Halite, but isolates the effects of local-
ity blocks from Halite’s other memory file organizations,
including compression and the zero page optimization.

Figure 2 gives the performance overhead of checkpoint
restore for each of our test configurations. Each test result
is the average of 10 test runs. The baseline runtime of
the workload generator is 54 seconds on average. The
restore overhead is given as the increase in runtime of the
synthetic workload due to the VM being restored in the
middle of the run. We use the same snapshot for all test
configurations by reformatting the same memory file, so
the performance before the checkpoint is identical and the
difference in runtime is only due to the restore process.

Comparing ESXi and Halite, Halite reduces the restore
overhead by 100 seconds or more than 10x. The three

6 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Table 1: Efficiency of each type of block organization
(no compression) given by number of blocks faulted in
from disk and percentage of other pages in the blocks
later accessed.

Disk Accesses VM Access %

Random 22,975 19%
P-A 14,501 36%
A-L 6,908 83%

bars in the middle of the graph show the impact of varying
just the block organization. It is important to isolate the
performance impact of different block organizations to
understand the benefit offered by locality blocks.

As expected, random blocks perform the worst. Ran-
dom blocks perform worse than even ESXi, although
reading blocks of pages from disk should increase disk
efficiency. This result shows that reading blocks from disk
only improves performance if the other pages in the block
are useful for eliminating future faults to disk. Otherwise,
using bigger blocks only increases the latency of each
fault to disk without reducing the overall number of faults.
Physical address blocks halve the overhead compared
to the random organization because the other pages in a
block are more likely to be accessed, eliminating some
faults to disk. This improvement is due to access locality
in the physical address space.

Locality blocks perform the best, improving perfor-
mance by 6x over random blocks and almost 3x over
physical address blocks. We see further improvement
because locality blocks have better access locality than
physical blocks. More of the other pages in the block are
likely to be accessed after the faulting page, eliminating
more faults to disk. These results show how crucial block
organization is for restore performance.

8.1.2 Memory File Organization

We can see how different block organizations impact per-
formance by looking at the checkpointing statistics col-
lected by Halite. Table 1 gives the total number of faults
to disk for each block organization and the percentage
of prefetched pages the VM accessed after each fault.
Prefetched pages are the pages other than the faulting
page in a block of pages brought in from disk. Accesses
to prefetched pages eliminate faults to disk, improving
disk efficiency.

It is clear that locality blocks lead to more efficient
disk access than the other block organizations. There
are fewer faults to disk and more pages in each faulted
block are eventually accessed, eliminating more faults
and increasing disk efficiency.

We collected hypervisor statistics on the percentage of

Fa T
=
>
= T e -
5
=9
B 60 N R
Q
£
=
=
= [-
3
g
@ 20 fer gl weansrennaneer Rand-
X | 1y i asmmms P-A
H A-L
150 200 250 300

seconds
Figure 3: VM performance during lazy restore given as
% of time spent executing in the VM (higher is better).
Results are given for three block organizations: random,
physical address blocks (P-A) and access locality blocks
(A-L)

time spent running guest code to show the impact of faults
to disk. Faults to disk pause the VM’s execution, leading
to less time spent running guest code and a reduction in
performance for the guest. For the best performance, we
want to return the guest to running almost 100% of the
time as soon as possible.

Figure 3 shows the impact on guest execution during
restore for the different block organizations. Locality
blocks improve performance by reducing the period of
time where the VM does not run much due to faults to
disk. With locality blocks, the VM sees a large number of
page faults for the first 30 seconds. That time increases to
120 seconds with a physical address blocks, and to 210
seconds with a random blocks. The total time to restore
the VM also decreases from locality blocks to random
blocks.

During the restore, the VM sees a large number of
faults until the working set is entirely faulted in. The
period where the VM sees performance degradation is
not directly related to the test overhead given in Figure 2
because the VM is making some progress during that
time. Locality blocks pack the VM’s working set into
fewer blocks and brings the working set in with fewer
faults to disk.

For some workloads, we could prefetch these page
before starting the VM as we previously proposed [24].
However, the working set cannot be determined before
the VM restores for some workload, and in fact, changes
while the VM runs. For those workloads, Halite provides
better performance because locality blocks group pages
that are likely to be accessed together into blocks, so
Halite will still be able to efficiently fault in the working
set, whereas working set restore would hurt performance
by prefetching pages that are not needed before the VM
starts. We saw this reduction in performance for work-
ing set restore with the Worldbench workload presented

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 7

30 > i = > b

Checkpointing Overhead (sec)

0 = = = = uncompressed

0o 01 02 03 04 05 06 07 08 09 1

Compression Ratio

Figure 4: Restore overhead for Halite using compressed
and uncompressed memory files for workloads with vary-
ing compression ratios. Smaller compression ratio means
that the workload is more compressible. Performance is
given as the increase in the synthetic workload runtime
(lower is better).

in Section 8.2.1, whereas Halite provides a significant
performance improvement.

8.1.3 Compression

The performance impact of including compression in
Halite depends heavily on the compressibility of the work-
load. Thus, we compare Halite performance with a com-
pressed and uncompressed memory file for workloads
with different compression ratios. We varied the com-
pression ratio of the memory allocated by the workload
generator by packing some percentage of every page with
already compressed data. These tests were performed us-
ing zlib [13]. Halite also supports LZRW [23]; however,
we found that zlib performed similarly to or better than
LZRW in most cases.

Figure 4 shows the performance results for workloads
that compress to 10% of their original size to workloads
that compress to 90% of their original size. The perfor-
mance improvement due to compression varies from a
89% improvement to a 26% improvement depending on
the compressibility of the VM’s memory.

8.2 Application Benchmarks

In addition to our synthetic benchmark, we also evaluated
the performance of Halite for a number of representa-
tive application benchmarks. These workloads vary in
complexity, and therefore, the amount of divergence they
exhibit. Worldbench is a simulated desktop application
workload running in Windows XP. It is the most divergent;
there are timing variances in the inputs from the workload
generator, and Windows XP has many background pro-
cesses that run at various times. In comparison, pgbench
running on PostgreSQL in a server Linux install is more
deterministic. The benchmark is deterministic and there

are few background processes. Finally, our Apache server
benchmark is designed to have divergence in the random
selection of pages that we request from it, but it runs on
top of Linux and has a small working set.

The workloads also vary in their compressibility, which
affects the performance benefit of Halite, as shown in the
previous section. The Worldbench checkpointed memory
file only compresses to 67% of its original size due to
a large number of media files in memory. The pgbench
checkpointed memory file compresses to 10% of its origi-
nal size due to pgbench filling the database with patterns.

8.2.1 Worldbench

Worldbench is a simulated desktop workload with typical
desktop applications like word processing, web brows-
ing and video editing. Worldbench closely simulates the
expected workload of a VDI deployment described in
Section 2.3. We ran Worldbench in Windows XP in a VM
with 1GB of memory and 2 vCPUs. We used the multi-
tasking test from the test suite that simulates a browser
workload and media encoding. Worldbench reports the
amount of time taken to run the test suite once. We check-
pointed the VM 10 minutes into the test run, so the first 10
minutes are identical across runs. Each test is the average
of 10 test runs.

We evaluated the performance of Worldbench on ESXi
and three Halite configurations. The current ESXi im-
plementation of checkpointing uses a memory file that is
organized by physical address and reads one 4KB page
on each fault to disk. The first Halite configuration is
Halite (P-A), which gives the performance of Halite using
physical blocks. Halite (P-A) uses Halite’s checkpoint-
ing optimizations like threading and background thread
throttling, but none of the memory file optimizations like
locality blocks, compression and zero page optimization.
This configuration simulates the performance of ESXi
with the Halite optimizations that would be easy to add to
ESXi, like increasing the block size faulted in from disk
and throttling the background thread, but not changing
the memory file layout.

The next Halite configuration is Halite (A-L), which
gives the performance of Halite with locality blocks,
which is the key contribution in Halite. This configu-
ration isolates the performance impact of locality blocks,
from other memory file optimizations like compression
and zero page optimization. The last configuration is
Halite with all optimizations including compression and
zero page optimization. This configuration gives the total
performance benefit of Halite over ESXi.

The baseline performance of Worldbench without
checkpointing is 816 seconds. Figure 5 gives the World-
bench results as the average increase in the runtime due
to checkpointing. Again, there is no performance impact
from saving in these results because the checkpoint is

8 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

60

T

. @ -k

ESXi Halite(P-A) Halite(A-L) Halite

Checkpointing Overhead (secs)

Figure 5: Checkpointing overhead for Worldbench given
as number of seconds increase in runtime over baseline
(lower is better).

before the beginning of the save process, so the increase
in runtime is only due to the lazy restore process. All
configurations use the same memory file, re-organized
into the appropriate block organization, so there is only
one checkpoint across all of the configuration tests.

ESXi increases the runtime of Worldbench by more
than 25 seconds due to faults to disk during the lazy re-
store period. Halite (P-A) adds a number of optimizations
to ESXi, including physical blocks, which should increase
disk efficiency. However, Worldbench has poor access
locality in the physical address space, so physical blocks
actually reduce performance like random blocks did in
our microbenchmark test. Halite (P-A) actually increases
the runtime overhead by almost 2x, up to 56 seconds on
average.

Like Halite (P-A), Halite (A-L) also uses blocks, but
locality blocks instead of physical blocks. Halite (A-L)
reduces the runtime overhead by almost 6x compared to
Halite (P-A), showing the importance of block organi-
zation based on access locality. Halite, which includes
compression, further improves performance, reducing
the checkpointing overhead to an average of 1.6 seconds.
Compared to the current implementation of ESXi, Halite
reduces restore overhead by 94%. This performance is
a significant improvement over our previous work [24],
which did not cope with divergence well and actually
reduced performance for Worldbench.

8.2.2 pgbench

pgbench is a benchmarking tool, based on TPC-B, for the
PostgreSQL database used to test the performance of a
database installation. We used VMware’s vFabric Post-
greSQL [21] based on PostgreSQL 9.0. We ran pgbench
and PostgreSQL in a Red Hat 6 Enterprise server in a VM
with 2GB of memory and 4 vCPUs. pgbench measures
database performance by recording the total number of
transactions completed within a timed run.

We used a pgbench run of 5 minutes with 16 clients

.

ESXi Halite(P-A) Halite(A-L) Halite
Figure 6: Checkpointing overhead for pgbench given as
a reduction in transactions completed in 5 minutes over
baseline (lower is better).

Checkpointing Overhead
(millions of transactions)
w2

running on 4 threads. We ran pgbench with only select
queries because we found the performance to be more
consistent and it avoided disk contention. The default
85/15 read/write mix showed similar performance im-
provements, but with a larger range of performance over
test runs. We checkpointed pgbench at the beginning of
the run and collected the test results after restoring. vFab-
ric PostgreSQL is designed to be an in-memory database,
so we sized our database to 1.8GB.

We used ESXi with the same Halite configurations as
the Worldbench experiments. pgbench shows the differ-
ence between the different configurations for a workload
that has less divergence. The baseline performance of pg-
bench with no checkpoint taken is 6.9 million transactions.
Figure 6 shows checkpointing overhead for pgbench as
the reduction in number of transactions completed in 5
minutes. For example, pgbench completes 2.8 million
transactions after restoring from a checkpoint on ESXi, a
reduction of 4.1 million over the baseline. We chose to
plot the overhead metric because it stays constant regard-
less of the length of the test.

For pgbench, Halite (P-A) only increases checkpoint-
ing overhead by 20% compared to ESXi. This increase is
smaller than Worldbench because Linux workloads have
better physical address locality due to Linux’s buddy allo-
cator. Still, Halite (A-L) reduces performance overhead
by more than 2x for both ESXi and Halite (P-A). Halite
with compression and the zero page optimization further
reduces the overhead by 75%. Compared to ESXi, Halite
reduces performance overhead by 8§9%.

8.2.3 Apache Webserver

To evaluate the performance of Halite for dynamic VM
allocation that we described in Section 2.1, we created
an experiment to simulate an Apache server application
running in a VM. The test uses an Apache server with an

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 9

Response Time (seconds)

Boot ESXi

Halite

Figure 7: Apache Response Times. Time until first re-
sponse (lower is better) from Apache server starting from
boot of the VM, an ESXi checkpoint and a Halite check-
point.

HTML dump of Spanish Wikipedia®. The test client re-
quests pages randomly with a Gaussian distribution from
a set of 10,000 pages from the dump. Before checkpoint-
ing, the client makes 10,000 requests to warm the cache.
We ran Apache in Ubuntu 10.04 Server in a VM with 2
vCPUs and 2GB of memory.

We tested the performance of our server application
with a few scenarios. First, we measured the response la-
tency of the server when booting the VM and starting the
web server on the first HTTP request. This scenario sim-
ulates dynamic allocation of VMs without using check-
pointing. Next, we measured the response latency when
restoring a checkpoint of a VM with a running Apache
server using the current ESXi implementation. This sce-
nario reflects the performance of using ESXi checkpoint-
ing for dynamic VM allocation. Finally, we tested the
latency using Halite to restore the server VM.

Figure 7 gives the response times for each setup. Dy-
namically allocating a new VM for each connection re-
quires 23 seconds on average to respond to the first HTTP
request. Restoring a checkpointed VM with a running
Apache server using the current ESXi checkpointing im-
plementation gives response times of 18.4 seconds on
average. Using Halite reduces response time to 7.3 sec-
onds. Halite reduces the response time of a dynamically
allocated web server VM by a factor of three compared
to a cold boot of the VM and a factor of 2.5 compared to
a restore using the current ESXi implementation, making
it much more feasible to dynamically allocate VMs.

We also measured the response times for subsequent
HTTP requests to the web server. Once the connection
to the server has been established, our test client issues
10,000 random page requests, also with a Gaussian distri-
bution. These measurements further show the benefits of
Halite as well as showing the benefit of using a checkpoint,

’http://dumps.wikimedia.org/eswiki/

Table 2: Average response time and maximum response
time for the first 10,000 requests, excluding the first re-
quest.

Avg. Response Time Max Response Time

Boot 18 ms 25.168 s
ESXi 13 ms 9.333 s
Halite 3 ms 3.010s

Table 3: Checkpoint save overhead for ESXi and Halite
given as increase in runtime or reduction in transactions
over baseline.

Workload ESXi Halite
Synthetic workload (sec) 1 4
pgbench (millions of trans.) 31 .76
Worldbench (seconds) 11 5

rather than a newly booted VM, for dynamic allocation.
Table 2 shows the average and maximum response time
for HTTP requests issued to the web server.

Since the VM'’s cache is on disk at the beginning of
all of these scenarios, the performance of the web server
depends entirely on how efficiently the VM’s cache can
be filled from disk. Using a checkpointed VM reduces
both average and maximum response times. The web
server running in the VM already has a warmed cache, so
the VM’s working set just has to be restored, the cache
does not have to be refilled. Restoring the checkpoint
using ESXi reduces the response times, however, Halite
performs the best because it is able to most efficiently
restore the VM’s working set from disk. Halite reduces
the average response time of the web server by a factor
of 6 and the maximum response time by a factor of more
than 8 over booting the VM and starting the web server
for each connection.

8.3 Checkpoint Save

Since most of the work for checkpoint save is done asyn-
chronously in ESXi and Halite, the difference in perfor-
mance between the two is minimal. Halite does copy-on-
access checkpointing, which increases the checkpointing
overhead, but writes out to disk sequentially, which re-
duces the overhead.

Table 3 gives performance results for our synthetic
workload, pgbench and Worldbench. Performance was
measured for each workload after a checkpoint was taken
in the middle of the run. For the synthetic workload and
pgbench, the additional read traces only reduced perfor-
mance by 7-8%. These two workloads are both read-only

10 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

workloads, so the performance impact is higher than for a
more balanced read-write workload. Halite performs bet-
ter than ESXi for Worldbench due to the more write-heavy
workload.

9 Related Work

Most previous checkpointing systems focused on check-
point save performance for supporting fault tolerance, so
there is a limited body of work on improving checkpoint
restore performance. For systems that do not support lazy
restore, the memory file organization is not important,
so it is frequently not addressed. We also describe some
techniques used by process and file system checkpointing
systems to optimize checkpointing.

9.1 Virtual Machine Checkpointing

There is not a large body of work on virtual machine
checkpointing and almost all of it focuses on checkpoint
save performance. Many [15, 20] do not address the
restore algorithm at all.

Commercial hypervisors all include support for check-
pointing and restoring VMs, however not all support lazy
checkpoint save or restore due to the complex implemen-
tation. For systems that do not support lazy checkpoint
restore, the disk layout of checkpointed memory does not
matter, although performance could be improved using
compression. Xen supports lazy checkpointing [4], but
it is not clear whether it supports lazy restore or what
organization is used for checkpointed memory.

Our previous work [24] addressed the issue of lazy
restore performance by prefetching the working set of
the VM’s memory before restarting the VM. However,
we found that, while it was effective for simple work-
loads like MPlayer running on basic Linux, it offered
little benefit for more complex workloads, like Windows
desktop applications. These complex workloads have
more divergence, and since working set restore depends
on predicting which memory pages the VM will access
on restore, it cannot cope with divergence. In contrast,
Halite focuses on predicting which pages the VM will
access fogether on restore, making it more effective for a
wider range of workloads, including a 94% reduction in
restore overhead for Windows workloads.

9.2 Other Virtualization

One related area of work is VM migration. Post-copy
migration suffers from the same performance challenges
as lazy restore due to the network latency while the VM is
paused waiting for the page to be copied from the source.
However, the organization of VM memory is not a factor
because the VM’s memory is not on disk on the source,
so it can be accessed in any order with no performance
penalty.

Hines et al. [7] implemented a background page walk-

ing thread that adaptively picks the order in which it walks
depending on the last access. For each access, the page
walker will try to push some of the other pages around
that access in the physical address space. However, previ-
ous work [16] found that the guest virtual address space is
a more reliable predictor of access locality and we found
in our experiments that locality in the physical address
space can be poor.

VM fork is another solution for dynamic allocation of
virtual machines that requires restoring memory while the
VM runs. Snowflock [10] depends on there being a small
difference between forked VMs that the memory can be
sent from the parent to the child with little performance
degradation for the child VM. Kaleidoscope [2] groups
pages based on what the page is used for as another way
to predict access locality. Our approach is more general
because it does not require paravirtualization to categorize

pages.
9.3 Process Checkpointing

Previous work in optimizing checkpointing for individual
or distributed processes has focused primarily on check-
point save, but not checkpoint restore. Plank et al. [17]
implemented the process checkpointing system Ickp us-
ing copy-on-write checkpointing as well as compression
as an optimization. Li et al. [11] compare performance
characteristics of four algorithms for checkpoint/restart
of parallel programs. The work of Liao et al. [12], called
Concurrent CKPT, aims to improve on the CLL algorithm
by avoiding page table manipulation. However, all of this
work focuses solely on checkpoint save performance, and
does not discuss checkpoint restore.

9.4 Fast OS and Application boot

There has been some work on organizing operating sys-
tems and application files to improve boot times for both.
Windows uses a mechanism called SuperFetch [8] that or-
ders files on disk in the order that they are accessed during
boot. SuperFetch uses an adaptive algorithm that tracks
past boot processes to predict the order of accesses. Like
Halite, SuperFetch addresses the performance of restor-
ing some set of data by reordering the data on disk in a
more optimal way. Unlike Halite, SuperFetch attempts to
predict the order of all accesses, not just the locality, so
performance suffers when there is divergence. However,
divergence may be less of a concern for booting the OS.
Joo et al. [9] implemented a system that predicts and
prefetches application data on application startup to opti-
mize for interleaving application execution and I/O. Like
other predictive techniques, theirs suffers from reduced
performance on divergence, although divergence is less
of a problem for applications. They do not address disk
layout at all because their system is designed for SSDs.
However, they could improve performance on SSDs by

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC"13) 11

reorganizing the data for prefetching into fewer blocks.

10 Conclusion

We presented a new checkpointing system, Halite, for
VMware ESXi that reduces restore overhead for a range
of workloads. Halite predicts which pages the VM will
access together on restore and groups these pages into
locality blocks. We showed that locality blocks offer
significant performance benefits over other block organi-
zations and copes well with divergence in complex VM
workloads like Windows desktop applications. In partic-
ular, locality blocks outperform physical address blocks
by 10x for Windows. Combining locality blocks with
Halite’s other optimizations, Halite reduces the overhead
of checkpoint restore in VMware ESXi to 1.6 seconds
for a Windows desktop workload, a reduction of 94%.
This significant improvement in restore performance al-
lows Halite to efficiently support new applications for
VM checkpointing.

11 Acknowledgements

Many thanks to Karen Zee, Ron Mann and Dan Ports for
their discussions on this work. Thanks to all of the mem-
bers of the monitor group for their support throughout the
project. Thanks to Steve Gribble and Pete Hornyack for
their insightful evaluation of the evaluation. Thanks to the
entire University of Washington systems lab and to our
anonymous reviewers for their paper comments. Special
thanks to our manager, Joyce Spencer, for her continued
support and encouragement throughout this work.

References

[1] Amazon. Amazon EC2 FAQ. aws.amazon.com/ec2/faqgs/.

[2] Roy Bryant, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaus-
tubh Joshi, Matti Hiltunen, Andres Lagar-Cavilla, and Eyal
de Lara. Kaleidoscope: cloud micro-elasticity via vm state color-
ing. In Proceedings of the 6th European Conference on Computer
Systems, EuroSys *11, pages 273-286, New York, NY, USA, April
2011. ACM.

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M.
Vahdat, and Ronald P. Doyle. Managing energy and server re-
sources in hosting centers. In Proceedings of the 18th Symposium
on Operating System Principles, SOSP *01, pages 103—116, New
York, NY, USA, October 2001. ACM.

Patrick Colp, Chris Matthews, Bill Aiello, and Andrew Warfield.
VM Snapshots, February 2009. http://www.xen.org/files/
xensummit_oracle09/VMSnapshots.pdf.

Tathagata Das, Pradeep Padala, Venkata N. Padmanabhan, Ra-
machandran Ramjee, and Kang G. Shin. Litegreen: saving energy
in networked desktops using virtualization. In Proceedings of the
USENIX Annual Technical Conference, USENIX’ 10, pages 3-3,
Berkeley, CA, USA, June 2010. USENIX Association.

Apache Software Foundation. Apache http server project, 2012.
http://httpd.apache.org/.

3

—

[4

—_

[5

—_

[6

[t

[7

—

Michael R. Hines and Kartik Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging and dynamic
self-ballooning. In Proceedings of the 5th Conference on Virtual
Execution Environments, VEE 09, pages 51-60, Washington, DC,
USA, March 2009. ACM.

[8]

[9]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

Thom Holwerda. SuperFetch: How it works & myths, May 2009.
http://www.osnews.com/story/21471/SuperFetch_
How_it_Works_Myths.

Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G. Shin. Fast:
quick application launch on solid-state drives. In Proceedings of
the 9th Conference on File and Storage Technologies, FAST °11,
Berkeley, CA, USA, February 2011. USENIX Association.

Horacio Andrs Lagar-Cavilla, Joseph Andrew Whitney,
Adin Matthew Scannell, Philip Patchin, Stephen M. Rumble,
Eyal de Lara, Michael Brudno, and Mahadev Satyanarayanan.
SnowFlock: rapid virtual machine cloning for cloud computing.
In Proceedings of the 4th European Conference on Computer
Systems, EuroSys 09, pages 1-12, Nuremberg, Germany, April
2009. ACM.

K. Li, J. E. Naughton, and J. S. Plank. Low-latency, concurrent
checkpointing for parallel programs. IEEE Parallel & Distributed
Systems, pages 874-879, August 1994.

Jianwei Liao and Yutaka Ishikawa. A new concurrent checkpoint
mechanism for real-time and interactive processes. In Proceed-
ings of the 34th Computer Software and Applications Conference,
COMPSAC 10, pages 47-52, Washington, DC, USA, 2010. IEEE
Computer Society.

Jean loup Gailly and Mark Adler. zlib. z1ib.net.

Michael J. Mior and Eyal de Lara. Flurrydb: a dynamically
scalable relational database with virtual machine cloning. In Pro-
ceedings of the 4th Annual International Conference on Systems
and Storage, SYSTOR 11, pages 1-9, New York, NY, USA, 2011.
ACM.

Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and space-
efficient virtual machine checkpointing. In Proceedings of the 7th
Conference on Virtual Execution Environments, VEE ’11, pages
75-86, New York, NY, USA, March 2011. ACM.

Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Ab-
hishek Bhattacharjee. CoLT: coalesced large-reach TLBs. In
Proceedings of the Conference on Microprogramming and Mi-
croarchitecture, MICRO 12. IEEE, December 2012.

James S. Plank and Kai Li. ickp: A consistent checkpointer
for multicomputers. IEEE Parallel & Distributed Technology,
2(2):62-67, June 1994.

PostgreSQL. pgbench. http://www.postgresql.org/docs/
devel/static/pgbench.html.

Alan Jay Smith. Sequential program prefetching in memory hier-
archies. IEEE Computer, 11(12):7-21, December 1978.

Michael H. Sun and Douglas M. Blough. Fast, lightweight virtual
machine checkpointing. Technical report, Georgia Institute of
Technology, 2010.

VMware. VMware vfabric postgres. http://www.vmware . com/
products/application-platform/vfabric-postgres/
overview.html.

VMware. VMware vSphere Hypervisor. www.vmware.com/
products/vsphere-hypervisor/overview.html.

Ross N. Williams. http://www.ross.net/compression/
introduction.html.

Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C.
Barr. Fast restore of checkpointed memory using working set
estimation. In Proceedings of the 7th Conference on Virtual Ex-
ecution Environments, VEE ’11, pages 87-98, New York, NY,
USA, March 2011. ACM.

12 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

Hyper-Switch: A Scalable Software Virtual Switching Architecture

Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha and Scott Rixner

Rice University

Abstract

In virtualized datacenters, the last hop switching hap-
pens inside a server. As the number of virtual machines
hosted on the server goes up, the last hop switch can
be a performance bottleneck. This paper presents the
Hyper-Switch, a highly efficient and scalable software-
based network switch for virtualization platforms that
support driver domains. It combines the best of the ex-
isting I/O virtualization architectures by hosting device
drivers in a driver domain to isolate faults and placing
the packet switch in the hypervisor for efficiency. In ad-
dition, this paper presents several optimizations that en-
hance performance. They include virtual machine (VM)
state-aware batching of packets to mitigate the costs of
hypervisor entries and guest notifications, preemptive
copying and immediate notification of blocked VMs to
reduce packet arrival latency, and, whenever possible,
packet processing is dynamically offloaded to idle pro-
cessor cores. These optimizations enable efficient packet
processing, better utilization of the available CPU re-
sources, and higher concurrency.

We implemented a Hyper-Switch prototype in the Xen
virtualization platform. This prototype’s performance
was then compared to Xen’s default network I/O archi-
tecture and KVM’s vhost-net architecture. The Hyper-
Switch prototype performed better than both, especially
for inter-VM network communication. For instance, in
one scalability experiment measuring aggregate inter-
VM network throughput, the Hyper-Switch achieved a
peak of ~81 Gbps as compared to only ~31 Gbps under
Xen and ~47 Gbps under KVM.

1 Introduction

Machine virtualization is now used extensively in data-
centers. This has led to considerable change to both the
datacenter network and the I/O subsystem within virtual-
ized servers. In particular, the communication endpoints
within the datacenter are now virtual machines (VMs),
not physical servers. Consequently, the datacenter net-
work now extends into the server and last hop switching
occurs within the physical server.

At the same time, thanks to increasing core counts
on processors, server VM densities is on the rise. This

trend is placing enormous pressure on the network I/O
subsystem and the last-hop virtual switch to support effi-
cient communication—especially between VMs—in vir-
tualized servers.

There are many I/O architectures for network commu-
nication in virtualized systems. Of these, software device
virtualization is the most widely used. This preference
for software over specialized hardware devices is due in
part to the rich set of features —including security, isola-
tion, and mobility —that the software solutions offer.

The software solutions can be further divided
into driver domain and hypervisor-based architectures.
Driver domains are dedicated VMs that host the drivers
that are used to access the physical devices. It provides
a safe execution environment for the device drivers. Ar-
guably, the hypervisors that support driver domains are
more robust and fault tolerant, as compared to the alter-
nate solutions that locate the device drivers within the
hypervisor. However, on the flip side, they incur signifi-
cant software overheads that not only reduce the achiev-
able I/O performance but also severely limit I/O scalabil-
ity [29, 31].

In existing I/O architectures, the virtual switch is im-
plemented inside the same software domain where the
virtual devices are implemented and the device drivers
are hosted. For instance, all of these components are im-
plemented inside a driver domain in Xen [13] and the
hypervisor in KVM [26]. This collocation is purely a
matter of convenience since packets must be switched
when they are moved between the virtual devices and the
device drivers.

In this paper, we introduce the Hyper-Switch, which
challenges the existing convention by separating the vir-
tual switch from the domain that hosts the device drivers.
The Hyper-Switch is a highly efficient and scalable
software-based switch for virtualization platforms that
support driver domains. In particular, the hypervisor in-
cludes the data plane of a flow-based software switch,
while the driver domain continues to safely host the de-
vice drivers. Since the data plane is small relative to the
size of the switch control plane, it does not significantly
increase the size of the hypervisor or the platform’s over-
all trusted computing base (TCB). The Hyper-Switch ex-
plores a new point in the virtual switching design space.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 13

Another contribution of this paper is a set of optimiza-
tions that increase performance. They enable the Hyper-
Switch to efficiently support both bulk and latency sensi-
tive network traffic. They include VM state-aware batch-
ing of packets to mitigate the costs of hypervisor entries
on the transmit side and guest notifications on the receive
side. Preemptive copying is employed at the receiving
VM, when it is being notified of packet arrival, to reduce
latency. Further, whenever possible, packet processing
is dynamically offloaded to idle processor cores. The of-
floading is performed using a low-overhead mechanism
that takes into account CPU cache locality, especially in
NUMA systems.

These optimizations enable efficient packet process-
ing, better utilization of the available CPU resources, and
higher concurrency. They take advantage of the Hyper-
Switch data plane’s integration within the hypervisor and
its proximity to the scheduler. As a result, the Hyper-
Switch enables much improved and scalable network
performance, while maintaining the robustness and fault
tolerance that derive from the use of driver domains. Fur-
ther, we believe that these optimizations can and should
be a part of any virtual switching solution that aims to
deliver high performance.

We evaluated the Hyper-Switch using a prototype
that was implemented in the Xen virtualization plat-
form [4]. The prototype was built by modifying Open
vSwitch [24], a multi-layer software switch for com-
modity servers. In this evaluation, the Hyper-Switch’s
performance was compared to that of KVM’s vhost-net
and Xen’s default network I/O architectures. The results
show that the Hyper-Switch enables much better scala-
bility and peak throughput than both of these existing ar-
chitectures.

The rest of this paper is organized as follows. Sec-
tion 2 further motivates the Hyper-Switch by discussing
some of the issues with existing architectures. Section 3
explains the Hyper-Switch’s design. Section 4 describes
the implementation of the Hyper-Switch prototype. Sec-
tion 5 presents a detailed evaluation of the Hyper-Switch.
Section 6 discusses related work. Finally, Section 7 sum-
marizes the conclusions.

2 Motivation

The need for efficient and scalable network communica-
tion within virtualized servers is increasing. Intel already
claims to have an architecture that can scale to 1000 cores
on a single chip [15]. Furthermore, the number of cores
on a chip is predicted to grow to 64 in a few years and
to 256-512 by the end of the decade [12]. If this last
prediction is borne out, then in 2020 a single 1U server
will have as many cores as an entire rack of servers does
today.

In addition, communication between servers within
the same datacenter already accounts for a significant
fraction of the datacenter’s total network traffic [14].
Moreover, Benson et al.’s study of multiple datacenter
networks reported that 80% of the traffic originating at
servers in cloud datacenters never leaves the rack [5]. If
the predictions for the growing number of cores come
to pass, then a rack of servers may be replaced by VMs
within a single physical server, and the network traffic
that today never leaves the rack may instead never leave
the server. Consequently, the Hyper-Switch has been
heavily optimized to enable high performance inter-VM
communication.

Modern multi-core systems enable concurrent pro-
cessing of network packets. Under Xen’s default net-
work architecture, the driver domain can run in parallel
to the transmitting and receiving VMs. Consequently, it
is possible to perform packet switching in parallel with
packet transmission and reception. However, there are
several fundamental problems with traditional driver do-
main architectures that limit I/O performance scalability.
Fundamentally, the driver domain must be scheduled to
run whenever packets are waiting to be processed. This
might involve scheduling multiple virtual processors de-
pending on the number of threads used for packet pro-
cessing in the driver domain. As a result, scheduling
overheads are incurred while processing network pack-
ets. Further, the driver domain must be scheduled in a
timely manner to avoid unpredictable delays in the pro-
cessing of network packets.

Today, it is standard practice in real-world virtualiza-
tion deployments to dedicate processor cores to the driver
domain. This avoids scheduling delays, but often leaves
cores idle. In fact, dedicating CPU resources for back-
end processing is not limited to just driver domain-based
architectures. There have also been several proposals
to offload some of the packet processing to dedicated
cores—including Kumar et al.’s sidecore approach [17],
and Landau et al.’s split execution (SplitX) model [18].
But, this can lead to underutilization of these cores. Fur-
ther, this goes against one of the fundamental tenets of
virtualization, which is to enable the most efficient uti-
lization of the server resources. Hence the Hyper-Switch
has been designed to smartly and dynamically utilize the
available resources.

At the same time, reliability cannot be ignored, es-
pecially as servers in datacenters move toward multi-
tenancy. Hypervisors that support driver domains are
potentially more robust and fault tolerant. However,
driver domains incur significant overheads. These over-
heads are due to the costs of moving packets between
the guest VMs and the driver domain [21, 29, 31], be-
cause the driver domain cannot trivially access a packet
in the guest VM’s memory. The driver domain is just

14 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Virtualized Server

| |
| Management ‘ Guest VM Guest VM Driver Domain |
| Domain |
| Hyper-Switch |
| Hyper-Switch PVdngtwork PVdnfetwork ext driver |
control plane et L1VC) - |
I physical
| driver J |
| \ ==
!
[£ Y / [
| ﬂ% wNIC wNIC VNIC [
| |
| Mﬁpem |
[// ‘
| |
| Hardware NIC ’ |
|

Figure 1: The Hyper-switch architecture. The last
hop virtual switch is implemented partly in the hy-
pervisor (data plane) and partly in the management
layer (control plane). The device drivers are hosted
in the driver domain.

another VM and the hypervisor maintains memory iso-
lation between VMs. So, the driver domain must use an
expensive memory sharing mechanism provided to ac-
cess the packet. Hypervisor-based architectures do not
incur these memory sharing overheads since the packets
in the guest VMs’ memory can be directly accessed from
the hypervisor. The Hyper-Switch has been designed to
take advantage of driver domains without incurring the
associated memory sharing overheads.

3 Hyper-Switch Design

Figure 1 illustrates the Hyper-Switch architecture.
There are two fundamental aspects to this architecture.
First, unlike existing systems that use driver domains,
the Hyper-Switch architecture—as the name implies—
implements the virtual switch inside the hypervisor. So
internal network traffic between virtual machines (VMs)
that are collocated on the same server is handled entirely
within the hypervisor. Incoming external network traffic
is initially handled by the driver domain, since it hosts
the device drivers, and then is forwarded to the destina-
tion VM through the Hyper-Switch. For outgoing ex-
ternal traffic, these two steps are simply reversed. In
essence, from the Hyper-Switch’s perspective, two guest
VMs form the endpoints for internal network traffic, and
the driver domain and a guest VM form the endpoints for
external network traffic. Contrast this with the traditional
driver domain architecture as illustrated in Figure 2.
Second, the hypervisor implements just the data-plane
of the virtual switch that is used to forward network
packets between VMs. The switch’s control plane is
implemented in the management layer. So the vir-
tual switch implementation is distributed across virtu-
alization software layers with only the bare essentials
implemented inside the hypervisor. The separation of

Virtualized Server

(Guest VM Driver Domain Guest VM

| |
I I
\ \
‘ VNIC vNIC PV network || |
| j driver |
| virtual switch ‘ |
| l [
I physical |
| driver 5\ |
| |
: [Hypervisor] :
| |
| | Hardware NI}‘] |
I |

Figure 2: Traditional driver domain architecture.
The driver domain hosts the device drivers and the
last hop virtual switch.

control and data planes is achieved using a flow-based
switching approach. This approach has been previously
used in other virtual switching solutions such as Open
vSwitch [24]. However, Open vSwitch’s control and data
planes are both implemented inside the driver domain.

The rest of this section describes the Hyper-Switch’s
design in detail. First, the basics are explained by de-
scribing the path taken by a network packet. This is
followed by several performance optimizations that im-
prove upon the basic design.

3.1 Basic Design

Packet processing by the Hyper-Switch begins at the
transmitting VM (or driver domain) where the packet
originates and ends at the receiving VM (or driver do-
main) where the packet has to be delivered. It proceeds
in four stages: (1) packet transmission, (2) packet switch-
ing, (3) packet copying, and (4) packet reception.

Packet Transmission. In the first stage, the transmit-
ting VM pushes the packet to the Hyper-Switch for pro-
cessing. Packet transmission begins when the guest
VM’s network stack forwards the packet to its para-
virtualized network driver. Then the packet is queued
for transmission by setting up descriptors in the trans-
mit ring. A single packet can potentially span multiple
descriptors depending on its size. Typically, packets are
never segmented in the transmitting guest VM. So the
packets belonging to internal network traffic can be for-
warded as is. The external packets are segmented either
in the driver domain or the network hardware. Today,
segmentation offload is a standard feature in most net-
work devices.

Packet Switching. In the second stage of packet pro-
cessing, the packet is switched to determine its desti-
nation. Switching is triggered by a hypercall from the

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC 13) 15

transmitting VM. It begins with reading the transmit ring
to find new packets. Each packet is then pushed to the
Hyper-Switch’s data plane where it is processed using
flow-based packet switching. The data plane must be
able to read the packet’s headers in order to switch it.
Since the data plane is located in the hypervisor, which
has direct access to every VM’s memory, it can read the
headers directly from the transmitting VM’s memory.

Packet switching by the data plane proceeds as fol-
lows: (1) The packet header fields are parsed to identify
the corresponding packet flow. (2) The packet flow is
used to lookup a matching flow rule in a software flow
table. When this lookup fails, the packet is forwarded to
the control plane in the management layer. (3) A suc-
cessful flow table lookup identifies a flow rule, which
specifies one or more actions to be performed. Typically,
the action is to forward the packet to one or more destina-
tion ports or to drop the packet. Each port has an internal
receive queue where the switched packet is temporarily
placed. This port corresponds to a virtual network inter-
face (vINIC) within the destination VM.

When the flow table lookup fails, the packet is for-
warded to the control plane through a separate control
interface. The control plane decides how the packet must
be forwarded based on packet filtering rules, forwarding
entries from an Ethernet address learning service, and/or
other protocol specific tables. This is composed into a
new flow rule that specifies the actions to be performed
on packets belonging to this flow. Then the packet is
re-injected into the hypervisor’s data plane and the as-
sociated actions are executed. Finally, the control plane
adds the new flow rule to the flow table. This allows the
flow’s subsequent packets to be handled entirely within
the hypervisor’s data plane.

Packet Copying. In the third stage of packet process-
ing, the switched packet is copied into the receiving
VM’s memory. Empty buffers for receiving new packets
are provided through the vNIC. Specifically, the descrip-
tors in the receive ring provide the address of the empty
buffers in the VM’s memory.

By default, the destination VM is responsible for per-
forming packet copies. Once switching is completed, the
destination VM is notified via a virtual interrupt. Subse-
quently, that VM issues a hypercall. While in the hyper-
visor, it dequeues the packet from the port’s internal re-
ceive queue, and copies the packet into the memory given
by the next descriptor in the receive ring. The packet
is copied directly from the transmitting VM’s memory
to the receiving VM’s memory. After which, the mem-
ory that was allocated for this packet at various places—
inside the hypervisor and in the transmitting VM —is re-
leased.

Packet Reception. In the fourth and final stage, the
para-virtualized network driver in the receiving VM re-
constructs the packet from the descriptors in the receive
ring. Typically, the receiving OS is notified, through in-
terrupts, that there are new packets to be processed in the
receive ring. However, under the Hyper-Switch, the re-
ceiving VM was already notified in the previous stage.
So packet reception can happen as soon as the hypercall
for copying the packet is complete. The new packet is
then pushed into the receiving VM’s network stack.

3.2 Preemptive Packet Copying

Packet copies are performed by default in a receiving
VM’s context. When a packet is placed in the internal
receive queue, after it has been switched, the receiving
VM is notified. Eventually, the receiving VM calls into
the hypervisor to copy the packet. However, delivering a
notification to a VM already requires entry into the hy-
pervisor. Under Xen, when there is a pending notification
to a VM, the VM is interrupted and pulled inside the hy-
pervisor. Since hypercalls are expensive operations, the
Hyper-Switch tries to avoid them. In this case, it takes
advantage of the hypervisor entry upon event notifica-
tion to avoid a separate hypercall to perform the packet
copy. Instead, the packet copy is performed preemptively
when the receiving VM is being notified. In essence, the
packet copy operation is combined with the notification
to the receiving VM. This optimization avoids one hy-
pervisor entry for every packet that is delivered to a VM.

3.3 Batching Hypervisor Entries

In the Hyper-Switch architecture, as described thus far,
the transmitting VM enters the hypervisor every time
there is a packet to send. Moreover, the receiving VM is
notified every time there is a packet pending in the inter-
nal receive queue. As mentioned before, even this notifi-
cation requires hypervisor intervention.! Therefore, de-
spite the preemptive packet copy optimization, the over-
head of entering the hypervisor is incurred multiple times
on every packet.

To mitigate this overhead, we use VM state-aware
batching, which amortizes the cost of entering the hyper-
visor across several packets. This approach to batching
shares some features with the interrupt coalescing mech-
anisms of modern network devices. Typically, in net-
work devices, the interrupts are coalesced irrespective

'In Xen, notifying a running guest VM involves two entries into the
hypervisor. First, the running VM is interrupted via an IPI and forced
to enter the hypervisor. Then the hypervisor runs a special exception
context where the guest VM handles all pending notifications. Finally,
the guest VM again enters the hypervisor to return from the exception
context.

16 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

of whether the host processor is busy or not. But, un-
like those devices the Hyper-Switch is integrated within
the hypervisor, where it can easily access the scheduler
to determine when and where a VM is running. So a
blocked VM can be notified immediately when there are
packets pending to be received by that VM. This enables
the VM to wake up and process the new packets without
delay. On the other hand, the notification to a running
VM may be delayed if it was recently interrupted.

34 Offloading Packet Processing

In Hyper-Switch, by default, packet switching is per-
formed in the transmitting VM’s context and packet
copying is performed in the receiving VM’s context. As
a result, asynchronous packet switching does not occur
with respect to the transmitting VM, and asynchronous
packet copying does not occur with respect to the receiv-
ing VM. However, concurrent and asynchronous packet
processing can significantly improve performance.

Concurrent packet processing can be achieved by
polling: (1) all the internal receive queues, looking for
packets waiting to be copied, and (2) all the transmit
rings, looking for packets waiting to be switched. This
can be performed by processor cores that are currently
idle. Packet copying is prioritized over switching be-
cause packet copying is typically the more expensive op-
eration and the receiving VM is more likely to be perfor-
mance bottlenecked than a transmitting VM.

Instead, the idle cores are woken up just when there is
work to be done. On the receive side, this can be ascer-
tained precisely when packets are placed in an internal
receive queue of a VNIC. Then one of the idle cores is
chosen and woken up to perform the packet copy. A low-
overhead mechanism is used to offload work to the idle
cores. It uses a simple interprocessor messaging facility
to request a specific idle core to copy packets at a spe-
cific vNIC. Further, this mechanism attempts to spread
the work across many idle cores. Otherwise, if all the
work is offloaded to a single idle core, it might become a
bottleneck.

The offloading to idle cores is delayed if the receiv-
ing VM is going to be notified immediately. As ex-
plained previously, this typically happens when the re-
ceiving VM is not running. Subsequently, the receiv-
ing VM copies a bounded number of packets sufficient
to keep it busy, and then if packets are still pending in
the internal receive queue, the remaining copies are of-
floaded to an idle core. The rationale is to immediately
copy some packets so that the receiver can start process-
ing them, while the remaining packets are concurrently
copied at an idle core.

Unfortunately, offloading packet switching to idle
cores is not trivial. In the common case, packets are

asynchronously queued by the transmitting VM with-
out entering the hypervisor. So it is not possible to
offload the switching tasks precisely when packets are
queued. Therefore, packet switching is performed at
the idle cores only as a side effect of offloading packet
copies. In other words, when an idle core is woken up to
perform packet copies, it also polls all the transmit rings
looking for packets pending to be switched.

Further, when packets are being processed by an idle
core, the Hyper-Switch checks for any other work that
might need that core. If so, it aborts the packet process-
ing. This ensures that the offloaded packet processing
happens at the lowest possible priority and does not pre-
vent other tasks from using that processor.

CPU Cache Awareness. CPU cache locality can have
a significant impact on the cost of packet copying under
Hyper-Switch. Essentially, the packet data is accessed in
three places:> (1) The transmitting VM, (2) the packet
copier, and (3) the receiving VM. So the packet data can
be potentially brought into three different CPU caches
depending on the system’s cache hierarchy and where the
two VMs and the packet copier are run.

If the receiving VM is also the packet copier, then
the packet data is brought into the receiving VM’s CPU
cache while the copy is performed. Subsequently, when
the packet is accessed in the receiving VM, it can be read
with low latency from the cache. But if the packet copier
runs on an idle core, the access latency will depend on
whether the idle core shares any cache with the receiving
VM’s core. Therefore, under Hyper-Switch, the offload
mechanism for packet processing is optimized to take ad-
vantage of CPU cache locality. At the same time, it en-
sures that the offloaded work does not unfairly affect the
performance of other VMs running on cores that share
their CPU cache with the idle cores.

Hysteresis. Waking up an idle core takes a non-trivial
amount of time, particularly when the idle core is us-
ing deeper sleep states to save power. Further, the inter-
processor interrupts (IPIs) that are used to wake up cores
are not cheap. Therefore, a small hysteresis period is in-
troduced to ensure that the idle cores stay awake longer
than they normally would. The idea is to keep the cores
running, after they are woken up, until there is a period —
the hysteresis time period —during which no packets are
processed. In other words, the idle cores are kept running
as long as there is a steady stream of packets to process.

3.5 More Packet Processing Opportunities

A packet that is queued in the transmit ring at a VINIC will
eventually be switched by either the transmitting VM or

ZPacket switching is ignored here since it only accesses the packet
headers.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 17

an idle core. This might happen immediately if an idle
core polls this interface looking for packets waiting to be
switched or it might happen only when the transmit timer
period that is implemented by VM-state aware batching
elapses.?

Consider a VM that queues some packets for transmis-
sion at its vNIC and then blocks. Let’s assume that there
are no other idle cores. If another VM is scheduled to
run on this core, then the queued packets are not going
to be switched until the blocked VM is scheduled to run
again. But this might happen only at the end of the trans-
mit timer period. Even if the core becomes idle after the
VM blocks, there is no guarantee that the blocked VM’s
packets will be switched at that idle core. In fact, the idle
core can end up copying packets destined for other VMs.
In essence, a VM can block despite its packets waiting to
be switched.

When a VM’s virtual processor blocks, it has to en-
ter the hypervisor to give up its core. Since the VM is
already inside the hypervisor, it might as well as check
if there are packets pending to be switched or copied.
This allows any packet processing work to be completed
before the VM stops running. Also, new packet copies
result in a notification to the VM. Consequently, instead
of blocking, the VM returns to process the packets that
were just received.

4 Implementation Details

We implemented a prototype of the Hyper-Switch archi-
tecture, which is depicted in Figure 3. We implemented
the switch’s data plane by porting parts of Open vSwitch
to the Xen hypervisor. Open vSwitch’s control plane
was used without modification. We also developed a
new para-virtualized (PV) network interface for the guest
VMs to communicate with the data plane. The same in-
terface was also used by the driver domain to forward ex-
ternal network traffic. The rest of this section describes
each part of the Hyper-Switch prototype in detail.

Open vSwitch Overview. Open vSwitch [24] is an
OpenFlow compatible, multi-layer software switch for
commodity servers. The control and data planes are
separated. While the data plane is implemented inside
the OS kernel, the control plane is implemented in user
space. It uses the flow-based approach for switching
packets in its data plane. In a typical deployment of Open
vSwitch as a last hop virtual switch, it is implemented
entirely inside a driver domain (Xen) or the hypervisor
(KVM). In the common case, the network traffic between
the guest VMs is directly switched by Open vSwitch’s
data plane within the kernel. Open vSwitch provides a
vport abstraction that can be bound to any network inter-

3The maximum delay is bounded by the transmit timer period.

Driver Domain

Open vSwitch
control plane

4

User space

datapath glue)

Xen
Hypercalls -

]
control

Open vSwitch
datapath
[vporl

Xen

Hypervisor

-\
Guest VM

Figure 3: Hyper-Switch prototype. It was built by porting
essential parts of Open vSwitch’s datapath to the Xen
hypervisor.

face in the driver domain. In addition, there is one vport
for every vNIC in the system.

Porting Open vSwitch’s Datapath. We implemented
the Hyper-Switch’s data plane by porting Open
vSwitch’s datapath to the Xen hypervisor. The vports
on the datapath were bound to a newly developed para-
virtualized network interface that allowed guest VMs to
communicate with the Hyper-Switch’s data plane.

The driver domain kernel also included a datapath glue
layer to enable communication between the control and
data planes. This layer converted the commands from
Open vSwitch’s control plane into a new set of Xen hy-
percalls to manipulate the flow tables in the datapath.
The glue layer also transferred the packets that are punted
to the control plane.

Para-virtualized Network Interface. The guest VMs
and the driver domain communicated with the Hyper-
Switch through a para-virtualized network interface
(VNIC). The interface included two transmit rings—one
for queueing packets for transmission and another for re-
ceiving transmission completion notifications—and one
receive ring to deliver incoming packets. The rings
were fixed circular buffers where the producer and con-
sumer(s) could access the ring descriptors concurrently.
The interface also included an internal receive queue that
contained packets that were yet to be copied into the re-
ceiving VM’s memory.

Hypervisor Integration. As explained in Section 3.2,
packet copying was preemptively performed by combin-
ing it with the notification to the receiving VM. We im-
plemented this by checking for packets to copy when the
associated virtual interrupt was delivered by the Xen hy-
pervisor to a VM. Further, packet switching and copy-
ing were also performed when a VM voluntarily blocked.

18 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Thus the VM’s vNIC was polled for packets to be copied
or switched, just before the scheduler was invoked to
yield the processor and find another VM to run.

Offloading Packet Processing. We implemented the
offloading of packet processing inside Xen’s idle do-
main. The idle domain contains one idle vCPU for ev-
ery physical CPU core in the system. The idle vCPUs
have the lowest priority among all the vCPUs and there-
fore, they are scheduled to run on a physical CPU core
only when none of the VMs’ vCPUs are runnable on that
core. The idle vCPUs execute an idle loop that checks
for pending softirgs and tasklets, and executes the corre-
sponding handlers. Finally, when there is no more work
to be done, it enters one of the sleep states to save power.

In the Hyper-Switch architecture, we extended Xen’s
idle loop to copy and switch packets. A simple, low-
overhead mechanism was used to offload packet process-
ing to idle cores. The mechanism identified a suitable
idle core based on an offload criteria. The criteria were
chosen to select an idle core that made the best use of
the CPU caches. Further, this mechanism also ensured
that the offloaded work was distributed across multiple
idle cores using a simple hash function. The mecha-
nism included a lightweight interprocessor messaging fa-
cility that was implemented using small fixed circular
buffers. There was one buffer for every processor core
in the system. It was used to communicate the vNICs
that were being offloaded to a specific idle core. The
Hyper-Switch-related packet processing was performed
only at the lowest priority. The pending softirqs and
tasklets were checked after each packet was processed.
If there was ever higher priority work to be done, then
the offloaded packet processing was aborted.

5 Evaluation

This section presents a detailed evaluation of the Hyper-
Switch architecture. The evaluation was performed using
the Hyper-Switch prototype in Xen. The primary goal of
this evaluation was to compare Hyper-Switch with ex-
isting architectures that implement the virtual switch ei-
ther entirely within the driver domain or entirely within
the hypervisor. Toward this end, the end-to-end perfor-
mance under Hyper-Switch was compared to that un-
der Xen’s default driver domain-based architecture and
KVM’s hypervisor-based architecture.

5.1 Experimental Setup and Methodology

The experiments were run on a 32-core server with two
2.2 GHz AMD Opteron 6274 processors and 64 GB of
memory. This processor is based on AMD’s Bulldozer
micro-architecture where two cores (called a module)

share the second level data cache (L.2) and the instruc-
tion caches (L1i and L2i). Further, four modules (called
a node) share the unified third level cache (LL3). And
each Opteron 6274 processor includes two such nodes.
Under Xen,* the server was configured to run up to 32
para-virtualized (PV) Linux guest VMs (v2.6.38 pvops)
and one PV Linux driver domain (v2.6.38 pvops), in ad-
dition to the privileged management domain 0 (Linux
v3.4.4 pvops). The PV linux guests use a specialized
network driver which is optimized for the virtual net-
work interface that the hypervisor provides to the VMs.
The guest VMs were each configured with a single vir-
tual CPU (vCPU) and 1 GB of memory. The driver do-
main was configured with up to 8 vCPUs and 2 GB of
memory. But under Hyper-Switch the driver domain was
given only a single vCPU since it only handled external
network traffic. The server was directly connected to an
external client using a 10 Gbps Ethernet link. The client
consisted of a 2.67 GHz Intel Xeon W3520 quad-core
CPU and 6 GB of memory. It ran an Ubuntu distribution
of native Linux kernel v2.6.32. The CPUs at the external
client were never a performance bottleneck in any of the
experiments.

The netperf microbenchmark [2] was used in all the
experiments to generate network traffic. In particular,
netperf was used to create two types of network traf-
fic: (1) TCP stream and (2) UDP request/response traffic.
The TCP stream traffic was used to measure the achiev-
able throughput. The UDP request/response traffic was
used to measure the packet processing latency. Unless
otherwise specified, the sendfile option was used on
the transmit side in all experiments. The performance
of Hyper-Switch was compared to the performance of
Open vSwitch under both Xen [13] and KVM [26]. Para-
virtualized network interfaces were used in all these sys-
tems. In the rest of this section, we use “KVM?” to refer
to the performance of Open vSwitch under KVM. Simi-
larly, we use “Xen” to refer to the performance of Open
vSwitch under Xen’s default network I/O architecture.
This should not be confused with the Hyper-Switch pro-
totype that is also implemented in Xen.

Open vSwitch under Xen. In Xen, Open vSwitch is
implemented entirely in the driver domain. Under Xen,
all network packets are forwarded to the driver domain,
where they are switched. Xen’s backend driver called
netback acts as an intermediary between the guest VMs
and the virtual switching module in the driver domain.
Netback is multi-threaded, and there is one netback (ker-
nel) thread for every vCPU in the driver domain. Each
guest VM’s VNIC is bound to one of these threads. The
packets associated with a specific vNIC are processed
only by the thread to which it is bound. The recom-

4Xen v4 .2 - mainline git repository (xen-unstable.git) May 2012.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 19

18 —|I:I Hyper-Switch l Xen Il KVM'—

Throughput (Gbps)

64K 16K 4K 1K 256
TCP Payload Size (bytes)

Figure 4: Throughput results from TCP stream traffic be-
tween a single pair of VMs under different payload sizes.

400 _|I:I Hyper-Switch Bl Xen Il KVMl_
350 |-
300 |-
250 f~------
200 ||t
150 |- i
100 f--- - = B
50 |- - .- i a

Thousands of Cycles/Pkt

64K 16K 4K 1K 256
TCP Payload Size (bytes)

Figure 5: CPU load results from TCP stream traffic be-
tween a single pair of VMs under different payload sizes.

mended practice is to dedicate cores for running the
driver domain’s vCPUs. In this evaluation, the driver do-
main was configured with up to 8 vCPUs.

Open vSwitch under KVM. In KVM, Open vSwitch
is implemented entirely in the hypervisor (also referred
to as the KVM host). Under KVM’s vhost-net architec-
ture, all network packets are forwarded to the vhost-net
driver in the host, which is similar to Xen’s netback.
But unlike netback, there is a separate vhost-net (kernel)
thread for every VNIC in the system. The vhost-net’s
threads can also be run on dedicated cores.

5.2 Experimental Results

5.2.1 Inter-VM Performance and Scalability

In these experiments, network performance was studied
under different loads by setting up network traffic be-
tween VMs collocated on the same server.

Single VM Pair. In the first set of experiments, traffic
was set up between just a single pair of VMs. Each guest
VM’s vCPU was pinned to a separate core within the
same processor node to avoid any potential VM schedul-
ing effects. Xen’s driver domain was configured with 2
vCPUs. Recall that there is one netback kernel thread
for every vCPU in Xen’s driver domain. The driver do-

18000
16000
14000
12000
10000
8000
6000
4000
2000

Transactions per Second

64K 16K 4K 1K 256 1
UDP Payload Size (bytes)

Figure 6: Latency results from UDP request/response
traffic between a single pair of VMs under different pay-
load sizes.

main’s vCPUs were also pinned to separate processor
cores, but on the same processor node where the cor-
responding guest VMs’ vCPUs were pinned. Similarly,
under KVM, the two vhost-net kernel threads (one per
guest VM) were also pinned.

First, as shown in Figure 4, higher throughput was
achieved under Hyper-Switch than under both the ex-
isting architectures in the experiments where the TCP
payload was between 4 KB and 64 KB, with stream-
based traffic. On average, the throughput under Hyper-
Switch, in these cases, was ~56% higher than that under
Xen and ~61% higher than that under KVM. But there
was not much performance difference at smaller packet
sizes since in those experiments the transmitting VM was
the performance bottleneck. Figure 5 shows the average
CPU load (cycles/packet) in each of these experiments.
Clearly, the Hyper-Switch is more efficient in processing
packets than both the existing architectures in KVM and
Xen.

Second, as shown in Figure 6, higher transactions
per second was achieved under Hyper-Switch, across
all UDP payload sizes, with request-response traffic. A
transaction comprises of a single request followed by a
single response in the opposite direction. So these re-
sults indicate that the round-trip packet latencies were
the lowest under the Hyper-Switch among all the three
architectures. On average, the transactions per second
under Hyper-Switch was ~117% higher than that under
Xen and ~222% higher than that under KVM. So the
Hyper-Switch architecture is suited for both bulk as well
as latency sensitive network traffic. Further, these results
show the benefit from optimizations such as preemptive
copying and immediate notification of blocked VMs that
enable timely delivery of packets.

Pairwise Scalability Experiments. In the next set of
experiments, the performance scalability of the three ar-
chitectures was studied by setting up TCP stream-based
traffic flows between 1-16 pairs of VMs in one direc-
tion. TCP payload size of 64 KB was used in all the sub-

20 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

100 -|* Hyper-Switch —— KVM —e - Xen

Throughput (Gbps)

2 4 6 8 10 12 14 16
Number of VM Pairs

Figure 7: Pairwise performance scalability results.
Multiple concurrent TCP streams set up between
pairs of VMs. Figure shows aggregate inter-VM
throughput as the number of VM pairs is increased.

sequent experiments. Again, the guest VMs’ vCPUs, the
vhost-net kernel threads (KVM), and the driver domains’
vCPUs (Xen) were pinned to specific processor cores.
Also, the VMs that were communicating with each other
were always pinned to the same processor node. The
pinning was done such that, in each experiment, the load
was uniformly distributed across all the processor mod-
ules and nodes in the system. For instance, one core
from each module was used for pinning VMs across the
system, before the other cores were used. Under KVM,
the guest VMs’ vCPUs and the vhost-net kernel threads
were pinned. As a result, when the system was scaled
beyond 8 pairs of VMs, each processor core had to run
one of the guest VM’s vCPUs and one of the vhost-net
threads. Under Xen, the driver domain was configured
with 8 vCPUs. The driver domain’s vCPUs were dis-
tributed by pinning two of them to each processor node
in the system. Then the guest VMs’ vCPUs were evenly
distributed across the remaining processor cores.

The results in Figure 7 show that the Hyper-Switch ar-
chitecture exhibited much better performance scalability
than both the existing architectures. Specifically, under
Hyper-Switch, the performance reached a peak through-
put of ~81 Gbps before it started to flatten out. But
the peak throughput was only ~47 Gbps and ~31 Gbps
under KVM and Xen respectively. Further, the perfor-
mance under these existing architectures did not scale
beyond 4 pairs of VMs. On average, the throughput
under Hyper-Switch was ~55% higher than that under
KVM and ~146% higher than that under Xen. Fig-
ure 7 also shows three distinct regions in Hyper-Switch’s
performance curve: (1) The performance scaled almost
linearly, from ~16.2 Gbps to ~62.7 Gbps, between 1
and 4 pairs of VMs. (2) The performance continued to
scale linearly but at a lower rate, from ~62.7 Gbps to
~81 Gbps, between 5 and 7 pairs of VMs. (3) The per-
formance did not scale beyond 8 pairs of VMs.

Fundamentally, the network performance is deter-

100 -|* Hyper-Switch —— KVM —e - Xenl

BO [v .

Throughput (Gbps)

2 6 10 14 18 22 26 30
Number of VMs

Figure 8: All-to-all performance scalability results.
Multiple concurrent TCP streams set up between all
VMs. Figure shows aggregate inter-VM throughput
as the number of VMs is increased.

mined by the number of packets that can be transferred
between the source and destination VMs in a given time.
A typical packet transfer involves switching and packet
copying overheads. But there are limits to how many
packets that can be processed by a single processor. This
is determined in part by the underlying hardware archi-
tecture. The hardware determines how efficiently the
available processor time is used to process—switch and
copy —packets. Today’s processors are incredibly com-
plex and therefore, there are several factors that impact
this efficiency. In particular, the structure of the mem-
ory subsystem can have a significant impact on per-
formance [25]. This includes the size and levels of
the CPU caches, the maximum number of outstanding
reads/writes/cache misses, the available memory band-
width, the number of channels to the system memory,
and so on. One can scale the performance beyond the
limits imposed by a single processor core by increas-
ing concurrency, i.e. by using multiple processor cores.
But some of the system resources could be shared be-
tween processor cores—such as CPU caches, memory
channels, etc.—that could potentially reduce the avail-
able concurrency. When additional VMs are added to the
system, there is a natural increase in concurrency since
many of the switching tasks can be concurrently per-
formed under each VM’s context. Further, under Hyper-
Switch, the offloading of packet processing adds to this
concurrency. When choosing an idle core for offload-
ing packet processing, preference is given to idle pro-
cessor cores that are on the same node as the receiving
VM’s vCPU, to take advantage of any CPU cache local-
ity. Further, the packet processing is offloaded only to
a processor core in an idle module, i.e. a module where
both the processor cores are idle, to avoid potential cache
interference effects [3].

In the first region of the curve (Figure 7), each pair
of VMs were run in a separate processor node. So
the packet processing could be offloaded to other cores

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 21

within the same node. As a result, under these condi-
tions, the best scalability was achieved. In the second re-
gion, some of the packet processing had to be offloaded
to idle modules on other nodes in the system. This was
not as efficient since packets had to be copied across pro-
cessor nodes. Hence the performance scalability was
reduced. In the third region, the performance stopped
scaling in part due to the reduction in the offloading of
packet processing since most of the processor modules
were busy. Also, some of the VMs’ vCPUs were run-
ning on two cores within the same processor module.
So the cache interference effects also came into effect.
Finally, as more VMs were added to the system, there
was increased contention for the system resources such
as CPU caches. So, effectively, all these factors offset
the increase in packet processing concurrency and hence
the performance stopped scaling.

All-to-all Scalability Experiments. In the second set
of scalability experiments, TCP stream-based traffic was
set up between every pair of VMs in the system in both
directions. These experiments were designed to generate
significant load on the network by having tens of VMs
concurrently communicating with each other. For in-
stance, when there were 30 VMs in the system, there
were as many as 870 concurrent TCP flows. The con-
figuration and setup was similar to the previous set of
experiments.

Figure 8 shows the results from these experiments.
The performance again scaled much better under Hyper-
Switch than under KVM or Xen. Specifically, un-
der Hyper-Switch, the performance reached a peak
throughput of ~65 Gbps as compared to ~55 Gbps and
~31 Gbps under KVM and Xen respectively. Similar to
the previous set of experiments, the performance curve
under Hyper-Switch scaled up very well at the beginning
before tapering off. The performance analysis presented
with the previous results is applicable here as well. In
fact, the contention for system resources is even higher
in this case, due to the significant load placed on the sys-
tem.

5.2.2 External Performance

In the external experiments, the network traffic was set
up between guest VM(s) and the external client. The
driver domain, under Hyper-Switch and Xen, was con-
figured with only a single vCPU. In the TX and RX ex-
periments, there were one or two guest VMs (concur-
rently) sending and receiving packets respectively. The
guest VMs’ vCPUs and the driver domain’s vCPU were
again pinned.

The results from these experiments showed that the
Hyper-Switch’s performance was comparable and in
some cases even better than the performance under KVM

and Xen. In the TX experiments, with a single guest
VM transmitting packets, line rate of ~9.4 Gbps was
achieved under both Hyper-Switch and Xen. But under
KVM, the TX VM’s vCPU was a performance bottle-
neck. Therefore, only ~7.8 Gbps was possible in this
case. In the RX experiments, with one guest VM re-
ceiving packets, the CPU at the guest VM was the bot-
tleneck. So line rate was not achieved under any of
the architectures. But the performance was better under
Hyper-Switch (7.5 Gbps) and KVM (7.8 Gbps) than Xen
(4.1 Gbps). But with two guest VMs receiving packets,
line rate of ~9.4 Gbps was achieved under both Hyper-
Switch and KVM. Under Xen, the driver domain’s vCPU
was the performance bottleneck. Therefore, having a
second guest VM receive packets had no positive impact
on the aggregate throughput. These results show that the
driver domain under Hyper-Switch can send and receive
packets at 10 GbE line rate using a single CPU core. So
the driver domain consumes minimal resources.

TCP request-response traffic was also set up between a
single guest VM and the external client. In these exper-
iments, the Hyper-Switch achieved 13,243 transactions
per second of as compared to 10,721 and 11,342 under
KVM and Xen respectively. As explained before, higher
transactions per second indicate lower round trip latency.
Therefore, despite the “longer” route taken by packets
under Hyper-Switch due to their forwarding through both
the hypervisor and the driver domain, the packet laten-
cies were still the lowest under Hyper-Switch.

5.2.3 Design Evaluation

Experiments were also run to determine the offload crite-
ria under Hyper-Switch. In these experiments, the packet
processing was offloaded to different CPU cores relative
to where the transmitting and receiving VMs’ vCPUs
were running. The results from these experiments® indi-
cated that, for best performance, packet processing must
be offloaded to a processor module where both the cores
were idle. Further, while searching for idle modules, first
the processor node on which the receiving VM’s vCPU
was running must be searched, before searching the other
nodes in the system. However, the offload criteria could
vary depending on a processor’s cache hierarchy. So the
exact criteria must be determined based on the particular
hardware platform on which Hyper-Switch is run.

6 Related Work

The current state-of-the-art network subsystem architec-
tures for virtualized servers can be broadly classified

SDue to lack of space, the results from these experiments are not pre-
sented here.

22 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

into three categories. The first category of systems in-
cludes a simple network card (NIC) that is virtualized
by a software intermediary, either the hypervisor (e.g.
KVM [26], VMware ESX server [10]) or a driver do-
main (e.g. Xen [13]). Today, this category of systems is
most commonly used in virtualized servers since it offers
a rich set of features, including security, isolation, and
mobility. There are several software virtual switches—
such as Linux bridge [1], VMware vswitch [32], Cisco
Nexus 1000v [8], Open vSwitch [24], etc.—that are used
in these systems. Recently, Rizzo et al. [30] also pro-
posed a new virtual switching solution based on their
netmap API. They use memory-mapped buffers to avoid
data copies inside the host. It will be interesting to see if
the netmap API can be exported all the way to the VMs.
Unlike Hyper-Switch, all these existing systems imple-
ment the entire virtual switch within a single software
domain—either the hypervisor or the driver domain. But
we believe that the optimizations proposed in this paper
are applicable to many of these solutions. Further, in this
paper, the Hyper-Switch’s performance was only com-
pared to the performance under Xen and KVM. A recent
report from VMware has shown an impressive perfor-
mance of 27 Gbps between two VMs running on their
vSphere architecture [33]. Unfortunately, it is hard to
compare this to Hyper-Switch’s performance since the
hardware platforms used in the evaluations are vastly dif-
ferent.

The second category of systems employ more sophis-
ticated NICs (direct-access NICs) with multiple con-
texts that present a VNIC interface directly to each
VM [20, 27, 34]. Today, there exists an industry-wide
standard called SR-IOV, which has been adopted by sev-
eral network interface vendors to implement this solu-
tion [6, 16, 22]. These NICs also implement a virtual
switch internally within the hardware. However, today
most of them only implement a rudimentary form of
switch. The sNICh [28] architecture explores the idea
of switch/server integration. It implements a full-fledged
switch while enabling a low cost NIC solution, by ex-
ploiting its tight integration with the server internals.
This makes sSNICh more valuable than simply a combina-
tion of a network interface and a datacenter switch. Luo
et al. [19] propose offloading Open vSwitch’s in-kernel
data path to programmable NICs. Similarly, one can also
imagine offloading Hyper-Switch’s data plane to the NIC
hardware. These solutions can enable high-performance
since the VMs directly communicate with the NIC. But,
in general, they lack the flexibility that pure software so-
lutions offer.

The third category of switches attempt to leverage
the functionality that already exist in today’s datacen-
ter switches. This approach uses an external switch for
switching all network packets [9, 23]. But, fundamen-

tally, this approach results in a waste of network band-
width since even packets from inter-VM traffic must
travel all the way to the external switch and back again.

There have also been proposals to distribute virtual
networking across all endpoints within a data center [7,
11]. Here the software-based components reside on all
servers that collaborate with each other and implement
network virtualization and access control for VMs, while
network switches are completely unaware of the indi-
vidual VMs on the end-points. All these architectures
are aimed at solving the network management problem,
which is not the focus of this paper. But the Hyper-
Switch can easily be a part of these solutions.

7 Conclusions

This paper presented the Hyper-Switch architecture that
combines the best of the existing last hop virtual switch-
ing architectures. It hosts the device drivers in a driver
domain to isolate any faults and the last hop virtual
switch in the hypervisor to perform efficient packet
switching. In particular, the hypervisor implements just
the fast, efficient data plane of a flow-based software
switch. The driver domain is needed only for handling
external network traffic.

Further, this paper also presented several carefully de-
signed optimizations that enable efficient packet process-
ing, better utilization of the available CPU resources, and
higher concurrency. The optimizations take advantage of
the Hyper-Switch data plane’s integration within the hy-
pervisor. As aresult, the Hyper-Switch enables much im-
proved and scalable network performance, while main-
taining the robustness and fault tolerance that derive from
the use of driver domains. Moreover, these optimizations
should be a part of any virtual switching solution that
aims to deliver high performance.

This paper also presented an evaluation of the Hyper-
Switch architecture using a prototype implemented in
the Xen platform. The evaluation showed that, for
inter-VM network communication, the Hyper-Switch
achieved higher performance and exhibited better scal-
ability than both Xen’s default network I/O architecture
and KVM’s vhost-net architecture. Further, the external
network performance under Hyper-Switch was compara-
ble and in some cases even better than the performance
under Xen and KVM.

References

[1] Linux Ethernet bridge. http://www.linuxfoundation.org/
collaborate/workgroups/networking/bridge.

[2] Netperf: A network performance benchmark. http://www.
netperf.org, 1995. Revision 2.5.

[3] AMD CORPORATION. Shared level-1 instruction-cache perfor-
mance on AMD family 15h CPUs.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 23

[4]

[6]

[7]

[8]

91

[10]

[11]

(12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HAR-
RIS, T. L., HO, A., NEUGEBAUER, R., PRATT, 1., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP "03:
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (October 2003), pp. 164-177.

BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

BROADCOM CORPORATION. BCM57712 product
brief. http://www.broadcom.com/collateral/pb/
57712-PB00-R. pdf, January 2010.

CABUK, S., DALTON, C.1.,RAMASAMY, H., AND SCHUNTER,
M. Towards automated provisioning of secure virtualized net-
works. In CCS ’08: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (October 2007),
pp- 235-245.

CISCO SYSTEMS, INC. Cisco Nexus 1000V series switches.
http://www.cisco.com/en/US/prod/collateral/
switches/ps9441/ps9902/data_sheet_c78-492971.pdf,
August 2011.

CONGDON, P. Virtual Ethernet port aggregator.
http://wuw.ieee802.0rg/1/files/public/docs2008/
new- congdon-vepa-1108-v01.pdf, November 2008.

DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualiza-
tion system including a virtual machine monitor for a computer
with a segmented architecture. US Patent #6,397,242 (October
1998).

EDWARDS, A., FISCHER, A., AND LAIN, A. Diverter: A new
approach to networking within virtualized infrastructures. In
WREN °09: Proceedings of the ACM SIGCOMM Workshop: Re-
search on Enterprise Networking (August 2009).

ESMAEILZADEH, H., BLEM, E., ST. AMANT, R.,
SANKARALINGAM, K., AND BURGER, D. Dark silicon
and the end of multicore scaling. In Proceedings of the 38th
annual international symposium on Compute r architecture
(New York, NY, USA, 2011),ISCA "11, ACM, pp. 365-376.

FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMS, M. Safe hardware access with
the Xen virtual machine monitor. In OASIS '04: Proceedings of
the 1st Workshop on Operating System and Architectural Support
for the on demand IT Infrastructure (October 2004).

GREENBERG, A., HAMILTON, J., MALTZ, D. A., AND PATEL,
P. The cost of a cloud: Research problems in data center networ
ks. SIGCOMM Computer Communcation Review 39, 1 (2009),
68-73.

INTEL. http://goo.gl/51p¥8,2010. "Intel 1000 Core Chip".

INTEL CORPORATION. Intel 82599 10 GbLE controller
datasheet. http://download.intel.com/design/
network/datashts/82599_datasheet.pdf, October 2011.
Revision 2.72.

KUMAR, S., RAJ, H., SCHWAN, K., AND GANEV, I. Re-
architecting VMMs for multicore systems: The sidecore ap-
proach. In WIOSCA ’07: Proceedings of the Workshop on the
Interaction between Operating Systems and Computer Architec-
ture (June 2007).

LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX:
Split guest/hypervisor execution on multi-core. In WIOV ’11:
Proceedings of the 4th Workshop on I/O Virtualization (May
2011).

Luo, Y., MURRAY, E., AND FICARRA, T. Accelerated vir-
tual switching with programmable NICs for scalable data center
networking. In VISA ’10: Proceedings of the 2nd ACM SIG-
COMM Workshop on Virtualized Infrastructure Systems and Ar-
chitectures (September 2010).

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

MANSLEY, K., LAW, G., RIDDOCH, D., BARZINI, G., TUR-
TON, N., AND POPE, S. Getting 10 Gb/s from Xen: Safe and
fast device access from unprivileged domains. In Proceedings
of the Euro-Par Workshop on Parallel Processing (August 2007),
pp. 224-233.

MENON, A., SANTOS, J.R., TURNER, Y., JANAKIRAMAN, G.,
AND ZWAENEPOEL, W. Diagnosing performance overheads in
the Xen virtual machine environment. In VEE ’05: Proceedings
of the 1st ACM/USENIX International Conference on Virtual Ex-
ecution Environments (June 2005), pp. 13-23.

PCI-SIG. Single Root I/O Virtualization. http://www.
pcisig.com/specifications/iov/single_root.

PELISSIER, J. VNTag 101.
ieee802.org/1/files/public/docs2009/
new-pelissier-vntag-seminar-0508.pdf, 2009.

http://wuw.

PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending networking into the virtual-
ization layer. In HotNets-VIII: Proceedings of the Workshop on
Hot Topics in Networks (October 2009).

PORTERFIELD, A., FOWLER, R., MANDAL, A., AND LIM,
M. Y. Empirical evaluation of multi-core memory concur-
rency. Tech. rep., RENCI, January 2009. www.renci.org/
publications/techreports/TR-09-01.pdf.

QUMRANET. KVM: Kernel-based virtualization driver. http:
//www.redhat.com/f/pdf/rhev/DOC-KVM. pdf.

RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In HPDC ’07: Pro-
ceedings of the IEEE International Symposium on High Perfor-
mance Distributed Computing (June 2007).

RAM, K. K., MUDIGONDA, J., COX, A. L., RIXNER, S., RAN-
GANATHAN, P., AND SANTOS, J. R. sNICh: Efficient last hop
networking in the data center. In ANCS ’10: Proceedings of
the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (October 2010), pp. 1-12.

RaAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10 Gb/s using safe and transparent net-
work interface virtualization. In VEE '09: Proceedings of the
ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (March 2009), pp. 61-70.

Rizzo, L., AND LETTIERI, G. VALE, a switched ethernet for
virtual machines. In CONEXT ’12: Proceedings of the 8th Inter-
national Conference on Emerging Networking Experiments and
Technologies (Decemeber 2012), pp. 61-72.

SANTOS, J.R., TURNER, Y., JANAKIRAMAN, G., AND PRATT,
I. Bridging the gap between software and hardware techniques
for I/O virtualization. In ATC '08: Proceedings of the USENIX
Annual Technical Conference (June 2008), pp. 29-42.

VMWARE, INC. VMware virtual networking con-
cepts. http://www.vmware.com/files/pdf/virtual_
networking_concepts.pdf, 2007.

VMWARE, INC. VMware vSphere 4.1 networking perfor-
mance. http://www.vmware.com/files/pdf/techpaper/
Performance-Networking-vSphere4-1-WP.pdf, April
2011.

WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., Cox, A. L., AND ZWAENEPOEL, W. Concurrent di-
rect network access for virtual machine monitors. In HPCA
'07: Proceedings of the 13th International Symposium on High-
Performance Computer Architecture (February 2007).

24 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

MiG: Efficient Migration of Desktop VMs
using Semantic Compression

Anshul Raif, Ramachandran Ramjee’, Ashok Anand#;
Venkata N. Padmanabhan®, and George Varghese®

"Microsoft Research India

ABSTRACT

We consider the problem of efficiently migrating desktop
virtual machines. The key challenge is to migrate the desk-
top VM quickly and in a bandwidth-efficient manner. The
idea of replaying computation to reconstruct state seems ap-
pealing. However, our detailed analysis shows that the match
between the source memory and the memory reconstructed
via replay at the destination is poor, even at the sub-page
level; the ability to reconstruct memory state is stymied be-
cause modern OSes use address space layout randomization
(ASLR) to improve security, and page prefetching to im-
prove performance.

Despite these challenges, we show that desktop VM mem-
ory state can be efficiently compressed for transfer without
relying on replay, using a suite of semantic techniques — col-
lectively dubbed as MiG — that are tailored to the type of
each memory page. Our evaluation on Windows and Linux
desktop VMs shows that MiG is able to compress the VM
state effectively, requiring on average 51-65% fewer bytes to
be transferred during migration compared to standard com-
pression, and halving the migration time in a typical setting.

1. INTRODUCTION

Efficient migration of desktop virtual machines (VM) is
important in a variety of scenarios. First, consider the vision
of a desktop PC environment that is always available and lo-
cal to the user [15, 16, 25, 27]. In these systems, the user’s
desktop environment is encapsulated in a VM, so that it can
be moved flexibly between, say, the user’s office worksta-
tion, home PC, and laptop, providing a seamless computing
experience, without sacrificing interactive responsiveness of
local execution. Second, consider the desktop as a service
model where desktop VMs execute in the cloud and are ac-
cessible from any local device. A key requirement in this
scenario is ensuring low response times [24]. This necessi-
tates migrating the VM over WAN links so that the VM exe-
cutes in a data center that is always close to the user. Finally,
desktop VM migration has also been utilized for saving en-
ergy [20]. In these systems, when the user is not engaged in
computing, the VM is migrated to a server in the cloud so
that the local machine can go to sleep and save energy.

*The author was an intern at MSR India during part of this work.

*Bell Labs India

$Microsoft Research US

A key challenge common to the above scenarios is effi-
cient migration of VMs, both in terms of migration time and
the amount of data transferred, especially over links of mod-
est bandwidth. For instance, transferring a 4 GB VM over a
10 Mbps connection would take nearly an hour, which can
be frustrating for a user who wants to transfer the VM from
workplace or cloud to her home for better interactivity. Fur-
ther, many ISPs worldwide offer tiered service plans with
bandwidth caps ranging from 1GB to 250GB per month,
with higher cost for higher limits [4]; apart from transfer
time, a home user would also care equally about the amount
of bytes transferred.

In this paper, we consider the problem of efficiently mi-
grating desktop VMs. We start by revisiting the idea of re-
playing input to speed up migration [28] and show its limi-
tations in practice. We then present MiG, which categorizes
memory pages based on type (e.g., free page, code (i.e., im-
age) page, heap page, etc.) and then employs a page-type-
specific technique to perform effective compression. This
paper only considers migration of memory state; while mi-
gration of disk state could be important in certain settings,
measurements presented in prior work show that the amount
of dirty disk state to be migrated is an order or magnitude
smaller than the VM’s memory size (e.g., [20] reports dirty-
ing of disk blocks at an uncompressed rate of 40-100 MB
per hour).

Input replay has been proposed as a technique to speed
up desktop VM migration [28], by trading computation for
byte savings. By replaying user input (e.g., keyboard/mouse
events), the “same” computation is performed on the desti-
nation machine. The hope is to recreate much of the source’s
memory state on the destination, thereby reducing the state
to be transferred during VM migration. Our study reveals
that mechanisms employed by modern OSes pose many prac-
tical difficulties in benefiting from input replay.

First, for improving interactive performance, modern desk-
top OSes prefetch pages into memory based on user actions,
application behavior, etc. (e.g., SuperFetch [9] in Windows
and preload in Linux). Thus, a long running workload might
result in a certain set of pages prefetched into memory while
the same workload, replayed in an accelerated fashion for
fast migration, might result in a different set of prefetched
pages at the replayed VM.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 25

Second, for security reasons, modern OSes (e.g., Win-
dows Vista/7 and recent versions of Linux) employ Address
Space Layout Randomization (ASLR), wherein the layout of
code segments is randomized, which in turn impacts the val-
ues of the embedded pointers. Therefore, the “same” pages,
or even sub-pages, at the source and the destination will not
match with input replay.

Third, managed code runtimes (e.g., the .NET Common
Language Runtime) actively manage memory using mech-
anisms such as garbage collection. The invocation of these
mechanisms during replay on the destination machine will
typically not match that on the source machine, resulting in
poor matches for heap pages. We find that even matching at
the level of heap allocation units yields little benefit.

Our first contribution in this paper is an evaluation of the
impact of the above mechanisms through extensive measure-
ments of VMs running multiple flavours of Windows and
Linux, spanning the evolution in the prevalence of ASLR
and page prefetching. Our findings go beyond a recent study
of memory similarity in VMs [13] by showing that even
identical VMs with identical input can have dramatic differ-
ences in memory, even at the sub-page level. For example,
while zero pages account for 72% of the pages in a Win-
dows XP VM that is left running for several hours, the cor-
responding figure for the newer Windows 7 OS is only 4%,
because of SuperFetch implemented by the latter. Likewise,
the fraction of non-zero pages that match across two freshly
booted VMs goes from 66% in the case of Windows XP to
33% with Windows 7, on account of ASLR. We also see a
corresponding, though less pronounced, trend with Linux.

Despite the above findings, we show that we do not have
to turn off prefetching and ASLR (which could have undesir-
able performance and security implications) for efficient VM
migration. We present MiG, our second contribution, which
leverages observations from our measurement study to tailor
compression to the semantics of memory pages, thereby ob-
taining significant gains in the context of VM migration. The
page-semantics-dependent techniques including identifying
and suppressing free pages, eliminating significant intra-VM
redundancy in heap pages and compressing image and Su-
perFetch pages using a novel approach that uses file sys-
tem data as a primer dictionary for a dictionary-based redun-
dancy elimination [12]. Our experiments bear out the effec-
tiveness of MiG, which yields average byte savings of 51%
and 65% over a gzip-compressed VM image, for Windows
and Linux desktop VMs, respectively. These byte savings
translate into a significant speedup in migration time; e.g.,
for a 2GB Windows 7 VM being migrated over a 10Mbps
link, MiG halves the migration time (including computing
overhead) to 275s from 558s with gzip-only compression.

Our third contribution is a reality check on the gains achiev-

able through replay. To this end, we develop MiG-Replay,
which uses MiG as the starting point but additionally ex-
ploits full page and heap matches with respect to the memory
state of a replayed VM. We find that MiG-Replay can pro-
vide 15% gains over MiG but only in specific cases where

Type WinXP | Win7 | Debian 6d | Debian 6
Blank VM 85% 66% 89% 80%
Short workload 2% 47% 68% 56%
Long Workload 72% 4% 63% 55%

Table 1: Zero pages in Win XP, Win 7, Debian 6 with
preload/ASLR disabled (Debian 6d) and Debian 6

Type WinXP | Win7 | Debian 6d | Debian 6
Blank VM 66% 33% 76% 61%
Short+Paced 42% 34% 66% 48%
Long+Accelerated 41% 14% 62% 43%

Table 2: Identical non-zero pages in OSes with replay

either the workload is short or the pace of replay is identi-
cal to the original; for long workloads and where replay is
accelerated in time to be practical, MiG-Replay even under-
performs MiG, because of ASLR and SuperFetch.

2. MEMORY SIMILARITY

A high degree of full and partial page similarity were re-
ported [23] in Windows XP and older Linux VMs (Debian
3.1/Slackware 10.2). A recent study [13] of memory simi-
larity among VMs shows that page similarity has reduced to
15%. However, these studies [13, 23] were in the context of
a server hosting disparate VMs. In this section, we character-
ize memory similarity between two identical VMs provided
with identical input. In particular, we seek to answer the fol-
lowing questions:

e How similar are two VMs at the full page level? At the
sub-page level?

e How effective are existing techniques, like rsync [29], in
leveraging inter-VM similarity?

e How do these similarities vary for different page types
(e.g., Heap, Image, etc.)?

e How much redundancy exists intra-VM? How effective
are existing compression techniques (gzip, bzip2, 7zip)
on intra-VM redundancy?

Understanding these issues is crucial for designing an effi-
cient migration scheme. We now briefly describe the work-
load and the replay techniques used in our experiments be-
fore presenting the results of our analysis.

2.1 VM Workloads and Input Replay

Workload. Our workload consists of VMs running various
versions of Windows and Linux for three cases: i) Freshly
booted blank VM, ii) short workload of running applications
for 30 minutes and iii) long workload of running applica-
tions over several hours (workload is typical desktop office
applications, detailed in Section 5).

Replay. Replay on VMs can be accomplished in a num-
ber of ways. Instruction-level replay with strict adherence to
timing as in the ReVirt system [21] will ensure that the des-
tination VM is identical to the source VM in all respects.
However, accomplishing instruction-level replay on a multi-
processor system has large overheads [22]. In this paper, we

26 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Figure 1: Distribution of sub-page matches

15 42494205 40 3416 15 -42.46
40 M7 35 — 40
35 @ 30 125.81 35
% §30 128 2307 %
30 © 25 30
]] — 8 2350
225 €20 €25 —
320 815 g2 14.16
=15 10.02 H & 15 —
3 R 16:02 & 5.99 Q 10 o 120
s L[] 171 090 054 070 070 0.9 5 3.03 184 180 207 222 — s *97316 252 277 2.38 >
0 R = 0 Ooooollll 0 oo oo O
R - S\ W St A Ao DN S A S D B 5 DN D A H DN
00 %W% &f’qj v’o’N m’@ * %@ & ¢ 0’0 ‘b:f) Qf"% va 'v@ Qf\b %g’q & 00 %ﬁ? @7’% n ’\1@ 07\% Y
F Yy PP A B A G A B S
Word match count Word match count Word match count
(a) WinXP Paced (b) Win7 Paced (c) Win7 Accelerated
90 14 60
80 12 s0
70
o 60 o @ 40
£ s & 8 &
g w0 g § 30
L9 g° g,
a a4
20 5 10
10
0 -+ + + o + + + + + + + + + + + + + 1 o + + 1
0O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 0O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
64-byte chunk match count 64-byte chunk match count 64-byte chunk match count
(d) WinXP Paced (e) Win7 Paced (f) Win7 Accelerated

consider input replay, which involves simply replaying the
user inputs to the system (e.g., keyboard and mouse events),
detailed in Section 5). While input replay cannot guarantee
that the destination VM memory is identical to the source
VM due to non-determinism and network interactions, the
hope is to recreate similar memory so that creating an iden-
tical version is efficient. In this section, we evaluate the sim-
ilarity of VMs that are created using this input replay mech-
anism.

We consider 3 scenarios: i) Blank VM: two freshly booted
VMs, ii) short workload, paced replay: two VMs with iden-
tical apps executing for 30 minutes with paced input replay
(same keyboard and mouse events paced identically at both
VMs), iii) long workload, accelerated replay: two VMs with
identical apps/replay but one is a long running VM where in-
put is spread over a period of several hours representing typ-
ical usage, while, in the other VM the input is accelerated in
time (e.g., ten minutes), representing a practical scenario of
using replay for fast migration.

2.2 Page-level Similarity

We start with Table 1 that lists the percentage of zero
pages in VMs running various OSes that have each been al-
located 2 GB of memory. We see that the fraction of zero
pages in Windows XP starts at 85% and reduces to 72%; in
the case of Windows 7, the fraction of zero pages starts at
66% but goes down to 4% for the long workload case.

The dramatic reduction in zero pages in Windows 7 is due
to a new feature that was first introduced in Windows Vista
called SuperFetch [9]. SuperFetch is a user-customized pre-
fetching technique that tracks application usage and selec-
tively preloads applications or data into memory in order to
improve interactive responsiveness. Linux has a similar fea-
ture called preload available in Debian 6 that preloads pages

to improve performance. While it does not appear to be as
aggressive as SuperFetch, it also reduces the number of zero
pages. For a blank VM, Debian with preload disabled had
89% zero pages which reduces to 80% with preload enabled,
and for a long workload, the corresponding numbers are 63%
and 55%, respectively.

Next, in Table 2, we consider the number of identical non-
zero pages when replay is used. Consider the case of freshly
booted Windows XP and Windows 7 VMs. While 66% of the
non-zero pages are identical in two XP VMs, only 33% are
identical in Windows 7. Next consider paced replay which
represents an ideal scenario for recreating similar memory;
the percentage of identical non-zero pages in Windows XP
reduces to 42%, while, for Windows 7 it is 34%.

However, in the more practical accelerated replay scenario,
we notice an interesting divergence. While the numbers for
Windows XP do not change significantly, we notice a dras-
tic reduction in the percentage of identical non-zero pages in
Windows 7 to 14%. This reduction is due to a combination of
SuperFetch (acceleration of input has significant impact on
SuperFetch’s pre-fetching) and ASLR, that we will discuss
in the next sub-section.

In the case of Linux, we verified that Debian 3.1 used in
Difference Engine [23] does not have ASLR while Debian
6 has a weaker form of ASLR with less randomization, re-
sulting in higher non-zero page matches than Windows 7.
For the long workload, accelerated replay scenario, Debian
6 with ASLR and preload disabled had 62% non-zero iden-
tical page matches which reduced to 43% when ASLR and
preload was enabled.

Two observations follow from these results:

e O1: Fraction of zero pages is dramatically reduced to 4%
in Windows 7 and significantly reduced to 55% in Debian
6 compared to 70+% in Windows XP due to prefetching.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 27

e 02: Fraction of identical non-zero pages between two
Windows 7 VMs running identical applications with iden-
tical input ranges between 14-33% compared to 41-66%
for Windows XP and 43-61% for Debian 6.

2.3 Sub-page-level Similarity

We now investigate partial-page similarity between two
2GB identical VMs provided with same input. A brute-force
way to identify a page in the second VM most similar to
a page in the source VM would entail 2GB*2GB or 10'
comparisons! Instead, we adapt Min-wise hashing [14] and
compute hashes of each 4-byte word using 16 hash func-
tions. For each hash function, we store the minimum hash
value of all words in the page as a 16-tuple that succinctly
represents the page. For each page in the source VM, we
find the page in the second VM with the largest number of
matching hash values in the 16-tuple. Tuple similarity is an
unbiased estimator [14] of page similarity, a fact we verified
by brute-force calculation on a small sample of source VM.
After finding the most similar page in the destination VM,
we compute a similarity measure as the number of corre-
sponding words that match between the two similar pages

The distribution of word match count between non-zero
pages of two identical Windows XP and Windows 7 VMs are
shown in Figures la and 1b, respectively. Note that a page
is 4KB in size and thus there are 1024 4-byte words in a
page. Consider Windows XP with paced replay (accelerated
replay is similar). We find that, in 42% of pages, the word-
level match count is 1024, i.e., these are identical pages.
We also find that, for another 42.5% of the pages, there is
a very high degree of similarity (896-1023 word matches).
Now consider Windows 7 with paced replay. While 34% of
pages are identical, only 23% of pages have a high degree of
similarity.

The presence of highly similar pages is not sufficient for
reducing the amount of bytes transferred; the word differ-
ences in these similar pages must also be clustered to have
long sequences of continuous word matches, which can be
efficiently removed. To examine this issue, we segment each
4 KB page into sixty four 64-byte chunks and study the dis-
tribution of differences between the highly similar pages.
Figure 1d shows that the differences are indeed clustered in
the case of Windows XP (56 or more out of 64 chunks match
in over 90% of the cases) while Figures le and 1f shows that
the differences are spread throughout the page in the case of
Windows 7, resulting in far fewer chunk-level matches.

The difference between Windows XP and Windows 7 is
due to Address Space Layout Randomization (ASLR) [2],
a security feature where the start addresses of executables,
the heap, etc. are placed at random locations to make it diffi-
cult for an attacker to guess. The randomization, performed
at the granularity of 64 KB chunks, can result in pointer ref-
erences in code/heap pages being different in executions in
two VMs. This results in differences between similar Win-
dows 7 pages being spread throughout the page. For Linux, a
minimal version of ASLR was enabled only in 2.6.12 while

both Linux versions studied in [23] used older kernels. Thus,
while the authors in [23] found a high degree of partial page
matches (> 2KB) across VMs, our findings corroborate the
diminished page sharing found in [13].

Finally, Figure 1c shows the distribution of word match
count for the Windows 7 VM with accelerated replay. The
fraction of pages that have very low match (0-127) has in-
creased to 42.5% for the Windows 7 VM with accelerated
replay, up from 26% in the case of Windows 7 VM with
paced replay and just 10% in the case of Windows XP. Su-
perFetch is the primary reason for this increase in the preva-
lence of low matches (as elaborated further in Section 2.5),
since SuperFetch customized to the first VM is unlikely to
make matching decisions regarding prefetching in the sec-
ond VM, where the input replay is accelerated in time.

Summarizing sub-page-level similarity results:

e 03: Even among pages that are highly similar (896-1023
word matches), the locations of differences in the page
are not clustered in Windows 7 due to ASLR. Thus, par-
tial page sharing opportunities, as identified in [23], are
significantly diminished.

e O4: Fraction of pages with little match is significant (42%)
in Windows 7, primarily, due to SuperFetch.

2.4 Chunk-level Matches using rsync

While pages are a natural way of segmenting physical
memory, an alternative is finer-grained chunk-level match-
ing between two VMs. In this section, we consider synchro-
nizing two VM memory dumps using rsync[29], a file syn-
chronization application that leverages a similar, remote ver-
sion of the file for compression. rsync computes sliding
window chunk hashes over the remote version (replayed VM
in our case) and uses these hashes to identify and compress
identical chunks in the local version (current VM) for effi-
cient migration.

We perform a parameter sweep, in steps of 32 bytes, to
determine the optimal chunk-size for rsync that maximizes
compression for the VM dumps. Using this optimal chunk
size (128 bytes), rsync yields compression savings of 69.7%
and 40.4%, respectively, for the Windows 7 with paced and
accelerated replay.. These savings correspond roughly to the
sum of the last three bars in Figures 1b and 1c, respectively.
Applying gzip in addition to rsync yields a total savings of
72.5% with accelerated replay.

In the context of VM migration, the on-the-wire traffic
goes from 100-66.5 = 33.5% with gzip compression alone
to 100-72.5 = 27.5% of the VM size with rsync (plus gzip).
Thus, rsync, which relies on replay, provides only a modest
18% relative byte savings over gzip. Furthermore, it takes
840s, 10X slower than gzip.

e O5: Applying a fine-grained chunk-matching technique
like rsync on two VMs with identical applications and
identical replay, only yields about an 18% reduction over
conventional gzip compression.

28 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Il Heap MImage =Kernel % SuperFetch # NonZero Free

0 R
& 50 . \7
g 38 1] §; ; §l
0 E N\

Word match count

Figure 2: Page Type Distribution

2.5 Semantic Analysis

To gain a deeper understanding, we now parse the page
similarity results by page type. We consider the accelerated
replay case. We classify the pages into five categories: heap,
image (i.e., code), kernel, SuperFetch, and free. Figure 2
shows the relative distribution of different page types, cor-
responding to a few cases in Figure lc, namely, pages with
very low matches (0-127), highly similar pages (896-1023),
and identical pages (1024).

For pages with very low match (0-127), SuperFetch pages
are dominant, (50%); this is caused due to the difference in
the prefetching decisions in the long-running VM and the
replayed VM where input is accelerated in time. In contrast,
for pages with high similarity (896-1023), heap is dominant
(over 50%) while SuperFetch is second (over 20%). ASLR
converts what might have been identical pages in Windows
XP into pages that are highly similar in Windows 7. Finally,
for identical page matches, SuperFetch constitutes over 60%,
followed by kernel pages at 20%.

Full VM | Heap | Image | Kernel | SFetch
66.5% 80.0% | 69.2% | 67.6% | 47.3%

Free |
81.4% |

Table 3: Savings by page type using gzip

Intra-VM redundancy: We applied gzip on the entire VM
and also on different collection of pages collated by their
type (Table 3). While the entire VM can be reduced by 66.5%
using gzip, we see that compression savings vary signifi-
cantly across page types. Heap and free pages can be reduced
by 80% (due to a predominance of zero bytes; e.g. 66% of
bytes in heap pages were zeros compared to 45% for the en-
tire VM), while SuperFetch pages can be reduced by only
47%.

gzip vs bzip2 vs 7zip: We also examined other well-known
compression utilities such as bzip2 and 7zip that have been
shown to be better than gzip in other contexts [18]. However,
these utilities were all significantly slower than gzip, signifi-
cantly inflating overall VM migration time, another metric of
interest in our setting. For example, on a 2.2 GHz CPU core,
gzip takes 65s when optimized for speed (with compression
savings of 66.5%) and 117s when optimized for compression
(savings increases to 68.5%). In contrast, using default set-
tings, bzip2 [5] takes 390s to reduce the VM by 68.4% and
7zip [1] takes 810s to reduce the VM by 77.5%.

Summarizing, semantic analysis of memory pages helps
inform our design of efficient migration:

e 06: Free pages can be compressed by almost 100% since
these need not be transferred.

e O7: Heap pages are highly compressible using gzip.

e O8: SuperFetch pages constitute a significant fraction of
low-match pages and are not highly compressible using
gzip. Hence, we need an efficient technique for transfer-
ring these pages. Many SuperFetch pages are also image
pages; a technique that works for these SuperFetch pages
will also work for image pages.

e 09: Full page matches can benefit kernel and SuperFetch
pages.

3. MIG DESIGN

We now present the design of MiG, our solution for ef-

ficient migration of desktop VMs, which does not resort to
input replay. As a point of comparison, we also design MiG-
Replay, which leverages a replayed VM’s memory state where
appropriate.
Design Constraints: In order to ensure correct operation
post migration, we need to ensure that source memory is
replicated fully and identically at destination. Even the goal
of input replay is only to create similar memory at the desti-
nation so that creating an identical version is efficient, since
as mentioned earlier, due to non-determinism and network
interactions, input replay cannot guarantee a semantically
identical VM.

The only exception to the above is that Free pages need
not be identical since the OS does not rely on its contents.
Note that even SuperFetch pages have to be identical at the
two ends. This is because the SuperFetch service may “acti-
vate” these pages at any time based on its internal represen-
tation (e.g, SuperFetch page 1 is image page for process x),
without the knowledge of the hypervisor.

Another constraint we impose is that the design should
not require changes to the guest OS. For example, requir-
ing that the guest OS implement a mechanism to get/set the
ASLR random seed via the hypervisor is out of scope. This
is to ensure that the migration solution will work for exist-
ing versions of guest OSes that are deployed today. Note that
this constraint does not preclude the design from using any
publicly documented information of the guest OSes for its
operation, since this does not affect its deployability.

3.1 Overview

At a high level, MiG and MiG-Replay operate as follows.
When a desktop machine is to be migrated from a source ma-
chine S to a destination machine D, we examine each mem-
ory page on S and apply techniques tailored to the type of
the page. MiG relies only on local state at S, including disk
state that has been synced previously, MiG-Replay, in addi-
tion, also leverages the memory state of the VM at D that
has been constructed via input replay. The set of techniques
applied derives from the observations O6 through O9:

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 29

e Free/Zero pages: In both MiG and MiG-Replay, these
pages are identified on S and not transferred.

e Full-page matches: In MiG, memory image of a freshly
booted VM is pre-provisioned at both S and D. Full-page
matches with respect to this “blank VM” helps reduce the
bytes transferred. In MiG-Replay, full-page matches are
computed against the replayed VM at D instead of a blank
VM.

e Image/SuperFetch pages: For image pages, whether ac-
tive or prefetched, both MiG and MiG-Replay employ a
novel approach involving statically precomputing a com-
mon, primer dictionary at both S and D. This dictionary
comprises the contents of commonly-accessed executable
and library files, and is used as a reference for computing
a diff of the memory state.

Heap pages: In MiG, we employ a combination of history-
based redundancy elimination [12] and gzip to identify

and eliminate redundancy within heap pages. In MiG-

Replay, where possible, we parse the heap to identify the

chunks that match between S and D.

e Other: For both MiG and MiG-Replay, the remaining
pages are compressed using a combination of dictionary-
based redundancy elimination [12] and gzip.

Next, we discuss each technique in greater detail.

3.2 Free/Zero Pages

MiG and MiG-Replay identify free/zero pages by parsing
the page allocation table on S (Section 4) and only convey
their indices to D, thereby achieving nearly 100% compres-
sion for these pages. Since free pages can have non-zero con-
tent, conventional compression schemes achieve less savings
on these pages (e.g., only 81% savings when gzip is applied
on free pages — Table 3).

3.3 Full-page Matches

As seen in Figure 2, kernel pages constitute a good per-
centage of full-page matches, in large part because ASLR is
typically not applied to kernel pages. Thus, MiG preprovi-
sions the memory state of a freshly booted “blank VM” and
the corresponding page hashes at both S and D. At transfer
time, MiG simply computes a fast 4-byte hash [6] for each
page at S, matches it against the hash list of the blank VM,
verifies using a byte-by-byte comparison with the local copy
(to neutralize hash collision risk), and sends across the index
and location of the matched page to D, which then reads in
the corresponding page from its local copy to reconstruct the
memory state.

In MiG-Replay, we look for full-page matches between
S and the replayed VM, D. A 4-byte hash is computed for
each page at S and these are sent across to D as a list of
(page index, hash) pairs. D then compares these hashes from
S with those computed locally on its own pages. When a
hash from S matches one at D, the corresponding page need
not be transferred from S to D. To reduce hash collision risk
in MiG-Replay, we also send a full 20-byte SHA1 hash [11]

of just the matched pages.

3.4 Image/SuperFetch Pages

Image pages comprise active pages that are in the ad-
dress space of a process as well as SuperFetch pages that
are prefetched in anticipation of future use. ASLR impacts
both active and SuperFetch pages by impeding even sub-
page level matching. Indeed, as reported in Section 2, even
if the page were divided into 64-byte chunks, 40-75% of the
pages have 8 or more chunks that do not match (Figures le
and 1f). The fine-grained nature of the matches, interspersed
with non-matching pointers, means that two pages would
ideally need to be compared side-by-side, defeating the goal
of efficient transfer.

3.4.1 Using Precomputed File System Context

For the reasons noted above, neither MiG nor MiG-Replay
relies on D for compressing image pages. Instead, as shown
in Figure 3, they employ a novel approach that builds on
the observation that the image pages in memory are derived
from the file system content. Indeed, the OS loader reads
binaries from the file system and places these in memory,
albeit with modifications because of ASLR. The content of
these binary files provides context both similar to the tar-
get pages (image/SuperFetch) and also locally available at
both S and D. Thus, the pre-computed context built using
file system content offers the prospect of good compression
savings without any overhead incurred in establishing the
shared context.

To realize pre-computed context based compression, we
prime the dictionary in an existing redundancy elimination
algorithm, EndRE [12]. EndRE works as follows. Given a
cache/dictionary of past packets that have been transferred
from a source to a destination, EndRE identifies contiguous
strings of bytes in the current packet that are also present in
the cache. This is accomplished by 1) identifying a set of
representative “fingerprints” for each packet 2) looking up
these fingerprints in a “fingerprints store” that holds the fin-
gerprints of all the past packets in the cache’ and 3) for each
fingerprint of the packet that is found in the store, the match-
ing packet is retrieved and the matching region is expanded
byte-by-byte in both directions to obtain the maximal re-
gion of redundant bytes. Once all matches are identified, the
matched segments are replaced with fixed-size pointers into
the cache, thereby suppressing redundancy. In the original
EndRE, the cache starts empty and is dynamically built up
as packets are transferred between source and destination. In
the primed version, the cache at both ends is primed with
2 GB worth of file system content, comprising commonly-
used binary and library files. The priming is done by passing
these files to EndRE which builds its internal data structures
for identifying redundancy. Subsequently, when the Super-
Fetch/image pages are passed to EndRE, contiguous byte
strings that are redundant with the bytes in the primed con-
text are identified and replaced with pointers, which are then
restored at the destination using its primed cache.

30 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

MiG: Combatting SuperFetch

* Exploit differences with file system content to migrate SuperFetch Pages

Free

App 2

Kernel

Free

o

MiG: Combatting ASLR
* Image pages: use diff with file system instead of matching with Destination
* Heap pages: match 64-byte chunks on heap entries with matching signatures

Use diff with

DLL1: Functio? F

file system
for Image
pages

v
DLL2: Function G

DLL1

Heap A

=

DLL2

Heap A

‘After
matching

heap entries,
match at 64-

Heap |

Heap ¥

DLL1: Function FI

DLL2: Fur‘mtion G

App 1 Kernel
Appl App 1 Free
SuperFetch App 2 zero
Proactively
loadsApp 1 physical pages of Destination VM with
pages Local VM replay of running apps

(a) SuperFetch (shaded pages) impacts the ability of replay
to recreate matching pages at the destination VM; MiG/MiG-
Replay exploit differences with (local) file system to migrate
these pages

byte chunk
level

Destination VM with
replay of running apps

Physical pages of
Local VM
(b) Due to ASLR, function and data pointers in image and heap
pages may not match across two VMs; MiG relies on intra-VM
redundancy for heap while MiG-Replay matches 64-byte heap
chunks across VMs

Figure 3: Illustration depicting how MiG and MiG-Replay combat SuperFetch and ASLR

While we have not performed any optimization or cus-
tomization of the context, we believe user-specific personal-
ization could yield both reduction in context size as well as
potentially higher compression savings.

3.5 Heap Pages

Now we turn to heap pages. Since MiG does not rely on
replay, it exploits intra-VM redundancy for heap pages. We
already saw that gzip was able to compress heap pages by
80% due to predominance of zero-bytes. Further, examining
the heap pages of a VM instance, we found that out of the
total heap of 670MB, about 170MB (non-zero bytes) was
redundant. Even though over 91% of this redundancy was
from within the heaps belonging to the same process, the
vast majority of the redundancy was between byte strings lo-
cated in different memory pages. So compression techniques
such as gzip, which look for redundancy over a small win-
dow (64KB), will often not be able to identify such redun-
dancy across disparate locations. Hence, to compress heap
pages, MiG uses an intra-VM redundancy technique based
on EndRE [12], that identifies redundancy over a large his-
tory (e.g., 2GB), coupled with gzip.

MiG-Replay, on the other hand, has the advantage of ac-
cess to the replayed VM to eke out additional gains over
MiG. Conceptually, replay should create a heap at D similar
or identical to the one at S. However, in practice there is a
distinction between heap content and heap structure. Replay
could, in fact, help make the heap content similar. Yet, the
structure of the heap could be very different across the two
ends because of garbage collection and compaction, which
kick in asynchronously.

Therefore, to match the process heaps across S and D,
MiG-Replay looks deeper. Heaps in Windows 7 come in two
forms: managed heap, whose structure can be parsed, and
unmanaged heap which are private to a process. For man-
aged heap, MiG-Replay performs a heap walk on the heap
of each process at S and D, to produce the list of heap entries
at each end. For each heap entry at S, MiG-Replay computes

a hash of its used portion (parts of the heap entry might be
unused), and sends it across to D. D looks through its heap
entries for hash matches. If a matching heap entry is found,
the corresponding content need not be transferred from S to
D.

As shown in Figure 3b, ASLR can again result in differ-
ing pointers inside the heap entries of S and D, that make an
exact match of the full heap entry less likely. To mitigate this
effect of ASLR, we chunk the heap entry into n-byte blocks
and compute 4-byte hashes to identify potential matches.
Based on our evaluation (Section 5), we find that blocks of
size n = 64 bytes provided us with the highest compression
savings. Finally, for unmanaged heaps, since the heap struc-
ture cannot be parsed, MiG-Replay simply chunks them into
64-byte chunks at S and looks for chunk matches at D on
corresponding heap pages that belong to the same process.

To keep the processing overhead manageable, we only ap-
ply the above procedure for heap entries that are larger than
1KB in allocated size. Our measurements show that heap
entries that qualify as being “large” per the above criterion
account for an overwhelming 80+% of the bytes in the heap.

We stress again that all of the above complexity associ-
ated with replay and parsing the heap is only for the case
of MiG-Replay, which we designed solely for the purpose of
comparison with the much simpler MiG scheme.

3.6 Other Pages

The pages that remain include stack pages, and also kernel
pages that did not benefit from a full-page match. For such
pages, both with MiG and MiG-Replay, we employ intra-
VM redundancy elimination using EndRE [12].

4. IMPLEMENTATION

We now briefly discuss the implementation of MiG on
Windows. MiG runs in the root partition of the Microsoft
Windows Server 2008 Hyper-V system [8]. While our cur-
rent prototype is targeted towards the quick migration fea-
ture of Hyper-V (suspend-migrate-resume), wherein the VM

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 31

state is saved, moved, and restored at the destination, we be-
lieve MiG can be effectively applied to the VM live migra-
tion [17] scenario as well.

To initiate migration, we use existing Hyper-V mecha-
nisms to save the state of the VM, which yields a VM phys-
ical memory file and two small (few MB) configuration files
containing the VM configuration information and the saved
state of devices. MiG reads in the saved physical memory
and extracts semantic information in two steps. First, it con-
sults a system-wide data structure, the Page Frame Number
(PEN) database, which has metadata information for each
page (zero or free, allocated to a process or kernel, etc.),
and allows the reverse mapping of a physical memory ad-
dress to the virtual address of a process, where applicable.
Second, MiG consults the Virtual Address Descriptor (VAD)
tree process-specific data structure to determine the type of
the page (MEM_PRIVATE for heap, MEM_IMAGE for code and
MEM_MAPPED for memory mapped file pages) in the virtual
address space. MiG then applies the appropriate technique
from Section 3 to each of the pages and, thus, creates a com-
pressed version of the memory file, which is migrated to the
destination. Note that both PFN and VAD are publicly docu-
mented, so while MiG is intrusive in having to look into the
memory state of the VM, it does not depend on access to any
proprietary information.

In case of MiG-Replay, our prototype takes in two saved
memory image files — one each corresponding to the orig-
inal and the replayed VM — and simply performs an anal-
ysis of the compression gains of having a replayed VM. In
addition to extracting the above semantic information, MiG-
Replay also performs a heap walk by parsing the heap struc-
ture of each process on the two VMs, to identify the allocated
heap chunks for heap compression.

For Linux, we use the libVMI tool [7] for introspection
into VM memory.

5. EVALUATION

Metrics. We evaluate the performance of MiG, MiG-Replay
and rsync primarily in terms of volume of bytes transferred
relative to using gzip as the compression scheme.! Let gzip
yield a total byte transfer requirement of bg;,,. For any other
scheme x (e.g., MiG), let the byte requirement be b,. The
byte savings, or compression gains, of x over the baseline

. bgsip—b
is then g, = (bgzip=bs) Ll x)
gzip

% 100. This relative savings metric
captures the byte§ saved compared to the scheme, namely
gzip, that is commonly used in commercial systems such as
Windows Server 2008 Hyper-V. Further, if compression pro-
cessing is faster than the link speed, this relative byte sav-
ings would translate into an equivalent reduction in migra-
tion time. Thus, we also evaluate the migration transfer time
for the various schemes. Finally, we do not present absolute

byte savings as a separate metric since it is already captured

I'We do not use rsync or 7zip as a baseline to compare against
since these are an order of magnitude slower than gzip at the set-
tings that provide savings.

as part of the migration transfer time metric. In general, ab-
solute byte savings for MiG ranges between 80-95% for the
various scenarios.

Workloads. We evaluate MiG performance for both Win-
dows and Linux OSes. For Windows, we collect memory
dumps from 10 desktops with real user workloads, running
the 32-bit version of Windows 7 with 2-4 GB of RAM, 8
of which were from desktops used by researchers and 2 by
admin staff. For Linux, we use 64-bit VMs running Debian
squeeze (2.6.32.5-amd64) and workload consists of a mix
of document editing (openoffice word/ presentation, gedit),
image manipulation (gimp, inkscape, photo manager), and
web-browsing (firefox, epiphany) applications, reflecting com-
mon desktop usage.

In order to evaluate MiG-Replay, we use Windows VMs
with artificially generated workloads that emulate a Win-
dows desktop computing environment, with applications such
as Outlook (email), Internet Explorer (browser), Word (doc-
ument editor), Excel (spreadsheet), etc. running. We use the
Autolt scripting language [3] to automate the Windows GUI
and design scripts to feed keyboard input into Word or Excel
interspersed with random think-time, sync email, download
pages from different websites, etc. We perform 5 runs of this
emulation, with different combinations of applications used
in each instance, with each experiment lasting between 30
minutes and four hours to mimic a user work session. For
each of these experiments, we also performed paced and ac-
celerated replay (same script without think-times).

5.1 MiG Byte Savings

Figures 4 and 5 show the percentage byte savings achieved
by MiG relative to gzip for each of the individual Windows
and Linux desktop VMs, respectively. First, we see that MiG
delivers consistent byte savings of 40%-60% for the ten Win-
dows VMs (average 51%) and 58%-68% for the five Linux
VMs (average 65%) over gzip.

It is interesting to observe the contribution of the differ-
ent MiG techniques towards achieving the overall gains. For
Linux VMs, the bulk of the gains come from the use of pre-
computed context (30-38%), followed by Full page matches
(18-25%) and intra-VM redundancy elimination (6-13%). In
contrast, for Windows VMs, the majority of the gains come
from Intra-VM redundancy elimination (35-44%), followed
by precomputed context (3-15%), Full page matches (2-7%),
and Free pages (0-7%).

The surprising finding in the above results is that while
the use of precomputed context (Section 3.4) provides sub-
stantial benefits for Linux VMs (30-38%), its contribution to
savings in Windows VMs is modest (3-15%). Upon examin-
ing this in more detail, we find that while precomputed con-
text in Windows had indeed full or partial matches with over
80% of image pages and 45% of SuperFetch pages®, many
of these matches were also captured by intra-VM redun-
dancy elimination. These intra-VM redundant matches were

2The lower cache hit rate for SuperFetch pages is because Super-
Fetch pages can also be non-image pages.

32 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

BFree %Full #Intra-VM & Context

8 60
"]
1]
£40
>
(]
7]
o 20 ¢
-
>
4]

0 4

10
Figure 4: MiG byte savings on Windows VMs

1 2 3 4 5 6 7 8 9

between pages belonging to the same DLL that had been
loaded by different processes (e.g., user32.dll was loaded by
almost 50 out of the 100 processes in one Windows desktop),
though, vast majority of these matches were for only small
portions of a page (average match length of only 107 and 83
bytes for image and SuperFetch pages, respectively). Thus,
in Windows, a substantial portion of the savings that would
have accrued from using a precomputed context is already
obtained by intra-VM redundancy elimination.

The other notable difference is the higher contribution of
Full page matches in Linux (18-25%) versus Windows (2-
7%). This is explained by the fact that Windows has much
more extensive ASLR support turned on by default than Linux
and agrees with the higher full page sharing numbers for
Linux (Section 2).

In summary, MiG delivers significant byte savings of 51%
and 65% over gzip for Windows and Linux desktop VMs, re-
spectively. The different techniques in MiG each contribute
towards achieving these savings, though, the significance of
each technique’s contribution varies between Windows and
Linux.

5.2 Replay

Figure 6 depicts the byte savings relative to gzip for the
non-semantic scheme rsync, and the two semantic schemes
(MiG and MiG-replay) for four Windows desktop VM work-
loads, viz., different combinations of short/long workloads
and paced/accelerated replays. In this case, short/long work-
loads lasted 30 mins/four hours of automated use of office
applications and while paced replay took the same time as
the original workload, accelerated replay took under ten min-
utes to complete for both workloads.

From the figure, we see that MiG provides average sav-
ings relative to gzip of 38-48% for all these workloads with-
out relying on any replay. Using the replayed VM memory,
we find that rsync provides about 18-34% relative savings
while MiG-Replay provides 39-63% relative savings. Note
that rsync gains over gzip are modest when the replay is
accelerated, indicating that the memory image created with
accelerated replay is not as close to the source image as in
paced replay.

Interestingly, MiG-Replay delivers about 15% additional
savings compared to MiG in cases where either the replay is
paced or the workload is short; however, when the workload

Byte Savings (%)

D
o

Y
o

g
o

o

BFree #%Full #Intra-VM & Context

1 2 3 4 5
Figure 5: MiG byte savings on Linux VMs

Type Excel | Outlook | Powerpoint | OneNote \
Managed pages 131 212 205 347
Unmanaged pages 893 1045 1249 860
Bytes (%) (heap size > 1KB) 84.5 84.9 83.8 89.8
Bytes % match 84 80.6 77.4 73.3
MiG-Replay savings % 50 44 36 42

Table 4: Heap characteristics of some office apps

is long and replay is accelerated in time (as would be nec-
essary for fast migration), we find that MiG-Replay surpris-
ingly performs worse than MiG by 8%. The reason is two-
fold. First, the gains due to matching of SuperFetch pages
disappear because accelerated replay fails to evoke the same
prefetching pattern as the actual execution of the VM. Sec-
ond, the degree of similarity in the heap also diminishes,
so the overhead of performing heap matching (e.g., send-
ing hash values across from S to D) overwhelms the gains
obtained from the actual matches. We examine this second
reason next.

Table 4 shows some important statistics for the heap pages
of a few Office applications. The heap comprises of managed
and unmanaged heap and we can see that managed heap is
only 13-29% of total heap for these applications. The ability
of replay to recreate the source’s memory state at the desti-
nation is highlighted in the next row that lists the percentage
of bytes that match heap entries between source and destina-
tion VMs. For these applications, we see that between 73 to
84% of bytes do indeed match between source and destina-
tion VM. However, since the match is not exact (because of
pointers affected by ASLR), we resort to dividing the heap
into chunks and perform matching at the smaller granularity
of chunks rather than matching at larger full heap entries. We
evaluated compression savings for the entire managed heap
size using the replay mechanism for different chunk sizes
(not shown) and found that 64-byte chunks provide the high-
est savings of 40-50%, balancing the overhead of sending
4-byte hashes for each of the chunks and the cost of losing a
chunk match due to a small difference (e.g., a pointer value
change) between source and destination chunks. For unman-
aged heap, we use the same chunk size to divide up the heap
pages and try to identify matches at the replayed VM; again,
the 4-byte hash overhead for each 64-byte chunk results in
decreasing the savings. Additional protection against hash
collisions will further reduce these savings.

To summarize, while replay does indeed create similar

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13)

33

BMiG #Hrsync #MiG-Replay 0

P 1
o o

Byte Savings (%)
Byte Savings (%)

o

2004 1728 1537

Short, Short, Lon| Long, .
y 8 VM assigned memory (MB)

Paced Accelerated Paced Accelerated

Figure 6: Replay workloads

state at the destination, MiG-Replay’s ability to compress
heap pages effectively using replay is impeded by the re-
ality that (a) only a small fraction (13-29%) of the heap is
parseable, (b) the reconstruction of the heap using replay is
far from perfect (only 73-84% of bytes match), and (c) we
have to resort to matching small, 64-byte chunks to get maxi-
mum compression savings, incurring high overhead and lim-
iting savings. Since MiG is able to perform effective intra-
VM redundancy elimination for heap pages, MiG-Replay is
unable to gain over MiG.

5.3 Ballooning

Ballooning is a technique to artificially introduce memory
pressure in a VM, leading it to evict less important pages [30].
One application of ballooning proposed in the literature is
in the context of efficient migration, wherein unnecessary
pages are shed from the VM memory prior to migration [26].

In general, it is hard to estimate the amount of memory to
be ballooned out; overdoing it can cause the eviction of im-
portant pages and thus adversely impact user-perceived per-
formance. Thus, migrating the entire memory is desirable.
However, since memory ballooning can be applied indepen-
dently of MiG, in this section, we investigate the impact of
memory ballooning on MiG byte savings by using Hyper-
V dynamic memory feature to create different amounts of
memory pressure on the VM before applying MiG.

Figure 7 shows MiG’s relative savings over gzip for dif-
ferent amounts of assigned memory for a 2GB VM, corre-
sponding to a memory reduction of 5-55% through balloon-
ing. While the savings decreases as the assigned memory
is reduced, MiG is still able to deliver 36% relative savings
even with 55% of VM memory pages evicted. This is be-
cause while ballooning evicts low priority pages like free
pages, it does not evict all SuperFetch or heap pages® and,
thus, a substantial portion of the MiG byte savings remains.

Further, at high memory pressure, many of the evicted
pages are paged out into a pagefile (swap) in disk which, of
course, also needs to be migrated. MiG can be directly ap-
plied to the pages sitting in the pagefile just as to the pages in
memory. MiG’s savings on pagefile was similar to the sav-
ings achieved for in-memory pages.

3SuperFetch pages retain the priority of the original page.

Figure 7: Ballooning

Byte Savings (25)

1339 1138 9% 05 125 25 3 4 6 12 60

Hours since previous migration
Figure 8: Repeated migrations

5.4 Repeated Migrations

One of the scenarios targeted by MiG is the desktop that
is always-on and is migrated repeatedly between work and
home or work and cloud. In this section, we evaluate the
benefit of using the memory from previously migrated state
for byte savings. In these cases, both source and destination
save the previously transferred VM memory and MiG uses
this for its full page matches instead of a blank VM as before
(all other techniques remain the same).

We had a user use a 2GB Windows 7 VM for several days;
applications used included the browser and several office ap-
plications. Every once in a while, sometimes after short in-
tervals of 30 minutes to few hours, and sometimes after long
intervals of several hours to even days, we took snapshots of
the VM memory, representing a checkpoint of VM state that
needs to be migrated. We then used MiG with the benefit of
the previous snapshot for computing byte savings.

Figure 8 depicts MiG’s relative byte savings over gzip
for the different migration cases corresponding to workloads
that last from 30 minutes to 60 hours. From the figure, we
see that short workloads of up to a couple of hours in gen-
eral significantly benefit from using the previous snapshot
by delivering relative savings over gzip of up to 87% (cor-
responding to absolute reduction of VM size by 95%). Of
course, not all short workloads result in such gains (for ex-
ample the 1.25 hour data point), due to windows update or
other system activity that can potentially induce large change
in memory, effectively reducing the effectiveness of the pre-
vious snapshot. Finally, we see that for workloads beyond a
few hours, the previous snapshot is not as useful and MiG’s
relative gains drop down to about 50%.

5.5 Migration Time

We now evaluate the time for VM migration for the var-
ious schemes. Let us first consider the computational cost
of the different MiG techniques on a 2.2 GHz CPU core for
a typical 2GB Windows 7 VM.* In the following analysis,
MiG’s context cache is preloaded in memory and the VM
image is also in memory.

Parsing the PFN database to extract semantic informa-

4Most of these numbers scale proportionately with VM size but can
vary depending on the amount of compression achieved.

34 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Compressed Size | Compute time | Transfer time
gzip 670MB 65s 558s
MiG 330MB 67s 275s

Table 5: Migration time for 2GB VM on 10Mbps link

Off | Default | Aggressive

Full 26% 23% 22%
Full+Intra-VM 32% 32% 30%
Full+Intra-VM+context | 62% 69% 70%

Table 6: Impact of preload on MiG savings (Linux)

tion takes about 20s.°. MiG also creates a 4-byte hash of
each page using Jenkins Hash [6] and compares these hashes
against the local precomputed hashes of a blank VM for
identifying full page matches. This process takes around 8s.
The processing of SuperFetch and image pages using En-
dRE [12] with primed context takes about 15s. Finally, all
remaining pages are compressed using EndRE+gzip, which
takes about 24s. Thus, our MiG prototype implementation is
able to reduce a 2GB VM to about 330 MB in 67s. For the
same VM, gzip reduces it to 670 MB in 65s.

Migration time (Table 5) is determined by the maximum
of transfer time and compression processing time. Trans-
fer time is directly proportional to (compressed) VM size
and inversely proportional to link speed. Thus, on slow links
and/or for large VMs, MiG’s migration is significantly faster
than gzip. For example, on a 10 Mbps link, MiG transfers
the 2GB VM in about 275s, halving the transfer time of gzip
(558s). For comparison, it takes 810s for 7zip, 840s for
rsync and 1665s for uncompressed transfer.

We can also take advantage of multi-core CPUs to per-
form many of the above operations in parallel to optimize
MiG (and gzip). Using 4 cores, processing for an optimized
version of MiG can easily be limited to less than 28s (and
optimized gzip to less than 55s), thereby allowing MiG to
retain the 50% reduction in both bytes and migration time
compared to gzip at 100 Mbps speeds. Of course, on 1 Gbps
or faster links, transferring the raw VM may be faster than
using either gzip or MiG.

6. DISCUSSION

Turning off page prefetching prior to migration: Turning
off page prefetching mechanisms such as SuperFetch could
aid VM migration by cutting out the prefetched pages from
the set that needs to be moved. However, doing so can have
an adverse impact on user-perceived performance [10]. Nev-
ertheless, it is interesting to ask how much there is to be
gained from varying the amount of prefetching, in terms of
the byte savings achieved by MiG.

To answer this question, we used a Linux desktop VM
loaded with a few applications and tested it under three dif-
ferent settings for prefetching: off (preload removed), de-
fault, and aggressive (increased free memory to be used for

SThis is primarily due to our prototype using windbg APIs which
makes disk accesses; an optimized version should take under 10s.

prefetching from default of 50% to 90%). The byte savings
relative to gzip is shown in Table 6. While increasing the de-
gree of prefetching results in a reduction in the number of
full-page matches relative to a blank VM, this loss is more
than offset by leveraging pre-computed context to compress
the prefetched (and other) pages, resulting in similar abso-
lute byte savings for all these cases. This suggests that we
do not have to turn off prefetching to obtain byte savings for
migration.

Influencing randomization in ASLR: While turning off
ASLR would adversely impact security, one could arguably
influence ASLR’s randomization policy more subtly, to make
it more migration friendly while not compromising secu-
rity. For instance, when a VM is migrated, the randomiza-
tion seed used for ASLR at the destination could be set to
be the same as that at the source, which might then make
the memory state of a replayed instance match more closely
with the source. However, to our knowledge, for security rea-
sons, OSes do not make the seed available through an API
or document the location of the seed in memory so that, for
instance, it could be read from the hypervisor.

Nevertheless, to get a sense for the gains to be had if the
same seed were used at the source and the destination, con-
sider the evaluation presented in Section 5.4. Since a single
VM instance was snapshoted repeatedly, the randomization
seed remained unchanged across the snapshots. When the in-
terval between two snapshots is short (under 2 hours), there
is a high degree of match between the snapshots. However,
when the interval is longer, the snapshots tend to diverge,
even though the randomization seed is the same across the
snapshots. The divergence is because of SuperFetch, garbage
collection, etc., factors which exist independent of ASLR.
Thus, any short-term gains arising from maintaining the same
ASLR seed get overshadowed over longer durations by other
sources of non-determinism.

7. RELATED WORK

ISR, Collective, Transient PCs. The vision of a desktop
PC environment that is mobile and available anywhere was
articulated by Chen and Noble [16] and in the Internet Sus-
pend Resume (ISR) project [25]. The Collective [15] is an-
other system that provides users with a consistent desktop
environment at a computer nearby as users move. Recently,
this paradigm of having the desktop environment stored in
the cloud but executed on a PC close to the user has been
dubbed the transient PC [27].

Efficient Migration. Prior work closest to MiG is the work
on optimizing the migration of virtual computers [26]. Their
system uses copy-on-write disks in order to migrate disk
changes, supplanted with demand paging to fetch needed
blocks, memory ballooning to zero out unused memory, and
page hashing to suppress identical memory blocks. While
MiG can benefit from the disk migration techniques in [26],
migrating memory state is much more challenging today due
to new OS features. The idea of using replay in order to mi-
grate VMs efficiently was proposed in [28]. However, as we

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 35

show in this paper, replay provides only small gains. [3]

CloudNet [31] supports efficient Live WAN migration of (4]
VMs. It implements smart stop and copy to reduce the num-
ber of iterations/copies for Live migration which can be use- [5]
ful for live migration support in MiG. It also implements (6]
redundancy elimination by computing sub page-level hashes {g
(1 KB in size) and comparing this to previously sent data.
MiG’s intra-VM redundancy elimination eliminates redun- [9]

dant chunks that are as small as 32 bytes. Remus [19] is
a system that replicates VMs asynchronously. Remus uses
page compression including delta and gzip compression for
efficient checkpointing. Since Remus checkpoints state ev- [11]
ery 25ms, memory page delta-based approach works well [12]
for them. For durations comprising several hours, typical for
VM migration, we find that previous memory state is not
useful.

Similarity in VM memory. Looking beyond migration, the
recent study by Barker et al. [13] reports that page sharing in [14]
Linux and Windows VMs running at a server is diminished

because of ASLR. Our study differs from and goes beyond [15]
this prior work in several ways. First, since our goal is ef-
ficient migration, we compare two VMSs running the same
OSes/applications and provided with the same input, which
is not a scenario considered in [13]. Second, while [13] fo- [17]
cuses mostly on page-level sharing, we show that even at
64-byte chunk level, changes due to ASLR render sharing
ineffective. Third, going beyond ASLR, we also evaluate and
show the significant impact of OS prefetching (e.g., Super- [19]
Fetch) on memory redundancy.

8. CONCLUSION

When we started our investigation into efficient migra-
tion of desktop VMs, we had assumed that replay and mem-
ory similarity would lead to efficiency. However, we were
puzzled by the lack of similarity even in blank VMs. The (22)
culprit, as explained in this paper, is randomness and non- (23]
determinism due to mechanisms such as ASLR and page
prefetching in modern OSes. Through extensive experiments
on both Windows and Linux, we have characterized and quan-
tified the impact of these mechanisms.

Despite these hurdles, our migration solution, MiG, yields [25]
compression gains of 51% and 65% over gzip on Windows

[10]

[13]

[16]

[18]

[20]

(21]

[24]

and Linux VMs, respectively, and halving of the overall mi- (26]
gration time. Central to MiG is the idea of tailoring the com-
pression technique to the semantics of memory pages, an (271
approach which we believe could transcend the specific OS
mechanisms and compression techniques considered here. [28]
9. ACKNOWLEDGEMENTS 2]
We thank our shepherd, Jason Flinn, and the anonymous
reviewers for their constructive comments. 301

10. REFERENCES Bl

[1] 7zip. http://www.7-zip.org.

[2] ASLR. http://blogs.msdn.com/b/michael_howard/
archive/2006/05/26/address-space-layout—
randomization-in-windows-vista.aspx.

AutoIT. http://www.autoitscript.com/site/.

Bandwidth caps around the world. http://www.maximumpc. com/
article/features/how_bad_do_we_really_have_it\
_bandwidth_caps_around_world.

bzip2. http://www.bzip.org.

Jenkins Hash. http://burtleburtle.net/bob/c/lookup3.c.
LibVMI tool. http://code.google.com/p/vmitools/.
Microsoft Hyper-V. http://www.microsoft.com/en-
us/server-cloud/windows-server/hyper-vaspx.
SuperFetch. http://msdn.microsoft.com/en-
us/library/bb188739.aspx.

SuperFetch performance.
http://everythingexpress.wordpress.com/2011/11/13/
how-to-adjusting-windows-7-superfetch/.

US Secure Hash Algorithm 1 (SHAT). RFC 3174, September 2001.
B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese. EndRE: An
End-System Redundancy Elimination Service for Enterprises. In
USENIX NSDI, April 2010.

S. Barker, T. Wood, P. Shenoy, and R. Sitaraman. An Empirical
Study of Memory Sharing in Virtual Machines. In USENIX ATC,
June 2012.

A.Z. Broder. On the resemblance and containment of documents. In
Proceedings of IEEE Compression and Complexity of Sequences,
June 1997.

R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. Lam. The
Collective: A Cache-Based System Management Architecture. In
NSDI, May 2005.

P. Chen and B. D. Noble. When virtual is better than real. In 8th
IEEE Workshop on Hot Topics on Operating Systems, May 2001.
C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield. Live Migration of Virtual Machines. In
NSDI, May 2005.

L. Collin. A quick benchmark: Gzip vs. Bzip2 vs. LZMA, 2005.
http://tukaani.org/lzma/benchmarks.html.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High Availability via Asynchronous Virtual
Machine Replication. In USENIX NSDI, April 2008.

T. Das, P. Padala, V. Padmanabhan, R. Ramjee, and K. Shin.
LiteGreen: Saving Energy in Networked Desktops using
Virtualization. In USENIX ATC, June 2010.

G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt:
enabling intrusion analysis through virtual-machine logging and
replay. In OSDI, 2002.

G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution
replay of multiprocessor virtual machines. In VEE, 2008.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing
Memory Redundancy in Virtual Machines . In OSDI, December
2008.

A. Kochut and H. Shaikh. Desktop to cloud transformation planning.
In IEEE IPDPS, May 2009.

M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. In
IEEE WMCSA, June 2002.

C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and

M. Rosenblum. Optimizing the migration of virtual computers. In
OSDI, 2002.

M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes1, and

L. Iftode. Bringing the Cloud Down to Earth: Transient PCs
Everywhere. In MobiCloud 2010, Santa Clara, CA, October 2010.
A. Surie, H. A. Lagar-Cavilla, E. de Lara, and M. Satyanarayanan.
Low-Bandwidth VM Migration via Opportunistic Replay. In
HotMobile, February 2008.

A. Tridgell. Efficient Algorithms for Sorting and Synchronization,
2000. PhD thesis, Australian National University.

C. Waldspurger. Memory Resource Management in VMware ESX
Server. In OSDI, December 2002.

T. Wood, K. Ramakrishnan, P. Shenoy, and J. V. der Merwe.
CloudNet: Dynamic Pooling of Cloud Resources by Live WAN
Migration of Virtual Machines. In Virtual Execution Environments
(VEE), March 2011.

36 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Copysets: Reducing the Frequency of Data Loss in
Cloud Storage

Asaf Cidon, Stephen M. Rumble, Ryan Stutsman,
Sachin Katti, John Ousterhout and Mendel Rosenblum
Stanford University

cidon@stanford.edu,

ABSTRACT

Random replication is widely used in data center storage
systems to prevent data loss. However, random replica-
tion is almost guaranteed to lose data in the common sce-
nario of simultaneous node failures due to cluster-wide
power outages. Due to the high fixed cost of each in-
cident of data loss, many data center operators prefer to
minimize the frequency of such events at the expense of
losing more data in each event.

We present Copyset Replication, a novel general-
purpose replication technique that significantly reduces
the frequency of data loss events. We implemented
and evaluated Copyset Replication on two open source
data center storage systems, HDFS and RAMCloud,
and show it incurs a low overhead on all operations.
Such systems require that each node’s data be scattered
across several nodes for parallel data recovery and ac-
cess. Copyset Replication presents a near optimal trade-
off between the number of nodes on which the data is
scattered and the probability of data loss. For example,
in a 5000-node RAMCloud cluster under a power outage,
Copyset Replication reduces the probability of data loss
from 99.99% to 0.15%. For Facebook’s HDFS cluster, it
reduces the probability from 22.8% to 0.78%.

1. INTRODUCTION

Random replication is used as a common technique by
data center storage systems, such as Hadoop Distributed
File System (HDFS) [25], RAMCloud [24], Google File
System (GFS) [14] and Windows Azure [6] to ensure
durability and availability. These systems partition their
data into chunks that are replicated several times (we use
R to denote the replication factor) on randomly selected
nodes on different racks. When a node fails, its data is re-
stored by reading its chunks from their replicated copies.

However, large-scale correlated failures such as clus-
ter power outages, a common type of data center fail-
ure scenario [7, 10, 13, 25], are handled poorly by ran-
dom replication. This scenario stresses the availability of
the system because a non-negligible percentage of nodes

{rumble, stutsman, skatti, ouster,mendel}@cs.stanford.edu

Probability of data loss when 1% of the nodes fail concurrently

™~ & - ™~

100%j 4 » * » * o = s
80%f f
+ HDFS, Random Replication

60%} = RAMCloud, Random Replication
Facebook, Random Replication

40%r

Probability of data loss

20%

0% 2000 4000 6000 8000 10000
Number of nodes

Figure 1: Computed probability of data loss with
R = 3 when 1% of the nodes do not survive a power
outage. The parameters are based on publicly avail-
able sources [5, 7, 24, 25] (see Table 1).

(0.5%-1%) [7, 25] do not come back to life after power
has been restored. When a large number of nodes do not
power up there is a high probability that all replicas of at
least one chunk in the system will not be available.

Figure 1 shows that once the size of the cluster scales
beyond 300 nodes, this scenario is nearly guaranteed to
cause a data loss event in some of these systems. Such
data loss events have been documented in practice by Ya-
hoo! [25], LinkedIn [7] and Facebook [5]. Each event re-
portedly incurs a high fixed cost that is not proportional
to the amount of data lost. This cost is due to the time
it takes to locate the unavailable chunks in backup or re-
compute the data set that contains these chunks. In the
words of Kannan Muthukkaruppan, Tech Lead of Face-
book’s HBase engineering team: “Even losing a single
block of data incurs a high fixed cost, due to the overhead
of locating and recovering the unavailable data. There-
fore, given a fixed amount of unavailable data each year,
it is much better to have fewer incidents of data loss with
more data each than more incidents with less data. We
would like to optimize for minimizing the probability of
incurring any data loss” [22]. Other data center operators
have reported similar experiences [8].

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 37

Another point of view about this trade-off was ex-
pressed by Luiz André Barroso, Google Fellow: “Hav-
ing a framework that allows a storage system provider to
manage the profile of frequency vs. size of data losses
is very useful, as different systems prefer different poli-
cies. For example, some providers might prefer fre-
quent, small losses since they are less likely to tax storage
nodes and fabric with spikes in data reconstruction traf-
fic. Other services may not work well when even a small
fraction of the data is unavailable. Those will prefer to
have all or nothing, and would opt for fewer events even
if they come at a larger loss penalty." [3]

Random replication sits on one end of the trade-off be-
tween the frequency of data loss events and the amount
lost at each event. In this paper we introduce Copy-
set Replication, an alternative general-purpose replica-
tion scheme with the same performance of random repli-
cation, which sits at the other end of the spectrum.

Copyset Replication splits the nodes into copysets,
which are sets of R nodes. The replicas of a single chunk
can only be stored on one copyset. This means that data
loss events occur only when all the nodes of some copy-
set fail simultaneously.

The probability of data loss is minimized when each
node is a member of exactly one copyset. For exam-
ple, assume our system has 9 nodes with R = 3 that
are split into three copysets: {1,2,3},{4,5,6},{7,8,9}.
Our system would only lose data if nodes 1, 2 and 3,
nodes 4, 5 and 6 or nodes 7, 8 and 9 fail simultaneously.

In contrast, with random replication and a sufficient
number of chunks, any combination of 3 nodes would
be a copyset, and any combination of 3 nodes that fail
simultaneously would cause data loss.

The scheme above provides the lowest possible proba-
bility of data loss under correlated failures, at the expense
of the largest amount of data loss per event. However, the
copyset selection above constrains the replication of ev-
ery chunk to a single copyset, and therefore impacts other
operational parameters of the system. Notably, when a
single node fails there are only R — 1 other nodes that
contain its data. For certain systems (like HDFS), this
limits the node’s recovery time, because there are only
R — 1 other nodes that can be used to restore the lost
chunks. This can also create a high load on a small num-
ber of nodes.

To this end, we define the scatter width (S) as the
number of nodes that store copies for each node’s data.

Using a low scatter width may slow recovery time
from independent node failures, while using a high
scatter width increases the frequency of data loss from
correlated failures. In the 9-node system example above,
the following copyset construction will yield S = 4:

{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},{3,6,9}.

In this example, chunks of node 5 would be replicated

either at nodes 4 and 6, or nodes 2 and 8. The increased
scatter width creates more copyset failure opportunities.

The goal of Copyset Replication is to minimize the
probability of data loss, given any scatter width by us-
ing the smallest number of copysets. We demonstrate
that Copyset Replication provides a near optimal solu-
tion to this problem. We also show that this problem has
been partly explored in a different context in the field of
combinatorial design theory, which was originally used
to design agricultural experiments [26].

Copyset Replication transforms the profile of data loss
events: assuming a power outage occurs once a year, it
would take on average a 5000-node RAMCloud cluster
625 years to lose data. The system would lose an aver-
age of 64 GB (an entire server’s worth of data) in this
rare event. With random replication, data loss events oc-
cur frequently (during every power failure), and several
chunks of data are lost in each event. For example, a
5000-node RAMCloud cluster would lose about 344 MB
in each power outage.

To demonstrate the general applicability of Copyset
Replication, we implemented it on two open source data
center storage systems: HDFS and RAMCloud. We
show that Copyset Replication incurs a low overhead on
both systems. It reduces the probability of data loss in
RAMCloud from 99.99% to 0.15%. In addition, Copy-
set Replication with 3 replicas achieves a lower data
loss probability than the random replication scheme does
with 5 replicas. For Facebook’s HDFS deployment,
Copyset Replication reduces the probability of data loss
from 22.8% to 0.78%.

The paper is split into the following sections. Sec-
tion 2 presents the problem. Section 3 provides the
intuition for our solution. Section 4 discusses the design
of Copyset Replication. Section 5 provides details on
the implementation of Copyset Replication in HDFS and
RAMCloud and its performance overhead. Additional
applications of Copyset Replication are presented in in
Section 6, while Section 7 analyzes related work.

2. THE PROBLEM

In this section we examine the replication schemes of
three data center storage systems (RAMCloud, the de-
fault HDFS and Facebook’s HDFS), and analyze their
vulnerability to data loss under correlated failures.

2.1 Definitions

The replication schemes of these systems are defined
by several parameters. R is defined as the number of
replicas of each chunk. The default value of R is 3 in
these systems. [V is the number of nodes in the sys-
tem. The three systems we investigate typically have
hundreds to thousands of nodes. We assume nodes are

38 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

System Chunks| Cluster| Scatter| Replication Scheme
per Size Width
Node

Facebook | 10000 | 1000- | 10 Random replication on

5000 a small group of nodes,
second and third replica
reside on the same rack

RAMCloud| 8000 100- N-1 Random replication
10000 across all nodes

HDFS 10000 | 100- 200 Random replication on
10000 a large group of nodes,

second and third replica

reside on the same rack

Table 1: Replication schemes of data center storage
systems. These parameters are estimated based on
publicly available data [2, 5, 7, 24, 25]. For simplicity,
we fix the HDFS scatter width to 200, since its value
varies depending on the cluster and rack size.

indexed from 1 to N. S is defined as the scatter width.
If a system has a scatter width of S, each node’s data is
split uniformly across a group of S other nodes. That is,
whenever a particular node fails, .S other nodes can par-
ticipate in restoring the replicas that were lost. Table 1
contains the parameters of the three systems.

We define a set, as a group of R distinct nodes.
A copyset is a set that stores all of the copies of a
chunk. For example, if a chunk is replicated on nodes
{7,12,15}, then these nodes form a copyset. We will
show that a large number of distinct copysets increases
the probability of losing data under a massive correlated
failure. Throughout the paper, we will investigate the re-
lationship between the number of copysets and the sys-
tem’s scatter width.

We define a permutation as an ordered list of all
nodes in the cluster. For example, {4,1,3,6,2,7,5} is
a permutation of a cluster with N = 7 nodes.

Finally, random replication is defined as the following
algorithm. The first, or primary replica is placed on a
random node from the entire cluster. Assuming the pri-
mary replica is placed on node ¢, the remaining R — 1
secondary replicas are placed on random machines cho-
sen from nodes {i + 1,i + 2,...,i+ S}. If S = N — 1,
the secondary replicas’ nodes are chosen uniformly from
all the nodes in the cluster !.

2.2 Random Replication

The primary reason most large scale storage systems
use random replication is that it is a simple replica-
tion technique that provides strong protection against
uncorrelated failures like individual server or disk fail-

'Our definition of random replication is based on Facebook’s
design, which selects the replication candidates from a window
of nodes around the primary node.

Probability of data loss when 1% of the nodes fail concurrently

100% + - + +
{

9 80%

o

% 60%-| + R=3, Random Replication

g R=4, Random Replication

> = R=5, Random Replication

Z 40% | ¥ R=6, Random Replication

8

<)

& 20%f

07000 T2000 T3000 T4000 Y5000 6000 7000 T8000 19000 0000
Number of RAMCloud nodes

Figure 2: Simulation of the data loss probabilities of
a RAMCloud cluster, varying the number of replicas
per chunk.

ures [13, 25] 2. These failures happen frequently (thou-
sands of times a year on a large cluster [7, 10, 13]), and
are caused by a variety of reasons, including software,
hardware and disk failures. Random replication across
failure domains (e.g., placing the copies of a chunk on
different racks) protects against concurrent failures that
happen within a certain domain of nodes, such as racks
or network segments. Such failures are quite common
and typically occur dozens of times a year [7, 10, 13].
However, multiple groups, including researchers from
Yahoo! and LinkedIn, have observed that when clusters
with random replication lose power, several chunks of
data become unavailable [7, 25], i.e., all three replicas of
these chunks are lost. In these events, the entire cluster
loses power, and typically 0.5-1% of the nodes fail to
reboot [7, 25]. Such failures are not uncommon; they
occur once or twice per year in a given data center [7].
Figure 1 shows the probability of losing data in the
event of a power outage in the three systems. The figure
shows that RAMCloud and HDFS are almost guaranteed
to lose data in this event, once the cluster size grows be-
yond a few hundred nodes. Facebook has a lower data
loss probability of about 20% for clusters of 5000 nodes.
Multiple groups have expressed interest in reducing
the incidence of data loss, at the expense of losing a
larger amount of data at each incident [3, 8, 22]. For
example, the Facebook HDFS team has modified the de-
fault HDFS implementation to constrain the replication
in their deployment to significantly reduce the proba-
bility of data loss at the expense of losing more data
during each incident [2, 5]. Facebook’s Tech Lead of
the HBase engineering team has confirmed this point, as
cited above [22]. Robert Chansler, Senior Manager of

2For simplicity’s sake, we assume random replication for all
three systems, even though the actual schemes are slightly dif-
ferent (e.g., HDFS replicates the second and third replicas on
the same rack [25].). We have found there is little difference in
terms of data loss probabilities between the different schemes.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 39

Hadoop Infrastructure at Linkedin has also confirmed the
importance of addressing this issue: “A power-on restart
of HDFS nodes is a real problem, since it introduces a
moment of correlated failure of nodes and the attendant
threat that data becomes unavailable. Due to this issue,
our policy is to not turn off Hadoop clusters. Administra-
tors must understand how to restore the integrity of the
file system as fast as possible, and an option to reduce
the number of instances when data is unavailable—at the
cost of increasing the number of blocks recovered at such
instances—can be a useful tool since it lowers the overall
total down time" [8].

The main reason some data center operators prefer to
minimize the frequency of data loss events, is that there
is a fixed cost to each incident of data loss that is not
proportional to the amount of data lost in each event. The
cost of locating and retrieving the data from secondary
storage can cause a whole data center operations team to
spend a significant amount of time that is unrelated to the
amount of data lost [22]. There are also other fixed costs
associated with data loss events. In the words of Robert
Chansler: “In the case of data loss... [frequently] the data
may be recomputed. For re-computation an application
typically recomputes its entire data set whenever any data
is lost. This causes a fixed computational cost that is not
proportional with the amount of data lost”. [8]

One trivial alternative for decreasing the probability
of data loss is to increase R. In Figure 2 we computed
the probability of data loss under different replication
factors in RAMCloud. As we would expect, increasing
the replication factor increases the durability of the sys-
tem against correlated failures. However, increasing the
replication factor from 3 to 4 does not seem to provide
sufficient durability in this scenario. In order to reliably
support thousands of nodes in current systems, the repli-
cation factor would have to be at least 5. Using R = 5
significantly hurts the system’s performance and almost
doubles the cost of storage.

Our goal in this paper is to decrease the probability
of data loss under power outages, without changing the
underlying parameters of the system.

3. INTUITION

If we consider each chunk individually, random repli-
cation provides high durability even in the face of a
power outage. For example, suppose we are trying to
replicate a single chunk three times. We randomly select
three different machines to store our replicas. If a power
outage causes 1% of the nodes in the data center to fail,
the probability that the crash caused the exact three ma-
chines that store our chunk to fail is only 0.0001%.

However, assume now that instead of replicating just
one chunk, the system replicates millions of chunks
(each node has 10,000 chunks or more), and needs to

ensure that every single one of these chunks will survive
the failure. Even though each individual chunk is very
safe, in aggregate across the entire cluster, some chunk
is expected to be lost. Figure 1 demonstrates this effect:
in practical data center configurations, data loss is nearly
guaranteed if any combination of three nodes fail simul-
taneously.

We define a copyset as a distinct set of nodes that con-
tain all copies of a given chunk. Each copyset is a sin-
gle unit of failure, i.e., when a copyset fails at least one
data chunk is irretrievably lost. Increasing the number of
copysets will increase the probability of data loss under
a correlated failure, because there is a higher probabil-
ity that the failed nodes will include at least one copy-
set. With random replication, almost every new repli-
cated chunk creates a distinct copyset, up to a certain
point.

3.1 Minimizing the Number of Copysets

In order to minimize the number of copysets a repli-
cation scheme can statically assign each node to a sin-
gle copyset, and constrain the replication to these pre-
assigned copysets. The first or primary replica would be
placed randomly on any node (for load-balancing pur-
poses), and the other secondary replicas would be placed
deterministically on the first node’s copyset.

With this scheme, we will only lose data if all the
nodes in a copyset fail simultaneously. For example,
with 5000 nodes, this reduces the data loss probabilities
when 1% of the nodes fail simultaneously from 99.99%
t0 0.15%.

However, the downside of this scheme is that it
severely limits the system’s scatter width. This may
cause serious problems for certain storage systems. For
example, if we use this scheme in HDFS with R = 3,
each node’s data will only be placed on two other nodes.
This means that in case of a node failure, the system will
be able to recover its data from only two other nodes,
which would significantly increase the recovery time. In
addition, such a low scatter width impairs load balanc-
ing and may cause the two nodes to be overloaded with
client requests.

3.2 Scatter Width

Our challenge is to design replication schemes that
minimize the number of copysets given the required scat-
ter width set by the system designer.

To understand how to generate such schemes, consider
the following example. Assume our storage system has
the following parameters: R = 3, N = 9and S = 4.
If we use random replication, each chunk will be repli-
cated on another node chosen randomly from a group of
S nodes following the first node. E.g., if the primary
replica is placed on node 1, the secondary replica will be

40 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

randomly placed either on node 2, 3, 4 or 5.

Therefore, if our system has a large number of chunks,
it will create 54 distinct copysets.

In the case of a simultaneous failure of three nodes, the
probability of data loss is the number of copysets divided
by the maximum number of sets:

copysets _ S _ 64
()

9
()
Now, examine an alternative scheme using the same pa-
rameters. Assume we only allow our system to replicate
its data on the following copysets:

{1,2,3},{4,5,6},{7,8,9}{1,4,7},{2,5,8}, {3,6,9}

That is, if the primary replica is placed on node 3, the
two secondary replicas can only be randomly on nodes 1
and 2 or 6 and 9. Note that with this scheme, each node’s
data will be split uniformly on four other nodes.

The new scheme created only 6 copysets. Now, if three
nodes fail, the probability of data loss is:

copysets
84

As we increase N, the relative advantage of creating
the minimal number of copysets increases significantly.
For example, if we choose a system with N = 5000,
R = 3,5 = 10 (like Facebook’s HDFS deployment), we
can design a replication scheme that creates about 8,300
copysets, while random replication would create about
275,000 copysets.

The scheme illustrated above has two important prop-
erties that form the basis for the design of Copyset Repli-
cation. First, each copyset overlaps with each other copy-
set by at most one node (e.g., the only overlapping node
of copysets {4,5,6} and {3,6,9} is node 6). This en-
sures that each copyset increases the scatter width for its
nodes by exactly R — 1. Second, the scheme ensures that
the copysets cover all the nodes equally.

Our scheme creates two permutations, and divides
them into copysets. Since each permutation increases the
scatter width by R — 1, the overall scatter width will be:

= 0.07.

S=PR-1)
Where P is the number of permutations. This scheme
N
R-1R’
The number of copysets created by random replica-

N
will create PE copysets, which is equal to:

tion for values of S < > is: N(,°,). This number is

equal to the number of primary replica nodes times R — 1
combinations of secondary replica nodes chosen from a
group of S nodes. When S approaches N, the number
of copysets approaches the total number of sets, which is
equal to (g)

Probability of data loss when 1% of the nodes fail concurrently

100%
90%[T

80%r 1

60%| = Copyset Replication]
50%F b
40%- N
30%F 3

2091 Facebook HDFS i

Probability of data loss

n , \ , , \ . , .
0 50 100 150 200 250 300 350 400 450 500
Scatter Width

Figure 3: Data loss probability when 1% of the nodes
fail simultaneously as a function of S, using N =
5000, R = 3.

Permutation Phase
8 e e) e e e e
¥

Permutation 1

e —
(e) otes e] (Chosee) Cuoses Jroves) (Ciodes I ovez | voset

Copyset 1 Copyset 2 Copyset 3

Permutation 2

S
[odes vwse7 [nosez) - (ioves | vodee odes] [ode) odes) o

Copyset 4 Copyset 5 Copyset 6

Figure 4: Illustration of the Copyset Replication Per-
mutation phase.

In summary, in a minimal copyset scheme, the number
of copysets grows linearly with .S, while random replica-
tion creates O(S®~1) copysets. Figure 3 demonstrates
the difference in data loss probabilities as a function of
S, between random replication and Copyset Replication,
the scheme we develop in the paper.

4. DESIGN

In this section we describe the design of a novel repli-
cation technique, Copyset Replication, that provides a
near optimal trade-off between the scatter width and the
number of copysets.

As we saw in the previous section, there exist replica-
tion schemes that achieve a linear increase in copysets for
a linear increase in .S. However, it is not always simple to
design the optimal scheme that creates non-overlapping
copysets that cover all the nodes. In some cases, with
specific values of IV, R and .S, it has even been shown
that no such non-overlapping schemes exist [18, 19]. For
a more detailed theoretical discussion see Section 7.1.

Therefore, instead of using an optimal scheme, we
propose Copyset Replication, which is close to opti-
mal in practical settings and very simple to implement.
Copyset Replication randomly generates permutations

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 41

Replication Phase

Node 2
Primary

Randomly pick copyset

S | | — [S— [S—

Copyset 2 Copyset 3

[—

Copyset 1

[S—— —] S— O
[e [

Copyset 5 Copyset 6

T ——

Copyset 4

Figure 5: Illustration of the Copyset Replication
Replication phase.

Probability of data loss when 1% of the nodes fail concurrently

100%

+ HDFS, Random Replication

80%" = RAMCloud, Random Replication

g ® Facebook, Random Replication
= HDFS, Copyset Replication
g 60%. ® Facebook, Copyset Replication
5 ® RAMCloud, Copyset Replication
>
3 40%[i
[="
° el T
& oot ’__‘_,.—0 i
- [e
R -
0 e P pp——————
0 2000 4000 6000 8000 10000

Number of nodes

Figure 6: Data loss probability of random replication
and Copyset Replication with R = 3, using the pa-
rameters from Table 1. HDFS has higher data loss
probabilities because it uses a larger scatter width
(S = 200).

and splits each permutation into copysets. We will show
that as long as S is much smaller then the number of
nodes in the system, this scheme is likely to generate
copysets with at most one overlapping node.

Copyset Replication has two phases: Permutation and
Replication. The permutation phase is conducted of-
fline, while the replication phase is executed every time
a chunk needs to be replicated.

Figure 4 illustrates the permutation phase. In this
phase we create several permutations, by randomly per-
muting the nodes in the system. The number of permu-
tations we create depends on S, and is equal to P =

S

i]t%s ceilling. Each permutation is split consecutively into
copysets, as shown in the illustration. The permutations
can be generated completely randomly, or we can add
additional constraints, limiting nodes from the same rack
in the same copyset, or adding network and capacity
constraints. In our implementation, we prevented nodes
from the same rack from being placed in the same copy-
set by simply reshuffling the permutation until all the

If this number is not an integer, we choose

constraints were met.

In the replication phase (depicted by Figure 5) the sys-
tem places the replicas on one of the copysets generated
in the permutation phase. The first or primary replica
can be placed on any node of the system, while the other
replicas (the secondary replicas) are placed on the nodes
of arandomly chosen copyset that contains the first node.

Copyset Replication is agnostic to the data placement
policy of the first replica. Different storage systems have
certain constraints when choosing their primary replica
nodes. For instance, in HDFS, if the local machine has
enough capacity, it stores the primary replica locally,
while RAMCloud uses an algorithm for selecting its pri-
mary replica based on Mitzenmacher’s randomized load
balancing [23]. The only requirement made by Copyset
Replication is that the secondary replicas of a chunk are
always placed on one of the copysets that contains the
primary replica’s node. This constrains the number of
copysets created by Copyset Replication.

4.1 Durability of Copyset Replication

Figure 6 is the central figure of the paper. It compares
the data loss probabilities of Copyset Replication and
random replication using 3 replicas with RAMCloud,
HDEFS and Facebook. For HDFS and Facebook, we plot-
ted the same .S values for Copyset Replication and ran-
dom replication. In the special case of RAMCloud, the
recovery time of nodes is not related to the number of
permutations in our scheme, because disk nodes are re-
covered from the memory across all the nodes in the clus-
ter and not from other disks. Therefore, Copyset Repli-
cation with with a minimal S = R — 1 (using P = 1)
actually provides the same node recovery time as using a
larger value of S. Therefore, we plot the data probabili-
ties for Copyset Replication using P = 1.

We can make several interesting observations. Copy-
set Replication reduces the probability of data loss un-
der power outages for RAMCloud and Facebook to close
to zero, but does not improve HDFS as significantly.
For a 5000 node cluster under a power outage, Copy-
set Replication reduces RAMCloud’s probability of data
loss from 99.99% to 0.15%. For Facebook, that proba-
bility is reduced from 22.8% to 0.78%. In the case of
HDFS, since the scatter width is large (S = 200), Copy-
set Replication significantly improves the data loss prob-
ability, but not enough so that the probability of data loss
becomes close to zero.

Figure 7 depicts the data loss probabilities of 5000
node RAMCloud, HDFS and Facebook clusters. We can
observe that the reduction of data loss caused by Copy-
set Replication is equivalent to increasing the number
of replicas. For example, in the case of RAMCloud, if
the system uses Copyset Replication with 3 replicas, it
has lower data loss probabilities than random replication

42 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

100%g=——

®
S
X

, Random Replication
, Random Replication
, Copyset Replication
, Random Replication
, Copyset Replication

.
Iy
.

)
S
X

IS
]
3

9|+ R=3, Random Replication
R=2, Copyset Replication

Probability of data loss
Probability of data loss

N
3
*

Probability of data loss when 1% of the nodes fail concurrently

=)

R=2, Copyset Replication
o | |+ R=3, Random Replication
v R=3, Copyset Replication

* R=4, Random Replication

Probability of data loss

000" 8000 10000 07 2000 4000

09

20000 4000 '
Number of RAMCloud nodes

Number of HDFS nodes

6000 8000 10000 2000 8000 10000

4000 6000
Number of Facebook nodes

Figure 7: Data loss probability of random replication and Copyset Replication in different systems.

Probability of data loss with varying percentage of concurrent failures
100% T T T r

80%[" 410000 Nodes
% 5000 Nodes
= 2000 Nodes
© 1000 Nodes
+ 500 Nodes

(o2
S
o

40%r

Probability of data loss

20%[

o & "
0 6% 1% 2% 3% 4%
Percentage of node failures in a Facebook HDFS cluster

Figure 8: Data loss probability on Facebook’s HDFS
cluster, with a varying percentage of the nodes failing
simultaneously.

with 5 replicas. Similarly, Copyset Replication with 3
replicas has the same the data loss probability as random
replication with 4 replicas in a Facebook cluster.

The typical number of simultaneous failures observed
in data centers is 0.5-1% of the nodes in the cluster [25].
Figure 8 depicts the probability of data loss in Face-
book’s HDFS system as we increase the percentage of si-
multaneous failures much beyond the reported 1%. Note
that Facebook commonly operates in the range of 1000-
5000 nodes per cluster (e.g., see Table 1). For these clus-
ter sizes Copyset Replication prevents data loss with a
high probability, even in the scenario where 2% of the
nodes fail simultaneously.

4.2 Optimality of Copyset Replication

Copyset Replication is not optimal, because it doesn’t
guarantee that all of its copysets will have at most one
overlapping node. In other words, it doesn’t guarantee
that each node’s data will be replicated across exactly S
different nodes. Figure 9 depicts a monte-carlo simu-
lation that compares the average scatter width achieved
by Copyset Replication as a function of the maximum .S
if all the copysets were non-overlapping for a cluster of
5000 nodes.

The plot demonstrates that when S is much smaller
than N, Copyset Replication is more than 90% optimal.
For RAMCloud and Facebook, which respectively use

100% " [—5000 Nodes, R=3]
99%
98%
97%
96%
95%
94%
93%
92%
91%

Percentage of optimal scatter width

90%. L L L L L L L L L
0 100 200 300 400 520 600 700 800 900 1000

Figure 9: Comparison of the average scatter width
of Copyset Replication to the optimal scatter width in
a 5000-node cluster.

Expected lost chunks under concurrent failures
100% T T T T T T T

90%
80%[
70%
60%

+ 1000 Nodes, R=3
50%[~
40%[-
30%

20%

Expected percentage of lost chunks

10%[~

oLt " n \
% 10% 20% 307 90% 100%

% % 40‘% 56“/9 S[‘)% 76% 86°/u

Percentage of RAMCloud nodes that fail concurrently

Figure 10: Expected amount of data lost as a percent-
age of the data in the cluster.

S = 2and S = 10, Copyset Replication is nearly opti-
mal. For HDFS we used .S = 200, and in this case Copy-
set Replication provides each node an average of 98% of
the optimal bandwidth, which translates to S = 192.

4.3 Expected Amount of Data Lost

Copyset Replication trades off the probability of data
loss with the amount of data lost in each incident. The
expected amount of data lost remains constant regardless
of the replication policy. Figure 10 shows the amount of
data lost as a percentage of the data in the cluster.

Therefore, a system designer that deploys Copyset

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 43

Replication should expect to experience much fewer
events of data loss. However, each one of these events
will lose a larger amount of data. In the extreme case,
if we are using Copyset Replication with S = 2 like in
RAMCloud, we would lose a whole node’s worth of data
at every data loss event.

S. EVALUATION

Copyset Replication is a general-purpose, scalable
replication scheme that can be implemented on a wide
range of data center storage systems and can be tuned to
any scatter width. In this section, we describe our imple-
mentation of Copyset Replication in HDFS and RAM-
Cloud. We also provide the results of our experiments
on the impact of Copyset Replication on both systems’
performance.

5.1 HDFS Implementation

The implementation of Copyset Replication on HDFS
was relatively straightforward, since the existing HDFS
replication code is well-abstracted. Copyset Replication
is implemented entirely on the HDFS NameNode, which
serves as a central directory and manages replication for
the entire cluster.

The permutation phase of Copyset Replication is run
when the cluster is created. The user specifies the scatter
width and the number of nodes in the system. After all
the nodes have been added to the cluster, the NameNode
creates the copysets by randomly permuting the list of
nodes. If a generated permutation violates any rack or
network constraints, the algorithm randomly reshuffles a
new permutation.

In the replication phase, the primary replica is picked
using the default HDFS replication.

5.1.1 Nodes Joining and Failing

In HDFS nodes can spontaneously join the cluster or
crash. Our implementation needs to deal with both cases.
When a new node joins the cluster, the NameNode

randomly creates 1 new copysets that contain it.

As long as the scatter width is much smaller than the
number of nodes in the system, this scheme will still be
close to optimal (almost all of the copysets will be non-
overlapping). The downside is that some of the other
nodes may have a slightly higher than required scatter
width, which creates more copysets than necessary.
When a node fails, for each of its copysets we replace
it with a randomly selected node. For example, if the
original copyset contained nodes {1,2,3}, and node 1
failed, we re-replicate a copy of the data in the original
copyset to a new randomly selected node. As before, as
long as the scatter width is significantly smaller than the
number of nodes, this approach creates non-overlapping

Replication | Recovery | Minimal | Average # Copy-

Time (s) | Scatter Scatter sets
Width Width

Random 600.4 2 4 234

Replication

Copyset 642.3 2 4 13

Replication

Random 221.7 8 11.3 2145

Replication

Copyset 235 8 11.3 77

Replication

Random 139 14 17.8 5967

Replication

Copyset 176.6 14 17.8 147

Replication

Random 108 20 239 9867

Replication

Copyset 127.7 20 23.9 240

Replication

Table 2: Comparison of recovery time of a 100 GB
node on a 39 node cluster. Recovery time is measured
after the moment of failure detection.

copysets.

5.2 HDFS Evaluation

We evaluated the Copyset Replication implementation
on a cluster of 39 HDFS nodes with 100 GB of SSD stor-
age and a 1 GB ethernet network. Table 2 compares the
recovery time of a single node using Copyset Replication
and random replication. We ran each recovery five times.

As we showed in previous sections, Copyset Replica-
tion has few overlapping copysets as long as S is signif-
icantly smaller than N. However, since our experiment
uses a small value of IV, some of the nodes did not have
sufficient scatter width due to a large number of overlap-
ping copysets. In order to address this issue, our Copyset
Replication implementation generates additional permu-
tations until the system reached the minimal desired scat-
ter width for all its nodes. The additional permutations
created more copysets. We counted the average number
of distinct copysets. As the results show, even with the
extra permutations, Copyset Replication still has orders
of magnitude fewer copysets than random replication.

To normalize the scatter width between Copyset Repli-
cation and random replication, when we recovered the
data with random replication we used the average scatter
width obtained by Copyset Replication.

The results show that Copyset Replication has an over-
head of about 5-20% in recovery time compared to ran-
dom replication. This is an artifact of our small cluster
size. The small size of the cluster causes some nodes to
be members of more copysets than others, which means
they have more data to recover and delay the overall re-
covery time. This problem would not occur if we used

44 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Scatter Mean 75th % | 99th % | Max Load
Width Load Load Load

10 10% 10% 10% 20%

20 5% 5% 5% 10%

50 2% 2% 2% 6%

100 1% 1% 2% 3%

200 0.5% 0.5% 1% 1.5%

500 0.2% 0.2% 0.4% 0.8%

Table 3: The simulated load in a 5000-node HDFS
cluster with R = 3, using Copyset Replication. With
Random Replication, the average load is identical to
the maximum load.

a realistic large-scale HDFS cluster (hundreds to thou-
sands of nodes).

5.2.1 Hot Spots

One of the main advantages of random replication is
that it can prevent a particular node from becoming a ‘hot
spot’, by scattering its data uniformly across a random
set of nodes. If the primary node gets overwhelmed by
read requests, clients can read its data from the nodes that
store the secondary replicas.

We define the load L(i,j) as the percentage of node
’s data that is stored as a secondary replica in node j.
For example, if S = 2 and node 1 replicates all of its
data to nodes 2 and 3, then L(1,2) = L(1,3) = 0.5, i.e.,
node 1’s data is split evenly between nodes 2 and 3.

The more we spread the load evenly across the nodes
in the system, the more the system will be immune to hot
spots. Note that the load is a function of the scatter width;
if we increase the scatter width, the load will be spread
out more evenly. We expect that the load of the nodes
that belong to node i’s copysets will be dfraclS. Since
Copyset Replication guarantees the same scatter width
of random replication, it should also spread the load uni-
formly and be immune to hot spots with a sufficiently
high scatter width.

In order to test the load with Copyset Replication,
we ran a monte carlo simulation of data replication in
a 5000-node HDFS cluster with R = 3.

Table 3 shows the load we measured in our monte
carlo experiment. Since we have a very large number of
chunks with random replication, the mean load is almost
identical to the worst-case load. With Copyset Replica-
tion, the simulation shows that the 99th percentile loads
are 1-2 times and the maximum loads 1.5-4 times higher
than the mean load. Copyset Replication incurs higher
worst-case loads because the permutation phase can pro-
duce some copysets with overlaps.

Therefore, if the system’s goal is to prevent hot spots
even in a worst case scenario with Copyset Replication,
the system designer should increase the system’s scatter

width accordingly.

5.3 Implementation of Copyset Replication
in RAMCloud

The implementation of Copyset Replication on RAM-
Cloud was similar to HDFS, with a few small differ-
ences. Similar to the HDFS implementation, most of
the code was implemented on RAMCloud’s coordinator,
which serves as a main directory node and also assigns
nodes to replicas.

In RAMCloud, the main copy of the data is kept in a
master server, which keeps the data in memory. Each
master replicates its chunks on three different backup
servers, which store the data persistently on disk.

The Copyset Replication implementation on RAM-
Cloud only supports a minimal scatter width (S = R —
1 = 2). We chose a minimal scatter width, because it
doesn’t affect RAMCloud’s node recovery times, since
the backup data is recovered from the master nodes,
which are spread across the cluster.

Another difference between the RAMCloud and
HDFS implementations is how we handle new back-
ups joining the cluster and backup failures. Since each
node is a member of a single copyset, if the coordinator
doesn’t find three nodes to form a complete copyset, the
new nodes will remain idle until there are enough nodes
to form a copyset.

When a new backup joins the cluster, the coordinator
checks whether there are three backups that are not as-
signed to a copyset. If there are, the coordinator assigns
these three backups to a copyset.

In order to preserve S = 2, every time a backup node
fails, we re-replicate its entire copyset. Since backups
don’t service normal reads and writes, this doesn’t af-
fect the sytem’s latency. In addition, due to the fact that
backups are recovered in parallel from the masters, re-
replicating the entire group doesn’t significantly affect
the recovery latency. However, this approach does in-
crease the disk and network bandwidth during recovery.

5.4 Evaluation of Copyset Replication on
RAMCloud

We compared the performance of Copyset Replication
with random replication under three scenarios: normal
RAMCloud client operations, a single master recovery
and a single backup recovery.

As expected, we could not measure any overhead of
using Copyset Replication on normal RAMCloud opera-
tions. We also found that it does not impact master recov-
ery, while the overhead of backup recovery was higher as
we expected. We provide the results below.

5.4.1 Master Recovery
One of the main goals of RAMCloud is to fully re-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 45

Replication Recovery Data | Recovery Time
1256 MB 0.73 s

3648 MB 1.10s

Random Replication

Copyset Replication

Table 4: Comparison of backup recovery perfor-
mance on RAMCloud with Copyset Replication. Re-
covery time is measured after the moment of failure
detection.

cover a master in about 1-2 seconds so that applications
experience minimal interruptions. In order to test mas-
ter recovery, we ran a cluster with 39 backup nodes and
5 master nodes. We manually crashed one of the mas-
ter servers, and measured the time it took RAMCloud
to recover its data. We ran this test 100 times, both
with Copyset Replication and random replication. As
expected, we didn’t observe any difference in the time
it took to recover the master node in both schemes.

However, when we ran the benchmark again using 10
backups instead of 39, we observed Copyset Replication
took 11% more time to recover the master node than the
random replication scheme. Due to the fact that Copy-
set Replication divides backups into groups of three, it
only takes advantage of 9 out of the 10 nodes in the clus-
ter. This overhead occurs only when we use a number
of backups that is not a multiple of three on a very small
cluster. Since we assume that RAMCloud is typically de-
ployed on large scale clusters, the master recovery over-
head is negligible.

5.4.2 Backup Recovery

In order to evaluate the overhead of Copyset Replica-
tion on backup recovery, we ran an experiment in which
a single backup crashes on a RAMCloud cluster with
39 masters and 72 backups, storing a total of 33 GB
of data. Table 4 presents the results. Since masters re-
replicate data in parallel, recovery from a backup fail-
ure only takes 51% longer using Copyset Replication,
compared to random replication. As expected, our im-
plementation approximately triples the amount of data
that is re-replicated during recovery. Note that this ad-
ditional overhead is not inherent to Copyset Replication,
and results from our design choice to strictly preserve a
minimal scatter width at the expense of higher backup
recovery overhead.

6. DISCUSSION

This section discusses how coding schemes relate to
the number of copysets, and how Copyset Replication
can simplify graceful power downs of storage clusters.

6.1 Copysets and Coding

Some storage systems, such as GFS, Azure and HDFS,
use coding techniques to reduce storage costs. These

techniques generally do not impact the probability of
data loss due to simultaneous failures.

Codes are typically designed to compress the data
rather than increase its durability. If the coded data is
distributed on a very large number of copysets, multiple
simultaneous failures will still cause data loss.

In practice, existing storage system parity code im-
plementations do not significantly reduce the number of
copysets, and therefore do not impact the profile of data
loss. For example, the HDFS-RAID [1, 11] implementa-
tion encodes groups of 5 chunks in a RAID 5 and mirror-
ing scheme, which reduces the number of distinct copy-
sets by a factor of 5. While reducing the number of copy-
sets by a factor of 5 reduces the probability of data loss,
Copyset Replication still creates two orders of magni-
tude fewer copysets than this scheme. Therefore, HDFS-
RAID with random replication is still very likely lose
data in the case of power outages.

6.2 Graceful Power Downs

Data center operators periodically need to gracefully
power down parts of a cluster [4, 10, 13]. Power downs
are used for saving energy in off-peak hours, or to con-
duct controlled software and hardware upgrades.

When part of a storage cluster is powered down, it is
expected that at least one replica of each chunk will stay
online. However, random replication considerably com-
plicates controlled power downs, since if we power down
a large group of machines, there is a very high probability
that all the replicas of a given chunk will be taken offline.
In fact, these are exactly the same probabilities that we
use to calculate data loss. Several previous studies have
explored data center power down in depth [17, 21, 27].

If we constrain Copyset Replication to use the min-
imal number of copysets (i.e., use Copyset Replication
with S = R — 1), it is simple to conduct controlled clus-
ter power downs. Since this version of Copyset Repli-
cation assigns a single copyset to each node, as long as
one member of each copyset is kept online, we can safely
power down the remaining nodes. For example, a cluster
using three replicas with this version of Copyset Replica-
tion can effectively power down two-thirds of the nodes.

7. RELATED WORK

The related work is split into three categories. First,
replication schemes that achieve optimal scatter width
are related to a field in mathematics called combinato-
rial design theory, which dates back to the 19th century.
We will give a brief overview and some examples of such
designs. Second, replica placement has been studied in
the context of DHT systems. Third, several data center
storage systems have employed various solutions to mit-
igate data loss due to concurrent node failures.

46 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

7.1 Combinatorial Design Theory

The special case of trying to minimize the number of
copysets when S = N — 1 is related to combinatorial de-
sign theory. Combinatorial design theory tries to answer
questions about whether elements of a discrete finite set
can be arranged into subsets, which satisfy certain “bal-
ance" properties. The theory has its roots in recreational
mathematical puzzles or brain teasers in the 18th and
19th century. The field emerged as a formal area of math-
ematics in the 1930s for the design of agricultural exper-
iments [12]. Stinson provides a comprehensive survey of
combinatorial design theory and its applications. In this
subsection we borrow several of the book’s definitions
and examples [26].

The problem of trying to minimize the number of
copysets with a scatter width of S = N — 1 can be ex-
pressed a Balanced Incomplete Block Design (BIBD), a
type of combinatorial design. Designs that try to mini-
mize the number of copysets for any scatter width, such
as Copyset Replication, are called unbalanced designs.

A combinatorial design is defined a pair (X, A), such
that X is a set of all the nodes in the system (i.e.,
X =1{1,2,3,..., N}) and A is a collection of nonempty
subsets of X. In our terminology, A is a collection of all
the copysets in the system.

Let N, R and X be positive integers such that N >
R > 2. A (N, R, \) BIBD satisfies the following prop-
erties:

1. |[A|=N
2. Each copyset contains exactly R nodes

3. Every pair of nodes is contained in exactly A copy-
sets

When A = 1, the BIBD provides an optimal design for
minimizing the number of copysets for S = N — 1.
For example, a (7,3,1)BIBD is defined as:

X ={1,2,3,4,5,6,7}
A = {123,145, 167,246, 257, 347, 356 }

Note that each one of the nodes in the example has a
recovery bandwidth of 6, because it appears in exactly
three non-overlapping copysets.

Another example is the (9,3,1)BIBD:

X ={1,2,3,4,5,6,7,8,9}
A = {123,456, 789, 147, 258, 369, 159, 267, 348, 168,
249, 357}

There are many different methods for constructing
new BIBDs. New designs can be constructed by com-
bining other known designs, using results from graph and

coding theory or in other methods [20]. The Experimen-
tal Design Handbook has an extensive selection of design
examples [9].

However, there is no single technique that can produce
optimal BIBDs for any combination of N and R. More-
over, there are many negative results, i.e., researchers
that prove that no optimal designs exists for a certain
combination of NV and R [18, 19].

Due to these reasons, and due to the fact that BIBDs
do not solve the copyset minimization problem for any
scatter width that is not equal to N — 1, it is not practical
to use BIBDs for creating copysets in data center storage
systems. This is why we chose to utilize Copyset Repli-
cation, a non-optimal design based on random permuta-
tions that can accommodate any scatter width. However,
BIBDs do serve as a useful benchmark to measure how
optimal Copyset Replication in relationship to the opti-
mal scheme for specific values of .S, and the novel formu-
lation of the problem for any scatter width is a potentially
interesting future research topic.

7.2 DHT Systems

There are several prior systems that explore the impact
of data placement on data availability in the context of
DHT systems.

Chun et al. [15] identify that randomly replicating data
across a large “scope" of nodes increases the probability
of data loss under simultaneous failures. They investi-
gate the effect of different scope sizes using Carbonite,
their DHT replication scheme. Yu et al. [28] analyze
the performance of different replication strategies when a
client requests multiple objects from servers that may fail
simultaneously. They propose a DHT replication scheme
called “Group", which constrains the placement of repli-
cas on certain groups, by placing the secondary repli-
cas in a particular order based on the key of the primary
replica. Similarly, Glacier [16] constrains the random
spread of replicas, by limiting each replica to equidistant
points in the keys’ hash space.

None of these studies focus on the relationship be-
tween the probability of data loss and scatter width, or
provide optimal schemes for different scatter width con-
straints.

7.3 Data Center Storage Systems

Facebook’s proprietary HDFS implementation con-
strains the placement of replicas to smaller groups, to
protect against concurrent failures [2, 5]. Similarly,
Sierra randomly places chunks within constrained groups
in order to support flexible node power downs and data
center power proportionality [27]. As we discussed pre-
viously, both of these schemes, which use random repli-
cation within a constrained group of nodes, generate or-
ders of magnitude more copysets than Copyset Replica-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 47

tion with the same scatter width, and hence have a much
higher probability of data loss under correlated failures.

Ford et al. from Google [13] analyze different fail-
ure loss scenarios on GFS clusters, and have proposed
geo-replication as an effective technique to prevent data
loss under large scale concurrent node failures. Geo-
replication across geographically dispersed sites is a fail-
safe way to ensure data durability under a power outage.
However, not all storage providers have the capability to
support geo-replication. In addition, even for data center
operators that have geo-replication (like Facebook and
LinkedIn), losing data at a single site still incurs a high
fixed cost due to the need to locate or recompute the data.
This fixed cost is not proportional to the amount of data
lost [8, 22].

8. ACKNOWLEDGEMENTS

We would like to thank David Gal, Diego Ongaro, Is-
rael Cidon, K. V. Rashmi and Shankar Pasupathy for their
valuable feedback. We would also like to thank our shep-
herd, Bernard Wong, and the anonymous reviewers for
their comments. Asaf Cidon is supported by the Leonard
J. Shustek Stanford Graduate Fellowship. This work
was supported by the National Science Foundation under
Grant No. 0963859 and by STARnet, a Semiconductor
Research Corporation program sponsored by MARCO
and DARPA.

References

[1] HDFS RAID.
HDFS—-RAID.

http://wiki.apache.org/hadoop/

[2] Intelligent block placement policy to decrease probability of data
loss. https://issues.apache.org/jira/browse/
HDEFS-1094.

[3] L. A. Barroso. Personal Communication, 2013.

[4] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33-37, Dec. 2007.

[5] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache hadoop
goes realtime at Facebook. In Proceedings of the 2011 interna-
tional conference on Management of data, SIGMOD ’11, pages
1071-1080, New York, NY, USA, 2011. ACM.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Hari-
das, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows Azure Storage: a highly available

cloud storage service with strong consistency. In Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, SOSP ’11, pages 143-157, New York, NY, USA, 2011.
ACM.

[7]1 R.]J. Chansler. Data Availability and Durability with the Hadoop
Distributed File System. ;login: The USENIX Magazine, 37(1),
February 2012.

[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]
(23]

[24]

[25]

[26]

(27]

(28]

R. J. Chansler. Personal Communication, 2013.
W. Cochran and G. Cox. Experimental designs . 1957.

J. Dean. Evolution and future directions of large-scale storage
and computation systems at Google. In SoCC, page 1, 2010.

B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce:
Replication as a prelude to erasure coding in data-intensive scal-
able computing, 2011.

R. Fisher. An examination of the different possible solutions
of a problem in incomplete blocks. Annals of Human Genetics,
10(1):52-75, 1940.

D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
OSDI'10, pages 1-7, Berkeley, CA, USA, 2010. USENIX As-
sociation.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file sys-
tem. In SOSP, pages 2943, 2003.

B. gon Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica
maintenance for distributed storage systems. In IN PROC. OF
NSDI, pages 45-58, 2006.

A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated failures.
In IN PROC. OF NSDI, 2005.

D. Harnik, D. Naor, and I. Segall. Low power mode in cloud
storage systems.

S. Houghten, L. Thiel, J. Janssen, and C. Lam. There is no (46, 6,
1) block design*. Journal of Combinatorial Designs, 9(1):60-71,
2001.

P. Kaski and P. Ostergérd. There exists no (15, 5, 4) RBIBD.
Journal of Combinatorial Designs, 9(3):227-232, 2001.

J. Koo and J. Gill. Scalable constructions of fractional repetition
codes in distributed storage systems. In Communication, Control,
and Computing (Allerton), 2011 49th Annual Allerton Conference
on, pages 1366—1373. IEEE, 2011.

J. Leverich and C. Kozyrakis. On the energy (in)efficiency of
hadoop clusters. SIGOPS Oper. Syst. Rev., 44(1):61-65, Mar.
2010.

K. Mathukkaruppan. Personal Communication, 2012.

M. D. Mitzenmacher. The power of two choices in randomized
load balancing. Technical report, IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, 1996.

D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In SOSP,
pages 29-41, 2011.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. Mass Storage Systems and Technologies,
IEEE / NASA Goddard Conference on, 0:1-10, 2010.

D. Stinson. Combinatorial designs: construction and analysis.
Springer, 2003.

E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical
power-proportionality for data center storage. Proceedings of Eu-
rosys 11, pages 169-182, 2011.

H. Yu, P. B. Gibbons, and S. Nath. Availability of multi-object
operations. In Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages
16-16, Berkeley, CA, USA, 2006. USENIX Association.

48 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract

We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4-6), and evaluate its
performance on our workload (§ 8).

a) Alice was at the Golden Gate Bridge 'with Bob

Cathy : Wish we were there! David | likes this

id: 105, otype: USER
name: Alice

id: 244, otype: USER

name: Bob
(. J

b)
name: Golden Gate Bridge

id: 534, otype: LOCATION
loc: 37°49'11"N, 122°28'43"W

TAGGED
TAGGED_AT

-

id: 379, otype: USER
name: Cathy

4 FRIEND
FRIEND

atype: COMMENT
time: 1334511670

id: 471, otype: USER

. text: Wish we were there!
name: David

id: 771, otype: COMMENT }

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache

Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 49

of the data mapping and cache-invalidation computations
are in client code that is deployed frequently. Over time
a PHP abstraction was developed that allowed develop-
ers to read and write the objects (nodes) and associations
(edges) in the graph, and direct access to MySQL was
deprecated for data types that fit the model.

TAO is a service we constructed that directly imple-
ments the objects and associations model. We were mo-
tivated by encapsulation failures in the PHP API, by the
opportunity to access the graph easily from non-PHP
services, and by several fundamental problems with the
lookaside cache architecture:

Inefficient edge lists: A key-value cache is not a good
semantic fit for lists of edges; queries must always fetch
the entire edge list and changes to a single edge require
the entire list to be reloaded. Basic list support in a looka-
side cache would only address the first problem; some-
thing much more complicated is required to coordinate
concurrent incremental updates to cached lists.

Distributed control logic: In a lookaside cache archi-
tecture the control logic is run on clients that don’t com-
municate with each other. This increases the number of
failure modes, and makes it difficult to avoid thundering
herds. Nishtala et al. provide an in-depth discussion of
the problems and present leases, a general solution [21].
For objects and associations the fixed API allows us to
move the control logic into the cache itself, where the
problem can be solved more efficiently.

Expensive read-after-write consistency: Facebook
uses asynchronous master/slave replication for MySQL,
which poses a problem for caches in data centers using a
replica. Writes are forwarded to the master, but some
time will elapse before they are reflected in the local
replica. Nishtala et al.’s remote markers [21] track keys
that are known to be stale, forwarding reads for those
keys to the master region. By restricting the data model
to objects and associations we can update the replica’s
cache at write time, then use graph semantics to interpret
cache maintenance messages from concurrent updates.
This provides (in the absence of multiple failures) read-
after-write consistency for all clients that share a cache,
without requiring inter-regional communication.

2.2 TAO’s Goal

TAO provides basic access to the nodes and edges of a
constantly changing graph in data centers across multiple
regions. It is optimized heavily for reads, and explicitly
favors efficiency and availability over consistency.

A system like TAO is likely to be useful for any ap-
plication domain that needs to efficiently generate fine-
grained customized content from highly interconnected
data. The application should not expect the data to be
stale in the common case, but should be able to tolerate
it. Many social networks fit in this category.

3 TAO Data Model and API

Facebook focuses on people, actions, and relationships.
We model these entities and connections as nodes and
edges in a graph. This representation is very flexible;
it directly models real-life objects, and can also be used
to store an application’s internal implementation-specific
data. TAO’s goal is not to support a complete set of graph
queries, but to provide sufficient expressiveness to han-
dle most application needs while allowing a scalable and
efficient implementation.

Consider the social networking example in Figure 1a,
in which Alice used her mobile phone to record her visit
to a famous landmark with Bob. She ‘checked in’ to
the Golden Gate Bridge and ‘tagged’ Bob to indicate
that he is with her. Cathy added a comment that David
has ‘liked.” The social graph includes the users (Alice,
Bob, Cathy, and David), their relationships, their actions
(checking in, commenting, and liking), and a physical
location (the Golden Gate Bridge).

Facebook’s application servers would query this
event’s underlying nodes and edges every time it is ren-
dered. Fine-grained privacy controls mean that each user
may see a different view of the checkin: the individual
nodes and edges that encode the activity can be reused
for all of these views, but the aggregated content and the
results of privacy checks cannot.

3.1 Objects and Associations

TAO objects are typed nodes, and TAO associations
are typed directed edges between objects. Objects are
identified by a 64-bit integer (id) that is unique across all
objects, regardless of object type (otype). Associations
are identified by the source object (idl), association
type (atype) and destination object (id2). At most one
association of a given type can exist between any two
objects. Both objects and associations may contain
data as key—value pairs. A per-type schema lists the
possible keys, the value type, and a default value. Each
association has a 32-bit time field, which plays a central

role in queries!.

Object: (id) — (otype, (key — value)x)
Assoc.: (id1, atype, id2) — (time, (key — value)x)

Figure 1b shows how TAO objects and associations
might encode the example, with some data and times
omitted for clarity. The example’s users are represented
by objects, as are the checkin, the landmark, and Cathy’s
comment. Associations capture the users’ friendships,
authorship of the checkin and comment, and the binding
between the checkin and its location and comments.

IThe time field is actually a generic application-assigned integer.

50 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

Actions may be encoded either as objects or associ-
ations. Both Cathy’s comment and David’s ‘like’ repre-
sent actions taken by a user, but only the comment results
in a new object. Associations naturally model actions
that can happen at most once or record state transitions,
such as the acceptance of an event invitation, while re-
peatable actions are better represented as objects.

Although associations are directed, it is common for
an association to be tightly coupled with an inverse edge.
In this example all of the associations have an inverse
except for the link of type COMMENT. No inverse
edge is required here since the application does not tra-
verse from the comment to the CHECKIN object. Once
the checkin’s id is known, rendering Figure la only re-
quires traversing outbound associations. Discovering the
checkin object, however, requires the inbound edges or
that an id is stored in another Facebook system.

The schemas for object and association types describe
only the data contained in instances. They do not impose
any restrictions on the edge types that can connect to a
particular node type, or the node types that can terminate
an edge type. The same atype is used to represent au-
thorship of the checkin object and the comment object in
Figure 1, for example. Self-edges are allowed.

3.2 Object API

TAQ’s object API provides operations to allocate a new
object and id, and to retrieve, update, or delete the object
associated with an id. A notable omission is a compare-
and-set functionality, whose usefulness is substantially
reduced by TAO’s eventual consistency semantics. The
update operation can be applied to a subset of the fields.

3.3 Association API

Many edges in the social graph are bidirectional, ei-
ther symmetrically like the example’s FRIEND rela-
tionship or asymmetrically like AUTHORED and AU-
THORED_BY. Bidirectional edges are modeled as two
separate associations. TAO provides support for keeping
associations in sync with their inverses, by allowing as-
sociation types to be configured with an inverse type. For
such associations, creations, updates, and deletions are
automatically coupled with an operation on the inverse
association. Symmetric bidirectional types are their own
inverses. The association write operations are:

* assoc_add(idl, atype, id2, time, (k—v)*) -
Adds or overwrites the association (id1, atype,id2),
and its inverse (id1, inv(atype), id2) if defined.

* assoc_delete(id1, atype, id2) — Deletes the asso-
ciation (id1, atype, id2) and the inverse if it exists.

* assoc_change_type(idl, atype, id2, newtype)
— Changes the association (id1, atype, id2) to (id1,
newtype, id2), if (id1, atype, id2) exists.

3.4 Association Query API

The starting point for any TAO association query is an
originating object and an association type. This is the
natural result of searching for a specific type of informa-
tion about a particular object. Consider the example in
Figure 1. In order to display the CHECKIN object, the
application needs to enumerate all tagged users and the
most recently added comments.

A characteristic of the social graph is that most of the
data is old, but many of the queries are for the newest
subset. This creation-time locality arises whenever an
application focuses on recent items. If the Alice in Fig-
ure 1 is a famous celebrity then there might be thousands
of comments attached to her checkin, but only the most
recent ones will be rendered by default.

TAQO’s association queries are organized around asso-
ciation lists. We define an association list to be the list of
all associations with a particular id1 and atype, arranged
in descending order by the time field:

Association List: (id1, atype) — [dnew - - - dold]

For example, the list (i, COMMENT) has edges to the
example’s comments about i, most recent first.

TAO’s queries on associations lists:

« assoc_get(idl, atype, id2set, high?, low?) -
returns all of the associations (id1, atype, id2) and
their time and data, where id2 € id2set and high
> time > low (if specified). The optional time
bounds are to improve cacheability for large asso-
ciation lists (see § 5).

¢ assoc_count(idl, atype) — returns the size of the
association list for (id1, atype), which is the num-
ber of edges of type atype that originate at id1.

« assoc_range(idl, atype, pos, limit) —returns el-
ements of the (id1, atype) association list with in-
dex i € [pos, pos + limit).

* assoc_time_range(id1l, atype, high, low, limit)
— returns elements from the (id1, atype) association
list, starting with the first association where time <
high, returning only edges where time > low.

TAO enforces a per-atype upper bound (typically
6,000) on the actual limit used for an association query.
To enumerate the elements of a longer association list
the client must issue multiple queries, using pos or high
to specify a starting point.

For the example shown in Figure 1 we can map some
possible queries to the TAO API as follows:

¢ “50 most recent comments on Alice’s checkin” =
assoc_range(632, COMMENT, 0, 50)

* “How many checkins at the GG Bridge?” =
assoc_count(534, CHECKIN)

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 51

4 TAO Architecture

In this section we describe the units that make up TAO,
and the multiple layers of aggregation that allow it to
scale across data centers and geographic regions. TAO
is separated into two caching layers and a storage layer.

4.1 Storage Layer

Objects and associations were stored in MySQL at Face-
book even before TAO was built; it was the backing store
for the original PHP implementation of the API. This
made it the natural choice for TAO’s persistent storage.

The TAO API is mapped to a small set of simple
SQL queries, but it could also be mapped efficiently to
range scans in a non-SQL data storage system such as
LevelDB [3] by explicitly maintaining the required in-
dexes. When evaluating the suitability of a backing store
for TAO, however, it is important to consider the data
accesses that don’t use the API. These include back-
ups, bulk import and deletion of data, bulk migrations
from one data format to another, replica creation, asyn-
chronous replication, consistency monitoring tools, and
operational debugging. An alternate store would also
have to provide atomic write transactions, efficient gran-
ular writes, and few latency outliers.

Given that TAO needs to handle a far larger volume of
data than can be stored on a single MySQL server, we
divide data into logical shards. Each shard is contained
in a logical database. Database servers are responsible
for one or more shards. In practice, the number of shards
far exceeds the number of servers; we tune the shard to
server mapping to balance load across different hosts. By
default all object types are stored in one table, and all
association types in another.

Each object id contains an embedded shard_id that
identifies its hosting shard. Objects are bound to a shard
for their entire lifetime. An association is stored on the
shard of its id1, so that every association query can be
served from a single server. Two ids are unlikely to map
to the same server unless they were explicitly colocated
at creation time.

4.2 Caching Layer

TAO’s cache implements the complete API for clients,
handling all communication with databases. The caching
layer consists of multiple cache servers that together
form a tier. A tier is collectively capable of responding to
any TAO request. (We also refer to the set of databases
in one region as a tier.) Each request maps to a single
cache server using a sharding scheme similar to the one
described in § 4.1. There is no requirement that tiers have
the same number of hosts.

Clients issue requests directly to the appropriate cache
server, which is then responsible for completing the read

or write. For cache misses and write requests, the server
contacts other caches and/or databases.

The TAO in-memory cache contains objects, associ-
ation lists, and association counts. We fill the cache on
demand and evict items using a least recently used (LRU)
policy. Cache servers understand the semantics of their
contents and use them to answer queries even if the exact
query has not been previously processed, e.g. a cached
count of zero is sufficient to answer a range query.

Write operations on an association with an inverse
may involve two shards, since the forward edge is stored
on the shard for id1 and the inverse edge is on the shard
for id2. The tier member that receives the query from
the client issues an RPC call to the member hosting id2,
which will contact the database to create the inverse asso-
ciation. Once the inverse write is complete, the caching
server issues a write to the database for id1l. TAO does
not provide atomicity between the two updates. If a
failure occurs the forward may exist without an inverse;
these hanging associations are scheduled for repair by an
asynchronous job.

4.3 Client Communication Stack

It is common for hundreds of objects and associations
to be queried while rendering a Facebook page, which is
likely to require communication with many cache servers
in a short period of time. The challenges of the resulting
all-to-all communication are similar to those faced by our
memcache pools. TAO and memcache share most of the
client stack described by Nishtala et al. [21]. The latency
of TAO requests can be much higher than those of mem-
cache, because TAO requests may access the database,
so to avoid head-of-line blocking on multiplexed connec-
tions we use a protocol with out-of-order responses.

4.4 Leaders and Followers

In theory a single cache tier could be scaled to handle any
foreseeable aggregate request rate, so long as shards are
small enough. In practice, though, large tiers are prob-
lematic because they are more prone to hot spots and they
have a quadratic growth in all-to-all connections.

To add servers while limiting the maximum tier size
we split the cache into two levels: a leader tier and mul-
tiple follower tiers. Some of TAO’s advantages over a
lookaside cache architecture (as described in § 2.1) rely
on having a single cache coordinator per database; this
split allows us to keep the coordinators in a single tier
per region. As in the single-tier configuration, each tier
contains a set of cache servers that together are capable
of responding to any TAO query; that is, every shard in
the system maps to one caching server in each tier. Lead-
ers (members of the leader tier) behave as described in
§ 4.2, reading from and writing to the storage layer. Fol-

52 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

lowers (members of follower tiers) will instead forward
read misses and writes to a leader. Clients communicate
with the closest follower tier and never contact leaders
directly; if the closest follower is unavailable they fail
over to another nearby follower tier.

Given this two-level caching hierarchy, care must be
taken to keep TAO caches consistent. Each shard is
hosted by one leader, and all writes to the shard go
through that leader, so it is naturally consistent. Follow-
ers, on the other hand, must be explicitly notified of up-
dates made via other follower tiers.

TAO provides eventual consistency [33, 35] by asyn-
chronously sending cache maintenance messages from
the leader to the followers. An object update in the leader
enqueues invalidation messages to each corresponding
follower. The follower that issued the write is updated
synchronously on reply from the leader; a version num-
ber in the cache maintenance message allows it to be ig-
nored when it arrives later. Since we cache only con-
tiguous prefixes of association lists, invalidating an as-
sociation might truncate the list and discard many edges.
Instead, the leader sends a refill message to notify follow-
ers about an association write. If a follower has cached
the association, then the refill request triggers a query to
the leader to update the follower’s now-stale association
list. § 6.1 discusses the consistency of this design and
also how it tolerates failures.

Leaders serialize concurrent writes that arrive from
followers. Because a single leader mediates all of the
requests for an id1, it is also ideally positioned to protect
the database from thundering herds. The leader ensures
that it does not issue concurrent overlapping queries to
the database and also enforces a limit on the maximum
number of pending queries to a shard.

4.5 Scaling Geographically

The leader and followers configuration allows TAO to
scale to handle a high workload, since read throughput
scales with the total number of follower servers in all
tiers. Implicit in the design, however, is the assumption
that the network latencies from follower to leader and
leader to database are low. This assumption is reasonable
if clients are restricted to a single data center, or even to
a set of data centers in close proximity. It is not true,
however, in our production environment.

As our social networking application’s computing and
network requirements have grown, we have had to ex-
pand beyond a single geographical location: today, fol-
lower tiers can be thousands of miles apart. In this con-
figuration, network round trip times can quickly become
the bottleneck of the overall architecture. Since read
misses by followers are 25 times as frequent as writes in
our workloads, we chose a master/slave architecture that
requires writes to be sent to the master, but that allows

Master Region for Shard

Clients

Slave Region for Shard

Followers Followers
Leader Leader

Cache Cache

Master DB

Slave DB

Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave is made separately for each shard.

read misses to be serviced locally. As with the leader/-
follower design, we propagate update notifications asyn-
chronously to maximize performance and availability, at
the expense of data freshness.

The social graph is tightly interconnected; it is not pos-
sible to group users so that cross-partition requests are
rare. This means that each TAO follower must be local
to a tier of databases holding a complete multi-petabyte
copy of the social graph. It would be prohibitively ex-
pensive to provide full replicas in every data center.

Our solution to this problem is to choose data center
locations that are clustered into only a few regions, where
the intra-region latency is small (typically less than 1 mil-
lisecond). It is then sufficient to store one complete copy
of the social graph per region. Figure 2 shows the overall
architecture of the master/slave TAO system.

Followers behave identically in all regions, forwarding
read misses and writes to the local region’s leader tier.
Leaders query the local region’s database regardless of
whether it is the master or slave. Writes, however, are
forwarded by the local leader to the leader that is in the
region with the master database. This means that read
latency is independent of inter-region latency.

The master region is controlled separately for each
shard, and is automatically switched to recover from the
failure of a database. Writes that fail during the switch
are reported to the client as failed, and are not retried.
Note that since each cache hosts multiple shards, a server
may be both a master and a slave at the same time. We
prefer to locate all of the master databases in a single re-
gion. When an inverse association is mastered in a differ-
ent region, TAO must traverse an extra inter-region link
to forward the inverse write.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 53

TAO embeds invalidation and refill messages in the
database replication stream. These messages are deliv-
ered in a region immediately after a transaction has been
replicated to a slave database. Delivering such messages
earlier would create cache inconsistencies, as reading
from the local database would provide stale data. At
Facebook TAO and memcache use the same pipeline for
delivery of invalidations and refills [21].

If a forwarded write is successful then the local leader
will update its cache with the fresh value, even though
the local slave database probably has not yet been up-
dated by the asynchronous replication stream. In this
case followers will receive two invalidates or refills from
the write, one that is sent when the write succeeds and
one that is sent when the write’s transaction is replicated
to the local slave database.

TAQO’s master/slave design ensures that all reads can
be satisfied within a single region, at the expense of po-
tentially returning stale data to clients. As long as a user
consistently queries the same follower tier, the user will
typically have a consistent view of TAO state. We discuss
exceptions to this in the next section.

5 Implementation

Previous sections describe how TAO servers are aggre-
gated to handle large volumes of data and query rates.
This section details important optimizations for perfor-
mance and storage efficiency.

5.1 Caching Servers

TAO’s caching layer serves as an intermediary between
clients and the databases. It aggressively caches objects
and associations to provide good read performance.

TAO’s memory management is based on Facebook’s
customized memcached, as described by Nishtala et
al. [21]. TAO has a slab allocator that manages slabs of
equal size items, a thread-safe hash table, LRU eviction
among items of equal size, and a dynamic slab rebalancer
that keeps the LRU eviction ages similar across all types
of slabs. A slab item can hold one node or one edge list.

To provide better isolation, TAO partitions the avail-
able RAM into arenas, selecting the arena by the object
or association type. This allows us to extend the cache
lifetime of important types, or to prevent poor cache cit-
izens from evicting the data of better-behaved types. So
far we have only manually configured arenas to address
specific problems, but it should be possible to automati-
cally size arenas to improve TAO’s overall hit rate.

For small fixed-size items, such as association counts,
the memory overhead of the pointers for bucket items in
the main hash table becomes significant. We store these
items separately, using direct-mapped 8-way associative
caches that require no pointers. LRU order within each

bucket is tracked by simply sliding the entries down. We
achieve additional memory efficiency by adding a table
that maps the each active atype to a 16 bit value. This
lets us map (id1, atype) to a 32-bit count in 14 bytes; a
negative entry, which records the absence of any id2 for
an (id1, atype), takes only 10 bytes. This optimization
allows us to hold about 20% more items in cache for a
given system configuration.

5.2 MySQL Mapping

Recall that we divide the space of objects and associ-
ations into shards. Each shard is assigned to a logical
MySQL database that has a table for objects and a table
for associations. All of the fields of an object are serial-
ized into a single ‘data‘ column. This approach allows
us to store objects of different types within the same ta-
ble, Objects that benefit from separate data management
polices are stored in separate custom tables.

Associations are stored similarly to objects, but to sup-
port range queries, their tables have an additional index
based on idl, atype, and time. To avoid potentially ex-
pensive SELECT COUNT queries, association counts
are stored in a separate table.

5.3 Cache Sharding and Hot Spots

Shards are mapped onto cache servers within a tier using
consistent hashing [15]. This simplifies tier expansions
and request routing. However, this semi-random assign-
ment of shards to cache servers can lead to load imbal-
ance: some followers will shoulder a larger portion of
the request load than others. TAO rebalances load among
followers with shard cloning, in which reads to a shard
are served by multiple followers in a tier. Consistency
management messages for a cloned shard are sent to all
followers hosting that shard.

In our workloads, it is not uncommon for a popular
object to be queried orders of magnitude more often than
other objects. Cloning can distribute this load across
many followers, but the high hit rate for these objects
makes it worthwhile to place them in a small client-side
cache. When a follower responds to a query for a hot
item, it includes the object or association’s access rate.
If the access rate exceeds a certain threshold, the TAO
client caches the data and version. By including the ver-
sion number in subsequent queries, the follower can omit
the data in replies if the data has not changed since the
previous version. The access rate can also be used to
throttle client requests for very hot objects.

5.4 High-Degree Objects

Many objects have more than 6,000 associations with the
same atype emanating from them, so TAO does not cache

54 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

the complete association list. It is also common that as-
soc_get queries are performed that have an empty result
(no edge exists between the specified id1 and id2). Un-
fortunately, for high-degree objects these queries will al-
ways go to the database, because the queried id2 could
be in the uncached tail of the association list.

We have addressed this inefficiency in the cache im-
plementation by modifying client code that is observed
to issue problematic queries. One solution to this prob-
lem is to use assoc_count to choose the query direction,
since checking for the inverse edge is equivalent. In
some cases where both ends of an edges are high-degree
nodes, we can also leverage application-domain knowl-
edge to improve cacheability. Many associations set the
time field to their creation time, and many objects in-
clude their creation time as a field. Since an edge to a
node can only be created after the node has been created,
we can limit the id2 search to associations whose time
is > than the object’s creation time. So long as an edge
older than the object is present in cache then this query
can be answered directly by a TAO follower.

6 Consistency and Fault Tolerance

Two of the most important requirements for TAO are
availability and performance. When failures occur we
would like to continue to render Facebook, even if the
data is stale. In this section, we describe the consistency
model of TAO under normal operation, and how TAO
sacrifices consistency under failure modes.

6.1 Consistency

Under normal operation, objects and associations in TAO
are eventually consistent [33, 35]; after a write, TAO
guarantees the eventual delivery of an invalidation or re-
fill to all tiers. Given a sufficient period of time during
which external inputs have quiesced, all copies of data
in TAO will be consistent and reflect all successful write
operations to all objects and associations. Replication
lag is usually less than one second.

In normal operation (at most one failure encountered
by a request) TAO provides read-after-write consistency
within a single tier. TAO synchronously updates the
cache with locally written values by having the master
leader return a changeset when the write is successful.
This changeset is propagated through the slave leader (if
any) to the follower tier that originated the write query.
If an inverse type is configured for an association, then
writes to associations of that type may affect both the
id1’s and the id2’s shard. In these cases, the changeset
returned by the master leader contains both updates, and
the slave leader (if any) and the follower that forwarded
the write must each send the changeset to the id2’s shard
in their respective tiers, before returning to the caller.

The changeset cannot always be safely applied to the
follower’s cache contents, because the follower’s cache
may be stale if the refill or invalidate from a second fol-
lower’s update has not yet been delivered. We resolve
this race condition in most cases with a version number
that is present in the persistent store and the cache. The
version number is incremented during each update, so
the follower can safely invalidate its local copy of the
data if the changeset indicates that its pre-update value
was stale. Version numbers are not exposed to the TAO
clients. In slave regions, this scheme is vulnerable to
a rare race condition between cache eviction and stor-
age server update propagation. The slave storage server
may hold an older version of a piece of data than what
is cached by the caching server, so if the post-changeset
entry is evicted from cache and then reloaded from the
database, a client may observe a value go back in time
in a single follower tier. Such a situation can only oc-
cur if it takes longer for the slave region’s storage server
to receive an update than it does for a cached item to be
evicted from cache, which is rare in practice.

Although TAO does not provide strong consistency for
its clients, because it writes to MySQL synchronously
the master database is a consistent source of truth. This
allows us to provide stronger consistency for the small
subset of requests that need it. TAO reads may be marked
critical, in which case they will be proxied to the master
region. We could use critical reads during an authentica-
tion process, for example, so that replication lag doesn’t
allow use of stale credentials.

6.2 Failure Detection and Handling

TAO scales to thousands of machines over multiple ge-
ographical locations, so transient and permanent fail-
ures are commonplace. Therefore, it is important that
TAO detect potential failures and route around them.
TAO servers employ aggressive network timeouts so as
not to continue waiting on responses that may never ar-
rive. Each TAO server maintains per-destination time-
outs, marking hosts as down if there are several consec-
utive timeouts, and remembering downed hosts so that
subsequent requests can be proactively aborted. This
simple failure detector works well, although it does not
always preserve full capacity in a brown-out scenario,
such as bursty packet drops that limit TCP throughput.
Upon detection of a failed server, TAO routes around the
failures in a best effort fashion in order to preserve avail-
ability and performance at the cost of consistency. We
actively probe failed machines to discover when (if) they
recover.

Database failures: Databases are marked down in a
global configuration if they crash, if they are taken of-
fline for maintenance, or if they are replicating from a
master database and they get too far behind. When a

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 55

master database is down, one of its slaves is automati-
cally promoted to be the new master.

When a region’s slave database is down, cache misses
are redirected to the TAO leaders in the region hosting the
database master. Since cache consistency messages are
embedded in the database’s replication stream, however,
they can’t be delivered by the primary mechanism. Dur-
ing the time that a slave database is down an additional
binlog tailer is run on the master database, and the re-
fills and invalidates are delivered inter-regionally. When
the slave database comes back up, invalidation and refill
messages from the outage will be delivered again.

Leader failures: When a leader cache server fails,
followers automatically route read and write requests
around it. Followers reroute read misses directly to
the database. Writes to a failed leader, in contrast,
are rerouted to a random member of the leader’s tier.
This replacement leader performs the write and associ-
ated actions, such as modifying the inverse association
and sending invalidations to followers. The replacement
leader also enqueues an asynchronous invalidation to the
original leader that will restore its consistency. These
asynchronous invalidates are recorded both on the coor-
dinating node and inserted into the replication stream,
where they are spooled until the leader becomes avail-
able. If the failing leader is partially available then fol-
lowers may see a stale value until the leader’s consis-
tency is restored.

Refill and invalidation failures: Leaders send refills
and invalidations asynchronously. If a follower is un-
reachable, the leader queues the message to disk to be
delivered at a later time. Note that a follower may be
left with stale data if these messages are lost due to per-
manent leader failure. This problem is solved by a bulk
invalidation operation that invalidates all objects and as-
sociations from a shard_id. After a failed leader box is
replaced, all of the shards that map to it must be invali-
dated in the followers, to restore consistency.

Follower failures: In the event that a TAO follower
fails, followers in other tiers share the responsibility of
serving the failed host’s shards. We configure each TAO
client with a primary and backup follower tier. In nor-
mal operations requests are sent only to the primary. If
the server that hosts the shard for a particular request has
been marked down due to timeouts, then the request is
sent instead to that shard’s server in the backup tier. Be-
cause failover requests still go to a server that hosts the
corresponding shard, they are fully cacheable and do not
require extra consistency work. Read and write requests
from the client are failed over in the same way. Note that
failing over between different tiers may cause read-after-
write consistency to be violated if the read reaches the
failover target before the write’s refill or invalidate.

read requests 99.8 % write requests 0.2 %
assoc_get 15.7 % assoc_add 52.5 %
assoc_range 40.9 % assoc_del 8.3 %
assoc_time_range 2.8 % assoc_change_type 0.9 %
assoc_count 11.7 % obj_add 16.5 %
obj_get 28.9 % obj_update 20.7 %

obj_delete 2.0 %

Figure 3: Relative frequencies for client requests to TAO
from all Facebook products. Reads account for almost
all of the calls to the APIL

7 Production Workload

Facebook has a single instance of TAO in production.
Multi-tenancy in a system such as TAO allows us to
amortize operational costs and share excess capacity
among clients. It is also an important enabler for rapid
product innovation, because new applications can link to
existing data and there is no need to move data or pro-
vision servers as an application grows from one user to
hundreds of millions. Multi-tenancy is especially im-
portant for objects, because it allows the entire 64-bit id
space to be handled uniformly without an extra step to
resolve the otype.

The TAO system contains many follower tiers spread
across several geographic regions. Each region has one
complete set of databases, one leader cache tier, and at
least two follower tiers. Our TAO deployment contin-
uously processes a billion reads and millions of writes
per second. We are not aware of another geographically
distributed graph data store at this scale.

To characterize the workload that is seen by TAO, we
captured a random sample of 6.5 million requests over a
40 day period. In this section, we describe the results of
an analysis of that sample.

At a high level, our workload shows the following
characteristics:

* reads are much more frequent than writes;
* most edge queries have empty results; and

e query frequency, node connectivity, and data size
have distributions with long tails.

Figure 3 breaks down the load on TAO. Reads domi-
nate, with only 0.2% of requests involving a write. The
majority of association reads resulted in empty associa-
tion lists. Calls to assoc_get found an association only
19.6% of the time, 31.0% of the calls to assoc_range in
our trace had a non-empty result, and only 1.9% of the
calls to assoc_time_range returned any edges.

Figure 4 shows the distribution of the return values
from assoc_count. 45% of calls return zero. Among the
non-zero values, although small values are the most com-
mon, 1% of the return values were > 500, 000.

Figure 5 shows the distribution of the number of asso-

56 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

100% _‘\
10%

1%

CCDF (fraction >)
S
w

LI I e I D O D O B D B B B B B B
1248 25 27 29 211 213 215 217 219 221 223 225 227
assoc_count return value

Figure 4: assoc_count frequency in our production envi-
ronment. 1% of returned counts were >512K.

100%
10% i

Y —

assoc_range
assoc_time_range -------

CCDF (fraction >)

~

T T T T T T T T T T
o4 o5 96 o7 58 99 10 511 512 513
of returned assocs

10 T T T
1 2 4 8

Figure 5: The number of edges returned by assoc_range
and assoc_time_range queries. 64% of the non-empty
results had 1 edge, 13% of which had a limit of 1.

ciations returned for range and time-range queries, and
the subset that hit the limit for returned associations.
Most range and time range queries had large client-
supplied limits. 12% of the queries had limit = 1, but
95% of the remaining queries had limit > 1000. Less
than 1% of the return values for queries with a limit > 1
actually reached the limit.

Although queries for non-existent associations were
common, this is not the case for objects. A valid id is
only produced during object creation, so obj_get can only
return an empty result if the object has been removed
or if the object’s creation has not yet been replicated to
the current region. Neither of these cases occurred in
our trace; every object read was successful. This doesn’t
mean that objects were never deleted — it just means that
there was never an attempt to read a deleted object.

Figure 6 shows the distribution of the data sizes for
TAO query results. 39.5% of the associations queried
by clients contained no data. Our implementation allows
objects to store IMB of data and associations to store
64K of data (although a custom table must be configured
for associations that store more than 255 bytes of data).
The actual size of most objects and associations is much

associations

jects E==X
10% N objects |

1%

frequency
o o
o o
S W

-
S
o

o
=)
>

data size

Figure 6: The size of the data stored in associations and
objects that were returned by the TAO API. Associations
typically store much less data than objects. The aver-
age association data size was 97.8 bytes for the 60.5%
of returned associations that had some data. The average
object data size was 673 bytes.

600000 - avg aggregate hit rate -------

500000

400000

300000
200000 3 E

100000 | 3 R

single-server throughput (request per sec)

O T T T T T T T T T T T : T T T
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
follower hit rate (%)

Figure 7: Throughput of an individual follower in our
production environment. Cache misses and writes are
more expensive than cache hits, so the peak query rate
rises with hit rate. Writes are included in this graph as
non-hit requests.

smaller. However, large values are frequent enough that
the system must deal with them efficiently.

8 Performance

Running a single TAO deployment for all of Facebook
allows us to benefit from economies of scale, and makes
it easy for new products to integrate with existing por-
tions of the social graph. In this section, we report on the
performance of TAO under a real workload.
Availability: Over a period of 90 days, the fraction
of failed TAO queries as measured from the web server
was 4.9 x 107°. Care must be taken when interpreting
this number, since the failure of one TAO query might
prevent the client from issuing another query with a dy-
namic data dependence on the first. TAO’s failures may
also be correlated with those of other dependent systems.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 57

hit lat. (msec) miss lat. (msec)

operation 50% avg 99% 50% avg 99%
assoc_count 1.1 2.5 289 5.0 26.2 186.8
assoc_get 1.0 24 259 5.8 145 143.1
assoc_range 1.1 2.3 2438 54 11.2 936
assoc_time_range 1.3 3.2 32.8 58 11.9 472
obj_get 1.0 2.4 270 8.2 753 1864

Figure 8: Client-observed TAO latency in milliseconds
for read requests, including client API overheads and net-
work traversal, separated by cache hits and cache misses.

remote region latency Ex<X
master region latency =
avg ping latency -------

40% -

30% |- 3 i

frequency

20% |- -

10% -

0% Ly ‘I,Irlu‘..‘- ‘ B EHHHNWmﬁ ——

0 10 20 30 40 50 60 70 80 90 100 110 120 130
write latency (msec)

Figure 9: Write latency from clients in the same region
as database masters, and from a region 58 msec away.

Follower capacity: The peak throughput of a follower
depends on its hit rate. Figure 7 shows the highest 15-
minute average throughput we observe in production for
our current hardware configuration, which has 144GB
of RAM, 2 Intel Xeon 8 core E5-2660 CPUs running at
2.2Ghz with Hyperthreading, and 10 Gigabit ethernet.

Hit rates and latency: As part of the data collection
process that was described in § 7, we measured latencies
in the client application; these measurements include all
network latencies and the time taken to traverse the PHP
TAO client stack. Requests were sampled at the same
rate in all regions. TAO’s overall hit rate for reads was
96.4%. Figure 8 shows the client-observed latencies for
reads. obj_get has higher miss latencies than the other
reads because objects typically have more data (see Fig-
ure 6). assoc_count requests to the persistent store have a
larger id1 working set than other association queries, and
hence make poorer use of the database’s buffer cache.

TAO’s writes are performed synchronously to the mas-
ter database, so writes from other regions include an
inter-region round trip. Figure 9 compares the latency
in two data centers that are 58.1 milliseconds away from
each other (average round trip). Average write latency
in the same region as the master was 12.1 msec; in the
remote region it was 74.4 = 58.1 + 16.3 msec.

Replication lag: TAO’s asynchronous replication of
writes between regions is a design trade-off that favors

read performance and throughput over consistency. We
observed that TAO’s slave storage servers lag their mas-
ter by less than 1 second during 85% of the tracing win-
dow, by less than 3 seconds 99% of the time, and by less
than 10 seconds 99.8% of the time.

Failover: Follower caches directly contact the
database when a leader is unavailable; this failover path
was used on 0.15% of follower cache misses over our
sample. Failover for write requests involves delegating
those requests to a random leader, which occurred for
0.045% of association and object writes. Slave databases
were promoted to be the master 0.25% of the time due to
planned maintenance or unplanned downtime.

9 Related Work

TAO is a geographically distributed eventually consis-
tent graph store optimized for reads. Previous distributed
systems works have explored relaxed consistency, graph
databases, and read-optimized storage. To our knowl-
edge, TAO is the first to combine all of these techniques
in a single system at large scale.

Eventual consistency: Terry et al. [33] describe
eventual consistency, the relaxed consistency model
which is used by TAO. Werner describes read-after-write
consistency as a property of some variants of eventual
consistency [35].

Geographically distributed data stores: The Coda
file system uses data replication to improve performance
and availability in the face of slow or unreliable net-
works [29]. Unlike Coda, TAO does not allow writes
in portions of the system that are disconnected.

Megastore is a storage system that uses Paxos across
geographically distributed data centers to provide strong
consistency guarantees and high availability [5]. Span-
ner, the next generation globally distributed database de-
veloped at Google after Megastore, introduces the con-
cept of a time API that exposes time uncertainty and
leverages that to improve commit throughput and provide
snapshot isolation for reads [8]. TAO addresses a very
different use case, providing no consistency guarantees
but handling many orders of magnitude more requests.

Distributed hash tables and key-value systems: Un-
structured key-value systems are an attractive approach
to scaling distributed storage because data can be easily
partitioned and little communication is needed between
partitions. Amazon’s Dynamo [10] demonstrates how
they can be used in building flexible and robust com-
mercial systems. Drawing inspiration from Dynamo,
LinkedIn’s Voldemort [4] also implements a distributed
key-value store but for a social network. TAO accepts
lower write availability than Dynamo in exchange for
avoiding the programming complexities that arise from
multi-master conflict resolution. The simplicity of key-

58 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

value stores also allows for aggressive performance opti-
mizations, as seen in Facebook’s use of memcache [21].

Many contributions in distributed hash tables have fo-
cused on routing [28, 32, 25, 24]. Li et al. [16] character-
ize the performance of DHTs under churn while Dabek et
al. [9] focus on designing DHTs in a wide-area network.
TAO exploits the hierarchy of inter-cluster latencies af-
forded by our data center placement and assumes a con-
trolled environment that has few membership or cluster
topology changes.

Many other works have focused on the consistency se-
mantics provided by key-value stores. Gribble et al. [13]
provide a coherent view of cached data by leverag-
ing two-phase commit. Glendenning et al. [12] built a
linearizable key-value store tolerant of churn. Sovran
et al. [31] implement geo-replicated transactions.

The COPS system [17] provides causal consistency
in a highly available key-value store by tracking all de-
pendencies for all keys accessed by a client context.
Eiger [18] improves on COPS by tracking conflicts be-
tween pending operations in a column-family database.
The techniques used in Eiger may be applicable TAO if
the per-machine efficiency can be improved.

Hierarchical connectivity: Nygren et al. [22] de-
scribe how the Akamai content cache optimizes latency
by grouping edge clusters into regional groups that share
a more powerful ‘parent’ cluster, which are similar to
TAO’s follower and leader tiers.

Structured storage: TAO follows the recent trend of
shifting away from relational databases towards struc-
tured storage approaches. While loosely defined, these
systems typically provide weaker guarantees than the
traditional ACID properties. Google’s BigTable [6],
Yahoo!’s PNUTS [7], Amazon’s SimpleDB [1], and
Apache’s HBase [34] are examples of this more scal-
able approach. These systems all provide consistency
and transactions at the per-record or row level similar to
TAQO’s semantics for objects and associations, but do not
provide TAO’s read efficiency or graph semantics. Es-
criva et al. [27] describe a searchable key-value store.
Redis [26] is an in-memory storage system providing a
range of data types and an expressive API for data sets
that fit entirely in memory.

Graph serving: Since TAO was designed specifically
to serve the social graph, it is unsurprising that it shares
features with existing works on graph databases. Shao
and Wang’s Trinity effort [30] stores its graph structures
in-memory. Neo4j [20] is a popular open-source graph
database that provides ACID semantics and the ability
to shard data across several machines. Twitter uses its
FlockDB [11] to store parts of its social graph, as well.
To the best our knowledge, none of these systems scale
to support Facebook’s workload.

Redis [26] is a key-value store with a rich selection of

value types sufficient to efficiently implement the objects
and associations API. Unlike TAO, however, it requires
that the data set fit entirely in memory. Redis replicas are
read-only, so they don’t provide read-after-write consis-
tency without a higher-level system like Nishtala et al.’s
remote markers [21].

Graph processing: TAO does not currently support
an advanced graph processing API. There are several
systems that try to support such operations but they are
not designed to receive workloads directly from client
applications. PEGASUS [14] and Yahoo’s Pig Latin [23]
are systems to do data mining and analysis of graphs on
top of Hadoop, with PEGASUS being focused on peta-
scale graphs and Pig Latin focusing on a more-expressive
query language. Similarly, Google’s Pregel [19] tackles
a lot of the same graph analysis issues but uses its own
more-expressive job distribution model. These systems
focus on throughput for large tasks, rather than a high
volume of updates and simple queries. Facebook has
similar large-scale offline graph-processing systems that
operate on data copied from TAO’s databases, but these
analysis jobs do not execute within TAO itself.

10 Conclusion

Overall, this paper makes three contributions. First, we
characterize a challenging Facebook workload: queries
that require high throughput, low latency read access to
the large, changing social graph. Second, we describe
the objects and associations data model for Facebook’s
social graph, and the API that serves it. Lastly, we detail
TAO, our geographically distributed system that imple-
ments this API.

TAO is deployed at scale inside Facebook. Its separa-
tion of cache and persistent store has allowed those layers
to be independently designed, scaled, and operated, and
maximizes the reuse of components across our organiza-
tion. This separation also allows us to choose different
tradeoffs for efficiency and consistency at the two lay-
ers, and to use an idempotent cache invalidation strategy.
TAO’s restricted data and consistency model has proven
to be usable for our application developers while allow-
ing an efficient and highly available implementation.

Acknowledgements

We would like to thank Rajesh Nishtala, Tony Savor, and
Barnaby Thieme for reading earlier versions of this pa-
per and contributing many improvements. We thank the
many Facebook engineers who built, used, and scaled the
original implementation of the objects and associations
API for providing us with the design insights and work-
load that led to TAO. Thanks also to our reviewers and
our shepherd Phillipa Gill for their detailed comments.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 59

References

(1]
(2]
(3]
[4]
(5]

[6

[t}

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Amazon SimpleDB. http://aws.amazon.com/simpledb/.
Facebook — Company Info. http://newsroom.fb.com.
LevelDB. https://code.google.com/p/leveldb.

Project Voldemort. http://project-voldemort.com/.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services.
In Proceedings of the Conference on Innovative Data system Re-
search, CIDR, 2011.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating System Design and
Implementation, OSDI. USENIX Assoc., 2006.

B. E. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. PNUTS: Yahoo!’s hosted data serving platform. PVLDB,
1(2), 2008.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI, Berkeley, CA, USA, 2012.

F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Mor-
ris. Designing a DHT for low latency and high throughput. In
Proceedings of the 1st Symposium on Networked Systems Design
and Implementation, NSDI, Berkeley, CA, USA, 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
Proceedings of 21st ACM Symposium on Operating Systems Prin-
ciples, SOSP, New York, NY, USA, 2007.

FlockDB.
flockdb.html.

L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. An-
derson. Scalable consistency in scatter. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles, SOSP,
New York, NY, USA, 2011.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service construc-
tion. In Proceedings of the 4th Symposium on Operating System
Design and Implementation, OSDI, Berkeley, CA, USA, 2000.

U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: min-
ing peta-scale graphs. Knowledge Information Systems, 27(2),
2011.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent Hashing and Random trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the 29th annual ACM Symposium on
Theory of Computing, STOC, 1997.

J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek. Com-
paring the performance of distributed hash tables under churn. In
Proceedings of the Third International Conference on Peer-to-
Peer Systems, IPTPS, Berlin, Heidelberg, 2004.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In T. Wobber and P. Druschel, editors,
Proceedings of the 23rd ACM Symposium on Operating System
Design and Implementation, SOSP. ACM, 2011.

http://engineering.twitter.com/2010/05/introducing-

[18]

[19]

[20]
(21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]
[35]

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In
Proceedings of the 10th USENIX conference on Networked Sys-
tems Design and Implementation, NSDI, 2013.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In A. K. Elmagarmid and D. Agrawal, editors,
Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2010.

Neo4j. http://neod;j.org/.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, NSDI, 2013.

E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network:
a platform for high-performance internet applications. SIGOPS
Operating Systems Review, 44(3), Aug. 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. InJ. T.-
L. Wang, editor, Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, 2008.

V. Ramasubramanian and E. G. Sirer. Beehive: O(1)lookup per-
formance for power-law query distributions in peer-to-peer over-
lays. In Proceedings of the 1st Symposium on Networked Systems
Design and Implementation, NSDI, Berkeley, CA, USA, 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of the 2001
conference on Applications, technologies, architectures, and pro-
tocols for computer communications, SIGCOMM, New York,
NY, USA, 2001.

Redis. http://redis.io/.

E. G. S. Robert Escriva, Bernard Wong. Hyperdex: A dis-
tributed, searchable key-value store for cloud computing. Techni-
cal report, Department of Computer Science, Cornell University,
Ithaca, New York, December 2011.

A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg, Middleware, Lon-
don, UK, UK, 2001.

M. Satyanarayanan. The evolution of coda. ACM Transactions
on Computer Systems, 20(2), May 2002.

B. Shao and H. Wang. Trinity. http://research.microsoft.com/en-
us/projects/trinity/.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP, New
York, NY, USA, 2011.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer
communications, SIGCOMM, New York, NY, USA, 2001.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles,
SOSP, New York, NY, USA, 1995.

The Apache Software Foundation. http://hbase.apache.org, 2010.
W. Vogels. Eventually consistent. Queue, 6(6), Oct. 2008.

60

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

PIKACHU: How to Rebalance Load in Optimizing MapReduce On
Heterogeneous Clusters

Rohan Gandhi, Di Xie, Y. Charlie Hu
Purdue University

Abstract

For power, cost, and pricing reasons, datacenters are
evolving towards heterogeneous hardware. However,
MapReduce implementations, which power a representa-
tive class of datacenter applications, were originally de-
signed for homogeneous clusters and performed poorly
on heterogeneous clusters. The natural solution, rebal-
ancing load among the reducers running on heteroge-
neous nodes has been explored in Tarazu, but shown to
be only mildly effective.

In this paper, we revisit the key design challenge in
this important optimization for MapReduce on hetero-
geneous clusters and make three contributions. (1) We
show that Tarazu estimates the target load distribution
too early into MapReduce job execution, which results in
the rebalanced load far from the optimal. (2) We articu-
late the delicate tradeoff between the estimation accuracy
versus wasted work from delayed load adjustment, and
propose a load rebalancing scheme that strikes a balance
between the tradeoff. (3) We implement our design in the
PIKACHU task scheduler, which outperforms Hadoop by
up to 42% and Tarazu by up to 23%.

1 Introduction

For power, cost, and pricing reasons, datacenters have
evolved towards heterogeneous hardware. For example,
different hardware generations exist in Amazon EC2 [1]
due to phased hardware upgrades over the years. Hetero-
geneity also arises due to other factors including special
hardware such as GPUs, unequal creation of instances,
and background load variation [18, 11, 15].

MapReduce, a high-level programming model for
data-intensive applications [10], has been widely adopted
in cloud datacenters such as Google, Yahoo, Microsoft,
and Facebook [7, 8, 17, 9], to power a significant portion
of applications. However, the numerous MapReduce im-
plementations have been designed and optimized for ho-
mogeneous clusters. A recent study [6] has shown that
contemporary MapReduce implementations can perform
extremely poorly on heterogeneous clusters.

The same study characterized how heterogeneous
hardware, i.e., mix of fast and slow nodes, adversely af-
fects the performance of MapReduce frameworks into
two primary effects. (1) Map-side effect: The built-in

load balance of map tasks leads to faster nodes stealing
tasks from slow nodes, which can greatly increase the
network load which in turn can coincide with and slow
down the subsequent network-intensive shuffle phase.
(2) Reduce-side effect: MapReduce implementations as-
sume homogeneous nodes and distribute the keys equally
among reduce tasks. Such distribution leads to disparate
progress on fast and slow nodes in heterogeneous clus-
ters, and contributes to prolonged job completion time.

In [6], the authors proposed Tarazu, a suite of opti-
mizations for heterogeneous clusters. For map-side ef-
fect, it adaptively allows task stealing from slow nodes
and interleaving map tasks with shuffling on fast nodes.
For reduce-side effect, it explores the natural solution,
i.e., rebalancing load between reducers running on fast
and slow nodes. In particular, it estimates the target load
split between fast and slow nodes, i.e., key range parti-
tions, right before the start of the reduce tasks, based on
the relative progress rates of map tasks running on the
fast and slow nodes so far. Evaluation results in [6] how-
ever show the simple load rebalancing scheme is only
mildly effective, and can even degrade job performance
from inaccurate key distribution estimation.

In this paper, we revisit the key design challenge in
this important optimization for MapReduce on heteroge-
neous clusters: load rebalancing among reduce tasks to
even out their completion time. We make three concrete
contributions. First, we show that the relative progress
rates of map tasks on fast and slow nodes often do not
give a good indication of the relative progress rates of
reduce tasks on heterogeneous nodes due to different re-
source requirement, and hence estimating the target re-
ducer load distribution before reduce tasks start can re-
sult in the adjusted load being far from well-balanced.

Second, we explore the design space and articulate the
tradeoff between the estimation accuracy versus wasted
work from delayed load adjustment, and propose a load
rebalancing scheme that strikes a balance between the
two factors. We show an estimator that simply peeks into
the initial relative progress rates of reduce tasks can still
incur estimator error, because reducers on fast and slow
nodes can have different room for increased resource uti-
lization. Our final design captures this additional intri-
cacy using observed reducer CPU utilization on fast and
slow nodes to accurately estimate the target load split.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC 13) 61

Ty T, T, T T,

Map— Map — Shuffle Shuffle — Only User —
Only Reducer

map | CJCIC 11
[Shuffle + Sort |i[|

Time

Figure 1: Four stages and their concurrency in MapRe-
duce job execution.

Finally, we implement our new load rebalancing
scheme in the PIKACHU task scheduler, and experi-
mentally show it substantially outperforms Tarazu and
Hadoop, reducing the job completion time by up to 23%
and 42%, respectively, for a diverse set of benchmarks
and cluster configurations.

2 Background

The execution of a MapReduce job is broken down by the
runtime system into many Map tasks and Reduce tasks
(called reducers hereafter) running in parallel on differ-
ent nodes of the cluster. A reducer consists of three types
of subtasks: (1) shuffle, (2) sort, and (3) user-defined re-
duce function. Every node in the cluster has a fixed num-
ber of map and reduce slots, and the scheduler assigns a
task whenever a slot frees up.

Four stages of MapReduce execution in Hadoop. To
help illustrate of the impact of heterogeneous hardware
on MapReduce performance, we divide the execution of
a MapReduce job in Hadoop into four distinct stages in
the time dimension, as shown in Figure 1. (1) Map-
Only: In this stage, only map tasks are running across
the nodes in the cluster; the reducer is yet to begin. (2)
Map-Shuffle: This stage starts when the reduce tasks
start to run (77 in Figure 1). The start time for reducers
is configurable, but is typically set to be when the first
wave of map tasks is finished, i.e., at least one map task
is finished on all nodes. In this stage, the reduce task
continuously performs staggered shuffle and sort ! (or
simply shuffle-sort hereafter) to digest the output of each
wave of map tasks. Effective, map tasks and shuffle-sort
are running concurrently on all nodes. (3) Shuffle-Only:
This stage begins when all map tasks are finished (time
T,) but the shuffle-sort phases of the reducers are yet to
be finished. In this stage, only the shuffle and sort tasks
are running concurrently. (4) User-Reducer: This stage
begins when all the data have been shuffled and sorted,
and only the user-defined reducer function executes. Fi-
nally, the job is said to be finished when the user-defined
reducer function is finished on all the nodes.

3 Impact of Heterogeneity

The scheduler of MapReduce implementations, e.g.,
Hadoop, however, does not consider heterogeneity,

They do not have to be strictly inter-leaved as each sort task can
begin before the corresponding shuffle task is over, when sufficient
amount of data has been shuffled.

Map-Only Map-Only

Shuffle-Only

User-Reducer m—=3 User-Reducer —=3

Breakdown of job completion
time (Normalized)

Breakdown of job completion
time (Normalized)

Slow Fast Slow Fast Slow Fast Slow Fast
Setup-1 Setup-2 Setup-1 Setup-2

(a) Wordcount (b) Sort

Figure 2: Job completion time breakdown (normalized
to total time) for Wordcount and Sort.

which results in poor application performance on hetero-
geneous clusters. Using testbed measurement, we dissect
the impact of hardware heterogeneity on the four stages
of MapReduce execution.

3.1 Setup
Our heterogeneous cluster consists of 5 Xeon (slow)
nodes and 2 Opteron (fast) nodes, all of which are con-
nected to a 1Gbps switch. Each Opteron node has 8 cores
and 16GB RAM, and each Xeon node has 2 cores and
2GB RAM. We run Hadoop Wordcount (CPU-intensive)
and Sort (IO-intensive) benchmarks and analyze their job
completion time. The total job size consists of 40GB in-
put data, i.e., 680 map tasks each with 64 MB data size.
We use two configurations in our experiments. Both
have 8 and 2 map slots each on fast and slow nodes,
proportional to their numbers of cores, as in Tarazu [6].
They differ in reduce slots per node. Config-1 uses 2
reduce slots on both fast and slow nodes, as in Tarazu,
while Config-2 uses 4 and 1 reduce slots on fast and slow
nodes, i.e., proportional to their numbers of cores.

3.2 Impact of Heterogeneous Nodes

Figure 2 shows the execution time and their breakdown
into the four stages discussed in §2, of the two bench-
marks on the fast and slow nodes, respectively, under the
two configurations. We make the following observations.

(1) Map-Only: We observe the duration of Map-Only
stage is short. For Wordcount, this stage ends when 1
wave of map tasks is over on the slow nodes, and 2 waves
of map tasks are completed on the fast nodes.

(2) Map-Shuffle: The Map-Shuffle stage always fin-
ishes at almost the same time on the fast and slow nodes.
This is due to the inherent load balancing feature of the
task scheduler: whenever a Map slot is freed on a node,
a new map task is scheduled. For example, in Config-1,
each fast node processes far more map tasks (41%) than
slow nodes (3.6%) for Wordcount. This imbalanced map
task processing has two consequences. First, after the
fast nodes finish map tasks on local data first (a locality
feature of the Hadoop scheduler), they will execute re-
mote map tasks (stealing data from the slow nodes). In
Config-1, about 9% of the total map tasks (of the whole
job) executed by a fast node in Wordcount are remote

62 2013 USENIX Annual Technical Conference (USENIX ATC 13)

USENIX Association

map tasks. Such remote map tasks generate extra net-
work traffic from fetching data remotely. Second, since
a fast node performed more map tasks, it will shuffle
much more intermediate data out to other nodes than
slow nodes. In Figure 2(a) Config-1, each fast node in
total shuffles out 7 times more data than each slow node.

(3) Shuffle-Only: Figure 2 shows the duration of the
Shuffle-Only stage can vary significantly on fast and
slow nodes. The gap results from the difference between
shuffle-sort speeds on fast and slow nodes, which results
in different total shuffle-sort durations — the shuffle-only
stage is the leftover shuffle-sort beyond the time all map
tasks are finished. Figure 2(a) shows the stage is 7.4
times shorter on fast nodes than on slow nodes for Word-
count, but completes at about the same on fast and slows
for Sort, under Config-1.

(4) User-Reducer: Since the default scheduler
equally partitions the key range across reducers, each re-
ducer processes equal amount of data in the user-reducer
phase. The execution time, however, can differ among
different nodes due to the difference in their processing
speed. Figure 2(a) shows under Config-1, this stage is
3.51 times slower on slow nodes than on fast nodes for
Wordcount but finishes at about the same time for Sort,
whereas under under Config-2, it finishes at about the
same time for Wordcount, but is 1.26 times slower on
fast nodes than on slow nodes.

(5) Diversity of impact: Overall, Figure 2 shows the
impact of hardware heterogeneity on different stages dif-
fer for different applications under different configura-
tions, suggesting it cannot be easily solved by any static
map/reduce slot configuration.

4 Dynamic Load Rebalancing

We revisit the key design challenge in dynamic load re-
balancing, a potentially effective technique to optimize
MapReduce execution on heterogeneous clusters.

4.1 General Approach
The idea of load rebalancing is straight-forward: faster
reducer gets more data; the task scheduler calculates the
key range partition for fast and slow nodes that results in
the reducers on them finishing at about the same time.
One can potentially derive an analytic model to cap-
ture the effects of all contributing factors to the reducer
completion time on fast and slow nodes [6]. However,
the extensive information needed in such a model are ap-
plication and hardware specific, which requires extensive
profiling and makes it infeasible to use in practice [6].
This motivates the practical approach of dynamic load
rebalancing, i.e., the task scheduler starts with the de-
fault even split policy, estimates the key range partitions
for fast and slow nodes at runtime, and instructs the re-
duce tasks to carry their new workload accordingly.
Dynamic load rebalancing faces two conflicting chal-
lenges. (1) The new load split estimate needs to be accu-

rate, to maximally even out the reducer completion time
on fast and slow nodes. (2) The new load split estimate
needs to be calculated as early as possible, to minimize
the wasted (and hence extra) data movement and process-
ing. In particular, when the assignment of a bin changes
from one reduce task to another, the data associated with
the bin needs to be reshuffled to the newly assigned re-
duce task and re-processed thereafter. Conceptually, the
two challenges are at odds with each other: the longer
the task scheduler waits to estimate the new load split,
the more information it can collect and estimate the split
more accurately, but also the more wasted (and hence
extra) data movement and processing due to the default
even load split before rebalancing takes place.

4.2 Design Space

We define the target ratio of key partition sizes assigned
to each reducer on a fast node to each reducer on a slow
node as the partition ratio — P. The challenge is to cal-
culate P accurately to balance the completion time of the
reducers. We now explore the design space for when and
how the task scheduler should attempt to estimate P.

D;: At start of the Map-Only stage (To)2. Atthe begin-
ning of job execution, since no information is available
about the progress rates of map and reduce tasks, P can
only be set to the default value 1. This is the default even-
split policy which is oblivious to cluster heterogeneity. 3

D,: At start of the Map-Shuffle stage (T;). At Ty,
since the reduce tasks have not started, P can only be

estimated using the relative progress rates of map tasks
S_fa‘m
Sstm
Stam and Sy ,, are the progress rates for map tasks on

fast and slow nodes. This method is used in Tarazu [6].
The main advantage of this method is that, since
shuffle-sort has not started, there is no need to reshuf-
fle any data after the load rebalancing act. However, it
can give a poor estimate of P. Map and reduce tasks
are known to have very different resource requirements,
e.g., amap task is CPU-intensive in the first half and I/O-
intensive in the second half, whereas shuffle-sort has in-
terleaved network-intensive and CPU- and I/O-intensive
phases. As aresult, the relative speed of map tasks can be
a poor approximation to the relative speed of shuffle-sort.
Figure 3(b) shows for Sort, the ratio of map task progress
rates at T is 1.25 , which would be a poor approximation
to the steady-state ratio of shuffle-sort progress rates 0.7.

(so far) on fast and slow nodes, ie., P = , wWhere

Dj3: during the Map-shuffle stage (between T; and

. Sy
T,). Between T and T, P can be estimated as Sif where

Stq and Sy denote the actual progress rates of ‘Shuffle-
Sort so far. The ratio, however, may not be a good ap-

2Ty to T4 are marked in Figure 1.

3 Although conceptually P can be set to a biased value based on the
prior knowledge about the node heterogeneity, picking a suitable value
is hard as the progress rate varies significantly for different phases and
jobs on the same node.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 63

D, D4 D Dq
! Map B Map
Reduce -~ |

Reduce - |

Progress ratio (per slot)

Progress ratio (per slot)

0
0 100 200 300 400 500 600
Time (s)
(b) Sort.

0 250 500 750 10001250

Time (s)
(a) Wordcount.
Figure 3: Ratio of progress rates of map and reduce tasks
on fast and slow nodes.

proximation to the ratio of progress rates of user-reducers
on fast and slow nodes, which perform different opera-
tions from shuffle-sort subtasks.

D3 achieves better estimate of P at the cost of the
penalty associated with adjusting load in the middle of
the Shuffle-Sort stage in two ways: (1) Re-Shuffling: the
reducer on a fast node needs to shuffle in some data al-
ready shuffled to slow nodes; (2) Dropping data: the re-
ducer on a slow node needs to drop some data shuffled in
and sorted under even split.

To strike a balance between accuracy and penalty, the
progress rates and their ratio of reducers on fast and slow
nodes can be measured once they are observed to stabi-
lize, typically after shuffling in one wave of map tasks.

D,: during the Shuffle-Only stage (after T,). Estima-
tion of P can be further delayed till the shuffle-only or
even user-reducer stage has started. At this point, the
relative progress rates of these stages on fast and slow
nodes can be measured accurately; but this design choice
suffers a major disadvantage in terms of reshuffling costs
as slow and fast nodes have fetched substantial amount
of data, ranging from 30-100%. Thus, rebalancing load
at this stage would result in too high data reshuffling
penalty which is likely to erase the gain from rebalancing
the data. We do not consider this option further.

4.3 Design Refinement

We implemented D3 (details in §5, the calculated P=2
from Figure 3(a)) and reran Wordcount. The new execu-
tion time breakdowns, shown in Figure 4, show that the
Shuffle-Only stage still finishes at different time on fast
and slow nodes! To understand the reason, we plot the
(total) map task completion rate and the rate map tasks
are shuffled in by fast nodes and slow nodes for Word-
count in Figure 5. We make two observations. (1) The
fast node is able to match the rate at which map tasks
are completed, which shows that fast node is able to get
enough CPU and network resources to fetch the map out-
puts. (2) The shuffle on slow nodes never catches up with
the total number of map tasks completed, possibly due to
lack of resources, i.e., slow nodes are overloaded.

The CPU utilization shown in Figure 5 further con-
firms this explanation. We see the CPU utilization of the
reducer on slow nodes is stable between 59-66%. Since

14 F Map-Only
Map-Shuffle
12 Shuffle-Only
: User-Reducer =—=1

0.8 |
0.6 [
04
02

Breakdown of job completion
time (Normalized)

Figure 4: Job execution time and breakdown of Word-
count under D3 (P=2).

180

3 Map Tasks — Shuffle-Fast ---- Shuffle-Slow -]
R
g- 120
o
o
@2 60
[Z}
@
oo
0 100 200 300 400 500 600
Time (Sec)
S [CPU-Fast -——--_CPU-Slow_~—]
c 160
2 120 St
I W \
N .
£ 80 D
=1
=) 40
o
o 0
0 100 200 300 400 500 600
Time (Sec)

Figure 5: Shuffling progress and CPU utilization by each
reducer on fast and slow nodes in D3 (calculated P=2).

the reducer on slow nodes always lags behind the map
tasks completed, we can conclude that 66% is the maxi-
mum CPU a reducer can get on slow nodes. In contrast,
the reducer CPU utilization on fast nodes reaches 120%
(the multi-threaded process uses multiple cores) at the
start of reducers, then gradually decreases and stabilizes
at 55%, at which moment it has caught up with map task
completion. This suggests at the steady state, the reducer
on fast nodes just needs 55% of CPU, but it can get as
much as 120% of CPU if needed.

The above finding suggests D3 needs to be adjusted
to use the potential progress rate of the reducer on fast
nodes, as opposed to the progress rate observed (so far).
The partition ratio P is now calculated as

Sta 1

P=——x

Ssl E fa
where Ey, denotes the CPU efficiency (<1) of the re-
ducer on fast nodes, defined as the ratio of the CPU uti-
lization in the steady state (7, in Figure 6 bottom) to the
CPU utilization when shuffle (on fast nodes) has caught
up with map tasks completed (7; in Figure 6 top). In
practice, we observe the steady state 7, on fast nodes is
typically reached when 1 wave of map-tasks are com-
pleted after 7;. Note the CPU utilization on slow nodes
is fairly stable. Figure 6 shows the CPU utilization and
shuffle when the partition ratio is adjusted at time 7, us-
ing the refined scheme, denoted by D3’. The calculated
partition ratio was 4.34. It can be seen that the fast node
regains CPU utilization and both slow and fast nodes
shuffle data at the same rate.

ey

64 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

300 Ts Ty

.,;EC: 240 Map Tasks —— Shuffle-Fast ---- Shuffle-Slow -]

=

g 180 P

8 120 R

2 e T el e gt
3 i

0 100 200 300 400 500 600 700 800

Time (Sec)

— T W

2 160 [CPU-Fast -—_CPU-Slow ~ |

B T

= 120

N \

% 80

S 40 e

o

o 0

0 100 200 300 400 500 600 700 800
Time (Sec)
Figure 6: Shuffling progress and CPU utilization by each
reducer on fast and slow nodes under D3’.

Lastly, D3’ can be easily extended to more than two
types of nodes. We skip the details due to page limit.

S Implementation

We implemented our new load rebalancing scheme D3’
in Hadoop v0.20.203.0 [4] by adding ~2KLOC. We
name the new system PIKACHU. Partition ratio P is cal-
culated at JobTracker based on Hadoop progress rates
and CPU efficiency of the reducer processes, which are
reported by TaskTracker on each node every 3 seconds.

We use virtual bins to dynamically change the load be-
tween fast nodes and slow nodes based on partition ratio
P. Each map task output is partitioned into 10 - N splits,
where N is the total number of reducers. Initially each
reducer is mapped with 10 virtual bins. Once the Job-
Tracker determines the ratio P, it translates the ratio to
the target number of virtual bins for reducers on fast and
slow nodes. Let Ny and Ny be the total number of reducer
slots on all slow nodes and all fast nodes, respectively.
The numbers of virtual bins for a reducer on a slow node
Vi and on a fast node V¢ are calculated as

_10-(Ny+Ng) 10-(Ny+Ny)-P
T N+P-N; T N PNg

Following this, the JobTracker assigns a new virtual bin
mapping to each reducer. Upon receiving the new map-
ping, the reducers on fast nodes need to fetch the newly
added virtual bins, while the reducers on slow nodes
will drop the existing sorted data corresponding to the
dropped virtual bins.

Vs (@)

6 Evaluation

We also implemented Tarazu [6] in Hadoop (version
0.2.203.0). We compare job completion time under
PIKACHU, Tarazu, and Hadoop. We also measure the
overhead incurred in PIKACHU due to re-shuffling and
re-sorting. We use five benchmark applications: Word-
count, Sort, Multi-Wordcount, Inverted-index and Self-
join [6]. Wordcount counts the occurrences of every
word. Sort sorts the given dataset. Multi-Wordcount

Pikachu -
Optimal =3

15 : : 0.97

0.5

Speedup Over Hadoop

0 Nlil%
Wordcount Sort Multi-WC Inv-Index SelfJoin

Figure 7: Speedup of of Tarazu and PIKACHU over
Hadoop, under Config-1.

counts all unique sets of 3 consecutive words. Inverted-
index generates words-to-file indexing. Self-join gen-
erates association among k+/ fields given the set of k-
field association. Sort and Selfjoin are shuffle-intensive,
whereas the other 3 applications are compute-intensive.

Performance on Local Cluster. Figure 7 shows the
speedup (in terms of job completion time) achieved by
PIKACHU and Tarazu against Hadoop for 5 different ap-
plications using Config-1. In addition to Hadoop, Tarazu
and PIKACHU, we also measure the job completion time
at the optimal partition ratio found using trial-and-error
method. The numbers above the bars denote the per-
centage of the optimal performance PIKACHU achieves.
For Sort and Selfjoin applications, the initial configura-
tion was close to optimal (the difference between the job
completion time of Hadoop and Optimal was <4%) and
there was little room for improvement. For the remaining
applications, PIKACHU outperforms Hadoop by 33-42%
and Tarazu by 14-22% because of better accuracy in cal-
culating P. Furthermore, PIKACHU achieves 92-98% of
the optimal job completion time, showing there is not
much room to improve over PIKACHU.

Table 1 summarizes the partition ratios calculated by
Tarazu (T), PIKACHU (P) and Optimal (O). The parti-
tion ratio calculated using PIKACHU is closer to Optimal
compared to Tarazu. Table 1 also shows the overhead
incurred by PIKACHU, measured as the extra data shuf-
fled by all the nodes in PIKACHU compared to Hadoop.
We see PIKACHU incurs a low overhead 0.96-4.75% in
re-shuffling and re-sorting.

Figure 8 shows the breakdown of the job completion
time under PIKACHU normalized to the job completion
time under Tarazu for all 5 applications on slow and fast
nodes. It can be seen that in all 5 cases, the difference
between the shuffle-only execution time, and more im-
portantly the difference between the reducer task com-
pletion time, on the nodes are within 10% on PIKACHU
and 31% on Tarazu.

Performance on EC2 Cluster. Finally, we compared
PIKACHU with Tarazu and Hadoop on a 60-node het-
erogeneous cluster in EC2, consisting of 40 m1 . small
(slow) and 20 m1 .x1large (fast) nodes. We evaluated
the performance using 3 applications, Wordcount, Sort
and Multi-Wordcount under Config-1 and Config-2 for

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 65

Table 1: Partitioning ratio P and overhead under Tarazu, PIKACHU, and optimal partition for the five applications.

Observation Wordcount Sort Multi-Wordcount Inverted-Index Self-join
T[P|[O|T]| P [O| T |[P[O|T[P[O|T[P]O
Calculated P 2[45[4[11]067]09[237[37[35[244[34[33[1[11]12
Shuffle-Overhead 3.86% 4.13% 4.58% 4.75% 0.96%

1.4

time (Normalize
time (Normalize

Breakdown of job completion
time (Normalized)
Breakdown o job competion
i)

Breakdown of job corr(!;):le(ion

Pikachu Pikachu Tarazu

Tarazu
(b) Sort
Figure 8: Job completion time breakdown on

Tarazu

(a) Wordcount

S 16 Tarazu-C1 Tarazu-G2]
g 1'4 Pikachu-C1 e==z= Pikachu-C2 —=m
T 12 - - A
g 1
>
%_ 0.8
2 0.6
%’_ 0.4
& 02 B ,
0 i I I

Wordcount Sort Multi-W
Figure 9: Speedup of Tarazu and PIKACHU over Hadoop
on the 60-node EC2 cluster on 2 configurations.

180 GB data (2880 map tasks). Figure 9 shows the
speedup achieved by Tarazu and PIKACHU over Hadoop
for the 2 configurations.

In Config-1, Tarazu and PIKACHU outperform Hadoop
by 0-18% and 25-42%, respectively. Config-2 was op-
timal configuration for Hadoop for Wordcount without
much scope for improvement. Tarazu and PIKACHU per-
formance was lower than Hadoop by 6% and 2%. For the
other 2 applications, Tarazu and PIKACHU outperformed
Hadoop by up to 10% and 18%, respectively.

7 Related Work

Many implementations, extensions, and domain specific
libraries of MapReduce have been developed to support
large-scale data processing [3, 4, 14, 2, 16, 5]. None of
them explicitly study optimizing MapReduce execution
on heterogeneous hardware. LATE [18] was one of the
first work to show the shortcomings of MapReduce on
heterogeneous clusters. However, it focused on strag-
gler detection and mitigation. Mantri [8] further explores
the causes of stragglers/outliers. Such designs treat the
symptoms of heterogeneity, i.e., stragglers, as opposed
to the root cause, and speculatively re-execute tasks on
fast nodes, wasting utilization of slow nodes.

Lee et al. also considered heterogeneity in the MapRe-
duce scheduler [13, 12] and proposed a fair sched-
uler [12] for a multi-tenant heterogeneous cluster. This
work is orthogonal to ours as it improves the perfor-
mance of multiple jobs rather than a single job. Finally,
Tarazu [6] has already been discussed previously.

(c) Multi-Wordcount

Onl Only

Map-
Map-Shuffle £===

Map-Only

Shuffle-Only =z
User-Reducer ===

Breakdown of job completion
time

Breakdown of job completion
time (Normalized)

Slow Fast
Tarazu

Slow Fast
Pikachu

Pikachu Pikachu

Tarazu

(d) Inverted Index
fast and slow nodes (Normalized to Tarazu).

(e) Selfjoin

8 Conclusion

We showed that the prior-art MapReduce scheduler for
heterogeneous clusters, Tarazu, poorly balances the load
among reducers on fast and slow nodes. We pro-
posed PIKACHU, which strikes a balance between ac-
curacy and overhead in estimating the load adjustment
and doubles Tarazu’s improvement over Hadoop. We
have released PIKACHU at http://github.com/
mapreduce-pikachu.

Acknowledgment. This work was supported in part by
NSF grant CNS-1065456.

References

(1]
(2]

(3]
[4]
(3]
(6]

(7]

Amazon ec2. aws.amazon.com/ec2/.
Apache mahout: Scalable machine learning and data min-
ing. http://mahout.apache.org.
Facebook hive. hadoop.apache.org/hive.
Hadoop. http://lucene.apache.org/hadoop.
X-rime: Hadoop based large scale social network anafy-
sis. http://xrime.sourceforge.net/.
F. Ahmad, et al. Tarazu: optimizing mapreduce on het-
erogeneous clusters. In ASPLOS ’12.
G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Why let resources idle? aggressive cloning of jobs
with dolly. In HotCloud’12.
G. Ananthanarayanan, et al. Reining in the outliers in
map-reduce clusters using mantri. In OSDI’10.
E. Bortnikov, et al. Pregicting execution bottlenecks in
ma}g—reduce clusters. In HotCloud’12. o
J. Dean and S. Ghemawat. Mapreduce: simplified data
Erocessing on large clusters. In OSDI'04.

. Farley, et al. More for your money: exploiting perfor-
mance heterogeneity in public clouds. In SoCC ’12.
G. Lee, et al. Heterogeneity-aware resource allocation
and scheduling in the cloud. In HotCloud’11.
G. Lee, et al. Topology-aware resource allocation for
data-intensive workloads. In APSys ’10.
C. Olston, et al. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08.
C. Reiss, et al. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC ’12.
Y. Yu, et al. Dryadling: a system for general-purpose dis-
tributed data-parallel computing using a high-level lan-
guage. In OSDI’08.
M. Zaharia, et al. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling.
In EuroSys ’10.
M. Zaharia, et al. Improving mapreduce performance in
heterogeneous environments. In OSDI’08.

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]

66 2013 USENIX Annual Technical Conference (USENIX ATC’

13) USENIX Association

FlashFQ: A Fair Queueing I/0 Scheduler for Flash-Based SSDs

Kai Shen

Stan Park

Department of Computer Science, University of Rochester

Abstract

On Flash-based solid-state disks (SSDs), different
I/O operations (reads vs. writes, operations of differ-
ent sizes) incur substantially different resource usage.
This presents challenges for fair resource management
in multi-programmed computer systems and multi-tenant
cloud systems. Existing timeslice-based 1/O schedulers
achieve fairness at the cost of poor responsiveness, par-
ticularly when a large number of tasks compete for I/O
simultaneously. At the same time, the diminished ben-
efits of I/O spatial proximity on SSDs motivate fine-
grained fair queueing approaches that do not enforce
task-specific timeslices. This paper develops a new Flash
1/0 scheduler called FlashFQ. It enhances the start-time
fair queueing schedulers with throttled dispatch to ex-
ploit restricted Flash I/0 parallelism without losing fair-
ness. It also employs I/O anticipation to minimize fair-
ness violation due to deceptive idleness. We implemented
FlashFQ in Linux and compared it with several existing
1/0 schedulers—Linux CFQ [2], an Argon [19]-inspired
quanta scheduler, FIOS timeslice scheduler [17], FIOS
with short timeslices, and 4-Tag SFQ(D) [11]. Results
on synthetic I/O benchmarks, the Apache web server
and Kyoto Cabinet key-value store demonstrate that only
FlashFQ can achieve both fairness and high responsive-
ness on Flash-based SSDs.

1 Introduction

NAND Flash devices are increasingly used as solid-
state disks (SSDs) in computer systems. Compared to
traditional secondary storage, Flash-based SSDs deliver
much higher I/O performance which can alleviate the
I/O bottlenecks in critical data-intensive applications. At
the same time, the SSD resource management must rec-
ognize unique Flash characteristics and work with in-
creasingly sophisticated firmware management. For in-
stance, while the raw Flash device desires sequential
writes, the write-order-based block mapping on modern
SSD firmware can translate random write patterns into
sequential writes on Flash and thereby relieve this burden
for the software I/O scheduler. On the other hand, dif-
ferent I/O operations on Flash-based SSDs may exhibit
large resource usage discrepancy. For instance, a write
can consume much longer device time than a read due to

the erase-before-write limitation on Flash. In addition, a
larger I/O operation can take much longer than a small
request does (unlike on a mechanical disk when both are
dominated by mechanical seek/rotation delays). Without
careful regulation, heavy resource-consuming I/O opera-
tions can unfairly block light operations.

Fair I/O resource management is desirable in a
multi-programmed computer system or a multi-tenant
cloud platform. Existing I/O schedulers including
Linux CFQ [2], Argon [19], and our own FIOS [17]
achieve fairness by assigning timeslices to tasks that si-
multaneously compete for the I/O resource. One critical
drawback for this approach is that the tasks that com-
plete their timeslices early may experience long periods
of unresponsiveness before their timeslices are replen-
ished in the next epoch. Such unresponsiveness is partic-
ularly severe when one must wait for a large number of
co-running tasks in the system to complete their times-
lices. Poor responsiveness is harmful but unnecessary on
Flash-based SSDs that often complete an I/O operation
in a fraction of a millisecond.

High responsiveness is supported by classic fair
queueing approaches that originated from network
packet switching [6, 8,9, 16] but were also used in stor-
age systems [3, 11, 18]. They allow fine-grained inter-
leaving of requests from multiple tasks/flows as long as
fair resource utilization is maintained through balanced
virtual time progression. The lagging virtual time for an
inactive task/flow is brought forward to avoid a large
burst of requests from one task / flow and prolonged unre-
sponsiveness for others. One drawback for fine-grained
fair queueing on mechanical disks is that frequent task
switches induce high seek and rotation costs. Fortu-
nately, this is only a minor concern for Flash-based SSDs
due to diminished benefits of I/O spatial proximity on
modern SSD firmware.

This paper presents a new operating system I/O sched-
uler (called FlashF Q) that achieves fairness and high re-
sponsiveness at the same time. FlashFQ enhances the
start-time fair queueing scheduler SFQ(D) [11] with two
new mechanisms to support I/O on Flash-based SSDs.
First, while SFQ(D) allows concurrent dispatch of re-
quests (called depth) to exploit I/O parallelism, it vio-
lates fairness when parallel I/O operations on a Flash de-
vice interfere with each other. We introduce a throttled
dispatch technique to exploit restricted Flash /O par-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 67

allelism without losing fairness. Second, existing fair
queueing schedulers are work-conserving—they never
idle the device when there is pending work to do. How-
ever, work-conserving I/O schedulers are susceptible to
deceptive idleness [10] that causes fairness violation. We
propose anticipatory fair queueing to mitigate the effects
of deceptive idleness. We have implemented FlashFQ
with the throttled dispatch and anticipatory fair queueing
mechanisms in Linux.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 characterizes key
motivations and challenges for our fair queueing sched-
uler on Flash-based SSDs. Sections 4 and 5 present
the design techniques and implementation issues in our
FlashFQ scheduler. Section 6 illustrates our experimen-
tal evaluation and comparison with several alternative
I/O schedulers. Section 7 concludes this paper with a
summary of our findings.

2 Related Work

Flash I/O characterization and operating system sup-
port have been recognized in research. Agrawal et al. [1]
discussed the impact of block erasure (before writes) and
parallelism on the performance of Flash-based SSDs.
Work by Chen et al. [4] further examined strided ac-
cess patterns and identified abnormal performance issues
like those caused by storage fragmentation. File system
work [5,14,15] attempted to improve the sequential write
patterns through the use of log-structured file systems.
These efforts are orthogonal to our research on Flash I/0O
scheduling.

New I/O scheduling heuristics were proposed to im-
prove Flash I/O performance. In particular, write
bundling [12], write block preferential [7], and page-
aligned request merging/splitting [13] help match I/O re-
quests with the underlying Flash device data layout. The
effectiveness of these write alignment techniques, how-
ever, is limited on modern SSDs with write-order-based
block mapping. Further, these Flash I/O schedulers have
paid little attention to the issue of fairness.

Fairness-oriented resource scheduling has been ex-
tensively studied. Fairness can be realized through
per-task timeslices (as in Linux CFQ [2], Argon [19],
and FIOS [17]) and credits (as in the SARC rate con-
troller [20]). The original fair queueing approaches, in-
cluding Weighted Fair Queueing (WFQ) [6], Packet-by-
Packet Generalized Processor Sharing (PGPS) [16], and
Start-time Fair Queueing (SFQ) [8, 9], take virtual time-
controlled request ordering over several task queues to
maintain fairness. While they are designed for network
packet scheduling, later fair queueing approaches like
Cello’s proportionate class-independent scheduler [18],
YFQ [3] and SFQ(D) [11] are adapted to support I/O re-

sources. In particular, they allow the flexibility to re-
order and parallelize I/O requests for better efficiency.
Most of these fair-share schedulers (with the only ex-
ception of FIOS) do not address unique characteristics
on Flash-based SSDs and many (including FIOS) do not
support high responsiveness.

3 Motivations and Challenges

Timeslice Scheduling vs. Fair Queueing Timeslice-
based I/O schedulers such as Linux CFQ, Argon, and
FIOS achieve fairness by assigning timeslices to co-
running tasks. A task that completes its timeslice early
would have to wait for others to finish before its timeslice
is replenished in the next epoch, leading to a period of
unresponsiveness at the end of each epoch. Figure 1(A)
illustrates this effect in timeslice scheduling. While some
schedulers allow request interleaving (as shown in Fig-
ure 1(B)), the period of unresponsiveness still exists at
the end of an epoch. This unresponsiveness is particu-
larly severe in a highly loaded system where one must
wait for a large number of co-running tasks to complete
their timeslices. One may shorten the per-task timeslices
to improve responsiveness. However, outstanding re-
quests at the end of a timeslice may consume resources at
the next timeslice that belongs to some other task. Such
resource overuse leads to unfairness and this problem
is particularly pronounced when each timeslice is short
(Figure 1(C)).

In fine-grained fair queueing (as shown in Fig-
ure 1(D)), requests from multiple tasks are interleaved in
a fine-grained fashion to enable fair progress by all tasks.
It achieves fairness and high responsiveness at the same
time. Furthermore, since fine-grained fair queueing does
not restrict the request-issuing task in each timeslice, it
works well with I/O devices possessing internal paral-
lelism (Figure 1(E)).

Finally, due to substantial background maintenance
such as Flash garbage collection, Flash-based SSDs pro-
vide time-varying capacities (more I/O capacity at one
moment and less capacity at a later time). The timeslice
scheduling that focuses on the equal allocation of device
time may not provide fair shares of time-varying resource
capacities to concurrent tasks. In contrast, the fair queue-
ing scheduling targets equal progress of completed work
and therefore it can achieve fairness even for resources
with time-varying capacities.

Restricted Parallelism Flash-based SSDs have some
built-in parallelism through the use of multiple channels.
Within each channel, the Flash package may have mul-
tiple planes which are also parallel. We run experiments
to understand such parallelism. We utilize the following
Flash-based storage devices—

68 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

4KB reads 4KB writes 128KB reads

o® o ® o ®
= = =
% 6 ,g 6 % 6 —*— Intel 311 SSD
o @ @ ——©— Intel X25-M SSD
[[[
2 4 2 41 - - 2 4
g =y 2 ——— OCZ Vertex 3 SSD
3 2 B2t - 1 82 1
[0} 4 [0} & 8- Py Py [0} _)__Q———Q——*—*—_"—%
& & &

0 0 0

1 2 4 8 16 32 64 1 2 4 8 16 32 1 2 4 8 16 32 64

Number of concurrent I/O operations

Number of concurrent I/O operations

Number of concurrent I/O operations

Figure 2: Efficiency of I/O parallelism (throughput speedup over serial I/O) for 4 KB reads, 4 KB writes, and 128 KB

reads on three Flash-based SSDs.

(A) Timeslice scheduling

Task1 £ i 1C AF 2 Unresponsiveness

A s

<«——Task 1 timeslice—»<€¢——Task 2 timeslice—»
< An epoch >

Task 2

(B) Timeslice scheduling that allows request interleaving

Task 1 FFFA FZ77 WFF773d FZZ7a Unresponsiveness

Task 2 =] &3 53 0

< An epoch:

(C) Timeslice scheduling with short timeslices

Task1 & A7 7 A ¥ AFFFF] [FAFAFTFFA

Task 2 B3I o] B3I

T1 T2 T1 T2 T1 T2
<_sIice_><_sIic:e_><_slice_><_slice ince_><_ince_>

(D) Fine-grained fair queueing

Task1 & 3 F A [] 7 2

Task 2 ESCSIE RSN TSI

(E) Fine-grained fair queueing on parallel I/O device

Task 1 ¢ 1 Al P 4 A Al 1T]

Task 2 ERSNEISNAISIEISIANEISNEI SIASAIRNAIRSNAIIASRIANR]

Figure 1: Fairness and responsiveness of timeslice
scheduling and fine-grained fair queueing.

o An Intel 311 Flash-based SSD, released in 2011, us-
ing single-level cells (SLC) in which a particular cell
stores a single bit of information.

o An Intel X25-M Flash-based SSD, released in 2009,
using multi-level cells (MLC).

® An OCZ Vertex 3 Flash-based SSD, released in 2011,
using MLC.

To acquire the native device properties, we bypass the
memory buffer (through direct I/O) and operating sys-
tem I/O scheduler (configuring Linux noop scheduler)
in these measurements. We also disable the device

write cache so that all writes reach the durable storage
medium.

Figure 2 shows the efficiency of Flash I/O parallelism
for 4 KB reads, 4 KB writes, and 128 KB reads on our
SSDs. We observe that the parallel dispatch of multiple
4 KB reads to an SSD lead to substantial throughput en-
hancement (up to 4-fold, 6-fold, and 7-fold for the three
SSDs respectively). However, the parallelism-induced
speedup is diminished by writes and large reads. We ob-
serve significant write parallelism only on the Vertex 3
SSD. Large reads suppress the parallel efficiency be-
cause a large read already uses the multiple channels in
a Flash device.

Such restricted parallelism leads to new challenges for
a fair queueing I/O scheduler. On one hand, the sched-
uler should allow the simultaneous dispatch of multiple
I/0 requests to exploit the Flash parallel efficiency when
available. On the other hand, it must recognize the un-
fairness resulting from the interference of concurrently
dispatched I/O requests and mitigate it when necessary.

Diminished Benefits of Spatial Proximity One draw-
back for fine-grained fair queueing on mechanical disks
is that frequent task switches lead to poor spatial proxim-
ity and consequently high seek and rotation costs. For-
tunately, at the absence of such mechanical overhead,
Flash I/O performance is not as dependent on the I/O
spatial proximity. This is particularly the case for mod-
ern SSDs with write-order-based block mapping where
random writes become spatially contiguous on Flash due
to block remapping.

We run experiments to demonstrate such diminished
benefits of spatial proximity. Besides the three Flash-
based SSDs, we also include a conventional mechanical
disk (a 10 KRPM Fujitsu SCSI drive) for the purpose of
comparison. Figure 3 shows the performance discrepan-
cies between random and sequential I/O on the storage
devices. The random I/O performance is measured when
each I/O operation is applied to a randomized offset ad-
dress in a 256 MB file.

We observe that the sequential I/O for small (4 KB)

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 69

39

10 I (ntel 311 SSD
I (ntel X-25M SSD
81 . [OCZ Vertex 3 SSD
6l . |:| Fujitsu mechanical disk

Random/Sequential I/O latency ratio

Figure 3: The ratios of random I/O latency over sequen-
tial I/O latency for reads/ writes at two I/O request gran-
ularities (4 KB and 128 KB) on three Flash-based SSDs.

reads are still beneficial for some SSDs (3-fold speedup
for the two Intel SSDs). However, such benefits are
much diminished compared to the 39-fold sequential
read speedup on the mechanical disk. The performance
difference between random and sequential I/O is further
diminished for writes and large-grained (128 KB) I/O re-
quests on SSDs. These results also match the findings
in Chen et al.’s 2009 paper [4] for mid- and high-end
SSDs at the time. The diminished benefits of I/O spa-
tial proximity mitigates a critical drawback for adopting
fine-grained fair queueing on Flash-based SSDs. Particu-
larly in the case of small reads, while the fine-grained fair
queueing loses some sequential I/O efficiency, it gains
the much larger benefit of I/O parallelism on small reads.

Note that the poor sequential write performance on the
rotating mechanical disk in our measurement results is
due to the disabling of its write cache, in which case all
writes must reach the durable disk. Therefore the disk
head has typically rotated beyond the desired location
when a new write request arrives after a small delay (soft-
ware system processing) from the completion of the pre-
vious operation. This effect is particularly pronounced
in our measurement setup where the disk rotation time
dominates the seek time since our random I/O addresses
are limited in a small disk area (a 256 MB file).

Deceptive Idleness Fair queueing I/O schedulers like
SFQ(D) [11] are work-conserving—they never idle the
device when there is pending work to do. However,
work-conserving I/O schedulers are susceptible to de-
ceptive idleness [10]—an active task that issues the next
request a short time after receiving the result of the pre-
vious one may temporarily appear to be idle. For fair
queueing schedulers, the deceptive idleness may let an
active task to be mistakenly considered as being “inac-
tive”. This can result in the premature advance of virtual
time for such “inactive tasks” and therefore unfairness.
Consider the simple example of a concurrent run in-

volving two tasks—one continuously issues I/O requests
with heavy resource usage (heavy task) while the other
continuously issues light I/O requests (light task). We
further assume that the I/O scheduler issues one request
to the device at a time (no parallelism). At the moment
when a request from the light task completes, the only
queued request is from the heavy task and therefore a
work-conserving I/O scheduler will dispatch it to the de-
vice. This effectively results in one-request-at-a-time al-
ternation between the two tasks and therefore unfairness
favoring the heavy task.

4 FlashFQ Design

In a concurrent system, many resource principals si-
multaneously compete for a shared I/O resource. The
scheduler should regulate I/O in such a way that accesses
are fair. When the storage device time is the bottleneck
resource in the system, fairness is the case that each re-
source principal acquires an equal amount of device time.
At the same time, responsiveness requires that each user
does not experience prolonged periods with no response
to its I/O requests. We present the design of our FlashFQ
I/0 scheduler that achieves fairness and high responsive-
ness for Flash-based SSDs. It enhances the classic fair
queueing approach with new techniques to address the
problems of restricted parallelism and deceptive idleness
described in the last section.

Practical systems may desire fairness and responsive-
ness for different kinds of resource principals. For exam-
ple, a general-purpose operating system desires the sup-
port of fairness and responsiveness for concurrent appli-
cations. A server system wants such support for simulta-
neously running requests from multiple user classes. A
shared hosting platform needs fairness and responsive-
ness for multiple active cloud services (possibly encap-
sulated in virtual machines). Our I/O scheduling design
and much of our implementation can be generally ap-
plied to supporting arbitrary resource principals. When
describing the FlashFQ design, we use the term task to
represent the resource principal that receives the fairness
and responsiveness support in a concurrent system.

4.1 Fair Queueing Preliminaries

As described in Section 2, a considerable number of
fair queueing schedulers have been proposed in the past.
Our FlashFQ design is specifically based on SFQ(D) [11]
for two reasons. First, it inherits the advantage of Start-
time Fair Queueing (SFQ) [8, 9] that the virtual time can
be computed efficiently. Second, it allows the simultane-
ous dispatch of multiple requests which is necessary for
exploiting the internal parallelism on Flash devices.

SFQ(D) maintains a system-wide virtual time v(¢). It

70 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

uses the virtual time to assign a start and finish tag to each
arriving request. The start tag is the larger of the current
system virtual time (at the request arrival time) and the
finish tag of the last request by the same task. The finish
tag is the start tag plus the expected resource usage of
the request. Request dispatch is ordered by each pending
request’s start tag. Multiple requests (up to the depth D)
can be dispatched to the device at the same time.

A key issue with SFQ(D) is the way the virtual time
v(t) is advanced and the related treatment of lagging
tasks—those that are slower than others in utilizing al-
lotted resources. If v(t) advances too quickly, it could
artificially bring forward the request start tags of lag-
ging tasks such that their unused resources are forfeited
which leads to unfairness. On the other hand, if the vir-
tual time advances too slowly, it could allow a lagging
task to build up its unused resources and utilize them in a
sudden burst of request arrivals that cause prolonged un-
responsiveness to others. Three versions of the scheduler
were proposed [11], with different ways of maintaining
the system virtual time—

e Min-SFQ(D) assigns the virtual time v(t) to be the
minimum start tag of any outstanding request at
time ¢. A request is outstanding if it has arrived but
not yet completed. A key problem with Min-SFQ(D)
is that its virtual time advances too slowly which
makes it susceptible to unresponsiveness caused by
a sudden burst of requests from a lagging task de-
scribed above.

e Max-SFQ(D)' assigns the virtual time v(t) to be the
maximum start tag of dispatched requests on or be-
fore time . A drawback with this approach is that
its virtual time may advance too quickly and result in
unfairness as described above.

e 4-Tag SFQ(D) attempts to combine the above two
approaches to mitigate each’s problem. Specifically,
it maintains two pairs of start/finish tags for each
request according to Min-SFQ(D) and Max-SFQ(D)
respectively. The request dispatch ordering is primar-
ily based on the Max-SFQ(D) start tags while ties are
broken using Min-SFQ(D) start tags.

4.2 Min-SFQ(D) with Throttled Dispatch

The characterization in Section 3 shows that Flash-
based SSDs exhibit restricted parallelism—while paral-
lel executions can sometimes produce higher through-
put, simultaneously dispatched requests may also inter-
fere with each other on the Flash device. Utilizing such
restricted parallelism may lead to uncontrolled resource
usage under any version of the SFQ(D) schedulers de-

I'This version is called SFQ(D) in the original paper [11]. We use a
different name to avoid the confusion with the general reference to all
three SFQ(D) versions.

scribed above. Consider two tasks running together in
the system and each task issues no more than one request
at a time. If the I/O scheduler depth D>2, then requests
of both tasks will be dispatched to the device without
delay at the scheduler. Interference at the Flash device
often results in unbalanced resource utilization between
the two tasks.

While such unbalanced resource utilization affects all
three SFQ(D) versions, it is particularly problematic
for Max-SFQ(D) and 4-Tag SFQ(D) who advance the
system virtual time too quickly—any request dispatch
from an aggressive task leads to an advance of the sys-
tem virtual time, and consequently the forfeiture of un-
used resources by the lagging tasks. In comparison,
Min-SFQ(D) properly accounts for the unbalanced re-
source utilization for all active tasks. Therefore we em-
ploy Min-SFQ(D) as the foundation of our scheduler.

Proper resource accounting alone is insufficient for
fairness, we need an additional control to mitigate the im-
balance of resource utilization between concurrent tasks.
Our solution is a new throttled dispatch mechanism.
Specifically, we monitor the relative progresses of con-
currently active tasks and block a request dispatch if the
progress of its issuing task is excessively ahead of the
most lagging task in the system (i.e, the difference be-
tween those tasks’ progress exceeds a threshold). Under
SFQ(D) schedulers, the progress of a task is represented
by its last dispatched start tag—the start tag of its most
recently dispatched request. When requests from aggres-
sive tasks (using more resources relative to their shares)
are blocked, lagging tasks can catch up with less inter-
ference at the device. The blocking is relieved as soon
as the imbalance of resource utilization falls below the
triggering threshold.

4.3 Anticipation for Fairness

A basic principle of fair queueing scheduling is that
when a task becomes inactive (it has no I/O requests to is-
sue), its resource share is not allowed to accumulate. The
rationale is simple—one has no claim to resources when
it has no intention of using them. Even Min-SFQ(D)—
which, among the three SFQ(D) versions, advances the
system virtual time most conservatively—ignores tasks
that do not have any outstanding I/O requests. As ex-
plained in Section 3, this approach may mistakenly con-
sider an active task to be “inactive” due to deceptive idle-
ness in [/O—an active task that issues the next request a
short time after receiving the result of the previous one
may temporarily appear to be idle to the I/O scheduler.
Even during a very short period of deceptive idleness,
the system virtual time may advance with no regard to
the deceptively “inactive” task, leading to the forfeiture
of its unused resources.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 71

The deceptive idleness was first recognized to cause
undesirable task switches on mechanical disks that re-
sult in high seek and rotation delays. It was addressed
by anticipatory I/O [10] which temporarily idles the disk
(despite the existence of pending requests) to hope for a
soon-arriving new request (typically issued by the pro-
cess that is receiving the result of the just completed re-
quest) with better locality. We adopt anticipatory I/O for
a different purpose—ensuring the continuity of a task’s
“active” status when deceptive idleness appears between
its two consecutive requests. Specifically, when a syn-
chronous I/O request completes, the task that will be
receiving the result of the just completed request is al-
lowed to stay “active” for a certain period of time. Dur-
ing this period, we adjust Min-SFQ(D) to consider the
anticipated next request from the task as a hypothetical
outstanding request in its virtual time maintenance. The
start tag for the anticipated request, if arriving before the
anticipation expires, should be the finish tag of the last
request by the task.

The “active” status anticipation ensures that an active
task’s unused resources are not forfeited during deceptive
idleness. It also enables the dispatch-blocking of exces-
sively aggressive tasks (described in Section 4.2) when
the lagging task is deceptively idle for a short amount
of time. While both goals are important, anticipation
for these two cases have different implications. Specif-
ically, the anticipation that blocks the request dispatch
from aggressive tasks is not work-conserving—it may
leave the device idle while there is pending work—and
therefore may waste resources. We distinguish these two
anticipation purposes and allow a shorter timeout for the
non-work-conserving anticipation that blocks aggressive
tasks.

4.4 Knowledge of Request Cost

Recall that the request finish tag assignment requires
knowledge of the resource usage of a request (or its cost).
The determination of a request’s cost is an important
problem for realizing our fair queueing scheduler in prac-
tice and it deserves a careful discussion.

A basic question on this problem is by what time a
request’s cost must be known. This question is relevant
because it may be easier to estimate a request’s cost after
its completion. According to our design, this is when the
request’s finish tag is assigned. In theory, for fair queue-
ing schedulers that schedule requests based on their start
tag ordering [8,9, 11] (including ours), only the start tag
assignments are directly needed for scheduling. A re-
quest’s finish tag assignment can be delayed to when it
is needed to compute some other request’s start tag. In
particular, one request (r1)’s finish tag is needed to com-
pute the start tag of the next arriving request (r3) by the

same task. Since the two requests may be dispatched in
parallel, ro’s start tag (and consequently r;’s finish tag)
might be needed before r;’s completion.

Given the potential need of knowing request costs
early, our system estimates a request’s cost at the time
of its arrival. Specifically, we model the cost of a Flash
I/0 request based on its access type (read/ write) and its
data size. For reads and writes respectively, we assume
a linear model (typically with a substantial nonzero off-
set) between the cost and data size of an I/O request.
Our estimation model requires the offline calibration of
the Flash I/O time for only four data access cases—read
4 KB, read 128 KB, write 4 KB, and write 128 KB. In
general, such calibration is performed once for each de-
vice. Additional (but infrequent) calibrations can be per-
formed for devices whose gradual wearout affects their
I/O performance characteristics.

S Implementation Issues

FlashFQ can be implemented in an operating system
to regulate I/O resource usage by concurrent applica-
tions. It can also be implemented in a virtual machine
monitor to allocate I/O resources among active virtual
machines. As a prototype, we have implemented our
FlashFQ scheduler in Linux 2.6.33.4. Below we describe
several notable implementation issues.

Implementation in Linux An important feature of
Linux I/0 schedulers is the support of plugging and re-
quest merging—request queue is plugged (blocking re-
quest dispatches) temporarily to allow physically con-
tiguous requests to merge into a larger request before dis-
patch. This is beneficial since serving a single large re-
quest is much more efficient than serving multiple small
requests. Request merging, however, is challenging for
our FlashFQ scheduler due to the need of re-computing
request tags and task virtual time when two requests
merge. For simplicity, we only implemented the most
common case of request back-merging—merging a new
arriving request (r3) to an existing queued request (1) if
ro contiguously follows (on the back of) 7.

While the original anticipatory I/O [10] requires a sin-
gle timer, our anticipation support may require multiple
outstanding timers due to the nature of parallelism in
our scheduler. Specifically, we may need to track de-
ceptive idleness of multiple parallel tasks. To minimize
the cost of parallel timer management, our implementa-
tion maintains a list of pending timers ranked by their
fire time (we call them logical timers). Only the first log-
ical timer (with the soonest fire time) is supported by a
physical system timer. Most logical timer manipulations
(add/ delete timers) do not involve the physical system
timer unless the first logical timer is changed.

72 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Our prototype implementation runs on the ext4 file
system. We mount the file system with the noat ime op-
tion to avoid metadata updates on file reads. Note that the
metadata updates (on modification timestamps) are still
necessary for file writes. The original ext4 file system
uses very fine-grained file timestamps (in nanoseconds)
so that each file write always leads to a new modification
time and thus triggers an additional metadata write. This
is unnecessarily burdensome to many write-intensive ap-
plications. We revert back to file timestamps in the gran-
ularity of seconds (which is the default in Linux file
systems that do not make customized settings). In this
case, at most one timestamp metadata write per second
is needed regardless how often the file is modified.

Parameter Settings We describe important parameter
settings and their tuning guidelines in FlashFQ. The
depth D in SFQ(D) represents the maximum device dis-
patch parallelism. A higher depth allows the exploitation
of more parallel efficiency (if supported on the device)
while large parallel dispatches weaken the scheduler’s
ability to regulate I/O resources in a fine-grained fash-
ion. Our basic principle is to set a minimum depth that
can exploit most of the device-level I/O parallelism. Ac-
cording to the parallel efficiency of the three SSDs in
Figure 2, we set the depth D to 16 for all three SSDs.

For throttled dispatch, we set the task progress dif-
ference threshold that triggers the dispatch-blocking to
be 100 millisecs. This threshold represents a tradeoff
between fairness and efficiency—how much temporary
resource utilization imbalance is tolerated to utilize re-
stricted device parallelism?

The “active” status anticipation timeout is set to
20 millisecs—a task is considered to be continuously ac-
tive as long as its inter-request thinktime does not exceed
20 millisecs. We set a shorter timeout (2 millisecs) for
the anticipation that blocks aggressive tasks while leav-
ing the device idle. The latter anticipation timeout is
shorter because it may waste resources (as explained in
Section 4.3).

I/0 Context Our FlashFQ design in Section 4 uses a
task to represent a resource principal that receives fair-
ness support. In Linux I/O schedulers, each resource
principal is represented by an /O context. By default, a
unique I/O context is created for each process or thread.
However, it is sometimes more desirable to group a num-
ber of related processes as a single resource principal—
for instance, all httpd processes in an Apache web
server. In Linux, such grouping is accomplished for a set
of processes created by the fork () /clone () system
call with the cLoNE_I0 flag. We added the CLONE_IO
flag to relevant fork () system calls in the Apache
web server so that all httpd processes in a web server
share a unified I/O context. We also fixed a problem in

the original Linux that fails to unify the I/O context if
fork (CLONE_IO) is called when the parent process has
not yet initialized its I/O context.

One problem we observed in our Linux/ext4-based
prototyping and experimentation is that the journaling-
related I/O requests are issued from the I/O context of the
JBD?2 journaling daemon and they compete for 1/O re-
sources as if they represent a separate resource principal.
However, since journaling I/O are by-products of higher-
layer I/O requests originated from applications, ideally
they should be accounted in the I/O contexts of respec-
tive original applications. We have not yet implemented
this accounting in our current prototype. To avoid re-
source mis-management due to the JBD2 I/O context in
Linux, we disabled ext4 journaling in our experimental
evaluation.

6 Experimental Evaluation

We compare FlashFQ against alternative fairness-
oriented I/0O schedulers. One alternative is Linux CFQ.
The second alternative (Quanta) is our implementation
of a quanta-based I/O scheduler that follows the basic
principles in Argon [19]. Quanta puts a high priority on
achieving fair resource use (even if some tasks only have
partial I/O load). All tasks take round robin turns of I/O
quanta. Each task has exclusive access to the storage de-
vice within its quantum. Once an I/O quantum begins,
it will last to its end, regardless of how few requests are
issued by the corresponding task. However, a quantum
will not begin, if no request from the corresponding task
is pending. The third alternative is the FIOS 1I/O sched-
uler developed in our earlier work [17]. FIOS allows si-
multaneous request dispatches from multiple tasks to ex-
ploit Flash I/O parallelism, as long as the per-task times-
lice constraint is maintained. FIOS also prioritizes reads
over writes and it reclaims unused resources by inactive
tasks. The fourth alternative is 4-Tag SFQ(D) [11]. Fi-
nally, we compare against the raw device I/O in which
requests are always dispatched immediately (without de-
lay) to the storage device.

Three of the alternative schedulers (Linux CFQ,
Quanta, and FIOS) are timeslice-based. Timeslice pa-
rameters for these schedulers follow the default settings
for synchronous I/O operations in Linux. Specifically,
Linux tries to limit the epoch size and the maximum un-
responsiveness at 300 millisecs. Therefore when multi-
ple (n) tasks compete for I/O simultaneously, the per-
task timeslice is set at % millisecs. This setting is sub-
ject to the lower bound of 16 millisecs and the upper
bound of 100millisecs in Linux. To assess the effect
of timeslice scheduling with short timeslices, we include
a new setting that configures the per-task timeslice at
% millisecs when n tasks compete for I/O simultane-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC 13) 73

ously (with the goal of limiting the maximum unrespon-
siveness at 60 millisecs). We also shorten the timeslice
lower bound to 1 millisec. We include FIOS with such
short timeslice setting in our evaluation and we call it
FIOS-ShortTS.

Our experiments utilize the three Flash-based stor-
age devices (Intel 311, Intel X25-M, and OCZ Vertex 3
SSDs) that were described earlier in Section 3. On both
Intel SSDs, writes are substantially slower than reads (by
about 4-fold and 6-fold on Intel 311 and Intel X25-M
respectively). The Vertex drive employs a SandForce
controller which supports new write acceleration tech-
niques such as online compression. The Vertex write
performance only moderately lags behind the read per-
formance. For instance, a 4 KB read and a 4 KB write
take 0.18 and 0.22 millisec respectively on the drive.

6.1 Evaluation on Task Fairness

Fairness is defined as the case that each task gains its
share of resources in concurrent execution. When n tasks
compete for I/O simultaneously, equal resource sharing
suggests that each task should experience a factor of n
slowdown compared to running-alone, or proportional
slowdown. This is our first fairness measure. We fur-
ther note that better performance for some tasks may be
achieved when others do not utilize all of their allotted
resource shares. Some tasks may also gain better 1/O ef-
ficiency during concurrent runs by exploiting the device-
level I/O parallelism. When all tasks experience better
performance than the proportional slowdown, we further
measure fairness according to the slowdown of the slow-
est task. Specifically, scheduler S; achieves better fair-
ness than scheduler S, if the slowest task under S; makes
more progress than the slowest task does under Ss.

We use a variety of synthetic I/O benchmarks to eval-
uate the scheduling fairness in different resource compe-
tition scenarios. Each benchmark contains a number of
tasks issuing I/O requests of different types and sizes—

® a concurrent run with a reader continuously issuing
4 KB reads and a writer continuously issuing 4 KB
writes;

® a concurrent run with sixteen 4 KB readers and six-
teen 4 KB writers;

® a concurrent run with sixteen 4 KB readers and six-
teen 128 KB readers;

® a concurrent run with sixteen 4 KB writers and six-
teen 128 KB writers.

In order for these I/O patterns to reach the I/O scheduler
at the block device layer, we perform direct I/O to bypass
the memory buffer in these tests.

Figure 4 shows the fairness and performance under
different schedulers. The raw device I/O, Linux CFQ,

and 4-Tag SFQ(D) fail to achieve fairness by substan-
tially missing the proportional slowdown in many cases.
Specifically, lighter tasks (issuing reads instead of writes,
issuing smaller I/O operations instead of larger ones) ex-
perience many times the proportional slowdown while
heavy tasks experience much less slowdown in concur-
rent runs. Because raw device I/O makes no scheduling
attempt, I/O operations are interleaved as they are issued
by applications, severely affecting the response of light
requests. The Linux CFQ does not perform much bet-
ter because it disables I/O anticipation for non-rotating
storage devices like Flash. For instance, without antic-
ipation, two-task executions degenerate to one-request-
at-a-time alternation between the two tasks and therefore
poor fairness. 4-Tag SFQ(D) also suffers from poor fair-
ness since its unthrottled parallel dispatches make it be-
have like the raw device I/O in many cases.

Under the Quanta scheduler, tasks generally experi-
ence similar slowdown in most cases. But such “fair-
ness” is attained at substantial degradation of I/O ef-
ficiency due to its aggressive maintenance of per-task
quantum. Specifically, its strict quanta enforcement
throws away unused resources by some tasks. It also
fails to exploit device I/O parallelism, as demonstrated
by its poor performance in cases with large numbers of
concurrent tasks.

Both FIOS and FlashFQ maintain fairness (approx-
imately at or below proportional slowdown) in all the
evaluation cases. Furthermore, both FIOS and FlashFQ
can exploit the device I/O parallelism when available and
achieve the best performance in all evaluation cases.

FIOS-ShortTS achieves good fairness for the single
reader, single writer case (first row in Figure 4). How-
ever, it exhibits degraded fairness (compared to the orig-
inal FIOS and FlashFQ) in cases with large numbers of
concurrent tasks due to very short timeslices. In partic-
ular, it fails to maintain proportional slowdown for 16
4KB-writers, 16 128KB-writers on the two Intel SSDs
(substantially so on Intel X25-M). It also produces rela-
tively poor worst-task-slowdown compared to the origi-
nal FIOS and FlashFQ in some other cases (particularly
tests with 16 4KB-readers, 16 128KB-readers).

6.2 Evaluation on Responsiveness

The fairness evaluation shows that only FIOS and
FlashFQ consistently achieve fairness for a variety of
workload scenarios on the three SSDs. As a timeslice
scheduler, however, FIOS achieves fairness at the cost
of poor responsiveness. Even though FIOS allows si-
multaneous request dispatches from multiple tasks, the
timeslice constraint at the end of each epoch still leads to
long unresponsiveness for light tasks who complete their
timeslices early.

74 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

| _ 4KB-reader I/O latency |:| 4KB-writer 1/O latency

1 4KB-reader, 1 4KB—writer on Intel 311 1 4KB-reader, 1 4KB-writer on Intel X25-M 1 4KB-reader, 1 4KB—writer on Vertex

o

plropé)monal plroportional proportional
slowgown slowgown

1/0 slowdown ratio
S

1/0 slowdown ratio
S

1/0 slowdown ratio
S

n

0 0
Ry, & ”o),o‘/e /OS /08\6\‘;9&% % /”eh, /7,/ Qae /OS /OS \Za 1‘3&’7 - R, ¢ /7,0(006 /OS /OS \fg%”%
//OO /?‘7;9 Q(O) e //OQ '7‘7;9 0/0) //OQ /2‘7;9 0/0)

| _ 4KB-reader I/O latency |:| 4KB-writer I/0 latency

16 4KB-readers, 16 4KB-writers on Intel 311 16 4KB-readers, 16 4KB-writers on Intel X25-M 16 4KB-readers, 16 4KB-writers on Vertex
128 [- - s Cm e R R
o o o
'§ 96 '@ 96 '@ 96
c c c
3 3 3
8 64 : 8 64 : 8 64 -
<_% proportlonal:_% proponionalc_% proportional
@ slowfown @ slowfown 2 slowdown
Q 32 Q 32 . Q 32
0 Ry, & 0 Ry, i 0 A
W /%(O"eo /OS /o& e fg%oo W ”‘401’6 /OS /OS\ Ne gfg%oo W o '7‘/ Q"% /OS /O& N /e*%/\\o
A0, A 20,
//oo s 0 e ’/oo s Q1) e //oo s Q1 0
| _ 4KB-reader I/O latency |:| 128KB-reader I/0O latency
16 4KB- readers 16 128KB readers on Intel 311 16 4KB- readers 16 128KB readers on Intel X25-M 16 4KB readrs 16 128KB readers on Vertex
128 128 128
2 o o
5 96 B 96 5 96
c c c
g g g
o 64 - 64 © 64 -
E propomonalz_% proportionalz_% proportional
5 slowfown & slowfown & slowfown
Q 32 Q 32 - Q 32 -
0 R, ¢ k L 5 0 Tk ¢
%d’%(ofla /oS /OS\S\‘)Q./;SﬁpQ o % Qoa ’Os /08‘6:)‘99\?&/7 % 8 %*Qoa /oS /os\;ggg%po
o "0 O %0, O %o,
278 0/0/ Yo % 7278 0/0/ % 28 0@
| I - <B-wiiter /Olatency [| 128KB-writer /O latency
16 4KB-writers, 16 128KB-writers on Intel 311 16 4KB-writers, 16 128KB-writers on Intel X25-M 16 4KB-writers, 16 128KB-writers on Vertex
128 s e S
=]] k]
5 96 B 96 5 96
c c c
g g g
- 64 - - 64 - © 64 -
E proponionalz_% proportionalz_% proportional
5 slowdown @ slowfown & slowfown
Q 32 Q 32 . Q 32 .
0 0 0
%“’a% O"e aey “og* Ve 0 By By, <’%(Q"e 205 “og* e 0 By By, 4%*04,6 205 “og* N 0 B
oy, S~ @ “Sho, SEs Q@ “Sho, Ses Q@
e //OO s Ut ,/Oo 75 Uty //OO 75 Uty

Figure 4: Fairness and performance of synthetic benchmarks under different I/O schedulers. The I/O slowdown ratio
for a task is its average I/O latency normalized to that when running alone. For a run with multiple tasks per class
(e.g., 16 readers and 16 writers), we only show the performance of the slowest task per class (e.g., the slowest reader
and slowest writer). Results cover four workload scenarios (corresponding to the four rows) and three Flash-based
SSDs (corresponding to the three columns). For each case, we mark the slowdown ratio that is proportional to the total

number of tasks in the system.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC "13) 75

1 4KB-reader, 1 4KB-writer on Intel 311

® 100 % 100
Q Q
£ £
= 80 = 80
[0 [0}
£ E
o 60 [60
[Z) (72}
[= =4
8 2
g 40 g 40
o o
5 20 5 20
N R
) m.
(2] (2]
[(o2}

16 4KB-readers, 16 4KB-writers on Intel 311

1 4KB-reader, 1 4KB-writer on Intel X25-M

Ry, b, U Flo,

W oy Y,

%, X O
Sy, C,(\O @

16 4KB- readers 16 4KB- wrlters on Intel X25 M_

1 4KB-reader, 1 4KB-writer on Vertex

99.9%-tile response time (msecs)

Os /OS \7“ /QS/M\

0g ™7, %,
N, Os s, S
10 S0 420 SR
)

R é’% Y
o /77‘8 O(O

16 4KB-readers, 16 4KB-writers on Vertex

8 600 8 600 8 600
& & &
£ 500 E 500 E 500
[} (0] (0]
£ 400 £ 400 £ 400
[0} (0] [0
2 2 2
S 300 S 300 S 300
78 & >
© 200 2 200 2 200
2 2 2
3 100 1 100 3 100
(o) (o2} (o)
$ 0 g 0 g 0
(o] o (&}
Ry, < < Ry, < < R S
W /"‘/4'0"‘9/7 s /OS\S/,} 9@‘577'(‘0 o /'7"+Q"5/7 05 /OS\S/; SR W /%ro"eo .Cs /os\%f /e%sO
yac rg O(o) e ,/OO °’7>S % @//OQ rg Q/oJ

16 4KB- readers 16 128KB readers on Intel 311

8 600 8 600
[0} [0}
(%] [Z]
E 500 E 500
[} [0}
£ 400 £ 00
[0} [0}
[Z] w
S 300 S 300
Q. Q
7] w
2 200 2 200
2 2
o\!, 100 o\(\) 100
> >
(2] (23
() (o2

16 4KB- readers 16 128KB readers on Intel X25-M

16 4KB- readers 16 128KB readers on Vertex
600

500

300
200

100

99.9%-tile response time (msecs) g

Yy A
Ry, ‘% Ol/a /os /OS‘S QSS% By, ‘/oa Ooe - Cs /o&\;r % %, B, ‘% Ooe /oS /OS\S gss/,po
0, 0, 0,
Yee O ”7\& O/D} Voo O /77~S Q/O/ Yoo O f/):? 0(0)
. 16 4KB- wrlters 16 128KB wrners on Intel 311 _ 16 4KB- wnters 16 128KB wrlters on Intel X25 M 16 4KB-writers, 16 128KB-writers on Vertex
8 800 8 800 ® 600 -
& @ @
£ E £ 500
© 600 o 600 o
E E £ 400
Q Q Q
(%] (72} (72}
S 400 S 400 s 300
Q. Q Q
(7] 7] (7}
o o 2 200
2 200 2 200 2
O\L O\L o\L 100
& @ &
g 0—p 5 g S g 0—p o
L %% 057087575, % %R W ’”‘/+°”eo 05705775 /e%so W ’”°+°°e /057057 70 "9%0
A0, /7 20,
O g O(O) O g O/O) //OQ g Q/OJ

Figure 5: Worst-case (99.9-percentile) response time for four workload scenarios (rows) on three SSDs (columns)

under different I/O schedulers.

In a system with high responsiveness, no task should
experience prolonged periods of no response to its
outstanding requests. We use the worst-case (99.9-
percentile) I/O request response time during the execu-
tion as a measure of the system responsiveness. Figure 5
shows the responsiveness for our four workload scenar-
ios on the three SSDs. Results clearly show poor respon-
siveness for the three timeslice schedulers (Linux CFQ,
Quanta, and FIOS) in many of the test scenarios. In par-

ticular, they exhibit worst-case response time at half a
second or more in some highly concurrent executions.

In comparison, FlashFQ shows much better respon-
siveness than these approaches (reaching an order of
magnitude response time reduction in many cases). At
the same time, we observe that FlashFQ’s worst-case re-
sponse time is quite long for the case of 16 4KB-writers
and 16 128KB-writers on the two Intel drives (left two
plots in the bottom row). This is due to the long write

76 2013 USENIX Annual Technical Conference (USENIX ATC 13)

USENIX Association

Quanta /O scheduler FIOS 1/O scheduler

Respons time (msecs)
Respons time (msecs)

0 1 2 3 4 5 0 1 2 3 4
Execution timeline (secs) Execution timeline (secs)

Respons time (msecs)

FIOS with short timeslices FlashFQ I/0O scheduler

Respons time (msecs)

0 1 2 3 4 5 0 1 2 3 4 5
Execution timeline (secs) Execution timeline (secs)

Figure 7: Time of Apache request responses under Quanta, FIOS, FIOS-ShortTS, and FlashFQ I/O schedulers. Each
dot represents a request, whose X-coordinate indicates its timestamp in the execution while its Y-coordinate indicates

its response time.

Apache web server and Kyoto Cabinet on Intel 311
20

29 24

2
g I /oache
c
_§ [] Kyoto Cabinet
3 10
2]
ﬁ .
] proportional
g slowdown
T 2

0

o ftn L 05O g e,
%0 75 V)
Figure 6: Fairness and performance of the read-only
Apache web server workload running with a write-
mostly Kyoto Cabinet key-value workload. The slow-
down ratio for an application is its average request re-
sponse time normalized to that when running alone.

time on these drives and the sheer amount of time to sim-
ply iterate through all 32 tasks while processing at least
one request from each. This is evidenced by the long
response time even under raw device I/O.

FIOS-ShortTS indeed exhibits much better respon-
siveness than the original FIOS. But this comes at the
cost of degraded fairness (as shown in Section 6.1). Fur-
thermore, FlashFQ still achieves better responsiveness
than FIOS-ShortTS as any timeslice maintenance (even
for very short timeslices) adds some scheduling con-
straint that impedes the system responsiveness.

6.3 Evaluation with the Apache Web Server
and Kyoto Cabinet

Beyond the synthetic benchmarks, we evaluate the ef-
fect of I/O schedulers using realistic data-intensive ap-
plications. We run the Apache 2.2.3 web server over a
set of HTTP objects according to the size distribution
in the SPECweb99 specification. The total data size is
15 GB and the workload is I/O-intensive on a machine
with 2GB memory. As explained in Section 5, we at-
tached the cLONE_10 flag to relevant fork () system

calls in the Apache web server so that all httpd pro-
cesses in the web server share a unified I/O context. Our
web server is driven by a client that issues requests back-
to-back (i.e., issuing a new request as soon as the previ-
ous one returns). The client runs on a different machine
in a low-latency local area network.

Together with the read-only web server, we run a
write-intensive workload on the Kyoto Cabinet 1.2.76
key-value store. In our workload, the value field of
each key-value record is 128 KB. We pre-populate 1000
records in a database and our test workload issues “re-
place” requests each of which updates the value of a
randomly chosen existing record. Each record replace
is performed in a synchronous transaction supported
by Kyoto Cabinet. In our workload, eight back-to-
back clients operate on eight separate Kyoto Cabinet
databases. All databases belong to a single I/O context
that competes with the Apache I/O context.

Figure 6 illustrates the fairness under different I/O
schedulers on the Intel 311 SSD. Since the Kyoto Cab-
inet workload consists of large write requests at high
concurrency, it tends to be an aggressive I/O resource
consumer and the Apache workload is naturally suscep-
tible to more slowdown. Among the seven schedul-
ing approaches, only FlashFQ can approximately meet
the fairness goal of proportional slowdown for both ap-
plications. Among the alternatives, Quanta, FIOS and
FIOS-ShortTS exhibit better fairness than others. Specif-
ically, the Apache slowdown under Quanta, FIOS and
FIOS-ShortTS are 4.1, 3.6 x, and 4.6 x respectively.

Among the four schedulers with best fairness (Quanta,
FIOS, FIOS-ShortTS, and FlashFQ), we illustrate the
timeline of Apache request responses in Figure 7. Un-
der Quanta, we observe periodic long responses (up to
200 millisecs) due to its timeslice management. The
worst-case responses are around 100millisecs under
FIOS and FIOS-ShortTS. In comparison, FlashFQ
achieves the best responsiveness with all requests re-
sponded within 50 millisecs.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13)

77

7 Conclusion

This paper presents FlashFQ—a new Flash I/O sched-
uler that attains fairness and high responsiveness at
the same time. The design of FlashFQ is motivated
by unique characteristics on Flash-based SSDs—1) re-
stricted parallelism with interference on SSDs presents
a tension between efficiency and fairness, and 2) the di-
minished benefits of I/O spatial proximity on SSDs al-
low fine-grained task interleaving without much loss of
I/0 performance. FlashFQ enhances the start-time fair
queueing schedulers with throttled dispatch to exploit re-
stricted Flash I/O parallelism without losing fairness. It
also employs I/O anticipation to minimize fairness viola-
tion due to deceptive idleness. We evaluated FlashFQ’s
fairness and responsiveness and compared against sev-
eral alternative schedulers. Only FIOS [17] achieves fair-
ness as well as FlashFQ does but it exhibits much worse
responsiveness. FIOS with short timeslices can improve
its responsiveness, but it does so at the cost of degraded
fairness.

Acknowledgments This work was supported in part
by the National Science Foundation grants CCF-
0937571, CNS-1217372, and CNS-1239423. Kai Shen
was also supported by a Google Research Award. We
thank Jeff Chase for clarifying the design of the SFQ(D)
scheduler. We also thank the anonymous USENIX ATC
reviewers and our shepherd Prashant Shenoy for com-
ments that helped improve this paper.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for SSD
performance. In USENIX Annual Technical Conf., pages
57-70, Boston, MA, June 2008.

J. Axboe. Linux block IO — present and future. In Oz-
tawa Linux Symp., pages 51-61, Ottawa, Canada, July
2004.

J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-

berschatz. Disk scheduling with quality of service quar-

antees. In IEEE Int’l Conf. on Multimedia Computing and

Systems, pages 400—405, Florence , Italy, June 1999.

[4] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of Flash
memory based solid state drives. In ACM SIGMETRICS,
pages 181-192, Seattle, WA, June 2009.

[5] H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-

structured Flash file system for micro sensor nodes. In

SenSys’04: Second ACM Conf. on Embedded Networked

Sensor Systems, pages 176—187, Baltimore, MD, Nov.

2004.

[6] A.Demers, S. Keshav, and S. Shenker. Analysis and sim-

ulation of a fair queueing algorithm. In ACM SIGCOMM,
pages 1-12, Austin, TX, Sept. 1989.

[2

—

3

—_

(71

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

M. Dunn and A. L. N. Reddy. A new /O scheduler for
solid state devices. Technical Report TAMU-ECE-2009-
02, Dept. of Electrical and Computer Engineering, Texas
A&M Univ., Apr. 2009.

P. Goyal, H. M. Vin, and H. Cheng. Start-time fair
queueing: A scheduling algorithm for integrated services
packet switching networks. [EEE/ACM Trans. on Net-
working, 5(5):690-704, Oct. 1997.

A. G. Greenberg and N. Madras. How fair is fair queuing.
Journal of the ACM, 39(3):568-598, July 1992.

S. Iyer and P. Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O. In SOSP’01: 18th ACM Symp. on Oper-
ating Systems Principles, pages 117-130, Banff, Canada,
Oct. 2001.

W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. In ACM SIGMET-
RICS, pages 37-48, New York, NY, June 2004.

J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh.
Disk schedulers for solid state drives. In EMSOFT 09:
7th ACM Conf. on Embedded Software, pages 295-304,
Grenoble, France, Oct. 2009.

J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh. Parameter-
aware I/O management for solid state disks (SSDs). IEEE
Trans. on Computers, Apr. 2011.

R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and
S. Moriai. The Linux implementation of a log-structured
file system. ACM SIGOPS Operating Systems Review,
40(3):102-107, July 2006.

A. Leventhal. Flash storage memory. Communications of
the ACM, 51(7):47-51, July 2008.

A. K. Parekh. A generalized processor sharing approach
to flow control in integrated services networks. PhD the-
sis, Dept. Elec. Eng. Comput. Sci., MIT, 1992.

S. Park and K. Shen. FIOS: A fair, efficient Flash I/O
scheduler. In FAST’12: 10th USENIX Conf. on File and
Storage Technologies, San Jose, CA, Feb. 2012.

P. J. Shenoy and H. M. Vin. Cello: A disk schedul-
ing framework for next generation operating systems. In
ACM SIGMETRICS, pages 44-55, Madison, WI, June
1998.

M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared stor-
age servers. In FAST’07: 5th USENIX Conf. on File and
Storage Technologies, pages 61-76, San Jose, CA, Feb.
2007.

J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization via
throughput and latency control. ACM Trans. on Storage,
2(3):283-308, Aug. 2006.

78 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

The Harey Tortoise:
Managing Heterogeneous Write Performance in SSDs

Laura M. Grupp', John D. Davis?, Steven Swanson'

TDepartment of Computer Science and Engineering, University of California, San Diego

*Microsoft Research, Mountain View

Abstract

Recent years have witnessed significant gains in the
adoption of flash technology due to increases in bit den-
sity, enabling higher capacities and lower prices. Unfor-
tunately, these improvements come at a significant cost
to performance with trends pointing toward worst-case
flash program latencies on par with disk writes.

We extend a conventional flash translation layer to
schedule flash program operations to flash pages based
on the operations’ performance needs and the pages’ per-
formance characteristics. We then develop policies to im-
prove performance in two scenarios: First, we improve
peak performance for latency-critical operations of short
bursts of intensive activity by 36%. Second, we realize
steady-state bandwidth improvements of up to 95% by
rate-matching garbage collection performance and exter-
nal access performance.

1 Introduction

NAND flash memory can provide orders-of-magnitude
faster performance than traditional rotating media
(HDDs), albeit at the cost of reduced capacity. Push-
ing flash to higher densities, causes significant decline
in other metrics — like performance, endurance, and relia-
bility. Increasing flash’s capacity by storing an additional
bit per memory cell (1 to 2 bits, or 2 to 3 for example) re-
duces the chip’s lifetime by 5-10%, shrinks throughput
by 22% to 98% (55% on average) and increases latency
by 1.3x to 4.0x (2.3x on average) [14]. Increasing den-
sity via scaling leads to smaller, but still significant de-
clines.

Despite the disturbing trends resulting from increas-
ing the density of the underlying flash technology, flash
systems remain very promising. The chip-level trends
are driving the development of increasingly sophisticated
flash management techniques. For example, sophisti-
cated error coding techniques based on a deep under-
standing of flash’s behavior [12, 5] can bring triple-level
cell (TLC) bit error rates and performance in line with
multi-level cell (MLC 2-bit/cell) technology [1], and ag-

gressively exploiting parallelism can partially compen-
sate for increasing latencies.

This paper exploits another characteristic of high-
density flash devices to improve SSD performance. The
dominance of MLC over SLC devices leads to system-
atic variation in the program latency of different pages.
We have developed a flash translation layer (FTL) that
schedules programs to pages according to the program
operation’s purpose (e.g., internal garbage collection vs.
storing user data) and the speed of the page (i.e., faster
or slower). Our scheduling algorithm improves perfor-
mance without sacrificing capacity or endurance, provid-
ing speed of the hare (high performance) and the en-
durance of the tortoise (increased capacity and reduced
write amplification). In particular, we make the follow-
ing contributions:

e A flexible FTL which is aware of different page
types and can direct operations accordingly.

o A Many Write Point mechanism for increasing
scheduler flexibility and thereby enhancing the ef-
fect of scheduling policies.

e A scheduling policy that provides SLC performance
on an MLC device for performance-critical opera-
tions and bursty workloads.

e An analytical model of steady state SSD perfor-
mance that guides our access scheduler and suggests
some non-intuitive scheduling algorithms.

Our FTL architecture and multi-write point mecha-
nism allow the system to more readily access the array’s
variability. With this improved access and our policies,
our FTL improves burst bandwidth by up to 36% (equal
to the performance of an SLC array) with no increase in
wear, and improves performance of sustained traffic by
up to 95%.

First, we provide some background information on
NAND flash and SSDs. Section 3 follows with a descrip-
tion of our baseline architecture, simulation infrastruc-
ture and our methodology. Next, Section 4 describes our

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 79

enhancements to the FTL which efficiently leverage page
latency variation. We follow this with our evaluation in
Section 5, suggestions for applying the mechanisms in
Section 6, related work in Section 7, and conclusions in
Section 8.

2 Background

NAND flash memory is the driving force behind the on-
going success of solid-state drives (SSDs). This sec-
tion describes the basics of flash chip operation and the
source, magnitude and patterns of page latency variation.

2.1 Flash memory

The packages composing the flash array in an SSD each
contain one or more flash dies. Within a flash die, mul-
tiple (typically two) “planes” each contain several thou-
sand 128 kB to 3 MB blocks that, in turn, contain 64 to
384 2-8 kB pages. The chips perform reads and writes
on pages. However, before the chip can program (write)
new data to a page, it must first erase the parent block.
Further complicating writes, FTLs must write pages in
order within each block. The FTL may skip over a page,
but after doing so cannot write to it until after erasing it.

To represent the data, each memory element uses
charge stored on a floating gate between the control gate
and channel of a transistor. Varying amounts of charge on
the floating gate determine the effective threshold volt-
age (Vrp) of the transistor, creating an analog range
which the chip interprets as two regions for a single bit.
Physically, a block comprises an array of “flash chains”
that each contain 32-128 floating gate transistors in se-
ries with each other. To a first order, the n'" page in the
block comprises the n'” bit in each of the block’s chains
(we discuss this more detail in Section 2.2).

Multi-level cell (MLC) flash stores multiple bits per
floating gate (usually 2 bits) to improve density by in-
terpreting the range of possible Vrpr as 4 regions. This
improved density (i.e., lower cost) makes MLC the dom-
inant type of flash. Single-level cell (SLC) devices are
less-dense, faster, and more expensive. TLC is in produc-
tion systems and Macronix recently demonstrated 6-bit-
per-cell technology [16]. We focus on the performance
of the write operation in MLC devices in this study, and
we discuss it in more detail in the next section.

Flash memories exhibit a well-known wear-out be-
havior which causes their data retention time to degrade
with increasing program-erase (PE) cycle counts. Man-
ufacturers rate current MLC devices for between 5,000
and 10,000 PE cycles, after which the data may be-
come unrecoverable without very aggressive ECC pro-
tection. While wear-out remains a first-class concern,
large over-provisioned flash arrays, common wear man-
agement techniques and recent advances in chip-level
technology [11] help.

26 1 L[] FirstBit

E 5 4 - s .

>4 econd Bit

e B Third Bit

S 3 - ird Bi

521

50 -

o L& 8 O A0S0

A
NO NN 0\ ,\77\7 ON %)

Figure 1: Chip Program Latency Multi-bit flash chips
retain single-bit performance in their fast pages. The in-
crease in latency is confined to the chips’ added capacity.

2.2 Flash Chip Performance Variability

The techniques we propose exploit systematic page-level
variation in write performance. This section describes the
source of this variation, magnitude of variation we have
measured in flash chips, the architectural lay-out of fast
and slow pages within each flash chip, and how the FTL
can non-destructively detect this pattern. Each of the 30
chip models (from 6 manufacturers) we have character-
ized show distinct groups of latencies in proportion with
the number of bits stored in each memory element.

The variation arises because, although MLC devices
store multiple bits on a single floating gate, those bits
map into different pages. As a result, the programming
operation for the first fast bit stored on the gate is much
faster than the programming operation for the second
slow bit, and so on for all additional bits stored in the
cell. We refer to individual pages as fast or slow depend-
ing on which kind of bits they contain.

Figure 1 shows the latency of a representative sample
of SLC, MLC and TLC chips. For each chip we mea-
sure the time to write random data to each page in 16
blocks. We divide these measurements into fast, slow
and (for TLC) medium page latencies. Slow pages from
the average MLC chip are 4.8 x slower than fast pages,
with D_-MLC_50nm exhibiting the largest gap (6x) and
F_MLC_41nm the smallest at 3.5x. Our data show that
fast page program latency is comparable to SLC pro-
gram latency in devices from similar technology gener-
ations [13].

Our previous work reveals two common organizations
for fast and slow pages within an MLC block. We now
extend those observations to TLC parts as well. With the
exception of one manufacturer, the chips exhibit the or-
ganization in Figure 2A. In MLC devices, the first four
pages are fast, the last four are slow and every pair of
pages mid-block alternate between fast and slow. TLC
devices cycle through the three latencies with pairs of

80 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

(A)
Common Pattern

MCCTTT I T
Tel T A | A4 | DA/ - - VAR | VA2
(B)

Unique Pattern

mic[T T -
Tl W KA KA |- A BA 1A

|:|Fast Page Medium Page

.Slow Page

Figure 2: Latency Pattern Pages’ read and write laten-
cies follow the same pattern within each block of a given
chip.

pages as well. The unique manufacturer follows the
single-page alternating patterns in Figure 2B.

Figure 3 shows how a single bit from each page maps
to the chain of flash memory cells. The numbers corre-
spond to the page’s location within the block and are in
columns corresponding to the time required to program
the bit. Figure 3A shows the even-numbered NAND
chains from MLC and TLC parts made by most manu-
facturers (the corresponding odd chain is similar), and
Figure 3B shows the pattern used by the manufacturer
with a unique pattern.

Because of the in-order programming constraint, the
final program of a cell occurs after most of the program
operations to adjacent cells are complete. This reduces
the program disturb that is a major hindrance to enabling
multi-bit technology [21]. The blocks of most manu-
facturers alternate between page speeds in pairs because
they separate pages into even and odd chains, while the
unique manufacturer uses only one chain. Also, we ob-
serve most of the variation in the latency of slow pages
(indicated by the wide error bars in Figure 1) comes from
the even chain being slower than the odd chain, though
we are unfamiliar with the cause.

The techniques we develop in the following sections
depend on the FTL knowing the layout of fast and slow
pages within a block. Since the layout is consistent for a
given part number and does not vary over time, it is suf-
ficient for the manufacturer to detect this pattern using a
single block and configure the FTL accordingly. An FTL
could perform the measurement at initialization time by
monitoring the programming time of pages in a block,
reducing the cost of moving to a new type of flash chip in
an existing SSD design. There is also a non-destructive
technique for determining page type. Page read latencies
exhibit the same variation pattern. Furthermore, differen-
tiating between the small number of possible patterns (ei-

(A) (B)

Common Pattern Unique Pattern

MLC TLC MLC TLC
F s EM s F s EM s
0 4ilC o0 24 1dlC o 2IC o2 s
2 8lIC 2 8’16l 4 4lIC 14 sl
612lIC 61a24{IC 3 6llC 3 7 12l
10161IC 1222 30llC 5 siIC 6 10 14dl

F = Fast Page M = Medium Page S = Slow Page

Figure 3: Memory Cell Anatomy Fast pages consist of
each memory element’s first-written bit. In-order pro-
gramming causes the final bit of a memory cell to be
written after most programs to the surrounding cells.

ther mentioned in the datasheets or derived empirically)
requires only a few page reads.

Overall, as shown in Figure 1, the dramatic differences
in page program latency provide a better opportunity to
exploit diversity to improve SSD performance. In Sec-
tion 4, we describe our extensions to the baseline FTL
(from Section 3) which leverage these variations in pro-
gram latency.

3 Baseline FTL

SSDs contain both an array of flash and a controller to
manage wear leveling and access requirements while pre-
senting a block interface. The following sections de-
scribe the basic algorithms needed in all FTLs, how we
structure the algorithms to isolate important policy deci-
sions, and our simulation infrastructure and array param-
eters.

3.1 FTL Basics

SSDs maintain a mapping between the logical block ad-
dresses (LBA) that the host system uses and the physi-
cal block addresses (PBA) that identify particular pages
within the flash array. The FTL maintains this map
with the goal of minimizing wear and maximizing per-
formance. FTLs fall into three broad categories based
on the granularity of this map — block-based, page-based
and hybrids of the two. Improving the FTL is the ob-
ject of intense work both in industry and academia (see
Section 7).

In this work, we study variability-aware enhancements
to a page-based FTL, but the concepts extend to other
designs as well. We begin with the parallelized FTL ar-
chitecture described in [7]. It uses log-structured write
operations, filling up one block before moving on to an-
other. To improve bandwidth, the FTL maintains one log
for each chip in the array. We refer to the head of each

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC 13) 81

log as a write point.

As the FTL writes new data at a write point, the old
version of the data for that LBA becomes invalid but re-
mains in the array. The effects of this copy-on-write pro-
cedure requires that we provide functionality to (1) re-
cover the physical-to-logical address mapping after un-
expected power failure and (2) convert pages contain-
ing stale data to erased flash through garbage collection
(GO).

First, for the FTL to recover from unexpected power
failure it must track each page’s logical address (LBA)
as well as which copy of data for a given LBA is most-
recent. With a single-write point array, a block sequence
number suffices. However, when the system contains
more than one write point, the FTL must use a page
sequence number to maintain strict ordering. (See [6]
and [7] for more details.)

Second, the FTL must remove the stale copies and
create room for new data by performing GC. GC algo-
rithms copy valid data from partially-invalid blocks to
write points on or off chip, and erase the now fully-
invalid blocks to make them ready for new write oper-
ations.

GC must constantly maintain a pool of erased blocks
on each chip. When a write point reaches the end of
a block, the block is full and the FTL must locate a
new, erased block for that write point to continue writing.
When a chip starts to run short on erased blocks, GC be-
gins to consolidate valid data to create additional erased
blocks for that chip. In the best case, garbage collection
makes use of idle periods to hide its impact on perfor-
mance. However, GC latencies are a significant source
of performance variability in SSDs.

Our FTL uses two thresholds as parameters for the GC
routines. The FTL maintains these thresholds on a per-
chip basis, so in the worst case, any single chip can free
up resources by taking itself off-line for cleaning. The
first threshold is the background (BG) threshold. When
the FTL finds any chip in the array idle, it performs GC
operations on that chip up to the BG threshold. If the
number of erased blocks on any chip drops below the
second, emergency threshold, GC becomes the FTL’s top
priority for that chip and it will divert all incoming traffic
to other chips or block entirely while GC proceeds. In
normal operation, the FTL should very rarely enter this
“emergency mode.”

3.2 Design for Flexible Policy Choices

Figure 4 shows the high-level structure of the FTL’s op-
eration scheduler. The FTL maintains three queues. The
queues hold write, erase, read and cleanup operations
waiting to execute. External accesses to the SSD enter
the external queue, background GC operations reside in
the background queue, and the emergency queue holds

—p External Queue

—» Background Queue

> Emergency Queue

Write—| Qp. Selection |— Cleanup
v v
GC Op. Selection

|
<4— Read

or Erase

Data Placement 4

I—> Flash Array

| Move’s Write 1

y

Figure 4: Operation Flow Operations move through the
FTL’s queues and a series of policy decisions (the gray
boxes) before executing on a flash chip.

emergency GC operations. Emergency mode is a rare
occurrence.

Operations pass from the queues to the flash array via
three distinct policies, marked by the gray boxes in Fig-
ure 4:

Operation Selection Policy First, the FTL chooses
which operation to execute next. Operations in the emer-
gency queue have the highest priority. If the emergency
queue is empty, or contains operations that cannot yet ex-
ecute (for example, they must access a busy chip or wait
for data being read), then an operation is taken from the
external queue. Finally, operations are taken from the
background queue when the system is idle.

Data Placement Policy The second policy in the FTL
determines where to schedule writes. Because the physi-
cal address of an LBA changes with each write, the FTL
has the freedom to choose, for example, the fastest page
available. In our baseline design, the FTL follows a
round robin approach which avoids busy chips and seeks
to maintain a uniform number of valid LBAs on each
chip.

GC Operation Selection Policy

The third policy is critical to efficient and flexible op-
eration of GC. Rather than enqueue a list of move oper-
ations followed by one erase, we enqueue cleanup oper-
ations that represent one step in cleaning a block. The
“Cleanup Operation Selection” policy in Figure 4 deter-
mines whether to start a read, write or erase operation.
Delaying the choice of which page to move allows GC to
adapt as pages become invalid due to external writes.

With GC policy reduced to the decision of executing
one flash operation at a time, the particular algorithm is
simple. Erasing fully invalidated blocks is the best op-
tion. When no such blocks are available, we move a page
from a block with the least number of valid pages. A
move begins with a read operation which, once complete

82 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Parameter H Value
Channels 4or8
Dies per channel 2or16
Blocks per chip 2048
Pages per block 64 or 128
Bytes per page 4096
Fast Page Read Latency 27 us
Slow Page Read Latency 40 us
Fast Page Write Latency 253 us
Slow Page Write Latency 1359 us
Erase Latency 2871 us

Table 1: SSD Configuration Architectural dimensions
of the flash array and operation latencies to the flash
chips.

pushes the paired write operation to the front of the queue
from where the cleanup operation originated.

We will use this platform to demonstrate how to more
effectively harness the variable performance available in
high density flash. Many of these concepts and algo-
rithms will transfer to the more memory-efficient hybrid
FTL designs.

3.3 Simulation Setup

To evaluate these alternative organizations, we have de-
veloped a detailed trace-driven flash storage system sim-
ulator. It supports parallel operations between flash de-
vices, models the flash buses and implements our FTL.

Table 1 details the array’s dimensions. We model two
moderately-sized SSDs — one to quickly simulate results
for our microbenchmarks and a larger configuration to
run the workloads. We also simulate an A/l Fast config-
uration, which models a half-capacity SLC-speed array
by (1) reducing block size from 128 to 64 pages and (2)
using only the fast read and write latencies.

Our SSD manages the array of flash chips and presents
a block-based interface. The controller in the SSD coor-
dinates 4 or 8 channels that each connect 2 chips to the
controller via a 400 MB/s bus. Larger SSD configura-
tions are possible, but the configurations we choose pro-
vide similar performance trends with much shorter simu-
lation times.

To ensure steady state behavior, we arrange all of the
LBAs randomly throughout the chips in the SSD be-
fore starting the simulations. We add enough invalidated
pages to fill all blocks to the background threshold. The
write points begin on a random page in the write point’s
assigned block.

4 Leveraging Variability

In this section, we describe our mechanisms for schedul-
ing flash operations based on flash page performance

variation. We demonstrate how careful, variation-aware
scheduling can improve performance under both bursty
and sustained workloads. With both mechanisms, we
show how increasing the number of write points on each
chip increases the FTL’s ability to leverage the variability
in its flash array.

4.1 Many Write Points for More Flexibility

Making good scheduling decisions requires the scheduler
to have multiple options available, and without multiple
options, no scheduling policy can have much impact on
performance. Since each write point is associated with
a single block, and the FTL must write to pages in the
block in order, a single write point offers limited options:
The FTL can either write to the next page (which may
not be the type of page it would prefer) or it can skip the
page, writing to the page of its choice, but wasting space.

Our baseline FTL maintains one write point per chip,
which can only provide multiple options under light load
(and some chips are idle). Under heavy load the FTL’s
only choice is to schedule an access to the most recently
idled chip. Even under light load, a large burst of write
traffic will use up the fast pages available on each write
point. Both of these scenarios force the FTL to choose
between the two undesirable options described above.

To provide flexibility, we extend the baseline FTL with
multiple write points per chip, ensuring that the FTL will
have choices and can make wise scheduling decisions. In
the following subsections, we demonstrate how increas-
ing the number of write points in the system and on each
chip increases the policies’ ability to access its desired
page type.

While additional write points provide the flexibility to
access fast and slow pages on demand, their number and
use constitute a trade-off with over-provisioned capacity
and data placement policies the FTL designer wishes to
incorporate. Because each write point requires an open
block, when the FTL maintains too many write points
the over-provisioned space becomes too fractured across
open blocks. In particular, the number of blocks between
the background and emergency thresholds (for the GC
routines described in section 3) provide a hard limit for
the possible number of write points in our design. The
FTL designer will also have to carefully weigh the value
of placing data to potentially improve the efficiency of
future GC with the effects of using a high or low latency

page.
4.2 Handling Bursty Workloads

In this section, we present a policy called Return
to Fast (RTF) that allows the FTL to service bursts
of performance-critical operations exclusively with fast
pages. The algorithm seamlessly provides nearly the
speed of SLC while using all of the MLC pages.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 83

We can apply the RTF policy in a number of situations.
With an interface that passes information about the criti-
cality of writes to the device, the system could schedule
critical operations to fast pages. Such an interface could,
for example, enable fast distributed locking protocols that
require persistent writes for ordering via a log.

Even without changes to the interface, we can signif-
icantly enhance the performance of bursty workloads by
treating user accesses as performance critical and GC op-
erations as non-critical. In this case, we use fast pages
exclusively until we run out, and then return to our base-
line policy. We focus on this application in this paper.

RTF aims to service as many external writes as possi-
ble with fast pages. One approach is to skip over slow
pages in order to move write points to the fast pages, but
that would waste those skipped pages — reducing SSD
capacity, invoking GC sooner, and increasing wear and
potentially decreasing performance.

RTF avoids skipping pages by returning all write
points to fast pages during the idle periods through GC
writes. The FTL saves up a reserve of fast pages which it
can spend on performance-critical operations. The num-
ber of write points in the system controls the size of re-
serve of fast pages.

The most common pattern of fast and slow pages pro-
vides up to two fast pages per write point. The FTL can
fully exploit both pages in Strongly RTF, which ensures
the write points reach the first of the pair of fast pages.
The FTL can store an average of 1.5 writes per write
point in Weakly RTF, which returns the write points to
any fast page. Strongly RTF will give us the largest num-
ber of fast pages available after a large enough idle pe-
riod.

We can further enhance the FTL with preemptive GC.
During idle periods, the FTL continues to GC until each
write point points to a fast page. This runs the risk of in-
creased wear, when external writes or trims invalidate the
pre-emptively moved data. However, simulation results
show this is not a problem.

Increasing the number of write points in a system in-
creases the performance of the bursts, even when the
workload is a complex mix of reads, writes and poten-
tially short idle times. In order for the FTL to direct an
external write to a fast page, (1) there must be a write
point already pointing at a fast page and (2) this write
point must point to a chip which is not busy with another
operation. Under a complex workload, the number of
write points in the system is directly related to the likeli-
hood of both of these conditions. The more write points
there are, the more write points there will be pointing to
fast pages. So, even with very little idle time we have
increased the number of fast pages for the next burst.

A similar argument holds when you consider the con-
tention over access to chips in the system. Imagine all

120

All Fast - - - -

32WPsx8 - --- \(—‘\IT\-‘_T_
100 |- 16 WPs x 8 ------ [R
8WPsx8 - | N .\‘ |
@ 80| 4WPsx8 ——- / S]
< 2WPsx8 ----- A
= 1WPsx8 -- -- - | ST
Z 60 Baseline / SRR
[
3 40|
20 +
ol ‘ | | | |

0.25 1 4 16 64 256

Burst Size (kB)
Figure 5: Performance of Weakly RTF The weakly
RTF policy maintains performance comparable to using
only fast pages for burst sizes up to the number of write

points before dropping to the performance of using all
page speeds.

1024

but one of the chips in the array are blocked with oper-
ations. The single available chip is more likely to have
a fast page available if there are more write points (and
more possible pages available).

4.2.1 Evaluating RTF

We explore the potential of the RTF policy by studying
its behavior under a synthetic workload of page-sized
accesses to uniformly distributed LBAs, grouped into
bursts. The gap between bursts is sufficient to complete
all necessary GC and return all the write points to fast
pages, when applicable. Each trace uses a different burst
size from 4 kB to 4 MB (1 to 1024 pages) and writes a
total of 16 MB of data.

Figure 5 shows the performance of the Weakly RTF
policy for 1-32 write points per chip on an 8 chip array
(x8). For burst sizes less than 32 kB, the array is under-
used, but as the burst size reaches between one and two
pages per chip the performance increases significantly
for RTF and the All-Fast configuration. The baseline re-
mains low with a maximum performance of 39.4 MB/s
because it uses both fast and slow pages.

At burst sizes greater than 32kB, we observe the pos-
itive effect of additional write points in enabling RTF.
With one write point, the FTL can manage only short
bursts at high speed. Increasing the number of write
points per chip provides a larger reserve of fast pages
from which to draw and lets the scheduler make better de-
cisions. For weakly (strongly) RTF, the maximum burst
size serviced at high speed is equal to (2x) the number
of write points in the system times the page size.

84 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

4.3 Sustained Write-Intensive Workloads

RTF provides an effective tool for selective performance
enhancement. However, under sustained write traffic, ex-
ternal operations must compete for resources with GC,
which eclipses the performance benefits of RTF.

In this section, we develop a rate matching technique
that allocates fast and slow SSD resources among GC and
external operations for the best performance during long
periods of sustained load. We begin with a variability-
informed analytical model of an FTL, its page schedul-
ing policy, and its GC. The model shows that in most
cases the intuitive choice for page variability will lead
to performance losses while the counter-intuitive choice
improves performance. Finally, we study the potential of
the FTL operating with these parameters.

4.3.1 Analyzing FTL Behavior Under Load

In order to maintain the erased block pool during periods
of sustained, heavy load, the FTL must match the rate at
which it erases pages with its external write rate. The per-
chip bandwidths for these two operations remains con-
stant, so the FTL matches these rates by establishing the
correct number of chips performing each of the two sets
of operations. Equations 1 and 2 describe the two per-
chip bandwidths. For Equation 2, we assume 20% over-
provisioning and include a parameter (pgsMvd) for the
number of page moves GC must perform on the average
block (which is determined by the workload’s locality).

pageSize

ExternalWrite BW =
wLat

ey

0.2 x blockSize
GC_BW = 2
pgsMuvd x (mvLat) + eLat @

With respect to write latency variability, we consider
two choices. The FTL could use slow pages to service
GC writes and fast pages to service user writes (SGC), or
vice versa (FGC).

Figure 6 plots the SSD’s bandwidth for these poli-
cies and a baseline, latency agnostic configuration over
a range of workload localities. Our model assumes the
FTL always has access to the preferred page speed with-
out skipping pages. For the FGC configuration, for ex-
ample, we determine the per-chip user write BW and the
cleaning BW using slow page write latency for Equa-
tion 1 and fast page write latency for Equation 2, re-
spectively. The ratio of the two yields the correct ratio
of chips to use for each operation. The chip counts are
averaged over time, so they do not need to be integers.
Ultimately these values yield the user-visible write band-
width.

Without the analytical model, our initial choice was to
accelerate external operations, corresponding to the SGC

£ 3.0 :

2 o5l Baseline |
S FGC ---- |
C ;
g 2.0 o SGC ------- i
8 1.5 ;“\‘\—~\\;\\\\ ,
N 1.0 e

g o5 g
§ 0.0 | | | |

Locality
(% of block invalidated by user writes)

Figure 6: Design Space for Rate Matching Which con-
figuration to use under heavy load depends on the work-
load’s locality. If locality is low (less than 80% on this
graph), GC must move lots of data and prioritize those
writes to fast pages to improve overall performance.

configuration. However, as Figure 6 shows, the highest
performance configuration allocates fast pages to online
GC instead (FGC).

Scenarios with average to low page locality will do
best under FGC, because GC reclaims relatively few
erased pages for many moves. SGC experiences a disad-
vantage because fast user writes and slow GC writes ex-
acerbate the inherent slowness of GC. FGC, on the other
hand, uses the speed of fast pages to help GC to keep
pace with the user accesses. Because block erase is nec-
essary, and such a heavy weight process, the FTL does
best by completing it quickly.

The crossover point falls exactly at 80% locality be-
cause of the particular amount of over-provisioning in
our array (20%). The analytical model frees 20% of
the pages in a block for the average whole-block GC se-
quence. With 80% locality, the number of pages erased
per block GC equals the number of pages moved, and so
external write BW is the same as GC write bandwidth
for all configurations. As locality decreases from this
crossover point, GC requires more moves and higher-
performing writes (FGC).

In order to study FGC and SGC, we make two changes
to the baseline FTL. The first does not include knowledge
of page variability and is simply to maintain the pool un-
der sustained write traffic. To do this, we modify the
operation selection policy. We calculate the ratio of per-
chip GC bandwidth to per-chip external write bandwidth,
called the rarget ratio. The FTL maintains a chip use ra-
tio by monitoring the ratio of time spent on GC and ex-
ternal write operations for the recent history. The FTL
then chooses the next operation by attempting to match
the chip use ratio to the target ratio.

The second policy change accounts for page variability
in the data placement policy by directing pages to match

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 85

100
S
(0]
°F
8 .
£8 40| GCWrites, FGC —— |
=5 User Writes, SGC -------
© 20} UserWrites, FGC ---- -
o 0 GC Writes, SGC -t

1 2 4 8 16 32
Write Points Per Chip

Figure 7: Page Preference Improvement Increasing the
number of write points per chip increases the availability
of the preferred page type when the SSD is under heavy
load.

either the SGC or FGC configurations. We implement
a page preference policy whereby given the choice be-
tween several locations to write, the FTL prefers to direct
the previously chosen operation according to the SGC or
FGC configuration.

The baseline for studying the FTL under sustained
load includes the changes to the operation choice policy,
but retains the original round robin baseline for the write
point choice policy.

4.3.2 Evaluating FGC and SGC

To study rate matching with page preference under the
complex constraints imposed by a real FTL, we apply
a write-intensive synthetic load to our simulator. The
workload consists of 5 s pulses of infinite load followed
by 4 s of idleness. This cycles repeats 80 times, and
the load consists purely of writes with evenly distributed
LBAs.

Under such a load, all operations reach the Data Place-
ment policy with only one idle chip in the flash array. Be-
cause each chip only has one write point, the page prefer-
ence has no effect, and all operations have an equal prob-
ability of being written to fast or slow pages. Skipping
pages is not a good option because its negative effect on
performance overwhelms any advantage gained from us-
ing fast pages, due to the added GC.

Write points again provide the flexibility needed for
the FTL to leverage the fast pages in the FTL. With mul-
tiple write points on each chip, when the operation arrives
with only one idle chip from which to select, it still has
multiple options for where it can write.

Figure 7 shows how, as the number of write points in-
creases, the FTL can run operations on the desired pages
type more frequently. With one write point, both SGC
and FGC direct their operations to the two page speeds
with equal probability. As the number of write points

1.4

1.2 + -
2 f
8 0_8\
N
Tés 0.6 + g
5 04© 1
Z ool FGC ----

'0 SGC ——

1 2 4 8 16 32
Write Points Per Chip

Figure 8: Sustained Performance Adding write points
allows fast online GC to improve SSD performance by
20%.

increases, a larger percentage of operations are sched-
uled to their preferred page speed. This is especially true
when that preferred page speed is fast.

Figure 8 shows the performance resulting from the
FTL accessing its preferred pages more often, normal-
ized to the baseline of no page preference. As more write
points allow the FTL to select its preferences, the perfor-
mance of FGC improves while the performance of SGC
declines.

These results verify that the optimal choice for page
preference under heavy write load is to save fast pages for
servicing online garbage-collecting moves (FGC), and
that increasing the number of write points on each chip
better enables the FTL to tap into that supply of fast

pages.
5 Results

In this section we evaluate the effectiveness of our vari-
ability aware FTL policies — RTF, FGC and SGC —on a
set of five benchmarks.

5.1 Workloads

Table 2 describes the five trace files we use to explore
our proposed FTL enhancements. Their burst sizes span
arange as do the idle times between each burst.

The conventional method of replaying traces does not
accurately retain fixed computation time (seen by the
SSD as idle time). This runs the risk of mixing the idle
and active parts of the workload which could both (1) eat
into the idle time needed for RTF and (2) lessen the load
FGC and SGC are intended to accommodate.

We pre-process our trace files to alleviate these prob-
lems. Instead of each trace line indicating what time it
arrives at the SSD, it indicates how much later than the
previous trace line it arrives. Then, if the delta is below a

86 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Trace Min. A | Avg. Burst | Avg. Idle

Name (Thresh.) | Size (pgs) Time (s) Description

Build 0.087 s 3.56 1.74 Compilation of the Linux 2.6 kernel.

Financial 18 ms 0.140 0.0620 Live OLTP trace for financial transactions.

Weblndex 48 us 212 0.000564 | Indexing of webpages using Hadoop.

Swap 150 ms | 0.0645 0.0218 Virtual memory trace for desktop applications.
DeskDev 0.7s 4.48 3.82 24 hour trace of a software development work station.

Table 2:

particular per-trace threshold, we group that access in the
same burst with the previous access by setting the delta
to zero. In this way, we ensure the SSD experiences the
full brunt of the burst without added idle time.

We assume that a large enough idle period (i.e. that
greater than the threshold) indicates the program is exe-
cuting calculations using the previous burst’s data. We
also assume that the amount of time before issuing its
next burst will remain constant for a given processor ar-
chitecture. We then enforce the delta time between each
burst by issuing the first access of a given burst delta
seconds after the previous burst completes (i.e. after the
completion of the last access).

We set the delta threshold to be the average time be-
tween each trace line for a given file. Table 2 details the
delta threshold for each trace file as well as the average
size of the bursts and average amount of idle time be-
tween them.

Measuring the performance of an SSD running a trace
file that includes idle time requires some care. To fac-
tor out the effect of idle time in the trace file, we divide
the amount of data written in a given burst by the time it
takes to complete that burst (this is the burst’s write band-
width). We then report the average of these bandwidths
for each policy normalized to the baseline.

5.2 Return To Fast

Figure 9 shows the performance of the delta traces run-
ning under the Strongly RTF (sRTF) and weakly RTF
(WRTF) policies with 1, 8 and 32 write points per chip.
The All-Fast configuration shows a potential for 19%
to 62% increase in write performance (34% on average)
over the baseline and all traces realize at least a portion
of these gains. On average, traces realize a 9% perfor-
mance increase going from 1 to 32 write points per chip
and no increase in performance for using strongly RTF
rather than weakly RTF.

Financial (Fin. in the figures) works well with RTF — it
contains a significant amount of idle time between bursts
for recovery, and has very few reads which could block
and stall the burst. Financial also has very few writes
in each burst, so the SSD is able to realize the full po-
tential of the fast pages with very few write points. For

Workload Statistics Characteristics of the burstiness of our tracefiles and the idle times between the bursts.

other workloads, added performance comes with more
write points because a larger pool of fast pages increases
the options for where to write, getting around the effect
of blocking reads. All workloads on both strongly and
weakly RTF achieve more than 24% of the All Fast con-
figuration’s gains and most see more than 64%.

While RTF consistently improves the write perfor-
mance, it has negligible effect on the read performance.
On average the RTF configurations gain less than 0.1%
in read bandwidth.

Figure 10 shows the wear out experienced by our SSD
under the different workloads and RTF configurations.
Trying to achieve high performance by using only the
fast pages significantly increases the wear — up to 2.0,
and 1.7 x on average. However, if we instead fill the slow
areas with garbage collected data we were planning on
moving anyway, our wear increases by 5% relative to the
baseline on average, and never more than 34%.

5.3 Rate Matching with FGC and SGC

Figure 11 shows the performance of the traces running
on the FGC and SGC rate matching policies using 1, 8
and 32 write points per chip. The All-Fast configuration
is able to realize much larger gains over the baseline, be-
cause the FTL makes use of all of the pages during ex-
ternal activity. Even so, the FGC configuration on most
workloads achieves a significant portion of these gains
while the more intuitive SGC configuration remains at
baseline levels. DeskDev reaches the highest perfor-
mance at 95% above baseline, and the average of all the
traces except for WeblIndex reaches 65% over baseline.
The spacial locality in the WebIndex’s writes set this
workload apart — in this case the intuitive choice of di-
recting external operations to fast pages (SGC) provides
better performance. Weblndex exhibits an average of
31% fewer moves per erase, placing it in the right-most
region of Figure 6. The advantage of saving fast pages for
online operations in FGC is a result of completing GC
as fast as possible to match the rate of external writes.
However, when the access stream exhibits good spacial
locality, the act of writing external operations invalidates
pages on a small set of blocks, accelerating GC.
Increasing the number of write points on each chip al-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13)

87

B wRTF1 @ wRTF8 [wRTF32
H sRTF1 B sRTF8 [sRTF32

< B Baseline
B[] All_Fast

= N
o
J

Normalized Write Bandw

Figure 9: Performance of RTF More write points in the
flash array increases the reserve of fast pages the FTL
can build during idle periods, allowing the FTL to absorb
larger burst with only fast pages.

lows each configuration to approach the predicted behav-
ior. SGC almost always performs on par or worse than
the baseline, often declining from baseline as the num-
ber of write points decreases. The opposite trend holds
for FGC, frequently beginning with a performance bet-
ter than baseline and increasing as the number of write
points increases. This makes sense because increas-
ing the number of write points increases the impact of
each policy. Since SGC hurts performance, adding write
points makes performance worse.

While FGC and SGC produce performance gains and
losses, respectively, in most cases they both perform a
number of erases on-par with the baseline (Figure 12).
Excluding Weblndex, the erase count declines by as
much as 32% for the SGC-32 configuration on DeskDev,
and increases by no more than 2% (Excluding Financial).
On average, FGC and SGC experience a 3% decline in
wear while the All-Fast configuration is 56% more wear
compared to the baseline.

6 Application

Although we propose distinct mechanisms for bursts and
heavy load, we discuss their coordination with other poli-
cies in the system to address a variety of workloads with
mixed access patterns. This section describes how this
could be done either through coordination with the oper-
ating system or by further enhancing the FTL.

OS Support Coordination with the operating system
constitutes one avenue of leveraging the Harey Tortoise
techniques. The OS could provide hints with the accesses
made to the SSD. For example, the FTL could use RTF
to service latency-critical accesses (marked as high prior-
ity), providing the functionality of the variability aware
FTL in [13] without the added wear. Alternately, the OS
could signal a course-grained switch between workload

B Baselne B wRTF1 @ wRTF8 [0 wRTF32
€0 Al_Fast [H sRTF1 B sRTF8 [sRTF32
>

820

Figure 10: Wear of RTF While RTF improves perfor-
mance, on average its wear is nearly that of the baseline.

style when, for example, a server transitions between
workloads or activities that change between peak and off-
peak periods. An enhanced interface, such as NVMe [2],
would facilitate these implementations.

Dynamic FTL ~ Without hints from the OS, the FTL
could combine the Harey Tortoise’s policies to accom-
modate mixed workloads. It would adjust as a burst of
accesses of unknown length progresses — employing RTF
early in the burst before transitioning to RM techniques
as the “burst” lengthens to a sustained load. This tech-
nique would result in RTF accommodating small bursts
while the FTL treats long bursts with RM techniques.

For long bursts and sustained load, the FTL would step
through several phases combining our techniques pro-
posed in this work. For such a policy, GC during idle pe-
riod should employ RTF to return as many write points
as possible to fast pages. Then, when accesses arrive,
the FTL would achieve maximum possible performance
from using only fast pages under RTF, before gradually
transitioning to RM policies.

During the transition period the FTL would (1) adjust
the preference for fast or slow pages of the external and
GC writes and (2) tailor the use and cleaning rates to
use up the over-provisioned space and create a graceful
degradation of performance. The latter could be achieved
by relating the target and chip time ratios by some factor
which dynamically adjusts to one.

Finally, when the pool of erased blocks reaches a sus-
tainable minimum, the FTL would work exclusively with
the RM policies until an idle period allows for additional
GC. In this way, the FTL would provide high perfor-
mance to small bursts and gradually ramp down to a max-
imum, sustainable performance.

The inversion of preference (for RM) with good write
locality suggests another dimension for exploring how to
detect and adapt to the correct choice of page preference.

88 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

H Baseline B FGC1O FGC8[I FGC32
O All_Fast E SGC1E SGC8[] SGC32

I i
g/

Normalized Write Bandwidth
N

|

8, %

Ly 7 @-s:{_o o @é/o
(N +

Figure 11: Performance of FGC and SGC The counter
intuitive choice of servicing online operations with fast
pages (FGC) improves the performance, when spacial lo-
cality is low.

7 Related Work

There is a large body of flash-based storage research
spurred on by the promise of high performance, low en-
ergy, and the limitations imposed by its idiosyncrasies.
The research most closely related to our work falls in four
categories: Mode-switching Flash, FTL algorithms, SSD
interleaving, and write buffers. All of these topics try to
improve the performance, endurance and/or reliability of
the SSD, but do not leverage or address the variability
inherent in MLC flash. The final section of related work
discusses the emerging research that embraces flash page
variability.

Mode-Switching Flash: Changing the cell bit density
has been proposed in research [18] and implemented by
SSD vendors [24, 20] to improve reliability, endurance,
and performance. Switching between MLC mode and
SLC mode does have the drawback of sacrificing half of
the system capacity. In our work, by leveraging write la-
tency asymmetry across the pages, we are able to approx-
imate the performance of SLC without sacrificing device
capacity, the best of both worlds. Furthermore, because
we use all the pages in the block by not throwing away
the slow pages, we reduce the number of erase cycles,
improving overall system endurance and reliability.

FTL Algorithms: There is a large body of work fo-
cused on FTL optimizations to improve SSD perfor-
mance, endurance and reduce memory overhead based
on access pattern or application behavior. By using
an adaptive page- and block-level addressing mapping
scheme, KAST [17], ROSE [10] and WAFTL [27] are
able to improve performance, reduce garbage collection
overhead and reduce FTL address mapping table size.
DFTL [15] goes one step further by caching a portion
of the page-level address mapping table for reduced size
and fast translation. MNFTL [23] reduces the number of

Bl Baseline B FGC1O FGC8[FGC32
*g [0 All_Fast [E SGC1E SGC8[SGC32
8§20+ :

%1.5 -
W10 -
8 i
N 0.5
m -
€0.0

o

=

Figure 12: Wear of FGC and SGC Leveraging page
variability during heavy load does not effect device wear
out in most cases.

valid page copies for garbage collection, explicitly tar-
geting MLC flash. Finally, CAFTL [9], removes un-
necessary duplicate writes and increases the lifespan of
the SSD. While some of these FTLs address workload
variability, none address the variability in the underlying
MLC flash.

SSD Interleaving: Intra-SSD parallelism has been ex-
plored by many groups [3, 7, 22, 28, 8, 25, 4]. By not
only issuing operations in parallel at the package-, die-,
and plane-level, others have also shown that reschedul-
ing operations can improve performance [28]. Our work
dives deeper into parallel data placement by providing
multiple write points for fast pages within the plane that
can adsorb burst and sustain high write performance, on
par with SLC devices.

Write Buffers: Historically, buffers have been used in
HDD to improve read and write performance. Likewise,
write buffers have been shown to improve random write
performance in SSDs [19]. These write buffers are also
sufficient for handling small burst sizes. More recently,
research has shown that per package queues and oper-
ation reordering provide more opportunities for parallel
operations and further improve performance over LRU-
based write buffer mechanisms [25]. Write points can
be used in conjunction with write buffers, providing the
FTL with more flexibility in data placement, in light of
the performance asymmetries that exist in MLC flash.

Variability: The quest for higher density flash has pro-
vided opportunities to exploit the variability in flash page
latency. Previous work [13] has exposed these asym-
metries and predicted their impact on future SSDs [14].
Other work has exploited the differences in the flash to
improve error correction [12] or guarantee other proper-
ties, like secure erasure [26]. We demonstrate that the
FTL can take advantage of flash variability to improve
performance while not sacrificing endurance or capacity.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 89

8 Conclusion

In this paper, we developed an FTL that leverages sys-
tematic variability in flash memory to provide the speed
of the hare (SLC) with the capacity of the tortoise (MLC).
We propose increasing the number of write points on
each chip to increase the flexibility of the FTL to sched-
ule accesses to pages with a variety of latencies, and we
demonstrate how to use this flexibility to achieve up to
100% of the performance an SLC array (or an average
of 89%) by using MLC flash without additional wear.
Further, we show that the counterintuitive approach of
scheduling garbage collection operations on fast pages
improves performance by an average of 65% and as much
as 95% in workloads with little spacial locality.

Acknowledgements

We would like to thank the reviewers and shepherd of this
paper for their valuable input. This work was supported
by the NSF Variability Expedition under award number
1029783.

References

[1] Densbits technologies. memory modem: Technology
overview. April 2012.

[2] Nvm express. http://www.nvmexpress.org/. 2013.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX 2008 Annual Technical Confer-
ence on Annual Technical Conference, ATC’08, 2008.

[4] S. Bai and X.-L. Liao. A parallel flash translation layer
based on page group-block hybrid-mapping method. Con-
sumer Electronics, IEEE Transactions on, may 2012.

[S] A. Berman and Y. Birk. Constrained Flash memory pro-
gramming. In IEEE International Symposium on Infor-
mation Theory, pages 2128-2132, 2011.

[6] A.Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks. Technical Report MSR-
TR-2005-176, Microsoft Research, December 2005.

[71 A. M. Caulfield, L. M. Grupp, and S. Swanson. Gor-
don: using flash memory to build fast, power-efficient
clusters for data-intensive applications. In Architectural
Support for Programming Languages and Operating Sys-
tems, pages 217-228, 2009.

[8] F. Chen, R. Lee, and X. Zhang. Essential roles of ex-
ploiting internal parallelism of flash memory based solid
state drives in high-speed data processing. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, 2011.

[9] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-

Aware Flash Translation Layer Enhancing the Lifespan

of Flash Memory based Solid State Drives. In USENIX

Conference on File and Storage Technologies, pages 77—

90, 2011.

M.-L. Chiao and D.-W. Chang. ROSE: A Novel Flash

Translation Layer for NAND Flash Memory Based on

Hybrid Address Translation. IEEE Transactions on Com-

puters, 60:753-766, 2011.

H.-T. L. et. al. Radically extending the cycling endurance

of flash memory (to ;100m cycles) by using built-in ther-

mal annealing to self-heal the stress-induced damage.

[10]

(11]

2012.
R. Gabrys, E. Yaakobi, L. M. Grupp, S. Swanson, and
L. Dolecek. Tackling intracell variability in tlc flash

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

through tensor product codes. In International Sympo-
sium on Information Theory, ISIT, 2012.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing
flash memory: anomalies, observations, and applications.
In International Symposium on Microarchitecture, pages
24-33, 2009.

L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak
Future of NAND Flash Memory. In USENIX Conference
on File and Storage Technologies, 2012.

A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash trans-
lation layer employing demand-based selective caching of
page-level address mappings. In Architectural Support for
Programming Languages and Operating Systems, pages
229-240, 2009.

K.-C. Ho, P.-C. Fang, H.-P. Li, C.-Y. Wang, and H.-C.
Chang. A 45nm 6b/cell Charge-Trapping Flash Memory
Using LDPC-Based ECC and Drift-Immune Soft-Sensing
Engine. In Solid-State Circuits IEEE International Con-
ference, 2013.

H. jin Cho, D. Shin, and Y. I. Eom. KAST: K-associative
sector translation for NAND flash memory in real-time
systems. In Design, Automation, and Test in Europe,
pages 507-512, 2009.

T. Kgil, D. Roberts, and T. Mudge. Improving nand flash
based disk caches. In Computer Architecture, 2008. ISCA
"08. 35th International Symposium on, june 2008.

H. Kim and S. Ahn. Bplru: a buffer management scheme
for improving random writes in flash storage. In Proceed-
ings of the 6th USENIX Conference on File and Storage
Technologies, FAST 08, 2008.

G. e. a. Marotta. A 3bit/cell 32gb nand flash memory at
34nm with 6mb/s program throughput and with dynamic
2b/cell blocks configuration mode for a program through-
put increase up to 13mb/s. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 444 —445, feb. 2010.

K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. Choi,
Y.-T. Lee, C. Kim, and K. Kim. A Zeroing Cell-to-Cell In-
terference Page Architecture With Temporary LSB Stor-
ing and Parallel MSB Program Scheme for MLC NAND
Flash Memories. [EEE Journal of Solid-state Circuits,
43:919-928, 2008.

S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung. Design
and analysis of flash translation layers for multi-channel
nand flash-based storage devices. Consumer Electronics,
IEEE Transactions on, august 2009.

Z.Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan. Mnftl: An
efficient flash translation layer for mlc nand flash mem-
ory storage systems. In Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, 2011.

D. Raffo. Fusionio builds ssd bridge between slc,mlc, july

2009.
X. Ruan, Z. Zong, M. 1. Alghamdi, Y. Tian, X. Jiang, and

X. Qin. Improving write performance by enhancing inter-
nal parallelism of solid state drives. In Performance Com-
puting and Communications Conference (IPCCC), 2012
IEEE 31st International, dec. 2012.

M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson. Re-
liably erasing data from flash-based solid state drives. In
Proceedings of the 9th USENIX conference on File and
stroage technologies, FAST 11, 2011.

Q. Wei, B. Gong, S. Pathak, B. Veeravalli, L. Zeng, and
K. Okada. WAFTL: A workload adaptive flash translation
layer with data partition. In Symposium on Mass Storage
Systems, pages 1-12, 2011.

S. yeong Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee.
Exploiting internal parallelism of flash-based ssds. Com-
puter Architecture Letters, jan. 2010.

90 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Janus: Optimal Flash Provisioning for Cloud Storage Workloads

Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji
Francois Labelle, Nate Coehlo, Xudong Shi, C. Eric Schrock

{calbrecht, aamerchant,mstokely}@google.com,mhwaliji@gmail.com

{flab,natec,xdshi,eschrock}@google.com

Google, Inc.

Abstract

Janus is a system for partitioning the flash storage tier
between workloads in a cloud-scale distributed file sys-
tem with two tiers, flash storage and disk. The file system
stores newly created files in the flash tier and moves them
to the disk tier using either a First-In-First-Out (FIFO)
policy or a Least-Recently-Used (LRU) policy, subject to
per-workload allocations. Janus constructs compact met-
rics of the cacheability of the different workloads, using
sampled distributed traces because of the large scale of
the system. From these metrics, we formulate and solve
an optimization problem to determine the flash allocation
to workloads that maximizes the total reads sent to the
flash tier, subject to operator-set priorities and bounds on
flash write rates. Using measurements from production
workloads in multiple data centers using these recom-
mendations, as well as traces of other production work-
loads, we show that the resulting allocation improves the
flash hit rate by 47-76% compared to a unified tier shared
by all workloads. Based on these results and an analysis
of several thousand production workloads, we conclude
that flash storage is a cost-effective complement to disks
in data centers.

1 Introduction

Disks are slow, and not getting much faster, even as their
capacities grow: the random 1I/O operations possible per
gigabyte stored on disk continues to decline. We can
compensate for this by adding flash storage, which sup-
ports a much higher I/O rate per byte of storage capacity.
Since flash is expensive per byte compared to disk, it is
best to provision a relatively small amount of flash to
store the most frequently accessed data.

Storage needs in a large cloud environment are of-
ten highly varied between different users and workloads
[15, 23]. Hence, distributing the available flash capacity
uniformly between the workloads is not ideal from either

a performance or a cost perspective. Instead, we seek
to leverage the differences between the competing users
and workloads to optimize the provisioning of flash.

Our system, Janus, provides flash provisioning and al-
location recommendations for both individual users and
system administrators of large cloud data centers, where
many users share the resources. Janus uses sparse traces,
such as Dapper traces [22], to build a compact charac-
terization of how effective flash storage is for different
workloads. Where flash provisioning decisions are made
by individual users, this characterization can be used to
determine how much flash storage is cost-effective to
purchase. For the case where resources are provisioned
and allocated centrally by a system operator, we set up
an optimization problem to partition the available flash
between workloads so as to maximize the overall reads
from flash and show how to solve it efficiently.

Janus recommendations are used by several produc-
tion workloads in our distributed file system, Colos-
sus [17]. We provide evaluations of the effectiveness
of the recommendations from measurements on some of
these workloads, and additional evaluations using traces
of other production workloads. Our workload character-
izations show that most I/O accesses are to recently cre-
ated files. Based on this observation, files are placed in
the flash tier upon creation and moved to the disk tier us-
ing FIFO or LRU eviction policies. Our results show that
the recommendations allow 28% of read operations to be
served from flash by placing 1% of our data on flash.

The three main contributions of this paper are:

e A characterization of storage usage patterns in a
large private cloud focusing on the age of data
stored and I/O rates to recently written data (§ 4).

e An optimization problem formulation for flash allo-
cation to groups of files to maximize read rates of-
floaded to flash weighted by priorities and bounded
by maximum flash write rates (§ 6).

e Experimental results from an implementation for
the Colossus file system (§ 8).

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 91

2 Related Work

Several types of multi-tier storage systems [16] have
been developed for memory, solid state drives, disk,
and tape. These include Hierarchical Storage Manage-
ment (HSM) [7, 12], multi-tier stores [24], multi-tier file
systems [2], hybrid disk/flash storage [19], and extent-
based enterprise volume management [24, 13]. Most
include automated methods for migrating data between
tiers based on I/O activity levels, performance require-
ments set by administrators, or explicit rules defined by
users or administrators. However, none of these have fo-
cused on a distributed, cloud-scale deployment, which
adds issues of provisioning policies and workload moni-
toring compatible with distributed management.

Several storage design tools, such as Minerva [3] and
DAD [4], advocate principled, automated approaches to
choose appropriate storage parameters for disk arrays
based on workloads and desired availability characteris-
tics. However, these tools typically provide only coarse-
grained recommendations about RAID levels for storage
volumes, unlike the data placement decisions for differ-
ent files in a multi-tiered cloud storage environment de-
scribed in this paper.

Studies on the distributed file system in Sprite [5] and
the local file system in 4.2 BSD [20] showed the utility of
characterizing user activity, access patterns, and file life-
times when evaluating caching strategies. Blaze [6] an-
alyzed access patterns affecting caching in a distributed
file system using traces of I/O activity obtained by mon-
itoring storage related remote procedure calls (RPCs).
We similarly monitor storage RPCs in our distributed file
system, but we also needed to use sampling and other sta-
tistical techniques due to the system scale.

TIP [21] used explicit hints of future I/O accesses pro-
vided by the application programmer to determine which
data to prefetch and when. Janus does not rely on the ex-
plicit programmer action of adding hints to the API us-
age of the system. Instead, we predict the cacheability of
different user workloads automatically from online mea-
surements of past usage. Kroeger [14] predicts file access
patterns in the context of prefetching at the Linux kernel
level by using the sequence of past accesses; however, it
is not clear how it could be extended to the distributed
case.

Our approach is most closely related to the work of
Narayanan et al. [18], which analyzed several enterprise
workload traces to evaluate the economic feasibility of
replacing disks with flash storage. We focus on a larger
cloud storage environment, develop an algorithm for
making good allocation choices between different work-
loads, and reach significantly different conclusions about
the effectiveness and economics of using flash in this
manner.

3 System Description

Janus provides flash storage allocation recommendations
for workloads in a distributed file system, such as Colos-
sus, in a large private cloud data center. The underly-
ing storage is a mix of disk and flash storage on distinct
chunkservers, structured as separate tiers. Upon creation,
files may be placed in the flash tier, and later moved to
disk using a FIFO or LRU policy. We use this insertion
on write mechanism rather than the insertion on read
used in most caches because it is more suitable for our
system. The distributed nature of file systems like GFS
and Colossus makes insertion on read policies more ex-
pensive than insertion on write for some metrics we in-
tend to optimize, in particular the volume of read activity.
Because data access occurs directly between chunkserver
nodes and clients, and not every chunkserver node con-
tains flash capacity, an insertion on read policy that does
not rely on the client for write back must perform an ad-
ditional read in order to populate the data into flash stor-
age. Additionally, the write back into flash storage can
not be assumed to be instantaneous as the operation re-
quires reading data from disk, transferring across a local
network link, and finally a write into the flash media.

Many users and applications may use this system, ei-
ther directly, or through higher level storage components
such as Bigtable [8]. The flash tier can be partitioned
between workloads. The main scenario we consider is
where the system operator has a fixed amount of total
flash available in the system, and wants to maximize the
fraction of reads offloaded to flash storage; however, in
some cases, it may be preferable to offload high-priority
workloads.

Workloads can correspond to users, applications, or
specified groups of files. For example, an application
may have separate logging, data, and metadata compo-
nents, and these could be different groups. In structured
data, a table or a set of columns may be a group. Exactly
how the workloads are formed is outside the scope of this
paper; we just assume that these groupings exist, perhaps
manually created. We may associate a priority weight
with each workload; the higher the priority weight, the
more important it is to accommodate its reads from flash
storage. The precise mechanism for choosing workload
weights is again outside the scope of this paper, but for
example, the administrator could assign different weights
to different workload types. Our goal is to determine au-
tomatically how to divide the available flash between the
workloads to optimize the reads from flash.

The allocation recommendations are made by an of-
fline optimization solver that runs periodically to adjust
to changes in the workload behaviors and the available
flash storage. A key input to the solver is a compact
representation of both the age of the data stored in each

92 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

o 1year - !
£ 30 days |
o
< 8 1 day
S e’:) 1 hour
Qg
= £ 1min
m
S 1sec |
T T T T
0 5000 10000 15000

Job Number (sorted by y-axis)

Figure 1: Mean age of bytes read differs significantly by user.

workload group, and the read rate of the data by age.
These are obtained by scanning the file system metadata
and sampled traces of I/O activity.

The operation of Janus can be broken into three steps:

e Collection of input data about the age of bytes
stored and age of data accessed for different
workloads to generate a characterization of how
cacheable each workload is (§ 4).

e Solving an optimization problem to allocate flash
amongst the workloads (§ 6).

e Coordination with the distributed file system to
place data from different workloads on flash us-
ing the computed write probabilities and flash sizes
from the solver (§ 8).

4 Workload Characterization

Storage in our data centers is shared between thousands
of users and applications. Applications include content
indexing, advertisement serving, Gmail, video process-
ing, as well as smaller applications, such as MapReduce
jobs owned by individual users. A large application may
have many component jobs. The workload characteris-
tics and demands of jobs in data centers are typically
highly varied between users and jobs. Figure 1 shows the
variation of mean read age over different jobs in our data
centers. All read ages are well represented: there are jobs
accessing very young (1 minute old) to very old (1 year
old) data. However, different jobs also have very differ-
ent read hotness, as shown in Figure 4, so we cannot con-
clude that the aggregate reads are evenly distributed over
data of different ages. Instead, we need to define a metric
that lets us compare how many read operations would be
served by flash storage for a given flash allocation to that
workload.

4.1 Cacheability Functions

The cacheability function (which we define more for-
mally below) tells us the rate of read hits we are likely
to get for a workload if we allocate it a given amount of
flash. To compute this for FIFO eviction, we need two

1.0Mfs T — T 12PB
© — Bytes Stored 3
T 08Mfs 7 oo Read Operations - 5
o . - 8PiB
T 0.6M’s o
g §
0.4M/s
g - 4pi @
S 0.2M/s g
© 3
0 o
T T T T T T T T
im 1om 1h 6h 1d 7d 30d 1y
Age (log)

Figure 2: Cumulative distribution function of the bytes stored,
and read operations sorted by the (FIFO) age of the data for a
particular workload. These CDFs are a graphical representation
of the histograms collected as inputs to the cacheability curves,
which are different for each user and used in the optimization
formulation. 50% of the data stored by this particular user is
less than 1 week old, but that corresponds to over 90% of the
read activity.

inputs for each workload: how much data there is of a
given age, and how many reads there are to files of a
given age. For LRU eviction, the corresponding two in-
puts are the amount of data with a given temporal locality
and the rate of reads to files with that temporal locality.

We define two age metrics: FIFO age and LRU age,
which are used with the corresponding eviction policies
(although we will just say “age” where the disambigua-
tion is not needed). The FIFO age of a file (and of all
the data in the file) is the time since the file was created.
The LRU age of a file, which is a measure of the tempo-
ral locality of its reads, is approximately the maximum
time gap between reads to the file since it was created
(see Section 8.7 for a precise definition).

Obtaining the distribution of FIFO age is straightfor-
ward: we scan the file system metadata, which includes
the create time of each file, to build a histogram of the
FIFO age of bytes stored for each group. To build a his-
togram of the read rates of data by FIFO age, we need to
look at the read accesses, which we obtain from traces.
Since the read rate in the data centers is enormous, it is
not practical to consider every read to the data in each
workload. Instead, we sample the reads from every job
using Dapper [22, 9], an always-on system for distributed
tracing and performance analysis. Dapper samples a
fraction of all RPC traffic and, by looking at the age of
the requested data at the time of each RPC, we can popu-
late a second histogram of the number of read operations
binned by age of the data read. Crucially, each of these
two histograms has the same bucket boundaries for data
age, which later lets us join the histograms.

Computing the corresponding histograms for LRU age
is similar, except that computing the LRU age requires
the time-gaps between read operations to a file. Dapper
traces do not suffice in this case, since not every I/O to

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 93

800k/s —

600k/s =

400k/s =

Read Ops

200k/s =

Ok/s = |
oPiB

I I
2PiB 4PiB

Data Sorted by Age

Figure 3: The number of read operations for a given amount of
the youngest data (by FIFO age) for a particular user.

a file is captured. We built instead a distributed tracing
mechanism that samples based on the file identifier and
captures every I/O for the files so selected.

The two input histograms of data age and read age for
a specific workload can then be combined to construct a
cacheability function.

Definition (Cacheability Function): For a workload the
cacheability function ¢ maps the amount of flash allo-
cated to the workload to the rate of reads absorbed by
the flash storage. In particular, ¢(x) gives the number of
read operations that go to the youngest x bytes of data.

Figure 3 shows an example of a cacheability function
computed by joining the histograms of read rate and data
size by age in Figure 2. Joining the histograms is simple
because the age bins are the same. From the histograms
for a specified workload we derive the cumulative func-
tion f giving the amount of data younger than a certain
age, and the cumulative function g giving the read oper-
ations to files that are younger. Essentially, for each flash
allocation z, we can look up the age f~!(x) of the files
that can be stored (assuming the youngest are stored) and
then look up the rate of read hits for files of that age or
younger:

$w) = (go f7)(@) = g(f ' (2))

We compute the cacheability function by linear in-
terpolation between the bins, and hence the function is
piecewise linear, a fact we later use in the optimization.
Assuming that these distributions are stationary, the com-
position gives us the read hit rate for the flash allocation.
Also, because of the way we separately defined file age
for FIFO and LRU eviction, this method works in both
cases.

5 Economics and Provisioning

Narayanan et al. [18] argued that replacing disk with
flash storage was not cost-effective. Prices for flash have
fallen considerably since then, but has this conclusion

1M

100K -

10K

IOPS

1K

100

10 ~

— 2008-era IOPS/GiB Break—even Line for Flash
1 Current IOPS/GiB Break—even Line for Flash

T T T T T

T T
1 TiB 1 PiB
Bytes Stored

T
1 GiB

Figure 4: Peak IOPS and capacity requirements for user work-
loads in a shared data center. IOPS is the 95th percentile
over 10 minute intervals. Workloads above the break-even line
would be cost-effective to store entirely on flash. The two filled
red dots are for the workloads in Table 1, and come from other
data centers. The lower dot is for the workload in Figure 3.

changed? To analyze this, following Narayanan, we find
the break-even point, which is the IOPS/GiB threshold
determining whether a workload would be cheaper on
flash storage or on disk. This threshold can be derived
from the IOPS/$ of disk, Iy, and the GiB/$ of flash,
G, since a workload with 1 IOPS and G' GiB will cost
G/G on flash and at least I /I, on disk (more for cold
data). Therefore, workloads with IOPS /GiB greater than
1;/Gy are better served from flash, and by using a disk
with high I; for this cutoff, we are being conservative in
recommending workloads to go entirely on flash.

For our example IOPS/$ efficient retail drive, we use
the Seagate Savvio 10K.3, which costs around $100. The
disk specifications [1] indicate an IOPS capacity around
150 ((seek time+avg latency) 1), or 1.5 IOPS per dollar
for disk. On the other hand, recent news reports [10]
indicate that we can get about 1 GiB of flash per dollar;
together these give a break even point of 1.5 IOPS per
GiB, which is much smaller than the 2008 value ~ 60.
As displayed in Figure 4, we find that, at least for some
workloads, it is cost-effective to place all data in flash.
Even for other workloads close to the break-even point,
using flash may be justified by the resulting improvement
in latency.

In addition, many workloads could benefit from
putting their youngest data on flash using Janus. We now
consider how much flash is cost-effective for an individ-
ual workload. For a workload with read operations rate
rate,, write operations rate rate,,, capacity size ¢, and

94 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Workload 1 2

Data size (PiB) 5.2 6.1
Access rate (k ops/sec) 1172 2214
Janus Savings (%) 29 12
Janus Flash (%) 0.42 2.1

Table 1: Storage demands and savings from a price optimiza-
tion using Janus, which correspond to solid red dots in Figure
4. The savings is over the best all-disk or all-flash solution. The
flash % is the percentage of the user data in flash.

cacheability function ¢(), a disk (IOPS, GiB;sx) de-
mand of (rate, + rate,,, d), could be replaced with a
disk + flash (IOPSg;s, GiBgisk, GiB fiqsn) demand of

(rate, + rate,, — ¢(x), d — z, x)

To determine the amount of flash, x, that a user should
purchase, and their benefit from using the system, we
impose a pricing structure, then have each user purchase
flash to minimize costs. We avoid pricing complica-
tions arising from the balance of cold and hot data in
a shared storage system, and put ourselves in the IOPS
constrained framework where we sell disk based entirely
on IOPS, so that cost is determined by
(rate, + rate,, — ¢(x)) L)
Iq Gy

and we note that the optimization of cost is simplified
by the fact that ¢ is piecewise linear between histogram
buckets.

In Table 1 we consider this optimization for some
workloads and display the price savings, along with the
percentage of data that goes on flash, in the optimal con-
figuration. We note that while workload 2 is hotter on
average, workload 1 gets a greater benefit from a smaller
amount of flash because of its steep cacheability curve
(Figure 3).

cost(z) =

6 Optimizing the Flash Allocation for
Workloads

We now describe how we determine the best flash alloca-
tion for each workload, given the cacheability functions
derived in Section 4. Specifically, we seek to maximize
the aggregate rate of read operations served from flash
subject to a bound on the total available flash. The work-
loads may have different priority weights, in which case
we maximize the aggregate weighted rate of reads from
flash.

We assume that the cacheability functions are piece-
wise linear and concave. As mentioned previously, the
piecewise linear assumption always holds since we com-
pute the function by linearly interpolating between a fi-
nite number of points (corresponding to the bins of the

histogram from which we derive it). The concavity as-
sumption is equivalent to assuming that the read rates
for each workload’s data decrease monotonically with in-
creasing data age. This assumption holds usually, but not
always. We will show in the next section how to relax the
assumption where it matters.

Weighted Max Reads Flash Allocation Problem
Instance:

e A set of workloads; for each workload i is given the
total data d;, the cacheability function as a piece-
wise linear function ¢; : [0,d;] — R, and a priority
weight p;.

e A bound on the total flash capacity F.

Task:

Find for each workload ¢ the allocated flash capac-

ity z;, 0 < x; < d;, maximizing the total priority

weighted flash read rate) . p; ¢;(z;), and subject to

the constraint of the total flash capacity > |, z; < F.

Let the segments of the piecewise linear function p; ¢;
be a; ; + b; ;x for j = 1,...,n;. Since ¢; is concave,
p; ¢; can be expressed as the minimum of the functions
corresponding to its linear segments:

pi ¢i(x) = 1%1]1.1%1”1_{%‘4 + b5z}

By replacing p; ¢, (x) with the variable y;, we transform
the task into a linear program:

max Z Yi

1
st. y; <a;; +b;;x; for each workload ¢
and each segment j (2)
1

0 <z < d;

for each workload 7

This optimization problem can be solved with an LP
solver. We solve it directly as explained at the end of the
next section.

7 Optimization with Bounded Write Rates

Limiting flash write rate is important to avoid flash wear
out and also reduces the impact of flash writes (which are
slow) on read latencies. We now describe how to allocate
flash so as to maximize the reads from flash while limit-
ing the write rate to flash. We also show how to approxi-
mately relax the concavity assumption on the cacheabil-
ity function. The cacheability function for a workload
may be non-concave if the read rate increases some time
after it is created, for example, if there is a workload
that begins processing logs with some delay after they
are created.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 95

Total flash size: 2

Flash Allocation A
Write probability: 1

Flash Allocation B
Write probability: 2/3

30
0 30 45
20
15 10 15
10
30 20 30
Flash read Age Flash read Total
rate: 45 rate: 60 read rate

data in flash

Figure 5: Example for non-concave cacheability and fractional
write probability: Data blocks and read rates of a workload for
different age ranges are shown at steady state. The workload
has one block of data with age between 0 and 10 and a read
rate of 30, a second block of data with age between 10 and 20
and aread rate of 15, and a third block of data with age between
20 and 30 and a read rate of 45. Storing all data younger than
age 20 in flash (highlighted) gives a hit rate of 45 (left). With
a write probability of 2/3, we place less new data in the same
flash but keep it longer, until age 30 (right). This captures the
higher read rate for data between ages 20 and 30, for a total
flash hit rate of 90 * 2/3 = 60. The write rate to flash also
decreases by 1/3.

We only consider insertion into flash upon write, so
that the write rates per workload are independent of the
flash allocation. For simplicity, we also ignore priority
weights here, but this extension is straightforward.

The flash write rate can be controlled either by limit-
ing the workloads that have data in flash or by writing
only a fraction of each workload’s new data into flash.
We implement the latter by setting a write probability,
and for each new file, deciding randomly with that prob-
ability whether to insert it into flash. Figure 5 shows an
example with one workload where decreasing the write
probability decreases the flash write rate and increases
the flash read hits. This is only possible if the cacheabil-
ity function is non-concave.

In general, if the workload 7 has a flash capacity z; and
a write probability p, the data can stay in flash for as long
as if the workload has a flash capacity of Z* but all new
data is written to flash. Hence, the flash read rate for the
workload ¢ with cacheability function ¢; is p; qbz(%)
Bounded Writes Flash Allocation Problem
Instance:

e A set of workloads; for each workload ¢ is given
the total data d;, a continuous piecewise linear
cacheability function ¢; : [0,d;] — R, and a write
rate w;.

e A bound on the total flash write rate W.

e A bound on the total flash capacity F'.

Task:
Find, for each workload ¢, the allocated flash capac-
ity z;, 0 < z; < d; and the flash write probabil-
ity p;, 0 < p; < 1, maximizing the total flash read
rate >, p; ¢;(5*) and subject to the constraint of the
total flash write rate and total flash capacity. Formally:

max Y pi o, (f)z)

(3

1
S.t. Zpi w;,; < W

i Z.TZSF

0 < z; < d; foreach workload ¢
0 < p; < 1 foreach workload 7

While the problem has linear constraints, the objective
is not linear. Our approach is to (a) relax the constraint
on the write rate via Lagrangian relaxation; (b) remove
the dependence on the write probability p; in the objec-
tive function; (c) linearize the objective; and (d) solve the
resulting linear program with a greedy algorithm.

We relax (remove) the write rate bound), p;w; <
W and change the objective function by subtracting the
write rate with a write penalty factor A > 0:

> i <x> — Ap; w; @)
i pi

3)

(2

An optimal solution for the relaxed problem with a to-
tal write rate equal to the bound (i.e., Zl piw; = W)is
an optimal solution of the original problem (3). Proof:
If there is a better solution for the original problem (3),
its read rate is higher but its write rate cannot be larger.
Hence, this solution is also a better solution for the re-
laxed problem, which contradicts the optimality.

Since the total write rate found by the relaxed opti-
mization decreases monotonically with increasing \, we
can find the best A, where the total write rate closely
matches the bound, using binary search.

Since the constraints on the write probabilities p; are
independent of the other variables, we can remove the de-
pendence on the write probabilities as follows. Let) (z)
represent the contribution of workload ¢ with allocated
flash size x to the objective (4) when maximized. Then:

A _ (T _ .
hi(x) = Jax péi (p) Apw;
X
= glzaf . (¢i(2) — Aw;)

bi(2) — Aw;
= r max ——
z>x z

Since the function ¢; is continuous and piecewise lin-
ear, (¢;(z) — Aw;)/z is monotonic with z in each seg-
ment. Hence the above maximum can be found by eval-
uating it only at the breakpoints of ¢;. By processing the
breakpoints of ¢; in decreasing x-coordinate the func-
tion h? () can be computed in linear time.

96 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Next, we linearize the resulting objective >_, h(;).
h? is concave if ¢; is, which is usually the case because
read rates decline with age. If not, we replace it with its
concave upper bound by removing some breakpoints of
the piecewise linear function. We argue later that this has
only a small impact on the optimality of the result. As in
the previous section, we rewrite h7(x) as the minimum
of the linear functions corresponding to its segments and
get a linear program that has the same form as (2).

Finally, we solve this linear program with a greedy al-
gorithm. We start with the solution x; = 0, y; = 0
for each workload ¢ and then successively increase the
allocated flash x; of the workload that has the highest
ratio of increase in the objective function to flash allo-
cation, as long as flash can be allocated. Except for the
last incremental allocation, the flash allocation to each
workload corresponds to a breakpoint of its cacheabil-
ity function. The algorithm has a runtime complexity of
O(n k log k) where n is the maximum number of pieces
of the piecewise linear functions ¢; and k is the number
of workloads.

The result is optimal if hf‘ is concave. If not, we can
show that the error in the objective value due to the con-
cave approximation is bounded by the objective incre-
ment of the last step. Hence, we are close to optimality if
the last incremental flash allocation is small. This is cer-
tainly the case if the workload is partitioned into many
small workloads, which is, in any case, preferable for
optimal allocation.

8 Evaluation

In this section, we evaluate the effectiveness of the algo-
rithms described in the previous sections on production
storage workloads in Google data centers. Section 8.1
describes the production environment, and Section 8.2
introduces the datasets and terminology used for the eval-
vation. The remainder of the section evaluates the rec-
ommendations produced by Janus both on production
workload deployments that used the recommendations
and on traces of other production workloads.

8.1 File Placement in Colossus

Colossus (the successor of GFS [11]) is a distributed
storage system with multiple master nodes and many
chunkservers that store the file data. File system clients
create new files by a request sent to a master node, which
allocates space for it on chunkservers it selects. We eval-
uated Janus in a Colossus system extended as follows.
When a file is created, a Colossus master node decides,
based on the amount of flash space available for the cor-
responding workload and the write probability assigned
to it, whether it should be placed on disk or on flash,

and accordingly allocates space. Eviction from flash is
designed to take advantage of the already existing file
maintenance scanner process. The file is tagged with an
eviction time (TTL), which is computed from the flash
allocated to that workload and the workload’s write rate.
The scanner process periodically checks whether the file
has exceeded its eviction time, and if so, moves it to
disk. The eviction time (TTL) in its current implemen-
tation is not updated after it is set, effectively producing
an approximate FIFO eviction policy. An arriving file
creation request sometimes finds the flash storage full;
in this case, the master will write it to disk, regardless
of whether it would otherwise have chosen to write it to
flash.

8.2 Datasets and definitions

In the remainder of Section 8, we evaluate Janus based
on several datasets.

A Colossus cell is a separate instance of the Colossus
system. Separate cells are typically located in different
facilities. Each cell has its own masters, chunkservers,
and files, and each cell independently manages user
quota.

The first three datasets come from multi-user cells,
with workloads corresponding to different users of the
cell.

Dapper A 37-day Dapper sample of read-write activity
over 10 cells. The first 30 days are used for training
(computing the cacheability functions), and the last
7 days are used for evaluation.

Janus Deployment Data from limited deployments of
production workloads using Janus recommenda-
tions in 4 cells. In these deployments, flash was
assigned only to a single workload. The training
period consisted of a 30 day of Dapper sample prior
to the deployment.

Multi-User Cell A 1-week trace of all read-write activ-
ity to a 1% sample of files in a single cell. The 6th
day is used for training, and the 7th day is used for
evaluation. The first 5 days are used in Section 8.7
to determine whether a file is cached by LRU. This
cell had 407 workloads.

The last dataset comes from a cell where all activity
comes through Bigtable. Files are separated into work-
loads based on tokens that Bigtable encodes in the file
name for different tables and columns.

Single-User Cell A full trace of read-write activity in a
single-user Colossus cell for 30 minutes. The first
15 minutes are used for training, and the second 15
minutes are used for evaluation. The cell had 541

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 97

workloads, and contained over 10,000 machines. A
configuration change was needed to collect the data,
leading to the short duration of the trace, but it con-
tains adequate data because of the size of the cell
and the fact that the trace is not sampled.

The read rate for each workload is the number of read
operations per second, excluding in-memory cache hits.
The flash read rate is the number of read operations per
second that is served from flash. The flash hit rate is
the flash read rate as a percent of the read rate. In some
cases, we report the normalized flash hit rate, which is
the flash read rate for a workload as a percent of the total
read rate among all workloads in the cell. In particular,
the cell-wide flash hit rate is the sum over all workloads
of the normalized flash hit rate.

The size of a workload is the logical number of bytes
stored, excluding overhead from replication or erasure
coding. Analogous to the terminology for read rates, we
also have flash size, flash size percentage and normalized
flash size percentage.

The write rate of a workload is the number of bytes per
second of new data written. Again, this excludes over-
head from replication or erasure coding. Again, we also
have flash write rate and flash write percentage.

Given a cell-wide flash size, or equivalently a flash
size percentage, we form an allocation of flash to dif-
ferent workloads using the optimization. The allocation
consists of a Flash Size and a Write Probability for each
workload in the cell. This allocation is used in the evalu-
ation period to compute various metrics of interest, such
as flash hit rates.

8.3 Does the Past Predict the Future?

Our optimization is based on sampled historical data.
Here, we investigate the stability of estimated per-
workload flash hit rates between training and evaluation
periods in the Dapper dataset. In Section 8.4, we will
consider how well estimated flash hit rates correspond
with values from an actual deployment.

We chose 10 cell-wide flash size percentages between
0.1% and 10%. For each flash size percentage and each
cell, we optimized the allocation of flash to workloads.
Figure 6 uses these allocations to plot per-workload flash
hit rates in the evaluation period against those in the
training period. The figure shows that flash hit rate dur-
ing evaluation is typically within 7% of the flash hit rate
during training. This range of variability is small enough
for the resulting system to be effective.

8.4 Janus Deployment

Due to the Colossus’s use of approximate FIFO (de-
scribed in Section 8.1), we must compute eviction TTLs

100

B 2] [o]
o o o
1 1 1

Flash Hit Rate (%), Evaluation

N
o
1

Flash Hit Rate (%), Training

Figure 6: Flash hit rate during training and evaluation periods,
estimated from the Dapper dataset. Each point represents a sin-
gle workload in a single cell with a given cell-wide flash size
percentage.

from each workload’s allocation. Janus computes the
TTLs using file age histograms from the training period.
However, the file age distribution may change between
training and deployment. For example, a workload may
start writing new data at a high rate, or it may exhibit
peak-to-trough variability not captured in histograms av-
eraged over the 30-day training period. In these cases,
using fixed TTLs may cause the workload to exceed its
allocated flash size, and Colossus will write new files to
disk until flash usage decreases. Hence, a workload’s ac-
tual flash usage can fluctuate over time.

Figure 7 shows flash usage for a single workload over
two days in one cell. The workload’s allocated flash size
was 100 TiB. Each day, actual flash usage fluctuates from
45 TiB to 100 TiB due to peak-trough variations. We
accommodated this variation by decreasing the allocated
flash size so as not to exceed the actual allocation.

Figure 7 also shows the workload’s flash read rate dur-
ing the period. On average, we get around 30k flash read
ops/sec, with a peak of more than 40k flash read ops/sec.
From the 30 day training period, we predicted a flash
read rate of 33k flash read ops/sec.

Table 2 shows results for this workload over deploy-
ments in four different cells. The average of estimated
and measured flash hit rates over those cells were 22.8%
and 23.5% respectively, a 3% difference. For cell A, the
measured flash hit rate (27%) was significantly higher
than the estimated value (17%), partly because we manu-

98 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

3 [0
: o
2 50 - —— Flash Usage F8k G
--- Flash Read Rate f
0 - ‘ ‘ °
Wed Thu

Figure 7: Flash usage and Flash read rate for one workload over
two days after Janus deployment.

allocated average estimated measured

workload flash flash flash flash

Cell size size usage hit rate hit rate
A 326PiB 80TiB 62TiB 17% 27%
B 334PiB 100TiB 72TiB 29% 31%
C 347PiB 60TiB 50TiB 19% 16%
D 326PiB 100 TiB 63 TiB 26% 20%
Avg | 3.33PiB 85TiB 62TiB 22.8% 23.5%

Table 2: Janus performance with one workload in four cells.

ally adjusted the parameters to maximize the space usage
and allow the group to hit the quota.

8.5 Comparing Alternative Allocation Methods

In this section, we compare alternative methods for gen-
erating flash allocations. Optimized FIFO allocation
uses the methods described above. We can also set per-
workload flash size proportional to read rate or propor-
tional to size. Both read rate and size are the average
usages measured over the training period. Lastly, we can
assign flash size such that the eviction TTL is the same
for all workloads. This is effectively a single FIFO for
all workloads. These and all subsequent comparisons are
made using trace-based analysis rather than direct mea-
surement, since Janus was only deployed with optimized
FIFO eviction (denoted Opt FIFO in the tables).

Table 3 shows cell-wide flash hit rates for the single
and multi-user cells. In the multi-user cell, the flash hit
rate improves from 19% to 28% when changing from
single FIFO to optimized FIFO, representing a 47% im-
provement. In the single-user cell, the relative improve-
ment was even larger — from a 42% hit rate to 74%, a
76% relative improvement.

Especially in the single-user cell, optimized alloca-
tion outperforms the other methods. Table 4 shows that
the poor performance of non-optimized methods in the
single-user cell is due to allocating large amounts of flash
to workload 117. This workload comprises 10% of the
cell’s read rate, but 43% of the cell’s size. Optimized

Dataset | Multi-User Single-User Single-User

Flash Size (%) 1.0% 5.3% 5.3%
Additional No flash for
Constraints workload 117

Opt FIFO 28% 74% 74%

Prop. Read Rate 26% 64% 64%
Single FIFO 19% 42% 45%
Prop. Size 14% 15% 21%

Table 3: Flash hit rates achieved by 4 different allocation meth-
ods for the single and multi-user cells. The cell-wide flash size
percentages were 5.3% for the single-user cell and 1.0% for the
multi-user cell.

allocation assigns no flash to this workload, since other
workloads provide a better read rate to size ratio.

The last column of Table 3 shows that the flash hit rate
under Single FIFO and Proportional to Size improves if
we constrain workload 117 to receive no flash. However,
Proportional to Read Rate does not improve, as removing
workload 117 exposes the next few workloads that have
a high read rate to older data.

The improvement between single FIFO and optimized
FIFO in the multi-user cell can also be attributed to a
single workload. This is discussed further in Section 8.7.

Normalized Flash Hit Rate (%)

Workload Opt FIFO Prop Reads FIFO Prop Size

1 11.8 10.8 8.1 35

2 7.9 7.9 4.2 1.3

3 7.7 55 6.0 22

4 7.4 74 3.8 1.1

5 5.7 5.7 22 0.5

9 4.0 4.0 4.0 0.3

10 3.9 4.2 4.2 0.3

117 0.0 0.6 0.9 1.0

Others 254 17.6 8.5 4.6

Total 73.7 63.8 419 14.7
Normalized Flash Size Percentage (%)

Workload Opt FIFO Prop Reads FIFO Prop Size

1 0.82 059 022 0.04

2 0.08 0.41 0.02 0.00

3 1.19 0.62 0.71 0.17

4 0.09 0.38 0.02 0.00

5 0.04 0.31 0.01 0.00

9 0.01 020 0.01 0.00

10 0.00 0.21 0.01 0.00

117 0.00 025 099 2.26

Others 3.02 2.27 3.26 2.77

Total 5.25 5.25 5.25 5.25

Table 4: Flash hit rates and size for selected workloads in the
single-user cell. Workloads are numbered in decreasing order
of flash read rate under optimized FIFO allocation.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 99

Flash Hit Rate (%)

T T T T T T

0 20 40 60 80 100
Flash Write Percentage (%)

Figure 8: Flash hit rate for given bounds on the flash write
percentage for four cells in the Dapper dataset.

100

50 1

20

TTL (hours)

10

Flash Write Percentage (%)

Figure 9: Average TTL of data written to flash for given
bounds on the flash write percentage for four cells in the Dap-
per dataset.

8.6 Impact of Bounded Flash Write Percentage

In Section 7 we showed how the flash write percentage
can be bounded at the cost of a lower flash hit rate.

Figure 8 shows the optimized flash hit rate for vari-
ous bounds on the flash write percentage. The right-
most point on each curve corresponds to unbounded flash
write percentage. In each cell, the optimized unbounded
value is above 90%. As we decrease the bound, the flash
hit rate decreases slowly at first, and it decreases quickly
once the bound falls below 60%.

Figure 9 shows the average TTL of the new data writ-
ten to flash for the same cells and the same flash alloca-
tion solutions. As the bound on the write rate is tight-
ened, less data is written to flash but it stays there longer.

8.7 Evaluation of LRU Eviction

We have so far seen the performance of Janus with FIFO
eviction. We now turn to an evaluation with LRU evic-
tion.

LRU Cacheability Functions and Censoring

In Section 4, we briefly described cacheability functions
for LRU eviction. We make this description more formal
here.

A file will be in the cache if the maximum gap between
reads is lower than the TTL. We re-define the notion of
age to reflect this heuristic. The LRU age of a file at
time ¢ is

Age(t) = max (t1 — to, ..., bty — tp—1,t — L)

where % is file creation time, and ¢4, ..., t,, are the times
of the n reads in interval [tg, t). The smaller the LRU age
of a file is, the more temporal locality its reads have. The
cacheability function, ¢(z), gives the flash read rate if
the x bytes with the lowest LRU age are placed on flash.

To compute the age of a file at ¢, we require a full
trace of read operations during [to, ¢). In many cases, the
full trace is not available. Suppose the trace is available
only during [tg,t), with tg > to. The resulting read age
measurement is censored.

We deal with censoring by considering the two ex-
tremes. Upper bound age assumes that there were no
reads between ty and tg. Lower bound age assumes that
there was continuous read activity between ¢y and tg, so
that Age(ts) = 0. The upper bound of the cacheability
function is obtained by using upper bound age for size
and lower bound age for read rates, and vice versa for
the lower bound of the cacheability function.

Evaluation of LRU using Multi-User Cell Dataset

Figure 10 shows the cacheability function for a single
FIFO / LRU. With 1% flash size percentage, the flash hit
rates are 19% for a single FIFO and 36%—40% for a sin-
gle LRU. The marked points allocate flash to workloads
using optimized FIFO / LRU. The flash hit rates are 28%
for optimized FIFO and 44%-48% for optimized LRU.

Table 5 shows normalized flash hit rates for various
workloads. Most of the improvement between FIFO and
LRU can be attributed to the cacheability of workload 1,
which is a Bigtable service shared by many users. LRU
assigns 3.4x-3.5x as much flash to workload 1, and ob-
tains 4.5x—5.1x as high a flash read rate as FIFO. This
accounts for a 14.4—16.7 percentage-point increase in the
cell-wide flash hit rate. Even optimized FIFO does not
achieve this high a flash read rate for workload 1, because
the workload’s cacheability function is much steeper for
LRU than for FIFO.

100 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

T T T T T

4 5 6

70
60 -
& 50 -
[0
5 40 -
T 30
3 20 —— LRU (Upper Bound)
- LRU (Lower Bound)
104/ FIFO
0. { X Optimized Points
T
0 1 2 3

Flash Size (%)

Figure 10: Cacheability curve for a single FIFO and single
LRU. The marked points represent optimized flash hit rates for
FIFO and LRU.

Table 5 also shows that workload 2 accounts for most
of the difference between optimized and single versions
of FIFO/LRU. In fact, both optimized FIFO and LRU
put the entire contents of workload 2 on flash, increasing
the cell-wide flash read hit by 7.3%. Workload 2 is a
Bigtable used to serve static webpage content.

These results are robust to adjusting the period used
for training. Of our 7-day dataset, we used the 7th day
for evaluation and the 6th day for training; the remaining
days were used only to compute the file ages. If the 5th
day is used instead for training, then the cell-wide flash
hit rate is 28.5% under optimized FIFO, and 44.4-49.1%
under optimized LRU. Using the 4th day, we get 27.0%
under optimized FIFO and 42.7-48.1% under optimized
LRU. These numbers are similar to those in Table 5.

While LRU eviction performs better than FIFO for
many workloads, there is a substantial associated over-
head. The LRU age of a file depends on accesses to
all its component chunks, and hence the eviction scan-
ner must gather information from multiple chunkservers
before determining whether a file should be evicted. By
comparison, computing the FIFO age is simple because
it depends only on the static creation time of the file.

9 Conclusions

The falling price of flash storage has made it cost-
effective for some workloads to fit entirely in flash. As
the I/O rate per byte supported by disks continues to de-
cline, flash storage also becomes a critical component
of the storage mix for many more workloads in modern
storage systems. However, because flash is still expen-
sive, it is best to use it only for workloads that can make
good use of it. With Janus, we show how to use long-
term workload characterization to determine how much

Normalized Flash Hit Rate (%)

Workload FIFO Opt FIFO LRU Opt LRU

1 4.1 53 185-20.8 15.8-16.9

2 0.0 7.3 0.0- 0.0 73- 73

3 0.1 0.9 13- 2.1 1.6- 6.1

4 3.0 1.9 56— 6.1 49- 53

5 6.4 5.7 4.6- 4.7 6.8- 52

Others 4.9 6.7 58- 59 72- 72

Total 18.5 27.8 359-39.5 43.6-479
Normalized Flash Size Percentage (%)

Workload FIFO Opt FIFO LRU Opt LRU

1 0.13 0.22 046-044 0.20-0.15

2 0.00 0.08 0.00-0.00 0.08-0.08

3 0.00 0.08 0.03-0.03 0.04-0.17

4 0.18 0.03 0.11-0.11 0.07-0.08

5 0.42 0.35 0.20-0.21 0.38-0.28

Others 0.25 0.22 0.18-0.19 0.22-0.21

Total 0.98 098 0.98-098 0.98-0.98

Table 5: Flash hit rate and size per workload assuming single
and optimized FIFO/LRU. Workloads are ordered in decreasing
order of flash read rate under Optimized LRU. The two num-
bers for LRU respectively use the lower and upper bounds of
the cacheability function. Assumes cell-wide flash size per-
centage of 1% during the training period, which became 0.98%
during evaluation since the amount of data increased slightly.

flash storage should be allocated to each workload in a
cloud-scale distributed file system.

Janus builds a compact representation of the
cacheability of different user I/O workloads based on
sampled RPC traces of I/O activity. These cacheabil-
ity curves for different users are used to construct a lin-
ear optimization problem to determine the flash alloca-
tions that maximize the read hits from flash, subject to
operator-set priorities and write-rate bounds.

This system has been in use at Google for 6 months.
It allows users to make informed flash provisioning deci-
sions by providing them a customized dashboard show-
ing how many reads would be served from flash for a
given flash allocation. Another view helps system ad-
ministrators make allocation decisions based on a fixed
amount of flash available in order to maximize the reads
offloaded from disk.

Based on evaluations from workloads using these rec-
ommendations and I/O traces of other workloads, we
conclude that the recommendation system is quite ef-
fective. In our trace-based estimates, flash hit rates us-
ing the optimized recommendations are 47-76% higher
than the option of using the flash as an unpartitioned tier.
We find that application owners appreciate learning how
much flash is cost-effective for their workload.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 101

Acknowledgments

Janus would not have been possible without the help of
many individuals and teams. We are especially grate-
ful to Jun Luo, Adam Gee, Denis Serenyi, and the en-
tire Colossus team for their early collaboration on this
project. Andy Chu, Herb Derby, Lawrence Greenfield,
Sean Quinlan, Paul Cychosz, Salim Virji, and Gang Ren

also

contributed ideas or helped with the data collection

and analysis on which Janus is built. We are grateful
to John Wilkes, Florentina Popovici, our shepherd Kai
Shen, and our anonymous referees for their feedback on
improving the presentation.

References

[1]

[2

—_—

3

—_

[10]

(11]

Retrieved 2013/01/09: http://www.
google.com/shopping/product/
7417866799343902880/specs.

AGUILERA, M. K., ET AL. Improving recoverabil-
ity in multi-tier storage systems. In DSN (2007),
IEEE, pp. 677-686.

ALVAREZ, G. A., ET AL. Minerva: An automated
resource provisioning tool for large-scale storage
systems. ACM Trans. Comput. Syst. 19, 4 (2001),
483-518.

ANDERSON, E., ET AL. Quickly finding near-
optimal storage designs. ACM Trans. Comput. Syst.
23, 4 (2005), 337-374.

BAKER, M., ET AL. Measurements of a distributed
file system. In SOSP (1991), ACM, pp. 198-212.

BLAZE, M. A. Caching in large-scale distributed
file systems. PhD thesis, Princeton University,
1993.

CANAN, D., ET AL. Using ADSM Hierarchical
Storage Management. IBM Redbooks. 1996.

CHANG, F., ET AL. Bigtable: a distributed stor-
age system for structured data. In OSDI (2006),
USENIX, pp. 205-218.

COEHLO, N., MERCHANT, A., AND STOKELY,
M. Uncertainty in aggregate estimates from sam-
pled distributed traces. In Workshop on Manag-
ing Systems Automatically and Dynamically (MAD
2012), USENIX.

GASIOR, G. SSD prices down 38% in 2012,
but up in Q4, 2013. Retrieved 2013/01/29:
http://techreport.com/review/24216/ssd-prices-
down-38-in-2012-but-up-in-g4.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-
T. The Google file system. In SOSP (2003), ACM,
pp. 29-43.

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

GRAY, J., AND PUTZOLU, F. The 5 minute rule for
trading memory for disc accesses and the 10 byte
rule for trading memory for CPU time. In SIGMOD
(1987), ACM, pp. 395-398.

GUERRA, J., ET AL. Cost effective storage us-
ing extent based dynamic tiering. In FAST (2011),
USENIX, pp. 273-286.

KROEGER, T., AND LONG, D. Design and imple-
mentation of a predictive file prefetching algorithm.
In ATC (2001), USENIX, pp. 105-118.

LoBoz, C. Z. Cloud resource usage: extreme dis-
tributions invalidating traditional capacity planning
models. In Workshop on Scientific Cloud Comput-
ing (ScienceCloud 2011), ACM, pp. 7-14.

MASSIGLIA, P. Exploiting multi-tier file
storage effectively. Retrieved 2013/01/29:
https://snia.org/sites/default/
education/tutorials/2009/spring/
file/PaulMassiglia_Exploiting__
Multi-Tier_File_StorageV05.pdf,
2009.

McKUsICK, M. K., AND QUINLAN, S. GFS:
Evolution on fast-forward. Communications of the
ACM 53, 3 (2010), 42-49.

NARAYANAN, D., ET AL. Migrating server storage
to SSDs: analysis of tradeoffs. In EuroSys (2009),
ACM, pp. 145-158.

OH, Y., ET AL. Caching less for better perfor-
mance: Balancing cache size and update cost of
flash memory cache in hybrid storage filesystems.
In FAST (2012), USENIX.

OUSTERHOUT, J. K., ET AL. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. In SOSP
(1985), ACM, pp. 15-24.

PATTERSON, R. H., ET AL. Informed prefetching
and caching. In SOSP (1995), ACM, pp. 79-95.

SIGELMAN, B. H., ET AL. Dapper, a large-scale
distributed systems tracing infrastructure. Tech.
rep., Google, Inc., 2010.

STOKELY, M., ET AL. Projecting disk usage based
on historical trends in a cloud environment. In
Workshop on Scientific Cloud Computing (Science-
Cloud 2012), ACM, pp. 63-70.

WILKES, J., GOLDING, R. A., STAELIN, C., AND
SULLIVAN, T. The HP AutoRAID hierarchical
storage system. ACM Trans. Comput. Syst. 14, 1
(1996), 108-136.

102

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Using One-Sided RDMA Reads to Build
a Fast, CPU-Efficient Key-Value Store

Christopher Mitchell
New York University

Yifeng Geng*

Jinyang Li
*Tsinghua University

{cmitchell, ygeng, jinyang} @cs.nyu.edu

Abstract

Recent technological trends indicate that future datacen-
ter networks will incorporate High Performance Com-
puting network features, such as ultra-low latency and
CPU bypassing. How can these features be exploited
in datacenter-scale systems infrastructure? In this pa-
per, we explore the design of a distributed in-memory
key-value store called Pilaf that takes advantage of Re-
mote Direct Memory Access to achieve high perfor-
mance with low CPU overhead.

In Pilaf, clients directly read from the server’s mem-
ory via RDMA to perform gets, which commonly
dominate key-value store workloads. By contrast, put
operations are serviced by the server to simplify the
task of synchronizing memory accesses. To detect in-
consistent RDMA reads with concurrent CPU memory
modifications, we introduce the notion of self-verifying
data structures that can detect read-write races without
client-server coordination. Our experiments show that
Pilaf achieves low latency and high throughput while
consuming few CPU resources. Specifically, Pilaf can
surpass 1.3 million ops/sec (90% gets) using a single
CPU core compared with 55K for Memcached and 59K
for Redis.

1 Introduction

The network implementations found in High Perfor-
mance Computing (HPC) clusters have historically dif-
fered from those in datacenters in a few key aspects: low
latency, low CPU overhead, and high cost. Recent trends
in the networking world indicate that these distinctions
are beginning to disappear as HPC network prices drop
and datacenter network equipment begins to adopt fea-
tures previously found only in HPC clusters. Products
are already being offered that implement kernel or CPU
bypassing (two common HPC network features) over
10Gbps Ethernet [29, 23], while the prices for the pop-
ular Infiniband HPC interconnect have dropped dramat-
ically and are now competitive with 10Gbps Ethernet
hardware. For example, a Mellanox 40Gbps Infiniband
adapter costs ~$500, while 10Gbps Ethernet cards range

in price from ~$300 to $800. Surprisingly, low-latency
Infiniband switches are now less expensive than their
10Gbps Ethernet counterparts. Given these changes, it
is important that we understand how to leverage the
features of these high-performance networks to build
general-purpose applications. In this paper, we focus on
how to effectively use Remote Direct Memory Access
(RDMA), a common component of high performance
networking fabrics.

RDMA operations allow a machine to read (or
write) from a pre-registered memory region of another
machine without involving the CPU on the remote
side. Compared to traditional message passing, RDMA
achieves the smallest round-trip latency (~3us), high-
est throughput, and lowest (zero) CPU overhead. These
advantages are offset by the difficulty of incorporating
RDMA into distributed system designs. In a traditional
design, the server processes all service requests from
clients and thus acts as a single point of coordination for
memory accesses. With RDMA, clients can directly ac-
cess the server’s memory to implement a service request
without any involvement by the server. However, with-
out the server’s coordination, races in memory accesses
by different machines become a serious concern.

In this paper, we present Pilaf, a distributed in-
memory key-value store that leverages RDMA to
achieve high throughput with low CPU overhead. We ar-
gue that the sweet spot in the design space is to restrict
the use of RDMA to read-only service requests, namely
gets, while letting the server handle all other requests
via traditional messaging. As practical key-value work-
loads tend to be dominated by read operations [1], this
approach can capture most of RDMA’s performance
benefits while facilitating a much simpler design than
using RDMA for all types of requests. In particular, this
approach restricts the class of memory access races that
can occur: clients might read inconsistent data while the
server is concurrently modifying the same memory ad-
dresses.

We use self-verifying data structures to address read-
write races between the server and clients. A self-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC 13) 103

verifying data structure consists of checksummed root
data objects as well as pointers whose values include a
checksum covering the referenced memory area. Start-
ing from a set of root objects with known memory loca-
tions, clients are guaranteed to traverse a server’s self-
verifying data structure correctly, because the check-
sums can detect any inconsistencies that arise due to
concurrent memory writes done by the server. When a
race is detected, clients simply retry the operation.

Other projects have also used RDMA to enhance the
performance of Memcached-like key-value stores [27,
13, 12]. In these designs, RDMA is treated simply as
a means for accelerating standard message-passing. For
example, each client sends a get request to the server
which retrieves the corresponding key-value pair and di-
rectly stores it in the client’s memory using RDMA. In
contrast, in Pilaf, clients can process get requests with-
out involving the server process at all, resulting in op-
timal (zero) CPU overhead. To the best of our knowl-
edge, Pilaf is the first system design where clients can
completely bypass the server’s CPU for processing read
requests.

We have implemented Pilaf on top of Infiniband, a
popular HPC network interconnect. Our experiments on
a cluster of machines equipped with 20Gbps Infiniband
cards show that Pilaf achieves high performance with
very low CPU overhead. In a workload consisting of
90% gets and 10% puts, Pilaf achieves 1.3 million
ops/sec while utilizing only a single CPU core, com-
pared to 55K for Memcached and 59K for Redis.

2 Opportunities and Challenges

This section gives an overview of RDMA and other HPC
networking features and discusses how they might im-
pact the design of distributed systems. Our discussion
of the performance implications is based on Infiniband,
a popular HPC interconnect.

Manufactured by Intel and Mellanox, Infiniband
hardware provides 10, 20, or 40 Gbps of bandwidth in
each direction. Applications running on top of Infini-
band have several communication options:

IP over Infiniband (IPoIB) emulates Ethernet over In-
finiband. As with normal Ethernet, the kernel pro-
cesses packets and copies data to application mem-
ory. [PolB allows existing socket-based applica-
tions to run on Infiniband with no modification.

Send/Recv Verbs provide user-level message ex-
change: these Verbs messages pass directly
between user space applications and the network
adapter, bypassing the kernel. Send/Recv Verbs
are commonly referred to as two-sided operations
since each Send operation requires a matching
Recv operation at the remote process. Unlike

IPoIB, applications must be rewritten to use the
Verbs APL

RDMA allows full remote CPU bypass by letting one
machine directly read or write the memory of an-
other machine without involving the remote CPU.
Unlike Send/Recv Verbs, RDMA operations are
one-sided, since an RDMA operation can com-
plete without any knowledge of the remote process.
RDMA is technically a type of Verbs message. In
this paper, we use the term RDMA specifically to
refer to RDMA Verbs and the phrase verb messages
to refer to Send/Recv Verbs, both of which we use
in reliable mode.

We note that Infiniband is not the only network to
support RDMA and user-level networking. Similar fea-
tures have recently been made available in 10 Gbps Eth-
ernet environments. For example, both Myricom and
Solarflare offer 10GE adapters that support kernel by-
pass, and Intel offers 10GE iWARP adapters capable
of RDMA over Ethernet. Although it remains unclear
which specific hardware proposal will dominate the dat-
acenter market, one can realistically expect future data-
center networks to support some form of CPU bypass-
ing.

2.1 Performance Benefits of RDMA

How fast and efficient is RDMA? How does its perfor-
mance compare to alternatives such as verb messages or
traditional kernel-based TCP/IP transport? We answer
these questions by benchmarking the various Infiniband
communication options.

Our experiments were run on a small cluster of ma-
chines equipped with Mellanox ConnectX-2 20Gbps
Infiniband cards. For RDMA experiments, each client
node performs RDMA reads on the server. For verb
message experiments, each client node issues a request
(as a verb message in reliable mode) to which the server
responds immediately with a reply. The IPoIB and Eth-
ernet experiments are similar except that we use TCP/IP
for exchanging requests and replies. We vary the size of
the RDMA read or the request message while fixing the
reply size at 10 bytes.

Figure 1 shows the roundtrip latencies of different
communication methods. For small operations (< 1024
bytes), a verb message exchange takes less than 10us,
while the RTT of IPoIB or Ethernet is over 60 us. Our
Infiniband switch imposes a lower delay than our Eth-
ernet switch, but the IPoIB latency is similar to that
of Ethernet, suggesting that packet processing through
the kernel adds significant latency. RDMA achieves the
lowest RTT (~3us), half that of verb messages. This is
because the request/reply pattern of traditional messag-
ing involves two underlying Verbs exchanges. By con-
trast, an RDMA operation involves only one underlying

104 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Verbs exchange, thereby reducing the latency by up to
half.

10000

T
Ethernet (1Gbps) - - & - -

IPoIB - % -
Verb Msg — %= -
RDMA —+— h
1000 £ ’z" E

Median RT latency (us)

10 100 1000 10000
Operation size (bytes)

100000

Figure 1: Median round-trip latency. The error bars depict 1%
and 99% latency.

le+08

le+07

1e+06

100000

Server network throughput (Kbps)

=
10000 . Ethernet (1Gbps) -+ & -+ 7
IPoIB - % -
Verb Msg — %= -
RDMA —+—
1000 | | | | |
10 100 1000 10000 100000

Operation size (bytes)

Figure 2: Server’s network throughput under different com-
munication methods.

Throughput (M ops/sec)
Transport 16-byte ‘ 1024-byte ‘ 4096-byte
RDMA 2.449 1.496 0.472
Verbs Message 0.668 0.668 0.464
IPoIB 0.126 0.122 0.028
Ethernet (1Gbps) || 0.120 0.068 0.029

Table 1: Throughput (in million operations/sec) for 16 byte,
1Kbyte and 4Kbyte operations.

Figure 2 shows the throughput (in Kbps) achieved by
the server. Since different communication methods in-
cur varying CPU overhead, we limit the server’s CPU
consumption to a single core (AMD Opteron 6272) in
all experiments. In Figure 2, large operations (>1024
bytes) over all communication methods except IPolB
can saturate their respective network’s peak through-

put. For smaller operations, both RDMA and Verbs mes-
sages are able to saturate the Infiniband network card’s
capacity when running the server on a single CPU core.
By contrast, kernel-based transports require more than
one core to saturate the network card, hence the much
lower throughputs achieved in IPoIB and Ethernet ex-
periments.

RDMA not only incurs zero CPU overhead on the
server, it also saturates the network card at the high-
est throughput. As shown in Table 1, a server can
sustain 2.45 million operations/second with 16-byte
RDMA reads. By contrast, the server can only achieve
0.668 million operations/sec when exchanging Verbs re-
quest/reply messages. There are two reason for this per-
formance gap. First, each request/reply exchange uses
two underlying Verbs messages compared to one in
RDMA. Second, because there is less bookkeeping for
RDMA, our network card can perform RDMA at a
higher throughput (~2.45 million reads) than sending
(~700K) or receiving (~1.5 million) Verbs messages per
second for short messages.

2.2 Opportunities for System Builders

As we have seen, bypassing the kernel and CPU allows
for reduced latency and CPU overhead. Of these two,
CPU bypass via RDMA is particularly powerful in that
it achieves the highest throughput while incurring zero
CPU overhead. As future datacenter networks embrace
RDMA, what will the implications be for the designs
of distributed systems infrastructure such as distributed
storage systems or computation frameworks? To better
understand the ensuing opportunities and challenges, we
have chosen to design a distributed key-value store to
exploit RDMA. We decided to use the key-value store
as a case study system because it is a popular infras-
tructural service with demanding performance require-
ments [20]. Key-value stores are also used as a building
block for other more sophisticated storage systems (e.g.
BigTable [2], Spanner [4], Cassandra [16]) or distributed
computation frameworks (e.g. Piccolo [22]).

Our experience in exploring the design space for a
key-value store leads to two observations, both of which
are applicable to other distributed systems besides key-
value stores.

High performance is feasible with fewer CPU re-
sources. With traditional Ethernet-based distributed
systems, the performance bottleneck is often the CPU
despite the availability of multiple cores [19]. With ker-
nel and CPU bypass, servers can saturate the network
using many fewer cores. The improvement in CPU effi-
ciency is particularly notable with RDMA, which poten-
tially allows clients to process service requests without
involving the server at all. Efficient CPU usage is crucial
in datacenters, which often operate a shared environ-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 105

ment by running multiple applications on a single ma-
chine [6]. With less CPU overhead, one can pack more
applications onto each machine, use fewer machines,
rely on wimpier cores [27] and yet achieve the same or
better performance.

Multi-round operations are practical. Because the
roundtrip latency on Ethernet is substantial, traditional
systems designs aim to minimize the rounds of com-
munications required to complete an operation. For ex-
ample, existing key-value stores process each get or
put operations in one roundtrip. With RDMA’s ultra-
low latency, it becomes feasible to use multi-round pro-
tocols without adversely affecting end-to-end operation
latency. In particular, each get operation in Pilaf re-
quires at least two roundtrips.

Challenges. It is technically challenging to fully ex-
ploit RDMA’s performance advantage in a system de-
sign. The common existing practice is to use RDMA to
optimize verb message exchange [18, 13, 11]. Specif-
ically, in order to send (or receive) a large message,
a client first transmits some control information to the
server using a verb message. The server then performs
an RDMA read (or write) to the client to fetch (or
store) the actual payload. This design maintains the tra-
ditional request/reply communication pattern, but does
not fully exploit the benefits of RDMA since the over-
all latency and throughput is still bottlenecked by send-
ing/receiving verb messages.

A more efficient system design is one in which all
or a large fraction of the existing request/reply traffic
is replaced (instead of supplemented) by RDMA opera-
tions. However, letting clients directly perform RDMA
on the server’s memory introduces serious synchroniza-
tion problems: multiple concurrent RDMA accesses to
the same server can cause races, and the server may also
simultaneously perform local memory access that con-
flict with remote accesses. Unfortunately, there are lim-
ited hardware mechanisms for synchronizing multiple
RDMA accesses, and no efficient capability at all for
coordinating local and remote memory accesses.

3 Pilaf Design

This section traces the evolution of Pilaf’s design up
to its current form. We first motivate Pilaf’s overall
architecture, which processes write operations at the
server and uses RDMA for read-only operations (Sec-
tion 3.1). We then explain how clients perform gets us-
ing RDMA reads and discuss how Pilaf synchronizes
clients’ RDMA accesses with the server’s local memory
writes. Last, we describe the Cuckoo hashing optimiza-
tion that reduces the number of required roundtrips in
the worst case.

3.1 Overview

The most straightforward design would be to take a tra-
ditional key-value store and re-implement its messag-
ing layer using verb messages instead of TCP sock-
ets. However, this design fails to reap the benefits of
RDMA, which has much lower latency and CPU over-
head than verb messages. Therefore, our goal is to find
a system design that can exploit one-sided RDMA oper-
ations without adding too much complexity.

A key-value store has two basic operations: V <
get(K) and put(K, V'), where both the key K and value
V are strings of arbitrary length. In our initial design it-
erations, we tried to use one-sided RDMA operations
for both gets and puts. In other words, each client
performs RDMA reads to implement gets and RDMA
writes to implement puts.

We quickly discovered that using RDMA for all oper-
ations leads to complex and fragile designs. First, clients
must synchronize their RDMA writes so as not to cor-
rupt the server’s memory. The Infiniband card supports
atomic operations (such as compare-and-swap) on top
of which one could build an explicit locking mecha-
nism. However, locking over the network not only in-
curs a performance hit, but also introduces the com-
plication of clients failing while holding a lock. Sec-
ond, a put operation requires memory allocation to
store key-value strings of arbitrary length; such mem-
ory management becomes unwieldy in the presence of
remote writes. Having clients implement memory man-
agement remotely is expensive, with excessive lock-
ing and round-trips required. On the other hand, let-
ting the server perform memory management introduces
write-write races between the server and clients. Un-
fortunately, unlike synchronization among concurrent
clients, there exists no efficient hardware mechanism to
synchronize memory accesses initiated by the CPU and
the network card. Last but not least, by making all op-
erations transparent to the server, debugging becomes
a painstaking, as race conditions involving remote ac-
cesses are much more difficult to find and reproduce
than those involving local accesses.

Our first major design decision is to have the server
handle all the write operations (i.e. put and remove)
and have the clients implement read-only operations (i.e.
get and contains) using one-sided RDMA reads.
Since real-world workloads are skewed towards reads
(e.g., Facebook reported read-to-write ratios ranging
from 68%-99% for its active key-value stores [1]), this
design captures most of the performance benefits of
RDMA while drastically simplifying the problem of
synchronization. In fact, the beauty of this design is that
it incurs no write-write races, but only read-write races
between RDMA reads and the server’s local memory
writes, Write-write races are the main source of design

106 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

complexities since they must be avoided at all costs to
prevent memory corruption. In contrast, read-write races
can be made harmless by detecting the presence of such
races and re-trying the affected operation. Thus, no frag-
ile and expensive locking protocol is needed.

Figure 3 shows Pilaf’s overall architecture. Using
verb messages, clients send all put requests to the
server, which inserts them in its in-memory hashmap
before sending the corresponding replies. By contrast,
gets are transparent to the server in that the clients per-
form RDMA reads over multiple roundtrips to directly
fetch data from the server’s memory.

As in other key-value store designs [19, 24], the
server asynchronously logs updates to its local disk.

)) Server iRead Memory
Client Client <put> Write
<get> <put> L]
Verb Verb Read
IRe f Messa \Messages
Read ges
Infiniband HCA | ‘ Infiniband HCA | Infiniband HCA

| M |
| I]
I 1

Figure 3: Pilaf restricts the clients’ use of RDMAs to read-
only get operations and handles all puts at the server using
verb messages.

3.2 Basic get Operation Using RDMA

We first explain how Pilaf performs gets without in-
volving the server’s CPU. We defer the challenge of cop-
ing with concurrent puts and gets to Section 3.3.

To allow RDMA reads, the server must expose its data
structure for storing the hash table, as shown in Figure 4.
There are two logical memory regions: an array of fixed
size hash table entries and an extent area for storing the
actual keys and values, which are strings of arbitrary
length. The server registers both memory regions with
the network card, and clients obtain the corresponding
registration keys of these two memory regions (as well
as the size of the hash table array) when they first estab-
lish a connection to the server. Subsequently, clients can
issue RDMA requests to any memory address in these
two regions by specifying the memory’s registration key
and an offset.

In the basic design, a client looks up a key in the
hash table array using linear probing [25]. Each probe
involves two RDMA reads. The first read fetches the
hash table entry corresponding to the key. If the entry is
currently filled (indicated by an in_use bit), the client
initiates a second RDMA read to fetch the actual key
and value strings from the extent region according to

the address information stored in the corresponding hash
table entry. The client checks whether the fetched key
string matches the requested key. If so, the get oper-
ation finishes. Otherwise, the client continues with the
next probe.

hash entries key/value extent
1. read
the hash entry
-
o Tt

"key1, valuet"

2\ '_,____-_._/-v>”key2, value2"
2. read the

key value string server memory

Figure 4: The memory layout of the Pilaf server’s hash ta-
ble. Two memory regions are used, one contains an array of
fixed-size hash table entries, the other is an extent storing vari-
able sized key-value extents. Clients perform get operations
in two RDMA reads, first fetching a hash table entry, then us-
ing the address information in that entry to fetch the associated
key-value string.

3.3 Coping with Read-Write Races

The Pilaf server handles all put operations. Thus, lo-
cal memory writes performed by the server’s CPU un-
avoidably create potential read-write races with concur-
rent RDMA reads done by clients. This is a challenge as
there exists no efficient hardware mechanism to coordi-
nate the CPU and the network card. To inhibit RDMA
reads during a write, the server could resort to reset-
ting all existing connections, or temporarily de-register
memory regions with the network card. However, both
mechanisms are far too expensive to be used for every
put operations.

To implement a read operation, clients need to tra-
verse the server’s data structure. The traversal starts
from a set of “root” objects with known memory loca-
tions and recursively follows pointers read previously. In
the context of Pilaf, we can view each hash table entry
as a “root” object which points to additional key-value
information. Read-write races introduce the possibility
that clients can traverse the server’s data structure incor-
rectly.

Two scenarios can result in incorrect traversal. First,
a root object can be corrupt. In Pilaf, this happens when
the server modifies a hash table entry while a client is
reading that entry. Consequently, the client will read
a partially-modified or corrupt hash table entry, poten-
tially causing it to read the key-value string from an in-
valid memory location. Second, a client’s pointer ref-
erence can become invalid. For example, in Pilaf, the
server may delete or modify an existing key/value pair
while a client is holding a pointer reference to the old
string from its first RDMA read of the hash table entry.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 107

Thus, during its second RDMA access, the client might
read garbage or an incorrect key-value string.

To permit correct traversal in the face of read-write
races, we introduce the notion of a self-verifying data
structure by making both root objects and pointers self-
verifying. For a root object, we append a checksum that
covers the object’s entire content. Thus, any ongoing
modification on the root object result in a checksum
failure. To make a pointer self-verifying, we store it as
a tuple combining a memory location, the size of the
memory chunk being referenced, and a checksum cov-
ering the content of the referenced memory. Therefore,
a client can detect the inconsistency between a pointer’s
intended memory reference and the actual memory con-
tent. For example, if the server de-allocates the memory
chunk being referenced and re-uses parts of it later while
a client is still holding a pointer to it, the client will fail
to verify the checksum when it retrieves the memory
content using the pointer. Figure 5 shows Pilaf’s self-
verifying hash table. As a root object, each hash table
entry contains a checksum covering the whole entry. The
pointer stored in each hash table entry contains a check-
sum verifying the key-value string being referenced.

Self-verifying data structures ensure correct traversal
starting from a set of known root object locations. On
rare occasions, the server may need to change the root
object locations. This can be accomplished correctly by
having the server reset all its existing RDMA connec-
tions to clients to inhibit clients from reading stale root
object locations. In Pilaf, whenever the server needs to
resize its hash table array, it resets connections so that
clients are prevented from performing RDMA reads un-
til the resize is complete. They are allowed to reconnect
once the resize operation is complete to obtain up-to-
date information about the location and size of the hash
table array. Since hash table resizing is infrequent, there
is a minimal performance penalty from resetting con-
nections.

A self-verifying data structure allows clients to per-
form consistent reads in the face of concurrent writes. In
addition, the Pilaf server uses a memory barrier to force
any updates from the CPU cache to the main memory
before replying to a put request. Doing so ensures that
a subsequent get always reads the effect of any com-
pleted puts. As a result, Pilaf provides the strongest
consistency semantics, i.e. linearizability [10].

3.4 Improving a Hash Table’s Memory Efficiency

In the basic design, a client performs linear probing to
look up a key in the server’s hash table array. This simple
hash scheme does not achieve a good tradeoff between
memory efficiency and operation latency. For example,
when the hash table is 60% full, the maximum number
of probes required can be as high as 70. To achieve good

hash table entry (root object) Y .

). hash func
o] in_use
. used

key size { checksum

key value

Figure 5: Self-verifying hash table structure. Each hash table
entry is protected by a checksum. Each entry stores a self-
verifying pointer (shown in shaded fields) which contains a
checksum covering the memory area being referenced.

memory efficiency with fewer probes, Pilaf uses n-way
Cuckoo hashing [21, 15]. This hashing scheme uses n
orthogonal hash functions, and every key is either at one
of n possible locations or absent. If all n possible loca-
tions for a new key are filled, the key is inserted anyway,
kicking the resident key-value pair to one of that key’s
alternate locations. That operation may in turn kick out
another pair, ad infinitum. The table is resized when a
limit is reached on the number of kicks performed or
when a cycle is detected.

The main challenge in using Cuckoo hashing for Pilaf
lies in the process of moving an existing entry to a differ-
ent hash table location. Ordinarily, bulk key movements
such as resizing the hash table requires that the server
reset all existing RDMA connections. This is not desir-
able, as the need to move a key occurs much more fre-
quently than table resizing with Cuckoo hashing. With-
out resetting connections, there is the danger that a key-
value pair might appear to be “lost” to the clients while
the server is moving it to a new location. To address this
issue, during a put operation the server first calculates
the new locations of every affected key without actu-
ally moving the keys. Then, starting from the last af-
fected key, the server shifts each key to its new location,
thereby ensuring that a key is always stored in at one
or two (instead of zero or one) hash table entries during
movement.

We explored different parameter values for n and de-
termined that 3-way Cuckoo hashing achieves the best
memory efficiency with few hash entry traversals per
read. As Figure 6 shows, at a fill ratio of 75%, the aver-
age and maximum number of probes in 3-way Cuckoo
hashing is 1.6 and 3, compared to 2.5 and 213 respec-
tively for linear probing.

4 Implementation

We implemented Pilaf in C++. Pilaf uses the
libibverbs library from the OpenFabrics Alliance,
which allows user-space processes to use verb messages
and RDMA directly. The Pilaf server continuously polls
the network card for new events, including the recep-
tion of verb messages or the completion of recently-sent

108 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

T T T T
Linear Probing +— %= 4
3-Way Cuckoo Hashing +—+—i

100

Reads per Key

T T R -t
L = 11 |

035 04 045 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Load Factor

Figure 6: The average number of probes required during a
key lookup in 3-way Cuckoo hashing and Linear probing. The
error bars depict the median and maximum values.

RDMA operations or verb messages. Since Pilaf is able
to saturate the network card’s performance using a sin-
gle thread, our implementation uses the same polling
thread to process puts as well.

RDMA-Friendly Extents: The server must register
a region of memory and gives clients the registration
key for that memory before clients can perform RDMA
on the region. This process is relatively expensive and
should be made infrequent. Therefore, Pilaf allocates
and registers a large contiguous address space for the
key-value extents. We ported the mem5 memory man-
agement unit from SQLite to C++ to “malloc” and
“free” strings in the key-value extents. Whenever the
extents region becomes full, the server resets all exist-
ing connections, expands the extents, and then allows
clients to re-connect and obtain new registration keys.
As with hash table resizing, we expect and observe ex-
tents resizing to be an infrequent event.

Self-Verifying Data Structures: Our implementation
uses CRC64 as the checksum scheme for our self-
verifying data structures. CRCs are not effective for
cryptographic verification. Instead, they were originally
intended to detect random errors, making them ideal for
our application. The ideal n-bit CRC will fail to detect 1
in 2™ message collisions. Although 32-bit CRC is popu-
lar (e.g. for Ethernet and SATA checksums), we believe
that CRC32 is insufficient for Pilaf. Every put incurs
two CRC updates, one on the hash table entry and one
on the key-value string. As will be shown in Section
5.2, Pilaf can process 663K puts per second. There-
fore, up to 1.326 million CRCs may be calculated per
second. Since each CRC32 incurs a collision with prob-
ability 1 in 232, we expect a collision once every 3239
seconds (54 minutes). We find this rate to be unaccept-
ably high. Using CRC64, we can expect a collision once

every 1.35 * 10'3 seconds, or once per 428 millenia.

CRC64 is fast. Our implementation consumes about
a dozen CPU cycles for each checksummed byte, and
incurs the same overhead as CRC32 when running on
64-bit CPUs.

Logging: By default, Pilaf server asynchronously logs
all put and delete operations to the local disk, sim-
ilar to the logging facility in other key-value stores in-
cluding Redis [24], Masstree [19] and LevelDB [8]. Us-
ing a single solid state disk, Pilaf is able to log 663K
(our peak put throughput) writes per second if the av-
erage key-value size is smaller than 500 bytes. Should
one desire a high logging capacity, multiple SSDs must
be used.

5 Evaluation

We evaluate the performance of Pilaf on our Infiniband
cluster. The highlights of our results are the following:

e Pilaf achieves high performance: its peak through-
put reaches 1.3 million ops/sec. The end-to-end
operation latency is very low with a 90-percentile
latency of ~30us.

e Pilaf is CPU-efficient. Even when running on a sin-
gle CPU core, Pilaf is able to saturate the network
hardware’s capacity to achieve 1.3 million ops/sec.
By comparison, Memcached and Redis achieve
less than 60K ops/sec per CPU core, so they require
at least 20x the CPU resource to match Pilaf’s per-
formance.

e Self-verifying data structures are effective at
detecting read-write races between the clients’
RDMA operations and the server’s local memory
accesses.

5.1 Experimental setup

Hardware and configuration. Our experiments are
run on a cluster of ten machines, each with two AMD or
Intel processors and 32GB of memory. Each machine is
equipped with a a Mellanox ConnectX-2 20 Gbps Infini-
band HCA as well as an Intel gigabit Ethernet adapter.
The machines run Ubuntu 12.10 with the OFED 3.2 In-
finiband driver.

For each experiment, we run a server process on
one physical machine, while the clients are distributed
among the remaining machines to saturate the server.
By default, we restrict the server process to run on one
CPU core. For Ethernet experiments, we configure the
kernel’s network interrupt processing to trigger on the
same core used by the server process.

We disable Pilaf’s asynchronous logging in the ex-
periments. With logging turned on, Pilaf incurs no mea-
surable reduction in achieved throughput for key-value

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 109

sizes less than 500 bytes. With larger operations, the /O
bandwidth of the server’s single local SSD becomes the
bottleneck.

Workload. We use the YCSB [3] benchmark to gen-
erate our workloads. YCSB constructs key-value pairs
with variable key and value lengths, modelled on the sta-
tistical properties of real-world workloads. Furthermore,
with YCSB, the keys being accessed follow a long-tailed
zipf distribution. The original YCSB software is written
in Java. We ported it to C so that fewer client machines
are required to saturate the server.

In all experiments, we vary the size of the value string
from 16 to 4096 bytes while keeping the average key
size at 23 bytes, the default value in YCSB. We use two
mixed workloads, one consisting of 10% puts and 90%
gets, the other 50% puts and 50% gets. Since Face-
book has reported that most of their Memcached deploy-
ments are read-heavy [1], our mixed workloads give rea-
sonable representations of real workloads.

Points of comparison. We compare Pilaf against
Memcached [7] and Redis [24] (with logging disabled).
Additionally, we also compare Pilaf to an alternative im-
plementation of itself, which we refer to as Pilaf-VO
(short for Pilaf using Verb messages Only). In Pilaf-
VO, clients send all operations (including gets) to the
server for processing via verb messages. The perfor-
mance gap between Pilaf and Pilaf-VO demonstrates the
importance of bypassing the CPU using RDMA.

5.2 Microbenchmarks

The microbenchmarks measure the throughput and la-
tency of individual get and put operations.

Throughput: Figure 7 shows Pilaf’s peak operation
throughput, achieved with 40 concurrent clients. Pilaf
can perform 1.28 million get and 663K put opera-
tions per second for small key-values. Of note is that
Pilaf’s high throughput is achieved using a single CPU
core which saturate the Infiniband card’s performance
for in most cases.

Get operations via RDMA impose zero CPU over-
head on the server. Furthermore, get operations also
have the highest throughput. As shown in Table 1 (Sec-
tion 2), the network card’s achieved RDMA throughput
is much higher than that of verb message, especially for
small messages. In particular, the card can satisfy 2.45
million RDMA reads per second for small reads. Since
each get requires at least two RDMA reads, the over-
all throughput is approximately half of the raw RDMA
throughput at 1.28 million gets/sec. By contrast, the
peak verb throughput is 667K request/reply pairs/sec for
small messages, resulting in 667K ops/sec for puts.

For larger key-value pairs, the throughputs of get
and put converge as they both approach the network

bandwidth. For example, for 4096-byte key-values, Pilaf
consumes 11.7Gbps of the 16Gbps data bandwidth sup-
ported by the network card. Interestingly, we find that
when processing puts with large values, the Pilaf server
becomes CPU-bound when using a single core. Specifi-
cally, for 1024-byte value size, Pilaf achieves 75.4% of
its network-bound put throughput (500K ops/sec) with
one core and 100% (663K ops/sec) with two cores.

We also measure the throughput of Pilaf-VO’s get
operation, which is processed by the server using verb
messages instead of by the client using RDMA. As Fig-
ure 7 shows, the throughput of performing gets using
verb messages is similar to that of puts and is much
smaller than the throughput of gets done via RDMA
for small key-value pairs.

1600 F " Pilaf Get (RDMA) === |
Pilaf Put (Verb Msgs)

S 1400 = = Pilaf-VO Get (Verb Msgs) 1 |
3 = &
2 1200 | = i
M
< 1000 i
=
(=%
S 800 - i
= o o
E © ©
£ 600 |- E
5
Z 400 i
()
w

200 i

0

16 64 256 1024 4096
Value Size (Bytes)
Figure 7: Server throughput for put and get operations as
the average value length is increased. All tests are performed
with 40 connected clients.

Latency: Figure 8 shows the latency of get and put
operations with 10 concurrent clients. With 10 concur-
rent clients performing operations as fast as possible,
queuing effects are minimized. With 40 or more clients,
the latency is mostly determined by queuing effects and
thus is much higher. With a single client (not shown
in the figure), the latency of get is slightly more than
2 RDMA roundtrips and is twice the latency of put.
With more clients and thus more load, we found that the
RDMA latency scales better than that of verb messages.
For small gets, the average latency is 12us, while small
puts take around 15us. For large key-values, the laten-
cies of get and put are similar and both bounded by
the packet transmission time.

5.3 Performance of self-verifying data structure

Pilaf uses a self-verifying hash table structure to detect
read-write races during concurrent gets and puts. We
expect such races to be rare in a normal workload. To
artificially vary the conflict rate, we inject the maximum
achievable get and put loads, simultaneously reading

110 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

’%_ 50 T
= Pilaf Put (Verb Msgs) — % —
§ Pilaf Get (RDMA) —+—
2 40 .
3
=
5]
=
5 30 i
o
Q
8
:i 20 b
Q
£ 10 i
o
=)
<
5]
:: 0 I I
10 100 1000 10000

Value Length (bytes)

Figure 8: Average operation latency for put and get oper-
ations as the average value size increases. All tests are per-
formed with 10 connected clients; though not pictured, we ob-
serve a linear relationship between the number of connected
clients and latency due to queuing effects.

and writing a varying number of unique key-value pairs.
Therefore, the probability of races increases as the gets
and puts are restricted to fewer and fewer unique keys.

Figure 9 shows the probability of detecting a read-
write race as measured by the fraction of gets that need
to be re-tried. The two lines in Figure 9 illustrate the
probabilities of a retry due to a race when reading the
hash table entry or when reading the key-value extent.
As we can see, there is non-negligible race rate only
when the hash table is extremely small. When the ta-
ble contains more than 20,000 keys, the probability of
racing is less than 0.01% even under peak put and get
loads.

100

T T T
= Conflicts in key-value extent — %= =
~x Conflicts in hash table entries —+—

0.1

Percent of get retries (%)

0.001

0.0001 L L L L
1 10 100 1000 10000

Number of unique keys being accessed
Figure 9: Percentage of re-reads of extents and hash table en-
tries due to detected read-write races. We control the rate of
conflicts by varying the number of unique keys being read or
updated. The Pilaf server is operating under peak operation
throughput.

5.4 Pilaf versus Memcached and Redis

We compare Pilaf to two existing popular key-value sys-
tems, Memcached [7] and Redis [24]. Both systems are
widely deployed in the industry, including Facebook [1],
YouTube [5], and Instagram [14]. Memcached is com-
monly used as a database query cache or a web cache
to speed up the server’s generation of a result web page
and improve throughput. Low operation latency is vi-
tal in such a usage scenario: the faster the key-value
cache can fulfill each request, the faster a page involv-
ing many cache lookups can be returned to the client.
High throughput and low CPU overhead are also crucial,
since these properties allow more clients can be served
with fewer server resources.

Because Memcached and Redis are written to use
TCP sockets, we run them on our Infiniband network
using IPoIB. It’s important to note that we do not batch
requests for any of the systems, unlike in [19].

In our experiments, the peak throughput of each sys-
tem is achieved when running 40 concurrent client pro-
cesses. We use two mixed workloads, one containing
90% gets and 10% puts and the other containing 50%
gets and 50% puts.

Throughput Comparison: Figure 10 shows the
achieved operation throughput using a single CPU core
for various value sizes in a workload with 90% gets.
We can see that the performance of Pilaf far exceeds
that of Redis and Memcached running on top of IPoIB.
For small operations (64-byte values) Pilaf achieves 1.3
million ops/sec compared to less than 60 Kops/sec for
Memcached and Redis. Both Memcached and Redis are
bottlenecked by the single CPU core and are unable to
saturate the Infiniband card’s performance. Because of
the CPU bottleneck, their single core performance is the
same when running on 1 Gbps Ethernet. We elided those
numbers from Figure 10 for clarity.

The throughputs of Memcached and Redis can be
scaled by devoting more CPU cores to each system. For
example, both systems can saturate the 1Gbps Ethernet
card when running on four CPU cores. We were not able
to scale Memcached and Redis’ performance on IPoIB
using more CPU cores because the IPoIB driver is un-
able to spread network interrupts across multiple cores.
Nevertheless, even if we optimistically assume perfect
scaling, Memcached and Redis require 17x CPU cores
to match the performance of Pilaf running on a single
core for small key-values. In reality, these systems do
not exhibit perfect scaling. For example, [19] reported
a 11x throughput improvements for non-batched Mem-
cached puts when scaling from 1 core to 16 cores.

When comparing against Pilaf-VO, we see that Pilaf
also achieves substantially better throughput across all
operation sizes. In particular, the throughput of Pilaf is

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 111

"Redis (IPoIB)
Memcached (IPoIB) ——

1600

256 1024
Value Size (Bytes)

4096

(a) Peak throughput (90% gets, 10% puts)

g 1400 % Pilafl;};‘(% I

5 ilaf =l
% 1200 | @

o S

° = 2

1000 - >

Z

= 800 | o

o 8

=

e 600

=

= -5

B 400 o e i
Z

Q

“ 200 R

"Redis (IPoIB) mmmmm |
Memcached (IPolB) ——1

1600

g 1400 é % Pilafr»};'(z‘ |
5 ilaf
21200 o e
=3 S

15

¥ 1000 | R
B

= 800 - - . B
) &

=

e 600

=

[_1

o) 400

=

Q

A 200

256 1024
Value Size (Bytes)

(b) Peak throughput (50% gets, 50% puts)

Figure 10: Throughput achieved on a single CPU core for Pilaf, Pilaf-VO, Redis, and Memcached.

2.1x that of Pilaf-VO for 64-byte values and this perfor-
mance advantage decreases to 1.1x for 4096-byte val-
ues. The shrinking performance gap between Pilaf and
Pilaf-VO for larger values reflects the increasingly dom-
inant network transmission overhead for large messages.

Figure 10(b) shows the peak throughput of different
systems in a second workload with 50% gets and 50%
puts. Not surprisingly, the performance of Memcached
and Redis are similar under both workloads.

We were surprised to see that Pilaf achieves identical
and sometimes better throughput in the second workload
compared to the first. Since RDMA-based get opera-
tion has much higher performance than verb message-
based put (Figure 7), we initially expected the sec-
ond workload to achieve worse throughput since it con-
tains a larger fraction of puts. On further investigation,
we found that our Infiniband cards appear to be able
to process verb messages and RDMA operations some-
what independently. Quantitatively, the card can reach
~80% of its peak RDMA throughput while simultane-
ously sending and receiving verb messages at ~95% of
the peak verb throughput. This explains why the sec-
ond workload has better throughput. For example, with
256-byte values, the first workload achieves 0.9 mil-
lion gets/sec (80% of peak RDMA performance) and
0.1 million puts/sec (far less than the card’s verb mes-
sage sending capacity). By contrast, the second work-
load produces 0.65 million ops/sec for both get and
put which represents 60% of the card’s peak RDMA
performance and 94% of the card’s verb message perfor-
mance. Thus, the second workload has a total through-
put of 1.3 million ops/sec, better than that achieved by
the first workload.

Latency: Figure 11 shows the cumulative probability
distribution of operation latencies under different sys-
tems in the workload with 90% gets. The underlying

experiments involved 10 concurrent clients issuing op-
erations with 1024-byte values as fast as possible.

In Figure 11, Pilaf’s median latency 15us which is de-
termined by the get operation latency. From the earlier
experiments in Section 2 (Figure 1), we know the aver-
age RDMA roundtrip latency is 4pus for 1024-byte reads
with a single client. With an average of 1.45 probes
(each involving two RDMA reads) to find a particular
key-value in a 65%-filled 3-way Cuckoo hash table, the
ideal get latency would be 11.2 us. The extra 4pus re-
flects the overhead in calculating CRCs on the clients’
side plus the queuing effects incurred by having ten con-
nected clients. The latency tail in Figure 11 is very short.

As expected, [PoIB also maintains lower latency than
Ethernet for both Memcached and Redis. Median Eth-
ernet latency is 209us for Redis and 230us for Mem-
cached. Pilaf beats Redis’ and Memcached’s median
Ethernet latency by 14x-15x, and their median IPoIB
latency by 9x-11x. The experiments for Figure 11 in-
volve ten clients connected to a single server. In these
experiments, Pilaf-VO reaches 95% of its peak through-
put, Memcached is at 75% of its maximum throughput,
and Redis and Pilaf at half their peak throughput. There-
fore, queuing effects are uneven for these systems in
Figure 11. When tested under very light loads (e.g. a sin-
gle client), Pilaf-VO and Pilaf have similar latency while
Memcached and Redis running on IPoIB also have sim-
ilar latency.

6 Related Work

There has been much work in the HPC community
to exploit performance critical features like kernel
and CPU bypassing. Many MPI implementations, e.g.
MPICH/MVAPICH [17, 18] and OpenMPI [26], sup-
ports an Infiniband network layer, leveraging both verb
messages and RDMA to reduce latency and increase
bandwidth.

112 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

b — s R
No S) g =
@
4
08 1
06 E b
o
d
@
04] |
@ Pilaf —+—
a Pilaf-VO — » —
0z | o Memcached (IPoIB) i
- d ° Redis (IPoIB) ---a--
2 Redis (Eth.) —= —
sz¢ o Memcached (Eth.) — ©—
0 PN I I 1 1 I

0 50 100 150 200 250 300 350 400 450
Latency (us)

Figure 11: CDF of Pilaf latency compared with Memcached,

Redis and Pilaf-VO in a workload consisting of 90% gets and

10% puts. The average value size is 1024 bytes. The experi-

ments involved 10 clients.

RDMA as a powerful HPC networking feature has
been recognized in the system community in several
works. Due to the perceived cost of specialized HPC
hardware, some have advocated software RDMA over
traditional Ethernet. Soft-iWARP is a version of the
iWARP protocol implemented entirely in software [28];
it reduces TCP latency by 5%-15% by minimizing data
copying and limiting the number of context switches re-
quired. Another project later used soft-iWARP to realize
a 20% reduction in per-get CPU load for Memcached
without Infiniband hardware [27].

Many have leveraged RDMAs to improve the
throughput and reduce the CPU overhead of existing
networked systems such as PVFS distributed filesys-
tem [30], NFS [9], Memcached [13, 12,27], HBase [11].
All of these works port existing system designs to a
modified networking backend which utilizes RDMA
within traditional request/reply message exchange pat-
tern. In other words, RDMAs are used as a supple-
ment mechanism to optimize data transfers while verb or
other messaging mechanisms are required before each
RDMAA to signal control information before the transfer.
As an example, a client sends a verb message to instruct
the server to perform an RDMA read (or write) to the
client. When the server completes the RDMA operation,
it replies with another verb message informing the client
that the transfer is complete. This strategy uses RDMA
effectively only for large messages since the through-
put and CPU overhead of processing small messages
are still bounded by the verb message performance. By
contrast, our work aims to replace a large fraction of
the request/reply message exchanges with RDMA reads
by the clients, thereby significantly reducing the server’s
CPU overhead.

The three projects that implement Memcached over

RDMA on Infiniband [13, 12] or soft-iWARP [27] also
adopt the usual combination of control messages plus
RDMAs write to process gets and puts at the server.
In [13], the client uses a verb message to send the server
a local buffer address, which the server then copies data
into using an RDMA write. Put operations also involve
two verb messages and one RDMA read, wherein the
client gives the server an address, from which the server
pulls a key-value pair via RDMA read. Both put and
get include short-operation optimizations that combine
the data normally read or written via RDMA into one of
the verb messages exchanged. Compared to Pilaf, this
design achieves much lower throughput. Their reported
performance in a Infiniband cluster similar to ours is
300 Kops/sec for small operations, significantly lower
than that achieved by Pilaf (1.3 million ops/sec). The
other Memcached over Infiniband project [12] combines
Infiniband’s Reliable Connection (RC, with guarantees
similar to TCP) and Unreliable Datagram (UD, resem-
bling UDP) modes. The resulting performance is also
lower than achieved by Pilaf, despite running on a QDR
Infiniband cluster which is twice as fast as ours (DDR).

7 Conclusion

As future datacenter networks move towards incorpo-
rating HPC network features, it is time to rethink net-
worked system designs that can fully exploit power-
ful features like RDMA. We have demonstrated such a
design by building a high-performance key-value store
with very low CPU overhead. Pilaf replaces the usual
request/rely messaging pattern for read-only operations
by having the clients directly read from the server’s
memory using RDMA. It uses self-verifying data struc-
tures to detect read-write races in the face of concurrent
RDMA reads done by the clients and the local memory
accesses done by the server. Pilaf is able to achieve a
peak throughput of over 1.35M read and 663K write op-
erations per second from a single CPU core, outperform-
ing existing systems running over Ethernet or IPoIB by
more than an order of magnitude.

Acknowledgements

Members of the NeWS group — Yang Zhang, Russell
Power, and Aditya Dhananjay — gave valuable feedbacks
that helped improve this work. Our special thanks go to
Yang Zhang, who first suggested using CRCs to check
for data inconsistency. Frank Dabek suggested useful
experiments to evaluate Pilaf’s self-verifying data struc-
ture. This work was partially supported by NSF Award
CSR-1065114 and a Google Research Award. Yifeng
Geng was supported by a Tsinghua visitor scholarship.

References

[1] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 113

(2]

[3]

(4]

(3]
(6]
(71
g

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems (2012), pp. 53—-64.
CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W., WAL-
LACH, D., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems (TOCS) 26,
2(2008), 4.

COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with ycsb. In Proceedings of the I1st ACM symposium
on Cloud computing (New York, NY, USA, 2010), SoCC ’10,
ACM, pp. 143-154.

CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
L1, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner:
Google’s globally-distributed database. In Proceedings of the
10th USENIX conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2012), OSDI'12, pp. 251-
264.

CUONG, C. Youtube scalability. In Google Seattle Conference
on Scalability (2007).

DEAN, J. Software engineering advice from building large-scale
distributed systems. Slides.

FITZPATRICK, B. Distributed caching with memcached. Linux
J. 2004, 124 (Aug. 2004), 5-.

GHEMAWAT, S., AND DEAN, J. Leveldb, 2011.

GIBSON, G., AND TANTISIRIROJ, W. Network file system (nfs)
in high performance networks. Tech. rep., Carnegie Mellon Uni-
versity, 2008.

HERLIHY, M., AND WING, J. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 12,3 (1990), 463—
492.

HUANG, J., OUYANG, X., JOSE, J., UR RAHMAN, M. W,
WANG, H., Luo, M., SUBRAMONI, H., MURTHY, C., AND
PANDA, D. K. High-performance design of HBase with rdma
over infiniband.

JOSE, J., SUBRAMONI, H., KANDALLA, K., WASI-UR RAH-
MAN, M., WANG, H., NARRAVULA, S., AND PANDA, D. K.
Scalable memcached design for infiniband clusters using hybrid
transports. In Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (2012).
JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J.,
WASI-UR RAHMAN, M., IsLAM, N. S., OUYANG, X., WANG,
H., SUR, S., AND PANDA, D. K. Memcached design on high
performance rdma capable interconnects. In Proceedings of the
2011 International Conference on Parallel Processing (2011).
KRIEGER, M. What powers instagram: Hundreds of instances,
dozens of technologies.

KUTZELNIGG, R., AND DRMOTA, M. Random bipartite graphs
and their application to Cuckoo Hashing. PhD thesis, PhD the-
sis, Vienna University of Technology, 2008.

LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (Apr.
2010), 35-40.

L1u, J., JIANG, W., WYCKOFF, P., PANDA, D., ASHTON, D.,
BUNTINAS, D., GROPP, W., AND TOONEN, B. Design and im-
plementation of mpich2 over infiniband with rdma support. In
Parallel and Distributed Processing Symposium, 2004. Proceed-
ings. 18th International (april 2004), p. 16.

Liu, J., Wu, J., KINI, S., BUNTINAS, D., YU, W., CHAN-
DRASEKARAN, B., NORONHA, R., WYCKOFF, P., AND
PANDA, D. Mpi over infiniband: Early experiences. In Ohio
State University Technical Report (2003).

MAoO, Y., KOHLER, E., AND MORRIS, R. Cache craftiness for
fast multicore key-value storage. In Proceedings of the 7th ACM
european conference on Computer Systems (2012), pp. 183-196.
NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., L1, H., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcached at facebook. In Proceedings of USENIX

[21]
[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

NSDI 2013 (2013).

PAGH, R., AND RODLER, F. Cuckoo hashing. Journal of Algo-
rithms 51, 2 (2004), 122-144.

POWER, R., AND LI, J. Piccolo: building fast, distributed pro-
grams with partitioned tables. In Proceedings of the 9th USENIX
conference on Operating Systems Design and Implementation
(OSDI) (2010).

RASHTI, M., AND AFSAHI, A. 10-gigabit iwarp ethernet:
comparative performance analysis with infiniband and myrinet-
10g. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International (2007), pp. 1-8.
SANFILIPPO, S., AND NOORDHUIS, P. Redis.
SEDGEWICK, R., AND WAYNE, K. Algorithms.
Wesley, 2011.

SHIPMAN, G., WOODALL, T., GRAHAM, R., MACCABE, A.,
AND BRIDGES, P. Infiniband scalability in open mpi. In Paral-
lel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International (2006), pp. 10—pp.

STUEDI, P., TRIVEDI, A., AND METZLER, B. Wimpy nodes
with 10gbe: leveraging one-sided operations in soft-rdma to
boost memcached. In Proceedings of USENIX Annual Technical
Conference (2012).

TRIVEDI, A., METZLER, B., AND STUEDI, P. A case for rdma
in clouds: turning supercomputer networking into commodity.
In Proceedings of the Second Asia-Pacific Workshop on Systems
(2011), p. 17.

VIENNE, J., CHEN, J., WASI-UR-RAHMAN, M., ISLAM, N.,
SUBRAMONI, H., AND PANDA, D. Performance analysis
and evaluation of infiniband fdr and 40gige roce on hpc and
cloud computing systems. In High-Performance Interconnects
(HOTI), 2012 IEEE 20th Annual Symposium on (aug. 2012),
pp. 48 -55.

Wu, J., WYCKOFF, P., AND PANDA, D. Pvfs over infiniband:
Design and performance evaluation. In Parallel Processing,
2003. Proceedings. 2003 International Conference on (2003),
pp. 125-132.

Addison-

114

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Lightweight Memory Tracing

Mathias Payer
ETH Zurich

Abstract

Memory tracing (executing additional code for every memory
access of a program) is a powerful technique with many
applications, e.g., debugging, taint checking, or tracking
dataflow. Current approaches are limited: software-only
memory tracing incurs high performance overhead (e.g., for
Libdft up to 10x) because every single memory access of the
application is checked by additional code that is not part of
the original application and hardware is limited to a small set
of watched locations.

This paper introduces memTrace, a lightweight memory
tracing technique that builds on dynamic on-the-fly cross-ISA
binary translation of 32-bit code to 64-bit code. Our software-
only approach enables memory tracing for unmodified, binary-
only x86 applications using the x64 extension that is available
in current CPUs; no OS extensions or special hardware is re-
quired. The additional registers in x64 and the wider memory
addressing enable a low-overhead tracing infrastructure that is
protected from the application code (i.e., uses disjunct registers
and memory regions). MemTrace handles multi-threaded ap-
plications. Two case studies discuss a framework for unlimited
read and write watchpoints and an allocation-based memory
checker similar in functionality to memgrind.

The performance evaluation of memTrace shows that
the time overhead is between 1.3x and 3.1x for the SPEC
CPU2006 benchmarks, with a geometric mean of 1.97x.

1 Introduction

Analyzing memory accesses in large applications is a hard
problem due to limitations of the current tracing infrastructure
and hardware. Dynamic program instrumentation that naively
instruments every memory access results in high execution
overhead (20x for Valgrind’s memcheck [18], up to 10x for
libdft [14], up to 21.1x for compression for PTT [9], and up
to 40x for taintcheck [19]), and the execution overhead makes
it often impossible to execute large instrumented applications
up to the point where a specific bug is triggered. Hardware
watchpoints are limited to a small set of memory locations
but allow tracing at native performance.

Memory tracing allows the execution of memilets for every
memory access of the instrumented application. Memlets are
code sequences that are woven into the executed application
code. These memlets can execute additional code for each
memory access depending on: (i) the data value that is read
or written, (i) the address that is read from or written to,
or (iii) the state associated with the address that is read or

Enrico Kravina
ETH Zurich

Thomas R. Gross
ETH Zurich

written (the tracing infrastructure may provide additional
state — a shadow value — for every memory location that is
used in an application). Memory tracing is lightweight if the
overall performance overhead added through the memlets is
low. Memlets can use the state and the value of each memory
location to implement high-level functionality like (unlimited)
watchpoints, dataflow tracking, or taint checking.

This paper presents memTrace, a framework for lightweight
memory tracing for single-threaded and multi-threaded 32-bit
applications. MemTrace combines an API to set and check
shadow values for every byte used in the application with an
interface to implement different user-defined memlets. We
present two example memlets that (i) support an unlimited
number of memory watchpoints and (ii) enforce explicit
safety regions around every memory allocation for C/C++
applications to find memory corruption bugs like buffer
overwrites and buffer underwrites, and these memlets handle
arbitrary unmodified 32-bit binary applications.

Current memory tracing systems use software binary
translation to instrument all memory accesses of an application
with a pre-determined set of instructions (i.e., current systems
do not support user-configurable memlets). Some systems
reuse “unused” registers (e.g., minemu [4] uses the SSE
registers and therefore only supports applications that do not
use SSE instructions, LIFT [23] uses x64 registers) while other
systems (e.g., PIN [15], or Valgrind [18]) reallocate registers
during the binary translation process. Unused registers speed
up memory tracing because the memlets and the memory
checks use these registers, and no spill code is needed.

All recent Intel and AMD x86 CPUs are x64 capable, on
the other hand most applications are based on the 32-bit x86
ISA (e.g., the recommended Ubuntu end-user image uses only
32-bit applications, and all Windows and MacOS operating sys-
tem images exist in a 32-bit and a 64-bit version). A drawback
of x64 is the increased memory usage due to the 64-bit pointer
width and the larger page tables. Most applications fit well into
a 32-bit memory space. MemTrace enables lightweight mem-
ory tracing for these common x86 applications and uses the
available features of the already dominant x64 hardware. The
combination of free registers to implement the lookup checks
and a data structure that supports fast and efficient lookup for
individual memory locations is key to low execution overhead.

MemTrace uses cross-ISA translation for 32-bit applications
to a 64-bit ISA to offer both a wider address space and
additional registers to user-defined memlets. The memTrace

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 115

prototype implementation leverages the x64! ISA to implement
efficient memory tracing for unmodified x86 applications. The
x86 code is dynamically translated to x64 code. The x64 ISA
is the 64-bit extension of x86. Most instructions are available
in both ISAs and can be translated easily. The cross-ISA trans-
lation provides 8 additional registers that can be used for the
memlets. A shadow memory area above the 4GB limit of the
32-bit x86 application (i.e., application code uses only 32-bit
pointers and is therefore unable to interfere with the shadow
memory area) is used to store the data used by the memlets.
Our prototype implementation of memTrace supports all x86
instructions, including all FPU and SSE extensions.

The flexible implementation of memlets combined with
shadow data enables additional fine-grained operations that
build on top of memory tracing like dataflow tracking or taint
checking. The memlets update the data or taint information
for each memory location and check the integrity of the data
upon every memory access.

A key observation of Greathouse et al. [12] is that a fast
memory tracing framework needs some form of additional
hardware extensions to achieve low overhead. This paper
shows that low overhead memory tracing can be achieved
in software by using additional hardware resources (more
registers and a wider address space) that are available through
dynamic cross-ISA translation. The memTrace memory
tracing technique offers new opportunities for debugging,
dataflow tracking, or other user-defined memlets that evaluate
fine-grained memory access.

The memTrace prototype implementation supports arbitrary
applications like the OpenOffice office suite or the Apache
webserver. A performance evaluation of the memTrace pro-
totype implementation for x64 Linux kernels with the SPEC
CPU2006 benchmarks shows low overhead with a geometric
mean of 1.97x. The contributions of this paper are as follows:

1. The architecture of memTrace, a lightweight memory
tracing technique for binary-only 32-bit applications that
supports user-defined memlets and leverages cross-ISA
translation.

2. A case study that shows two memlets: one that supports
unlimited watchpoints and a second one that checks
an application for memory allocation errors (allocation
over-writes and under-writes).

3. An evaluation and discussion of a prototype implemen-
tation of the memory tracing technique for x86/x64 and
the corresponding memlets.

The rest of the paper is organized as follows: Section 2
lists requirements for lightweight memory tracing; Section 3
describes cross ISA binary translation; Section 4 shows two
case studies that use memory tracing; Section 5 presents the
memTrace implementation; Section 7 discusses related work;
and Section 8 concludes.

"Multiple different names are used for the 64-bit extension of x86: x64,
EMO6AT, AMD64, 1A-32e, and x86-64. This paper uses x64.

2 Requirements for lightweight memory tracing

MemTrace is a technique for lightweight memory tracing that
builds on dynamic cross-ISA binary translation. Dynamic
binary translation keeps the overhead low and cross-ISA
translation from 32-bit to 64-bit enables the memlets to access
a broader memory space than the original ISA permits. This
paper discusses 32-bit programs running on a 64-bit ISA. Other
combinations work analogously, e.g., 16-bit code running on
a 32-bit ISA, as long as the address space of the target ISA is
a super-set of the source ISA. A lightweight memory tracing
technique must fulfill the following requirements:

Unchanged application address space: the 32-bit applica-
tion has access to the full 4GB memory space. The larger
target address space allows memTrace to hide the binary
translation framework and all the data structures needed
by the memlets from the application. Neither the binary
translator nor the memlets store any internal state in the
application memory space. The memlets may change
application memory values as part of their functionality.
This requirement ensures that the binary translator does not
interfere with the original memory layout of the application
and, e.g., the placement of shared libraries.

Unmodified execution: the translated application follows
the same control flow pattern as the original application.
The application uses the original return addresses on the
stack, the original function pointers, and the original targets
for indirect jumps. The translated code executes additional
lookups in a mapping table to transparently map from
translated to untranslated code targets. This requirement
ensures that the application can use original addresses, e.g.,
as control flow targets.

Full isolation: the application has no access to data of
the binary translator or to data of the memlets. The
translated application cannot access any data above the
original application segment (due to the restriction of 32-bit
pointers). This requirement ensures that the application
cannot modify any internal data.

Flexible memlets: the memory tracing technique enables
the implementation of flexible memlets that use shadow
memory or registers as state. MemTrace allows the
implementation of any memlet that needs one or more bytes
of state for each byte that the application uses. The memlets
can use additional available free registers in the target ISA.

Low overhead: the overall overhead of the memory tracing
technique must be low, and the other requirements must
not preclude a fast implementation.

The technique for lightweight memory tracing presented
in this paper fulfills the criteria above.

116 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

3 Cross-ISA binary translation

Cross-ISA binary translation takes a program written in a
source ISA and executes the program on a different target
ISA. Multiple reasons for cross-ISA translation exist, e.g.,
program portability, or additional resources in the target ISA.
Depending on the differences between the two ISAs the
translation is non-trivial.

This paper discusses two different architectures that are
both extended from 32-bit to 64-bit, namely the Intel x86
platform and the ARM platform. The first example covers
the x86 ISA. The x86 ISA evolved over more than 20 years
and was extended multiple times. 32-bit x86 and the 64-bit
extension x64 are closely related. x64 widens the registers and
the address size to 64-bit, adds 8 general purpose registers, and
introduces new instructions. Some instructions are removed as
well: 16 one-byte x86 instructions are replaced and reused as
prefixes for the new x64 instructions. The original 16 instruc-
tions are no longer available on x64 and must be emulated
using longer instructions. Additional changes include (i) the
limitation of segmentation which makes binary translation
for x64 harder [27] and (ii) the way system calls are executed.

A second example is binary translation for the ARM
platform. The ARMVS-A architecture supports two ISAs: the
AArch64 ISA is a 64-bit extension of the 32-bit AArch32
ISA. Similar to the x64 extension of x86 AArch64 supports
a wider address space and a wider register file. The prototype
implementation focuses on x86/x64 but the design of the
memTrace technique is applicable to AArch64/AArch32 as
well because our technique relies on a wider address space
and similar instructions between the two ISAs. A notable
difference between x86 and ARM is that the instruction pointer
(EIP) cannot be accessed directly on x86 while it is a regular
register on ARM. The binary translator modifies the EIP to
execute translated code from the code cache but emulates all
instructions that indirectly use the EIP to keep up the illusion
of an unmodified application (e.g., call foo is translated
into push orig eip; jmp transl_foo. In contrast to
x86, an ARM implementation must emulate all instructions
that use the program instruction counter directly as well.

There are two problems that must be solved for binary
translation for 32-bit x86 programs: register pressure and loca-
tion of internal data structures of the binary translator. Register
allocation on x86 is a hard problem [1, 2, 29] and register
reallocation in a binary translator without type information and
control-flow information is even more complex. Translating
32-bit x86 applications to x64 code solves the register pressure
problem. The 8 additional registers are used by both the
dynamic binary translator to implement the translation process
and the memlets to implement the memory tracing. The
translated application uses the unchanged original registers
except for the program counter. Same-ISA binary translators
modify the original memory address space of an application
by placing internal data structures somewhere into the existing

Application code Translator Code cache

ko“l \ | N
PG I W

Application data Shadow memory

Mapping table
< || &8 HEgm
1|1
2|2 C L)

R PEEE——
32bit address space

64bit address space

Figure 1: Binary translator runtime layout. Basic blocks
are translated and placed in the code cache using opcode
tables. The mapping table maps addresses in the program to
translated addresses. Trampolines invoke the translator for
untranslated basic blocks.

memory space. Cross-ISA translation from x86 to x64 enables
a wider address space. Consequently, the translated application
uses the low 4GB of memory and the binary translator and
the memlets place their data in the upper memory areas. The
translated application keeps using 32-bit pointers and cannot
access the memory of the binary translator.

To summarize, the advantages of cross-ISA binary
translation are: (i) additional registers available for the
instrumentation, (i) memory separation as translated x86
code cannot access the code of the translator, and (iii) full
encapsulation of the translated application.

A possible disadvantage is that some hardware features
like segmentation are limited. Fortunately segmentation is
not used in user-space applications except for thread local data.
Segmentation for thread local data is still supported on x64.

3.1 Dynamic binary translation

Dynamic binary translation instruments a user-space appli-
cation on the fly. Figure 1 shows the design of the dynamic
binary translator and the memory layout. The translator com-
piles individual basic blocks of the original x86 application on
demand and places the translated code in a code cache. Trans-
lated control flow transfers use the mapping table to translate
targets in the original application to targets in the code cache.
Untranslated target fall back to the translator. All executed
code is either a part of the translator or of the generated code.

Instructions are translated using a table-based translation
scheme as described in libdetox [21]. Most instructions are
copied verbatim. For cross-ISA translation some instructions
must be adapted due to different memory encodings or
addressing schemes, other instructions are emulated by
the translation layer. In addition, all instructions that alter
control flow (e.g., jump instructions, call instructions, return
instructions, system calls, or interrupts) are adapted so that the
binary translator keeps control of the translated application.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 117

3.2 Memory layout

The x64 ISA uses 64-bit wide pointers (whereas the physical
memory bus is up to 48bit wide). The binary translator maps
the original application to the low 4GB. The binary translator
library, the code cache, the mapping table, and all shadow mem-
ory are placed above the 4GB limit of the translated application.

The translated application still uses 32-bit pointers and
32-bit registers and has therefore no access to any data of the
binary translator. This enables hardware enforced protection
of the internal data from the translated application as the
application is not able to generate a memory access to that
region due to the 32-bit wide pointers used in the source ISA.
In addition, the application has exclusive access to the original
32-bit address space; the binary translator keeps all data in
higher memory areas.

3.3 MemTrace design summary

All state for the memlets and the internal data for the binary
translator are stored in the area of the 64-bit address space
above the first 4GB. The wider address space of a 64-bit ISA
like x64 in comparison to a 32-bit address space allows the
binary translator to place the shadow memory data structure
and all binary translator data structures into an address area
that is not accessible from the original application. The
translated application uses the low 4 GB of the 64-bit address
space that overlaps with the complete 4 GB address space
of a 32-bit application. The binary translator is completely
concealed; translated code is put in a code cache and every
control flow transfer uses a mapping table to map the original
target in the application memory space to the translated target
in the binary translator space. The application is fully isolated
from the binary translator: all pointers in the application
domain are 32-bit; the application has no access to any data
of the binary translator. The evaluation of the prototype
implementation shows low performance overhead with a
geometric mean of 1.97x for the SPEC CPU2006 benchmarks.

4 Memory tracing case studies

This section presents two case studies that use the lightweight
memory tracing technique. The first case study designs a
memlet for unlimited watchpoints. The memlet for unlimited
watchpoints supports both read and write watchpoints and
can be used to overcome the hardware limitation of 4 write
watchpoints on current x86 platforms.

The second case study implements a memory allocation
checker. Upon every allocation in a C or C++ program
the memory checker adds additional safe zones around the
allocated memory region. Any out-of-bounds reads and writes
are detected and stop the program.

4.1 Case study: a memlet for unlimited watchpoints

Watchpoints are used to debug applications and enable the
inspection of specific memory addresses. Read watchpoints
are triggered whenever the location is read and write

64bit instructions with monitor
/* check */

lea 0x3d(%edx, %ecx, 4), %r8
cmpl (%ri15, %r8), %ri2w

jnz handler_92746

/* translated instruction */
addl 0x3d(%edx, %ecx, 4), %eax

Original 32bit instruction

addl 0x3d(%edx, %ecx, 4), %eax

Figure 2: Translation of a memory accessing instruction.

watchpoints are triggered whenever the location is written.
For example, if a certain address is read or written by a bug
in the application then a watchpoint can be used to find the
code location and context where that read or write access is
executed. x86 supports up to 4 (up to 8 byte wide) hardware
watchpoints that can be set using debug registers. For many
use cases 4 watchpoints are not enough as a wider memory
region must be protected to find a specific bug.

The lightweight memory tracing technique facilitates
the design of a simple watchpoint memlet that implements
unlimited read and write watchpoints with constant overhead.
The overhead is constant for every memory access and does
not increase with the number of watchpoints.

The watchpoint memlet uses a shadow memory segment
of the same size as the original application. The shadow
memory is mapped with a 4GB offset (i.e., the address
Oxdeadbeef is shadowed at Oxldeadbeef). Every byte
in shadow memory is either O (if no watchpoint should be
triggered) or non-0 if either a read or write watchpoint is
set. Figure 2 shows the translation of a sample instruction
that reads a memory address. The instruction is translated to
64-bit by expanding all pointers in the instruction. MemTrace
adds the memlet before the memory-accessing instruction and
checks if the shadow data is 0. The register %r15 holds the
constant offset 0x100000000, %r12 keeps the value 0, and
%r13 is used to store the watchpoint information.

The memlet is optimized for fast execution: the instruction
cache (i-cache) pressure is reduced by using shorter instruction
encodings for memlets and moving the watchpoint handler
(the cold path) out into a trampoline. The memlet uses
two registers (%r12 and %r15) to store constants. Each
replacement of a constant with a register saves 8 bytes in the
instruction length. In addition, the translator generates a cold
path trampoline for each instruction that accesses memory.
The trampoline stores the context (i.e., original IP of the
instruction that triggered the watchpoint) and transfers control
to the general watchpoint handler.

An interesting feature of the shadow memory segments
is that unaligned multi-byte memory accesses are supported.
If an instruction accesses a multi-byte value then the shadow
bytes of all bytes are combined. The memlet checks for non-0
and detects with a single check if a watchpoint is set for at
least a single byte of the multi-byte access.

The watchpoints can either be used by a debugging
script/program or can be used as regular watchpoints in GDB.
GDB allows remote stubs as backends with the standard GDB

118 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

frontend using a remote serial protocol [10]. The backend
implements a simple protocol to, e.g., read registers, set
breakpoints, and to set watchpoints. The remote stub starts
the application under the control of the lightweight memory
tracing prototype implementation. Watchpoints are forwarded
from the GDB frontend and activated using the watchpoint
memlets in translated code.

4.2 Case study: safe heap memory allocator

Ptmalloc2 [11], the standard allocator for C and C++ is
an in-place memory allocator that stores information about
each allocated memory block before and after the block.
This information may be overwritten by buffer overflows or
random memory writes. Such bugs are hard to find because
memory corruption bugs might only cause a segmentation
fault when the block is reused the next time.

This case study uses the watchpoint memlet to set watch-
points before and after every allocated memory block. Calls to
the memory allocator are intercepted by the binary translation
framework and new watchpoints are added dynamically. If
a block is collected (freed) then the watchpoints are removed.

If a bug in the application writes to a watchpoint or reads
a watchpoint (i.e. the application accesses an illegal memory
region) then the application is either terminated with an
information message or a debugger is attached dynamically
so that a programmer can analyze the problem.

5 Implementation

The prototype implementation of memTrace extends the
libdetox [21] binary translation platform. The libdetox
platform is a table-based x86 to x86 binary translator. Our
prototype implementation extends the translator with a
cross-ISA translation module that transforms x86 instructions
to equivalent x64 instructions. The complete prototype
implementation is released as open source.

The prototype implementation maps the 32-bit version of
the standard loader 1d.so into the 32-bit address space and
prepares the application stack with the correct parameters that
1d.so expects for the initialization of a 32-bit application.
Next the binary translator starts translation and execution of
the loader code which loads and initializes all needed shared
libraries and starts the execution of the application.

The following sections discuss the translation of individual
instructions, present how the memory layout of a translated
application looks, and focus on specific translation details.

5.1 Instruction translation

Due to the similarity of the two ISAs the encoding of most
instructions is similar as well, the translation is straight-forward
and follows the concept of other table-based translators. For
most instructions the available encodings on x64 are a super-set
of the available encodings of x84. The binary translator uses
linked instruction tables to decode the current instruction. If
the instruction accesses memory then the pointers are zero

expanded to 64-bit memory addresses and the memlet is emit-
ted before the translated instruction. The binary translator uses
one of the following translation schemes for each instruction:

Emulation: instructions that are not available on x64 (e.g.,
pusha, or popa) are replaced by a sequence of instructions
that emulates the removed instruction transparently.

Exception: instructions that are no longer used (e.g., aaa,
or aad) raise an exception. The binary translator fails
gracefully and prints an error message. An emulation of
these instructions can be added if needed.

Encoding: some instructions are encoded differently on x64
(e.g., inc, or dec). These instructions are replaced during
the translation process.

Addressing mode: x64 uses an instruction pointer relative
addressing mode instead of an absolute addressing mode.
Absolute references are translated dynamically to absolute
addresses during code generation.

Different semantics: some instructions change their
semantics (e.g., push, or pop) and operate on quadwords
on x64. These instructions are translated to operate on
doublewords during the translation.

Rep prefix: the handling of the rep prefix changes for x64.
String operations (e.g., rep stosb) that use the rep prefix
are translated to loops during the translation process.

On x64 segment-based addressing is restricted compared
to x86. Current user-space x86 applications use segmenting
only for thread local storage in current applications. The x64
ISA supports segmentation for thread local storage and the
prototype implementation support 32-bit thread local storage
in a 64-bit environment.

5.2 Shadow memory

The 64-bit address space enables the implementation to use
address regions that cannot be encoded using 32-bit memory
pointers. The application uses the low 4GB of the 64-bit
address space and no data in that region is changed through
the binary translator (the data may be changed as a function of
the memlets). Figure 3 shows the memory layout of a running
application under the control of memTrace.

The next 4GB are used as shadow memory of the
application memory at offset 0x100000000. The memlets
store information about the corresponding memory addresses
of the application in the shadow memory. The shadow
memory regions are mapped at the same time when the
application memory is mapped. Virtual memory allocates
physical pages only if the page is accessed by a memlet
(e.g., code regions are not accessed by our memlets and the
physical pages are therefore not allocated). An upper bound
for the memory consumption for the shadow memory is 1x the

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 119

Application memory Shadow memory

(used by monitors)

Translator memory

= o= =

0 9 5|89 8
o S =y =] () a
& | = [0} 3| 13 2 |26 7}
) & “l | @ 5 1) 20 =)
R0 5} o R a5} o o o9 o
al | © 3 al | © = = =0 =i
9 9 g 23 @l
5) 2l & 2
-) S R =3

0x0'0000'0000 O0x0'FFFF'FFFF (4GB) Ox1'FFFF'FFFF (8GB)

Figure 3: Memory layout of the translated application.

memory that the application uses. Memlets may use multiple
shadow memory regions to store additional information (i.e.,
at offsets 0x200000000, 0x300000000, and so on).

5.3 Register allocation

The x64 ISA offers 8 additional general registers (%r8 to
%r15) that can be used by the lightweight memory tracing
technique. The binary translator component is compiled for the
x64 ISA and uses all available registers during the translation
of x86 code. The transition between translator and translated
application code saves and restores all general purpose registers.
The memlets are native x64 code and can use the 8 additional
x64 registers during the execution of the translated code.

Both memlets discussed here use registers %r8 and %r9
as temporary scratch registers. The memory watchpoint
memlet uses three registers %r10, %ri1, and %r13 to track
usage of the eflags register. Saving and restoring the
eflags register before and after the execution of a memlet
adds overhead, therefore reducing the number of save and
restore operations is important.

The register %r12 holds the constant 0x0 and the
register %r15 holds the constant offset to the shadow
memory (0x100000000). Using registers to hold constants
instead of encoding constants in the instruction itself saves
8 bytes per used constant in the emitted code. If needed, these
registers may be used for other purposes.

5.4 String instructions

String instructions use the rep prefix to repeat a single
instruction n times. String instructions access multiple memory
locations in a sequence of incrementing or decrementing
addresses.

MemTrace replaces string instructions with a short loop
that first checks the source address and the destination address,
executes a single instruction with the current parameters, and
increments or decrements the source and target registers.

5.5 System calls, signals, and threads

An x86 application requests system calls either using interrupts
(int $0x80) or using the sysenter instruction. On x64
the application uses the syscall instruction. The mapping
between system call and system call number is different

between x86 and x64. The parameters of individual system
calls can change as well (i.e., 64-bit wide addresses instead
of 32-bit wide addresses).

MemTrace uses a mapping table to map between x86 and
x64 system calls. Most system calls can be mapped easily.
For system calls that access memory, pointers are dynamically
extended to 64-bit and returned pointers from the kernel
are truncated to 32-bit. All memory management system
calls (mmap, munmap, mremap, and brk) are redirected to
a special handler function that checks and adapts the specified
parameters and manages the shadow memory as well.

Signals are handled in the binary translator as well. The bi-
nary translator intercepts all system calls that install signals and
replaces the signal handlers with its own internal signal handler.
This signal handler then handles the switch to the application
stack if the signal was caught while in the translator and ex-
ecutes the corresponding translated application signal handler.

The cross-ISA binary translator supports Linux pthreads
by translating thread-related system calls of the application
into the necessary 64-bit system calls. Thread support is
a difficult problem for memory tracing due to possible
synchronization issues. Two threads may concurrently modify
the same memory address and the corresponding memlets
may therefore access the same shadow value. As long as the
application synchronizes access to the memory location the
access to the shadow value is implicitly synchronized as well.
If the original program has a data-race then the memlets must
synchronize concurrent writes, e.g., by using regional locks.
Simply adding a lock prefix to the original memory access
is not enough as the memlet will access a second memory
location. Adding explicit locks for each memory access adds
high overhead and is currently not implemented.

The accesses of the memlets to the shadow table follow the
same pattern as the memory accesses in the original application.
If the application locks the memory region for a specific thread
then the corresponding shadow memory region is implicitly
locked as well. No other application thread can access the
original memory region, therefore no memlet of another thread
will access the implicitly locked shadow memory region. This
implicit locking approach only works if the application has
no data races between threads. User-defined memlets that
analyze inter-thread behavior, e.g., to check for data races,
must lock the shadow memory themselves.

5.6 Flag tracking optimizations

This section presents two optimizations for the binary
translator that help lowering the overhead for memory tracing.
The first optimization tracks the usage of the eflags register
and allows the memlets to change the eflags register if the
eflags register is not used between instructions that affect
the flags. The second optimization stores the operands of
the relevant arithmetic instruction in two free registers and
reexecutes the instruction with a bogus target.

A big advantage of the cross-ISA translation is that

120 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

unused

used
read
write

addl %ebx, jeax # sets flags,
subl Y%ecx, leax # sets flags,
movl (Oxdeadbeef), %ebx # mem.
movl %eax, (Oxdeadbeef) # mem.
jnz next_block # uses flag

Listing 1: Example of a basic block in an application

memTrace can use additional free registers without the need
for register reallocation. Unfortunately one register is shared
between the binary translator, the memlets, and the translated
application code: the eflags register. The situation is
worsened by the fact that access to this register is very slow
when using pushf and popf instructions. Instead of using
pushf and popf instructions we use a short sequence of
instructions (1ahf and seto tosave and addb and sahf
to restore) to handle the eflags register.

On x86 all arithmetic instructions, the “compare” instruc-
tion, and the “test” instructions set the eflags register.
But the eflags register is only read after a subset of the
instructions. Table-based binary translators do not build an
intermediate representation (IR) which makes eflags-usage
tracking more complicated. MemTrace uses a triple-pass
approach to track usage of the eflags register in each basic
block. The first two passes decode all instructions and analyze
which instructions use the eflags register. The third pass
emits translated instructions (including the memlets which
change the application-set eflags register) but inserts code
that saves the eflags register only when necessary.

The second optimization saves the operands of the
eflags-relevant arithmetic instruction in two x64 registers
(%r10, and %ri11). In front of the instruction that reads
the eflags register the arithmetic instruction is executed
again (with the saved operands) to reproduce the state of the
eflags register. This optimization reduces the overhead of
saving and restoring the eflags register in tight loops.

Listing 1 shows an example of a basic block. The first two
instructions set the eflags registers, but only the result of
the subl instruction is used. The two movl instructions
execute memory accesses and the memlets in the instrumented
code overwrite the status of the subl instruction. MemTrace
restores the status of the eflags register of the last
arithmetic instruction before the jnz instruction.

6 Evaluation

The prototype implementation is stable and runs applications
like, e.g., the parsec benchmarks, OpenOffice, gedit, and
the complete set of SPEC CPU2006 benchmarks. The
evaluation uses the SPEC CPU2006 benchmarks to evaluate
the performance of the memTrace prototype implementation,
including two different user-defined memlets.

This evaluation uses all SPEC CPU2006 benchmarks
except 481.wrf which no longer compiles on modern systems.

This is not a limitation of our prototype implementation but
a limitation of the SPEC CPU2006 benchmarks.

All benchmarks are executed on a 64-bit version of Ubuntu
12.04. The machine uses an Intel Core i7-2640M CPU with
2 cores at 2.80 GHz with 4 GB of memory. The benchmarks
are compiled using gce version 4.6.3 and use the glibc version
2.15. The benchmarks are compiled for 32-bit.

6.1 SPEC CPU2006

This section evaluates the performance of memTrace, our
prototype implementation, using the SPEC CPU2006 version
1.0.1 benchmarks using the flags -03 -m32. We evaluate
different configurations of memTrace to show the overall
overhead and relative performance changes for individual
optimizations. The evaluations use the runspec script to
produce reproducible runs with 3 iterations.

We perform the measurements on both the reference dataset
and on the fest dataset. The test dataset is used to evaluate
the overhead for short running programs while the reference
dataset shows the overhead for long running benchmarks. The
following configurations are used:

NAT: A native configuration that runs without binary
translation or memory tracing.

ID: The benchmarks execute with binary translation.

EFL: This configuration measures the overhead for storing
and restoring the eflags register for memory tracing.
Code that saves and restores the eflags register is added
before as if memory tracing is executed but no memlets
are added. All optimizations discussed in Section 5.6 are
enabled.

MT: This configuration shows the performance of the
baseline memory tracing framework. MT extends the EFL.
extension and measures the impact of reading the shadow
memory address for each memory access.

WP: This configuration executes full memory tracing using
the watchpoint memlets (without any active watchpoints).

Table 1 shows the overhead of the four different memTrace
configurations compared to native execution of the 32-bit bina-
ries. Most benchmarks exhibit moderate overhead for the dif-
ferent memTrace configurations. The overhead is always below
3.11x and for 16 of 28 applications the overhead is below 2x.

The ID configuration measures the overhead for cross-ISA
translation. The overhead for cross-ISA binary translation is
low, 15% on average with a geometric mean of 17%. The usual
culprits 400.perlbench, 403.gcc, 445.gobmk, 458.sjeng, and
453.povray result in an overhead of more than 40% for binary
translation due to the high number of indirect control flow
transfers. The ID configuration shows that the binary translator
is a reasonable baseline to implement memory tracing.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 121

Benchmark NAT [s]| ID|EFL| MT| WP
400.perlbench 324.00|1.74|2.10(2.60|2.82
401.bzip2 498.00(1.08|1.281.91|1.97
403.gcc 305.00|1.40| 1.65 [2.08 | 2.20
429.mcf 278.00|1.10| 1.10|2.00 | 2.21
445.gobmp 434.0011.49|1.85(2.26|2.74
456 .hmmer 433.00(1.01|1.43]2.63|2.63
458.sjeng 485.0011.56|1.99(2.35|2.72
462 libquantum | 543.00(1.01|1.03|1.23|1.24
464.h264ref 609.00|1.22|1.42(2.71|2.86
471.omnetpp 308.00|1.37|1.44(1.89|1.94
473 astar 412.00|1.09|1.25[1.60| 1.62
483.xalancbmk | 252.00(1.90|2.23|2.68 |2.99
410.bwaves 405.00(1.01|1.20|1.96|1.97
416.gamess 760.00|1.09 | 1.57|2.30|2.43
433.milc 441.00/1.00|1.06[1.32|1.34
434 zeusmp 540.00|1.02 | 1.221.69|1.72
435.gromacs 658.00|1.01|1.15|1.43|1.49
436.cactusADM | 1120.00|0.99| 1.24 |2.21|3.11
437 leslie3d 447.00(1.02|1.11|144|1.44
444 namd 412.00(1.02]1.23|1.61|1.63
447 dealll 318.00|1.35|1.56 |2.08 | 2.13
450.soplex 298.00(1.07|1.23|1.46|1.51
453.povray 181.00(1.49]2.05|2.62|2.78
454 calculix 696.00|1.03|1.21|1.55|1.59
459.GemsFDTD | 503.00|1.04|1.14|1.61 | 1.66
465.tonto 559.00|1.15[1.35|1.71|1.81
470.]bm 440.00(1.00|1.02|1.13|1.14
482.sphinx3 521.00|1.05[1.23|1.59]|1.61
Average 470.71|1.15| 1.36| 1.90 | 2.06
Geo. mean 439.54|1.17]1.37|1.86|1.97

Table 1: Performance evaluation using the SPEC CPU
2006 benchmarks (reference dataset). NAT shows native
execution in seconds, the remaining columns show memTrace
configurations relative to NAT.

The EFL configuration measures the performance overhead
induced by eflags tracking, saving, and restoring needed
if additional code is executed for every memory-accessing
instruction. No memlet code is executed for this configuration.
The average performance overhead for this configuration is
36% and the geometric mean is 37%. Different benchmarks
show different increase in the performance overhead. These
differences hint at the number of memory-accessing instruc-
tions that are executed for each benchmark. If the overhead
increases over-proportional, then the benchmark executes more
memory accessing instructions than the average benchmark.

The MT configuration extends the EFL configuration
by reading the shadow value for each accessed memory
location. No additional computation is executed. The
performance difference between EFL shows the impact of one
additional mov instruction per memory-accessing instruction

Benchmark NAT [s]| ID|EFL| MT| WP| VAL | VMEM

400.perlbench 3.57(1.67|1.75|1.88|1.95| 6.53 err
401.bzip2 5.79(1.10{1.30{2.09|2.16| 4.40| 16.29
403.gcc 1.00|2.01|2.27|2.74|3.07| 11.42 err
429.mcf 1.69|1.15|1.19(2.17|2.27| 3.44| 10.00
445.gobmk 15.00{1.49|1.85|2.26|2.71| 8.07| 31.20
456.hmmer 2.51|1.10{1.49|237|239| 5.66| 28.53
458.sjeng 3.39|1.53|1.87|2.25|2.58| 7.73| 31.27
462.libquantum 0.05(1.40{1.56|2.01|2.01| 830| 17.35
464.h264ref 12301 1.24|1.59(2.60(2.72| 4.73| 3447
471.omnetpp 0.31]3.66|4.33|4.90|592|18.15| 73.25
473.astar 7.93|1.08|1.23|1.54|1.59| 2.86| 11.92
483 .xalancbmk 0.08]4.36|4.52|5.39|5.79|22.93| 65.79
410.bwaves 5.13|1.02|1.21|2.03|2.05| 5.85| 61.79
416.gamess 033(147(1.7912.40|2.58|11.23| 43.69
433.milc 5.06(1.12|1.34|1.77|1.77| 6.52| 31.03
434.zeusmp 13.80{1.01|1.24|1.64|1.64| err err
435.gromacs 1.37|1.11|1.25(1.52|1.60| 5.64| 2044
436.cactusADM 2.47(1.02|1.44|3.00|4.66| 6.15 err
437 leslie3d 11.50|1.02|1.13{1.48|1.48| 4.83| 12.00
444 namd 11.101.05|1.26|1.63|1.65| 7.09| 23.78
447 dealll 1320|1421 1.58(2.20|2.24| err err
450.soplex 0.03(2.5712.79|3.03|3.19| err err
453.povray 0.50{1.62|2.11|2.68|2.88 | 11.15| 52.52
454 calculix 0.05(2.38|2.75|3.24|3.22|16.57| 44.01
459.GemsFDTD 2.10(1.32|1.45/2.00|2.07| 5.62| 17.14
465.tonto 0.80{1.43|1.71|2.10|2.25| 839| 31.54
470.1bm 327(1.00{1.02|1.10|1.11| 3.24| 11.77
482.sphinx3 1.45]1.30{1.49|1.84|2.00| 8.90| 34.69
Average 4491221145198 (2.12| 524| 2430
Geo. mean 1.68|1.43|1.67(221|236| 7.13| 26.39

Table 2: Performance evaluation using the SPEC CPU2006
benchmarks (fest dataset). NAT shows native execution in
seconds, the next four columns compare different memTrace
configurations to NAT. The last two columns compare
Valgrind nullgrind (VAL) and memcheck (VMEM) to NAT.

combined with additional cache pressure for accessing twice
as many memory locations in hot code regions. Several
benchmarks exhibit a performance impact of 2.0x to 2.7x
for this configuration. The average overhead is 1.90x with
a geometric mean of 1.86x. This configuration shows the
overhead for memory tracing without executing any memlets.

The WP configuration extends the MT configuration with
the memlet for unlimited watchpoints. No watchpoints are set
in this configuration, but the difference in execution time be-
tween configurations with set watchpoints and configurations
without set watchpoints is negligible if no watchpoints are
taken. If watchpoints are taken then the execution time of the
watchpoint handlers must be added to the overhead as well. We
measure the highest performance impact for the cactusADM
benchmark with 3.11x performance impact compared to native
execution due to the high frequency of memory accesses.
The average overhead is 2.06x and the geometric mean is
1.97x. These two values show that the additional overhead

122 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

for the user-defined memlet is low compared to the execution
overhead of the baseline memory tracing framework.

The performance analysis shows that the overall overhead
for the prototype of the lightweight memory tracing framework
using cross-ISA translation (the MT configuration) is
below 2.0x and that the additional performance impact for
the execution of user-definable memlets is low (the WP
configuration). Lightweight memory tracing is a technique
that can be used in practice to trace every single memory
access of an application using user-definable memlets with
tolerable execution overhead.

6.2 Comparison to other systems

This section evaluates the prototype implementation of the
memTrace technique with other, similar software products
that are capable of memory tracing. We tried running the
minemu 0.8 open-source version on a 64-bit Ubuntu 12.04
system. Unfortunately the current version of minemu crashes
during the initialization of thread local storage of the SPEC
CPU2006 benchmarks when running 32-bit x86 binaries on
an x64 system.

6.2.1 Valgrind

We evaluate valgrind [18] version 3.7.0-Oubuntu3 as the second
system in two configurations: nullgrind (VAL) to evaluate
the Valgrind overhead and (VMEM) to evaluate Valgrind’s
memcheck overhead. Table 2 shows the timings of the SPEC
CPU2006 benchmarks and compare different configurations
against the native execution of the fest dataset. The test dataset
uses shorter input files and simpler problems. This comparison
uses only the fest dataset due to the higher translation overhead
of Valgrind. The 434.zeusmp, 447.dealll, and 450.soplex
benchmarks did not complete under Valgrind’s nullgrind
configuration and the 400.perlbench, 403.gcc, 434.zeusmp,
436.cactusADM, 447.dealll, and 450.soplex benchmarks
did not complete under Valgrind’s memcheck configuration.
MemTrace uses the same configurations as in Section 6.1.

The evaluation for memTrace shows a similar picture like
the performance analysis of the ref dataset. In general the
overhead increases due to the fact that translated code in the
code cache is reused less often. The geometric mean for the
MT configuration is 2.21x and the average overhead is 1.98x
(compared to a geometric mean of 1.86x and an average of
1.90 for the ref dataset).

Valgrind on the other hand exhibits an average overhead
of 5.24x and a geometric mean of 7.13x for the fest dataset
in the nullgrind configuration. The nullgrind configuration is
comparable to the ID configuration of memTrace and does not
execute any memlets or other user-defined code. The mem-
check configuration of Valgrind results in an average overhead
of 24.3x and a geometric mean of 26.4x. The memcheck
configuration is comparable to memTrace’s WP configuration.

| 1WP[s] | 10WP[s] | 100 WP [s]
GDB SW WP 180 330 1670
memTrace 0.01 0.01 0.01

Table 3: Evaluation of the microbenchmark in with the first
watchpoint at the 1,000 element.

6.2.2 GDB

We use a CPU-bound microbenchmark to evaluate the
performance of the watchpoint memlet compared to GDB.
The microbenchmark sets W consecutive watchpoints in a
large array and processes the array in multiple passes, where
the n'" pass accesses the first n elements of the array. In
each pass, the elements are accessed using several patterns:
a forward linear sweep, a convolution, and a sparse backward
sweep. The microbenchmark measures the time until the first
watchpoint is hit and handled by the debugger.

To compare memTrace performance with hardware
watchpoint performance we configure the microbenchmark
with the first watchpoint at the 500,000 array element (i.e.,
memTrace needs to execute a large amount of memlets that
do not trigger a watchpoint). With one active watchpoint
the hardware watchpoint configuration executes in 52.8
seconds while the memTrace implementation uses 80.5
seconds, resulting in 52% overhead compared to the hardware
implementation. While hardware watchpoints support only up
to 4 simultaneous watchpoints memTrace supports unlimited
watchpoints at a constant overhead (10* watchpoints in 80.5
seconds and 10® watchpoints in 81.5 seconds). Even at 108
watchpoints the performance of memTrace remains stable.

Table 3 compares memTrace performance with the
performance of GDB software watchpoints with the first
watchpoint at the 1,000 array element. Even for 1 GDB
software watchpoint memTrace is 18,000x faster than software
watchpoints. For 100 GDB software watchpoints memTrace
is 167,000x faster. The prototype implementation of the
memTrace watchpoint memlet fully supports the remote serial
protocol of GDB and works as a fast drop-in replacement for
the GDB software watchpoints.

6.3 Memory overhead

Table 4 presents an analysis of the memory overhead for the
SPEC CPU2006 benchmarks when run natively and under the
control of the memTrace prototype implementation. The table
shows the peak amount of mapped memory of the benchmark.
This benchmark measures the number of mapped memory
pages, not the number of allocated memory pages. The allo-
cated memory pages are a subset of the mapped memory pages.

The memory overhead for binary translation only is low
with an average of 9.2 MB and a maximum of 12.7 MB.
Binary translation only needs few data structures (8 MB for
the mapping table plus data structures for the code cache,
signal handlers, and trampolines). These numbers show that

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 123

Benchmark NAT [MB]|ID [MB] Ovhd.|WP [MB] Ovhd.
400.perlbench 56524 57492 17%| 1142.16 102.1%
401.bzip2 628.27| 63676 14%| 126534 101.4%
403.gcc 84.05| 9674 15.1%| 186.92 122.4%
429.mcf 856.22| 864.64 1.0%| 1721.12 101.0%
445.gobmk 38.66| 48.66 259%| 89.76 132.2%
456 hmmer 21.07| 29.61 40.5%| 51.11 142.6%
458.sjeng 192.09| 200.64 4.4%| 393.17 104.7%
462.libquantum 114.02| 12244 74%| 236.78 107.7%
464 h264ref 81.00| 89.97 11.1%| 172.15 112.5%
471.omnetpp 11957 129.02 7.9%| 250.28 109.3%
473 astar 140.52| 149.00 6.0%| 289.96 106.3%
483 xalancbmk 329.77| 34042 32%| 673.82 104.3%
410.bwaves 891.57| 900.11 1.0%| 1792.19 101.0%
416.gamess 65531| 66531 1.5%| 1323.43 102.0%
433.milc 687.87| 69641 12%| 1384.78 101.3%
434.zeusmp 1136.98| 1146.00 0.8%| 2284.24 100.9%
435.gromacs 34.60| 4339 254%| 78.87 127.9%
436.cactusADM | 1017.70| 1026.80 0.9%| 2045.81 101.0%
437 leslie3d 141.02| 149.68 6.1%| 291.39 106.6%
444 namd 63.85| 72.52 13.6%| 137.12 114.7%
447 dealll 501.38| 510.89 1.9%| 101433 102.3%
450.soplex 509.26| 518.04 1.7%| 1028.18 101.9%
453.povray 2184 3110 424%| 54.44 149.3%
454 calculix 179.23| 18873 53%| 369.89 106.4%
459.GemsFDTD| 845.69| 85501 1.1%| 1702.32 101.3%
465.tonto 5391| 6446 19.6%| 12237 127.0%
470.1bm 42693| 43535 20%| 862.53 102.0%
482.sphinx3 5781 66.59 152%| 125.16 116.5%
Average 37127] 38047 2.5%| 75320 102.9%
Geo. mean 201.55| 219.56 8.9%| 413.58 105.2%

Table 4: Memory consumption in megabytes of the SPEC
CPU2006 benchmarks (NAT) and additional memory
consumption of different configurations of the memTrace
prototype implementation. ID represents a binary translation
only configuration.

the memory overhead for cross-ISA binary translation is low.

The last column of Table 4 shows the memory overhead
of the WP configuration. The amount of mapped memory
is roughly doubled due to the shadow memory region.

7 Related work

There are several areas of related work that are relevant for
lightweight memory tracing. Binary translation is needed to
dynamically weave the memlets into the executed application
code. The following sections discuss different systems for
binary translation and different systems that implement some
forms of memory tracing.

7.1 Binary translation

Binary translation enables late code modification to, e.g.,
instrument a binary application, to offer late code optimization,
or to execute an application on a different ISA than it was
originally compiled for.

Full-ISA emulation is too slow for real-world scenarios and
mostly used for evaluation of new hardware features. Efficient
binary translation is implemented using either table-based
approaches or IR-based approaches.

Same-ISA binary translation translates an application to the
same ISA (x86 to x86). A drawback of same-ISA translation
is the register pressure on x86. Only 8 general purpose
registers are available for x86 applications and only 6 or 7
registers are available for general computation (depending
on the calling conventions). Memlets used for memory tracing
need to execute additional computation for each memory
access, starving the register allocator even further.

IR-based binary translators translate the application by
using a traditional compiler approach. The binary translator
transforms code into an IR, adds the desired instrumentation,
and generates machine code for the desired platform.
Translation is either dynamic like in a just-in-time compiler or
static ahead-of-time. DynamoRIO [5], PIN [15], QEMU [3],
and Valgrind [18] are dynamic IR-based binary translators.
The IR-based approach enables compiler optimization to
produce high-quality code at some translation cost.

Dynamic table-based binary translators (e.g., HDTrans [25],
fastBT/libdetox [20, 21], or StarDBT [28]) use translation
tables to decode original instructions and to generate translated
instructions. The advantage is the low-overhead translation
speed combined with reasonable code quality.

StarDBT [28] and QEMU [3] are two binary translation
systems that support cross-ISA translation. StarDBT translates
x86 code to x64 code and QEMU translates (almost) any ISA
to (almost) any other ISA.

MemTrace is a cross-ISA table-based dynamic binary
translator that translates user-space applications from x86
to x64. The binary translator component offers near-native
performance. The StarDBT binary translator is similar
to our binary translator but uses two compilation stages
(baseline and optimized) while memTrace uses only one fast
table-based translation scheme. In addition, memTrace allows
the definition of user-defined memlets that may use fixed
registers to speed up memlet execution.

7.2 Memory tracing and watchpoints

Memory tracing allows the execution of memlets for each
memory access. A baseline memory tracing infrastructure
is needed to implement higher-level memlets like watchpoints,
or taint checking.

Greathouse et al. [12] present a case for unlimited
watchpoints and light-weight, hardware-assisted memory
tracing. They reason that additional hardware is needed to
achieve low overhead for unlimited watchpoints. MemTrace
shows that cross-ISA translation realizes low-overhead
memory tracing (and watchpoints) for x86 applications when
executed on modern processors that support x64 extensions.

Metric [16] is a memory tracing framework that collects
and stores selected memory access traces. Memcheck [17],

124 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

System Arch. Underlying BT Shadow memory Overhead

memTrace x86 to x64 | libdetox 1 byte per byte 2.0x for SPEC CPU2006

Libdft [14] x86 to x86 | PIN flexible 1.14x to 10x slowdown SPEC CPU2000
Minemu [4] x86 to x86 | dynamic BT, no SSE? | 1 byte per byte 2.4x for SPEC INT2006

PTT [9] x86 to x86 | QEMU 32-bit vector per byte 21.1x for compression benchmark

Saxena et al. [24] | x86 to x86 | static BT
Panorama [30] x86 to x86 | QEMU

Dytan [7] x86 to x86 | static BT 1 bit vector per byte
LIFT [23] x86 to x64 | StarDBT 1 bit per byte
Argos [22] x86 to x86 | QEMU

Xentaint [13] x86 to x86 | Xen and QEMU 1 bit per byte
Vigilante [8] x86 to x86 | static BT on start-up | 1 bit per 4k page
Taintcheck [19] | x86 to x86 | Valgrind

Suh et al. [26] Alpha HW extension

1 bit per byte
4 byte pointer per byte

1 bit per byte (phys. mem)

4 byte pointer per byte
1 bit per page/quad word/byte | 1.44% for SPEC CPU2000

1.9x (stack only) to 2.8x (SPEC INT95 subset)
20x on selected benchmarks

30x to 50x for gzip

1.7-7.9x, 3.6x for SPEC INT2000

“at least 16x overhead”

61.5x to 88.4x for micro-benchmarks

no numbers on performance overhead reported
1.5x to 40x

“Minemu internally uses the SSE registers and cannot support any SSE instructions in applications. Modern compilers use SSE instructions to speed up

memory transfers, for vectorization, and for floating point computation.

Table 5: Comparison of different taint checking and dataflow analysis systems.

Umbra [31], EDDI [32], and Dr. Memory [6] are four
frameworks for memory tracing that use same-ISA binary
translation to add hard-coded memlets for watchpoints.
Memcheck builds on Valgrind and reports an overhead of
22.2x for the SPEC CPU2000 benchmarks. Umbra, EDDI,
and Dr. Memory build on DynamoRIO. Umbra reports an
overhead of 2.33x for SPEC CPU2006 for memory tracing of
an x64 application; an example tool that extends Umbra with
a memlet that monitors thread’s memory accesses imposes
a 6.49x overhead for a set of benchmarks. EDDI reports an
overhead of 2.59x for O watchpoints and 3.68x for watching
the complete data region on the SPEC CPU2000 benchmarks
in the FI configuration. The PI configuration of EDDI only
reports on a subset of the SPEC CPU2000 benchmarks. Dr.
Memory reports a slowdown of 10.2x for the SPEC CPU2006
benchmarks. Umbra implements memory tracing without
additional memlets; memcheck, EDDI, and Dr. Memory add
hard-coded instructions into the executed application code
to check memory accesses for validity.

MemTrace improves on related work by offering
user-definable memlets that implement high-level memory
checkers and offers better performance than previous solutions:
memTrace reports an average overhead of 2.06x and a
geometric mean of 1.97x for tracing all memory accesses of
all SPEC CPU2006 benchmarks.

7.3 Taint checking and dataflow analysis

Taint checking and data flow analysis extend memory tracing
and analyse the flow of data inside an application. Every
memory cell and every register has an associated tag. Taint
checking uses a single taint bit per address while dataflow
analysis supports multiple different tags. Compared to
single-threaded approaches of other related work memTrace
fully supports memlets for concurrent threads.

Some of the systems in the following list use taint checking

or dataflow analysis as a technique in their system. Table 5
focuses on the taint checking or dataflow analysis component
of the presented systems.

MemTrace does not change the address space layout of
the original application, all data of the memlets is stored at
a higher location in the 64-bit memory space. This design
decision solves the problem of accesses to the shadow memory
by the application. For the shadow memory itself memTrace
uses 1 byte per byte, enabling threads to update the (shared)
shadow memory data structure concurrently without locking.
Only if memlets rely on bit-granularity then the programmer
must add a locking scheme to ensure correctness.

8 Conclusion

This paper presents memTrace, a technique for dynamic
lightweight memory tracing for unmodified binary applica-
tions. This technique adds shadow memory and state for each
memory address of an application and allows the execution
of user-defined memlets to inspect memory accesses.

The practical value of memTrace is demonstrated by the
implementation of two memlets: a memory checking memlet
that allows the debugging of memory errors and a memlet
that allows an unlimited number of watchpoints in a running
application. We evaluated the prototype implementation and
show that the overhead for SPEC CPU2006 is low with a
geometric mean of 1.97x and an average of 2.05x.

The open source release of the memTrace prototype is avail-
able at http://nebelwelt.net/projects/memTrace
and can be used to implement other memlets, e.g., for taint
checking, dataflow analysis, or control flow integrity checks.

Acknowledgments

We thank the anonymous reviewers for their comments,
Albert Noll for his comments on an early draft of this paper,
and Jonas Pfefferle and Tobias Hartmann for working on a
same-ISA version of a simple memory tracing infrastructure.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 125

References

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9

(10]

(1]

(12]

(13]

(14]

(15]

(16]

ADL-TABATABAI, A.-R., CIERNIAK, M., LUEH, G.-Y.,
PARIKH, V. M., AND STICHNOTH, J. M. Fast, effective code
generation in a just-in-time java compiler. In PLDI’98 (1998),
pp- 280-290.

ALPERN, B., BUTRICO, M. A., CoCCHI, A., DOLBY, J.,
FINK, S. J., GROVE, D., AND NGO, T. Experiences porting
the jikes rvm to linux/ia32. In Java Virtual Machine Research
and Technology Symposium (2002), pp. 51-64.

BELLARD, F. QEMU, a fast and portable dynamic translator.
In Proc. USENIX ATC (2005), pp. 41-41.

BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: the
world’s fastest taint tracker. In RAID’11: Proc. 14th conf. on
Recent Advances in Intrusion Detection (2011), pp. 1-20.
BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
infrastructure for adaptive dynamic optimization. In CGO 03
(2003), pp. 265-275.

BRUENING, D., AND ZHAO, Q. Practical memory checking
with dr. memory. In CGO’11 (2011), pp. 213-223.
CLAUSE, J. A., L1, W., AND ORSO, A. Dytan: a generic
dynamic taint analysis framework. In Intl. Symp. on Software
Testing and Analysis (2007), pp. 196-206.

COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.
1. T., ZHOU, L., ZHANG, L., AND BARHAM, P. Vigilante:
End-to-End Containment of Internet Worms. In SOSP’05
(2005), vol. 39, pp. 133-147.

ERMOLINSKIY, A., KATTI, S., SHENKER, S., FOWLER,
L. L., AND MCCAULEY, M. Towards practical taint tracking.
Tech. Rep. UCB/EECS-2010-92, EECS Department, Univer-
sity of California, Berkeley, Jun 2010.

GDB. GDB remote serial protocol. http://sourceware.
org/gdb/onlinedocs/gdb/Remote-Protocol.html,
2010.

GLOGER, W. Dynamic memory allocator implementa-
tions in linux system libraries. http://www.dent.med.
uni-muenchen.de/~wmglo/malloc-slides.html, May
1997.

GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T.
A case for unlimited watchpoints. In ASPLOS’12 (2012),
pp. 159-172.

Ho, A., FETTERMAN, M., CLARK, C., WARFIELD, A.,
AND HAND, S. Practical taint-based protection using demand
emulation. In EuroSys’06 (2006), pp. 29-41.

KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND
KEROMYTIS, A. D. libdft: practical dynamic data flow track-
ing for commodity systems. In VEE’12 (2012), pp. 121-132.
LUk, C.-K., CoHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WwooOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI’05 (2005), pp. 190
200.

MARATHE, J., MUELLER, F., MOHAN, T., MCKEE, S. A.,
DE SUPINSKI, B. R., AND Y00, A. Metric: Memory tracing

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

via dynamic binary rewriting to identify cache inefficiencies.
ACM Trans. Program. Lang. Syst. 29, 2 (Apr. 2007).
NETHERCOTE, N., AND SEWARD, J. How to shadow every
byte of memory used by a program. In VEE’07 (2007), pp. 65—
74.

NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In PLDI’07
(2007), pp. 89-100.

NEWSOME, J., AND SONG, D. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In NDSS’05 (2005).

PAYER, M., AND GROSS, T. R. Generating low-overhead
dynamic binary translators. In Proc. 3rd Annual Haifa Experi-
mental Systems Conf. (2010), SYSTOR ’10, ACM, pp. 22:1-
22:14.

PAYER, M., AND GROSS, T. R. Fine-grained user-space
security through virtualization. In VEE’11: Proc. 7th Int’l Conf.
Virtual Execution Environments (2011), pp. 157-168.
PORTOKALIDIS, G., SLOWINSKA, A., AND Bos, H. Argos:
an emulator for fingerprinting zero-day attacks. In EuroSys’06
(2006).

QIN, E.,, WANG, C., L1, Z., KM, H.-s., ZHOU, Y., AND WU,
Y. Lift: A low-overhead practical information flow tracking
system for detecting security attacks. In MICRO’06 (2006),
pp. 135-148.

SAXENA, P., SEKAR, R., AND PURANIK, V. Efficient
fine-grained binary instrumentationwith applications to taint-
tracking. In CGO’08 (2008), pp. 74-83.

SRIDHAR, S., SHAPIRO, J. S., AND BUNGALE, P. P. HD-
Trans: a low-overhead dynamic translator. SIGARCH Comput.
Archit. News 35, 1 (2007), 135-140.

SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure program execution via dynamic information flow tracking.
In ASPLOS’ 04 (2004), pp. 85-96.

VMWARE.
virtualization. http://www.vmware.com/files/pdf/
software_hardware_tech_x86_virt.pdf, 2009.
WANG, C., Hu, S., KiM, H.-S., NAIR, S., BRETERNITZ, M.,
YING, Z., AND WU, Y. Stardbt: An efficient multi-platform
dynamic binary translation system. In Advances in Computer
Systems Architecture, vol. 4697. 2007, pp. 4-15.

WIMMER, C., AND FRANZ, M. Linear scan register allocation
on ssa form. In CGO’10 (2010), pp. 170-179.

YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS’07 (2007), pp. 116—
127.

ZHAO, Q., BRUENING, D., AND AMARASINGHE, S. Umbra:
efficient and scalable memory shadowing. In CGO’10 (2010),
pp. 22-31.

ZHAO, Q., RABBAH, R., AMARASINGHE, S., RUDOLPH, L.,
AND WONG, W. How to do a million watchpoints: Efficient
debugging using dynamic instrumentation. In CC’08.

Software and hardware techniques for x86

126

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Flash Caching on the Storage Client

David A. Holland, Elaine Angelino, Gideon Wald, Margo I. Seltzer
Harvard University

Abstract

Flash memory has recently become popular as a caching
medium. Most uses to date are on the storage server side.
We investigate a different structure: flash as a cache on
the client side of a networked storage environment. We
use trace-driven simulation to explore the design space.
We consider a wide range of configurations and policies
to determine the potential client-side caches might offer
and how best to arrange them.

Our results show that the flash cache writeback policy
does not significantly affect performance. Write-through
is sufficient; this greatly simplifies cache consistency
handling. We also find that the chief benefit of the flash
cache is its size, not its persistence. Cache persistence of-
fers additional performance benefits at system restart at
essentially no runtime cost. Finally, for some workloads
a large flash cache allows using miniscule amounts of
RAM for file caching (e.g., 256 KB) leaving more mem-
ory available for application use.

1 Introduction

Recently flash memory has become popular not only as
a storage medium but also as a caching layer in high-end
storage systems. The typical scenario has been to com-
bine flash with disks, either locally or on a file server.
We look at the opposite case: flash combined with the
operating system’s buffer cache, on the client side of a
networked storage system.

We consider compute servers running storage-
intensive workloads that are themselves clients in a net-
worked storage environment. There are many examples
of such servers: application servers in three-tier web ap-
plications, compute servers in data centers, render farms
used in animation, and compute nodes in scientific com-

putation clusters all fit this model. Our analysis explores
a range of design issues arising from this configuration:

e Must the flash cache be managed together with the
file system RAM cache or can it act as an indepen-
dent layer below it?

e Should the RAM cache be a proper subset of the
flash cache or should the two caches be treated as a
single unified cache to avoid duplication?

e How large must the flash cache be relative to RAM?

e What writeback policies should be used from RAM
to flash and from flash to the file server?

e Should a flash cache be persistent and recoverable?

e How critical is consistency across multiple caches?

This design space is already enormous, so we put aside
other relevant but secondary considerations, such as
cache replacement policy (we use LRU) and wear lev-
eling algorithms. We assume our flash device comes
equipped with a flash translation layer that handles wear
leveling, erase cycles, and other considerations that arise
if one uses raw flash chips directly.

We explore this design space via trace-driven simula-
tion, which allows us to examine the behavior of an ex-
tensive range of configurations and cache sizes. We vali-
dated our simulator and traces against actual workloads,
but use stochastically generated workloads for our anal-
ysis, because we could not find real-world traces with
workloads large enough to stress the flash.

Our results show that all simple writeback policies,
short of synchronously writing from RAM all the way
through to the file server, produce comparable results.
This means that flash caches can be write-through, which
simplifies cache consistency handling. We also find the
primary benefit of flash caching comes from its density.
A volatile cache medium available for a reasonable price
in similar sizes would also be attractive.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 127

In the next section, we briefly discuss the various ways
flash is being used to boost storage performance. We then
outline the flash cache design space in Section 3. We de-
scribe our traces in Section 4 and our simulator in Sec-
tion 5. We discuss how we validated our tools and models
in Section 6 and then present the results of our simulation
study in Section 7. Our conclusions are in Section 8.

2 Related Work

Flash is widely used in high end storage servers [2, 3]
and more recently in hybrid drives that package flash and
spinning media inside a single device [18, 20]. The Net-
App FlashCache[17] is a device that transparently sits in
front of a storage server, using the persistent cache to
reduce latency. FlashTier [19] is a disk controller with
an on-board persistent flash cache. It explores the pos-
sibilities of using a custom flash translation layer opti-
mized for caching rather than storage. All of these so-
Iutions place flash on the storage side of a network (or
local SATA), combining flash with disk drives. Our work
examines flash on the client side, combining flash with
the operating system buffer cache.

NetApp’s Project Mercury [6] is a client-side flash
cache that avoids explicit integration with the operating
system. It is a block-level cache that can be deployed
in various ways: a hypervisor filter driver, an OS filter
driver, an application cache, or a proxy cache for net-
work storage protocols. Mercury is one point in the de-
sign space this study explores. In Mercury, RAM stores
a proper subset of the data stored in the flash cache, the
writeback policy from RAM is the operating system’s,
and the writeback policy from flash is write-through.

Microsoft’s ReadyBoost [15] is a software solution in
recent Windows releases that uses a standard flash de-
vice as an extension to memory for random read caching.
Windows gradually fills the flash cache with data and
then services random reads from that cache, when doing
so improves performance.

Recently, Koller et al. [11] experimented with a range
of more sophisticated writeback policies for a flash
cache. They found (as we did) that synchronous write-
through all the way to disk is slow. Their work is oth-
erwise complementary to ours as it explores write-back
policies more sophisticated than those we considered.
(They found, for example, that their policies can increase
write throughput by improving the batching of back-end
write requests; our simulator does not model this effect.)
One key difference is that they were working in an envi-
ronment where applications wait until writes propagate
all the way to disk. We concentrate on a more conven-

tional environment where writes return to the application
once the data is written into the operating system’s buffer
cache. As we will see, this hides the write latency of the
underlying storage tiers except under heavy write traffic.
We also assume a high-performance filer with sophis-
ticated read-ahead, nonvolatile cache, and large server
memory at the back end, rather than a simple disk array.

3 Flash Cache Design Space

We model an application server environment consist-
ing of one or more compute servers (“hosts”) and a file
server (“filer”) connected by private network segments.
Each host runs one or more applications, involving one
or more threads of execution. Each host has cache space
that is partially RAM and partially flash. As previously
mentioned this environment reflects a number of real-life
situations. We consider storage-intensive workloads.

We now address the design issues from Section 1.

3.1 Flash-RAM Integration

We begin by asking whether flash cache support should
be integrated into the operating system’s buffer manager
or if it performs acceptably as an independent entity, as
in Mercury. The former case requires substantial kernel
modifications. The latter case allows deploying the flash
cache in (or as) a self-contained device driver.

The need for integration depends on the level of co-
ordination required between the RAM and flash caches.
If accessing the flash via ordinary block reads and writes
performs adequately, the flash cache can be independent.
On the other hand, if special policies are required, or ex-
tra metadata must be provided to the flash cache, then
kernel support is required.

3.2 Placement

Our second design question is whether the RAM cache
can be a subset of the flash cache. This is effectively
a choice of block placement policy. The straightfor-
ward approach is to structure the flash cache as an addi-
tional independent tier of cache below the RAM cache.
The flash cache services the RAM cache and the file
server services the flash. Newly referenced blocks are
first placed in flash, then into RAM; the RAM cache is
always a subset of the flash cache. This policy wastes
some of the capacity of the flash, but is relatively simple.

Alternatively, one could use two separate layers of
cache, but choose some more elaborate policy; for ex-
ample, one might place blocks initially into RAM and

128 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

then migrate less recently (or less frequently) used blocks
down to flash. Another option is to treat the two stores as
a single unified cache and come up with some policy for
initial placement and perhaps also internal migration.
The basic question is whether the simple approach is
good enough. We would also like to estimate how much
better (if at all) an alternate placement scheme performs.

3.3 Cache Architecture

We handle integration and placement as a single choice
of cache architecture. Because the number of possible
fill and migration policies is near infinite, we chose three
simple alternatives to implement and test. Other options
are certainly possible and may be a worthwhile subject
of future research. These are the three architectures:

e Naive. The flash cache is treated as an indepen-
dent cache layer beneath the RAM cache; the RAM
cache is always a subset of the flash cache, requiring
no integrated management.

e Lookaside. Based on Mercury [6], writes go di-
rectly from RAM to the file server instead of being
routed through the flash. The flash is updated after
the file server and never contains dirty data. Appli-
cations see persistence guarantees identical to a sys-
tem without flash. The RAM cache is a subset of the
flash cache, requiring no integrated management.

e Unified. RAM and flash are managed together using
a single LRU chain. Data blocks are placed into the
least recently used buffer, whether RAM or flash,
and are never migrated. No attempt is made to prefer
RAM to flash. Here the RAM cache is not a subset
of the flash, so integrated management is needed.

3.4 Relative Size

What size does the flash cache need to be relative to the
RAM cache to be effective? We use 8 GB as the baseline
RAM size and examine flash sizes ranging from 8 GB to
128 GB (1x to 16x RAM). We use 64 GB as the baseline
flash size based on the old rule of thumb that each succes-
sive layer of cache should be roughly an order of mag-
nitude larger. (Note that the RAM size actually reflects
the amount of RAM available for file system caching.
For many real-life workloads this is substantially smaller
than the total amount of RAM in the machine.)

3.5 Flash Writeback Policy

We next consider the question of when dirty blocks move
from flash to the file server. We chose four policies:

e write-through - data is immediately written to the
server, blocking the requester until completion.

e asynchronous write-through - data is immediately
written to the server without blocking the requester.

e periodic - dirty data remains in the cache until a
syncer thread flushes the data back to the server.

e none - dirty data remains in the cache until evicted
for capacity reasons.

We run the periodic case with syncer periods of 1, 5,
15, and 30 seconds, resulting in seven different policies.

3.6 RAM Writeback Policy

We now consider RAM writeback policies. Since (at
least for the naive architecture) these writebacks go to
the flash cache, it does not necessarily follow that the
standard behavior of file system RAM caches is correct.

We tested the same seven writeback policies that we
used for flash writeback, yielding 49 different policy con-
figurations for each of the three architectures.

We did not try other more elaborate policies (such as
trickle-flushing, writing back asynchronously after a de-
lay, etc.) for either flash or RAM, because we found that
nearly all the policy combinations perform identically.

3.7 Cache Persistence

Volatile RAM caches are emptied by system restart and
are typically left to refill naturally. However, a cache kept
in persistent memory can potentially be recovered after
a crash, to avoid the performance degradation that oc-
curs when refilling the cache [12]. The Rio File Cache
research prototype demonstrated the potential of such ap-
proaches as early as 1996 [7]. Today, the NetApp Mer-
cury cache exploits persistence to avoid performance
degradation after reboot [6], and high end file servers
typically use battery-backed memory similarly to accom-
plish such warm restarts [1, 2]. With flash caches, cached
data can survive a restart, but the system must take pre-
cautions to ensure that the data is valid.

Our results show that the price/performance of flash
makes it attractive simply as a larger cache. However,
taking advantage of its persistence can provide additional
benefit. There are three chief obstacles: First, cache con-
sistency needs to be maintained; this is discussed in the
next section. Second, the cache indexing structures must
themselves be kept in the flash and kept up to date and
consistent with the data blocks in the flash. This creates
additional flash traffic and additional overhead. A naive
implementation adds an additional flash write latency ev-
ery time the flash cache is updated; a clever implementa-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 129

tion can batch those writes. Third, if the crash was caused
by corruption in the flash itself, a simple reboot may not
be sufficient to restore the system to a running state.

In the lookaside architecture blocks in the flash are
never dirty, so the system cannot crash with dirty blocks
that must be recovered and written back to the file server.

3.8 Cache Consistency

Normally one writes updated blocks in the RAM cache
back to the file server quickly, because RAM is volatile.
This motivation disappears with a persistent cache. If the
flash cache is recoverable, as discussed in the previous
section, cache writebacks can be delayed. Some writes
will then die in the cache, reducing network contention.

However, for shared data, it also complicates cache
consistency handling. Data not written back to the file
server right away must still be reported back to the
server so other hosts do not read stale versions. And, of
course, unmodified data retained in the cache must also
be tracked in case some other host updates it.

Cache consistency is not a new problem [9, 16, 21] and
does not need a new solution; however, two new issues
arise. The size of flash caches may affect the scalability
of consistency protocols; detailed modeling of this effect
is beyond the scope of our work. Furthermore, a recover-
able cache is unavailable during a reboot; it cannot flush
dirty data or participate in cache consistency protocols
until afterwards. As reboots typically take at least min-
utes, this may induce unacceptable delays.

We concentrate primarily on non-shared data, e.g.,
disk images provided to clients over a SAN. We touch
briefly on cache consistency only to quantify the mag-
nitude of the problem. The simulator invalidates stale
copies of blocks instantly (using global knowledge)
when a new version is first written into a cache. This
exposes the overhead caused when these blocks must
be fetched again later. However, we only count invali-
dations; we do not model the overhead of cache consis-
tency traffic, nor do we adopt any particular real-world
cache consistency model. This information gives design-
ers a basic overview of the circumstances that arise with
the much larger caches that flash allows.

4 Traces

For our trace-driven simulation, we use block-level
traces containing read and write operations. Each oper-
ation identifies a file and a range of blocks within that
file. Each operation also carries a thread ID and host ID.

During development and validation, we used traces
from the SNIA repository and the Mercury traces, but
for our analysis we use synthetic traces. Adequately large
real traces are, by and large, not available; when working
with a 128GB flash device, we need a trace that churns
through enough data to fill it and then work with it for
long enough to access plenty of data that both is and is
not in the original fill. The largest trace for which we
present results moves roughly 2.5 TB of data, all told;
we were unable to locate any real traces this large.

We wrote a trace generator to produce large traces with
characteristics similar to real traces. The trace generator
starts from a list of files and file sizes from the Impres-
sions file system generator [4]. It samples this file server
model to produce working sets, then samples these to
produce I/O requests. A portion of the I/O requests are
sampled instead from the whole file server. The distri-
bution of I/Os among hosts and threads is uniform; the
distribution of I/Os among files (and selection of files
for working sets) is weighted by popularity, where small
integer popularities are generated from a Zipfian distri-
bution. The distribution of I/O sizes (and selection of
file subregions for working sets) is Poisson, modified by
clamping to the filesize. The distribution of I/O starting
points (and file subregion starting points) is uniform.

All traces used in the results presented are based on
the same 1.4 TB file server model we generated with Im-
pressions. (This is larger than any of the cache sizes we
use.) They use 4K blocks and have 80% of the I/Os com-
ing from the working set. They also use eight threads per
host. They grind through a total volume of data that is, in
all cases, four times the working set size, half of it being
devoted to a warmup period for which statistics are not
collected. This ensures the cache fills thoroughly. (We
checked the results of changing the working set percent-
age and the number of threads; these did not affect the
conclusions about our key questions.)

The two traces we use as a baseline use one host, one
working set, working set sizes of 60 and 80 GB (for use
with a 64 GB flash), and 30% writes. For many of the
experiments we vary one or more of these parameters.

5 Simulator

As discussed earlier, we model an environment where
some number of computation servers (“hosts”) share a
single networked file server. We wrote a trace-driven
simulator for this environment.

The simulator issues I/O requests from the trace as
quickly as possible given that each application thread can
have only one I/O in progress. I/O requests may stall at

130 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

various points in the system; all executions are fully in-
terleaved. We do not try to produce realistic application-
level I/O schedules; not only is scheduling I/O traces
a known hard problem [10, 14, 22], but flash substan-
tially changes the timing. Timestamps taken from envi-
ronments without flash would have dubious value.

We model the caches in detail; each is a single LRU
chain of blocks. We treat the flash itself as a block device;
that is, we write blocks to it and read them back. We as-
sume a flash translation layer but do not model it directly.
We use average per-block access times derived from test-
ing real flash devices. (See Sections 6.1 and 6.2.)

The network is modeled less exactly: each segment
can carry one packet at a time, and each I/O request uses
one packet in each direction. Each packet is assumed to
incur a fixed latency (for headers, block information, and
so forth) plus a small amount of additional time per bit
of block data transferred.

We do not attempt to model the caches or prefetch-
ing behavior of the filer directly. Many man-years of ef-
fort have gone into providing high-end file servers with
clever and aggressive caching logic, and modeling this is
irrelevant to the main goals of this work. Instead we use
a simple model: a “fast” latency for cache hits, a “slow”
latency for misses, and a prefetch success rate that deter-
mines what fraction of reads are fast. (Which reads are
fast is random. Writes are buffered and always fast.)

We do not model application overhead, user-kernel
transitions, hypercall delays, processing latency in the
nework stack, etc. Most of these are invariant under
caching or can be incorporated elsewhere.

6 Validation

We validate two parts of our system that could produce
fallacious results if not done properly. First, we validate
our simulator against data using NetApp’s Mercury flash
cache. Second, we validate that average read/write laten-
cies for our device reasonably approximate actual flash
latencies.

6.1 Simulator Validation

We validated our simulator against NetApp’s Mer-
cury [6], a hardware implementation of a client-side
flash cache. Working with the Mercury group, we took
four days of traces from a NetApp Windows laptop and
played them back both on their hardware and on our sim-
ulator. These traces were collected below the file system,
i.e., under the buffer cache, so we played them back di-
rectly through a 32GB flash cache. (In our simulator, that

SSD access latency as a function of time
1000 T T T T

T 1 T
Read latency +
Write latency X

Latency (in us)

1 0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
Cumulative 1/Os performed (millions)

Figure 1: Flash device read (top) and write (bottom) latency;
60GB working set workload on a 58GB device. Each point is
the average of 10,000 block 1/Os.

means we set the RAM cache size to zero.)

We debugged the simulator and adjusted our timing
models as necessary until the I/O throughput and laten-
cies seen above and below the flash cache, as well as
accessing the flash device, plus the cache hit rates, all
or nearly all matched within 10%. Many of the statistics
matched more closely. A perfect alignment is not possi-
ble, because (besides the inherent limitations of simula-
tors) Mercury is not structured identically to the simula-
tor. The simulator also does not account for an additional
application-level or other systemic overhead of roughly
10% seen in the end-to-end run times.

These measurements gave us confidence that the sim-
ulator accurately models the system behavior and that its
results are meaningful.

6.2 Flash Modeling Validation

We worried that average write latencies might not ade-
quately model the behavior of a real device in the pres-
ence of flash erase cycles. We bought two low-end con-
sumer grade SSDs and evaluated their latency behavior.

We modified the simulator to log I/Os to the flash as
it ran and captured the results for a variety of workloads.
Then we replayed these I/Os to the SSDs and recorded
the actual read and write latencies. We also tried fully
random reads and writes with a read/write mix similar to
that found in the simulator logs.

We found three things of possible interest. First, while
both devices exhibited high variance in their access la-
tency, this variance is short-term; across a group of
10,000 to 100,000 block accesses (much less than the
length of our traces) the variance is high, but from group

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 131

to group the average behavior is quite reasonable. Sec-
ond, and perhaps of more interest, both devices main-
tained a single average write latency from beginning to
end across essentially all the workloads. This included
workloads with up to 90% (application) writes. Only
the read latency fluctuated significantly over time as
the device filled. We observed a weak relationship be-
tween higher write volumes and worse read performance;
whether this is due to erase cycles or caching or some
other internal phenomenon is anyone’s guess.

Third, the read performance replaying the simulator
logs is much better than the read performance doing
purely random I/Os. Caching workloads are not random.

Figure 1 shows a scatter plot of the read and write
latencies against time for a typical workload run. Each
point is the average of 10,000 block I/Os.

Our conclusion was that a single average access la-
tency is fine for modeling writes, and viable, though not
ideal, for reads. However, our experience with flash de-
vices is that each model is different, exhibiting its own
average latencies and behavioral quirks. Fortunately the
system performance does not appear to be highly sensi-
tive to flash performance; see Section 7.7.

7 Results

We chose a per-block RAM access time of 400 ns, corre-
sponding to roughly 10 GB/sec memory bandwidth. An
internal limitation of the simulator restricts it to integer
multiples of 100 ns, so this speed roughly reflects the 10-
12 GB/s expected (and observed on an Intel Core i7 [13])
bandwidth of DDR3 RAM.

We used the performance data from validating against
Mercury to choose timing models for the flash and the
combined network and file server accesses. We then
picked latencies loosely corresponding to a gigabit net-
work for the network and attributed the rest of the com-
bined network and file server times to the file server. Ta-
ble 1 summarizes the timing parameters.

In evaluating possible configurations, we use the la-
tency experienced by the application as the governing
metric. Although the simulator captures a variety of other
metrics (including throughput and latencies at every level
of the stack), we use those only to explain behavior rather
than to evaluate policies.

7.1 Architecture and Writeback Policy

We begin our analysis by evaluating our naive, looka-
side, and unified architectures and how they are affected
by the 49 combinations (seven each for RAM and flash)

’ Parameter \ Value ‘
RAM read 400 ns / 4K block
RAM write 400 ns / 4K block
Flash read 88 us /4K block
Flash write 21 us /4K block
Network base latency 8.2 us / packet
Network data latency 1 ns / bit
File server fast read 92 us /4K block
File server slow read 7952 us /4K block
File server write 92 us /4K block
File server fast read rate | 90%

Table 1: Timing Model Parameters

of writeback policies. Identifying the promising config-
urations from among the 147 possibilities allows for a
more focused comparison in the rest of the evaluation.

We used the two baseline traces described in Section 4.
We ran these traces on the corresponding baseline simu-
lator configuration: 8 GB of RAM and 64 GB of flash.

Figure 2 shows the average read and write latency seen
by the application across all 49 policies for the three dif-
ferent architectures. We show the 80 GB workload; the
60 GB graphs are nearly identical.

Cursory inspection of the figures reveals the first
important result: excepting policies that result in syn-
chronous writes to the filer (synchronous or none) the
writeback policy does not matter. The “none” policy
leads to synchronous evictions once the cache fills. When
the RAM policy allows this effect in the flash cache to
show through to the application, as seen in the front left
and right corners of the write latency graph, multiple
threads doing evictions contend for the network, convoy,
and slow down to (less than) the speed of the file server.

While this result initially surprised us, it is entirely
reasonable: flash caches are so large that any reason-
able writeback policy maintains an ample supply of clean
blocks to evict and replace; the latency exposed above the
flash cache is never greater than the flash write latency.

For the application to observe greater latency, it would
have to sustain a write bandwidth greater than the write-
back bandwidth to the file server for sufficiently long
to fill many gigabytes of flash with dirty blocks. While
workloads exhibiting this behavior probably exist, we ex-
pect them to be rare. Furthermore, upon filling the flash,
write latency will largely revert to that of the file server.
This produces the same effect as having no flash cache.

Based on this exploration, we use one policy combi-
nation for most of the remaining analysis: a one-second
periodic RAM writeback policy (as this most closely
matches real system behavior) and asynchronous write-

132 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Read Latency (80 GB)

naive
lookaside
unified

= N W b
o © © o
S © © o

Latency (in us)

o

Write Latency (80 GB)

naive
lookaside ------
unified

n
o
o

100

Latency (in us)

Figure 2: Application read and write latency on the 80 GB working set as a function of RAM and flash writeback policies.

through for the flash cache. Asynchronous write-through
seems like the best overall choice for the flash, as it
is equivalent to synchronous write-through for consis-
tency and integrity purposes. Meanwhile it avoids expos-
ing synchronous file server writes if the RAM cache be-
comes synchronous through dysfunction, e.g., thrashing.

Figure 2 also shows the unified architecture produces
the lowest read latencies while the naive and lookaside
architectures produce the lowest write latencies. The read
latency results are unsurprising, because the effective ca-
pacity of the unified architecture is greater: it is the sum
of the RAM and flash sizes (72 GB) instead of just the
flash size (64 GB). When the working set fits in the
flash (60 GB), the difference is tiny, only 3.5%. How-
ever, when the working set falls out of the flash (80 GB),
we see that the larger effective cache size produces a sig-
nificant benefit, improving read latency by as much as

Read Latency as a function of Working Set Size

Latency (in us)

8G RAM, 64G flash, Naive —— |
8G RAM, 64G RAM, Naive --—+--
8|G RAM, §6G RAM‘ Unified ;B
0 100 200 300 400 500 600 700
Working Set Size (in GB)

100 |

Figure 3: Application read latencies comparing effective cache
sizes. See discussion in text.

20%. Figure 3 illustrates in more detail how the effective
total cache size affects performance. For two of the cases
in this graph we pretended that the flash has the same
access latency as RAM. This allows distinguishing the
structural effects from the latency properties of the cache
materials. Although it is difficult to see in the graph, the
performance of the RAM-only unified architecture with
8 and 56 GB caches is identical to that of the RAM-only
naive architecture with 8 and 64 GB caches. The differ-
ence between that line and the one above it reflects the
effect the slower flash has on read latency.

Returning to the policy comparison in Figure 2, on the
write side, the naive and lookaside architectures perform
at RAM speed, because all writes go directly to RAM
(except for very high write rates). The unified architec-
ture also exposes flash latency by nature; since only 1/9
of the data is placed in RAM and the rest in flash, on
average we see 8/9 of the 21 us flash latency.

Stepping back, these results suggest that for read per-
formance, bigger is better and that for write performance,
the key is to avoid exposing applications to the flash tim-
ing. If we assume a given cost budget, an attractive strat-
egy is to use only enough RAM to act as an effective
write buffer and then buy as much flash as the budget al-
lows. We explore this option in Section 7.5. Unless oth-
erwise specified, we use the naive architecture in the re-
maining analyses, as it hides the flash write latency and
offers the simplest implementation alternative.

7.2 Flash vs. No Flash

Having settled on policies, we now investigate the ad-
vantage the flash cache offers. To this end we ran a range
of working set sizes, ranging from 5 GB to 640 GB, on
three sizes of flash cache (32 GB, 64 GB, and 128 GB)

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 133

Read Latency as a function of Working Set Size
1000 T T T T T T

900

800 F A 0 eemmmmmmTTTTTTTTTTT

700
600
500
400
300
200

Latency (in us)

No flash —+—
32 GB flash ----

100 64 GB flash ---%-- =
128 GB flash &
O 1 1 1 1 1 1
0 100 200 300 400 500 600

Working Set Size (in GB)

Figure 4: Read latencies as a function of working set size
across a variety of flash sizes. As expected, when the work-
ing set fits in the flash, read latency improves dramatically over
a RAM-only system.

as well as with no flash cache. The RAM cache size is 8
GB. The working set sizes range from smaller than RAM
to substantially larger than the largest flash cache.

Figure 4 shows that even when the working set far ex-
ceeds the flash size, the flash improves performance sig-
nificantly, because the difference between flash perfor-
mance and filer performance is substantial. In all con-
figurations, the RAM hit rate is only 3.4%, but the flash
hit rate varies from O (with no flash) to 47% in the 128
GB configuration. Although the filer fast read time (92
Us) is quite close to that of flash (88 us), the two orders
of magnitude difference between fast and slow filer read
times is significant, even with the 90% fast filer read rate.
As we shall see in the next section, the filer’s ability to
read ahead is critical in any configuration. The write la-
tency figures from this experiment are not interesting: all
writes see the RAM write latency of 0.4 us.

7.3 Filer Read-Ahead

An effect observed in Mercury [6] suggests that a large
cache reduces the file server’s ability to prefetch data. We
cannot yet quantify this effect, but we can bound it. In
Figure 5 we show the spread between an 80% prefetch
rate, which we believe to be a reasonable lower bound,
and a 95% prefetch rate, which serves as a plausible up-
per bound. The graph shows the spread for the 64 GB
flash, as well as for no flash, using the same range of
working set sizes used in the previous section.

The application read latency is dominated by the cost
of file server misses, which cost milliseconds. In an ideal
world, installing the flash cache would not affect the file

Read Latency as a function of Working Set Size
2400 T

No Iflash; 80"/:. prefetch :ate #
No flash; 95% prefetch rate -->--
64 GB flash; 80% prefetch rate ---4-- |

2000 |- 64 GB flash: 95% prefetch rate -

1600

1200

Latency (in us)

800

400

0 100 200 300 400 500 600
Working Set Size (in GB)

Figure 5: Application-level read latency for different workload
sizes and two filer prefetch rates. Comparing the lines of similar
shape demonstrates the dramatic effect that filer prefetching has
on the resulting latency.

server’s prefetch ability. Then the flash cache is bene-
ficial for almost all workload sizes, as can be seen in
the figure. In a pessimal world, the prefetch rate might
drop substantially; in this case the cache is beneficial for
a much narrower range of workloads: those that fit in
flash but not in RAM. This can be seen in Figure 5 as
the pocket between the lower (better) no-flash curve and
the upper (worse) with-flash curve.

Avoiding the pessimal world is an engineering chal-
lenge and a critical issue for the adoption of flash
caching. In the presence of a flash cache, the filer cache
transitions from a second level cache to a third level
cache; its prefetching and replacement policies must
therefore adapt accordingly [5, 8, 23].

However, in environments where the back end is not a
filer but a plain disk array [11], the prefetch rate will be
negligible and a flash cache is a huge win.

7.4 Flash Cache Size

We next examined the converse case: given a fixed work-
load, what happens as we increase the flash cache size.
As expected, the read latency decreases as a greater por-
tion of the working set falls in the cache until the flash
cache is large enough to capture the entire working set,
at which point the read latency is that of flash. As there
is nothing unexpected in these results, we have omitted
the corresponding graphs.

134 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Read and Write Latency as a function of RAM Size (60 GB working set)
1

30 T T T ™ 300
Read (p1) —+—
Read (a) --%--
o Write (p1) ---%--
% Write (a) & 250
—_ S S e —
S 20F & 200 3
£ £
) g
§ 15 - 150 §
© ©
- pa
Q e
£ 10 4 100 §
= &
5 - 50
0 0

0 64K M 16M 256M 4G
RAM Size (log scale, except for 0 which really means 0)

Read and Write Latency as a function of RAM Size (80 GB working set)
30 T T ™1 500

Read (pl1) —

Read (a) --%--
25 | Write (p1) ---%--

Write (a) -8~ = 400
20 |

Write Latency (in us)
Read Latency (in us)

0 64K M 16M 256M 4G
RAM Size (log scale, except for 0 which really means 0)

Figure 6: Application read and write latencies with small RAM
cache sizes. The (a) and (p1) notations in both graphs refer to
the RAM write-back policy: asynchronous write-through and
1-second periodic respectively. Surprisingly, a small (256 KB)
cache achieves performance comparable to much larger ones.

7.5 No RAM Cache

One intriguing possibility suggested by the previous re-
sults is to dispense with the RAM cache entirely. We run
the baseline workloads with a fixed 64 GB flash cache
and RAM cache sizes ranging from zero to the baseline
8 GB. We run these with both the asynchronous write-
through RAM policy (a) as well as the default 1-second
periodic writeback (p1) we chose above.

Figure 6 shows the application read and write latencies
for the 60 GB and 80 GB working sets, respectively. The
X axis is the base 2 log of the RAM size or zero for none.

The no-RAM configuration does not work well, but it
is surprising how well a relatively small (e.g., 64 MB)
RAM cache performs. If we use the asynchronous write-
through policy, a tiny 256 KB is sufficient as a write
buffer. For the smallest caches the periodic syncer does
not run often enough, so the RAM cache fills with dirty

Read and Write Latency as a function of RAM Size (5 GB working set)

30 T T T T 1 300
Read (p1) —+—
Read (a) --%--
- Write (p1) ---%--

25 | e a) 250
0 @
S 20 B 200 2
£ <
> >
g g
E 15 - 150 8
© ©
— -
jo} v o
£ 10 ' -4 100 §
3 &

5 *.... 4 50

o
0 o O = S - W
0 64K ™M 16M 256M 4G

RAM Size (log scale, except for 0 which really means 0)

Figure 7: Application read and write latencies with small RAM
cache sizes and a small workload.

blocks and performance drops.

The somewhat startling conclusion is that with a large,
cheap flash cache, and a workload much larger than
RAM, we can allocate minimal RAM (large enough to
act as a speed-matching buffer) to file system caching,
leaving the rest of memory available for application or
operating system use!

This was tantalizing, so we tried the small RAM con-
figuration on RAM-sized workloads. Figure 7 shows the
latencies for a workload with a 5GB working set. As seen
at the right, this configuration carries a 25-30% penalty,
which is noticeable but far less than the factor of five or
so seen without the flash cache. It may be an acceptable
tradeoff in some circumstances.

7.6 Read-mostly vs. Write-mostly

The previous results all assumed a 30% write percent-
age. We next investigate the sensitivity of our results to
the write percentage. We use our baseline working set
sizes (60 GB and 80 GB) and cache sizes (§ GB RAM
cache and 64 GB flash cache), while varying the per-
centage of writes in the trace from 0% to 100%. Figure 8
shows the application-level read and write latencies. As
expected, read latency remains stable. The write latency
is also unaffected except at very high write rates, where
we start seeing synchronous writebacks from the RAM
cache that expose the flash’s write latency. As the pro-
portion of writes increases, the trace runs faster, because
writes are faster than reads. At very high write rates the
1-second RAM-to-flash syncer starts to fall behind. Sev-
eral other effects come into play as well, such as network
saturation, resulting in complex behavior that may be im-
perfectly modeled. The portion of the graphs above 90%

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 135

Read/Write Latency as a function of the % Write Operations

350 T T T T T T T T T 1 14
300 | % f.J 12
& 250 F 410 4
=] + =]
£ i £
5 200 eL~fx----x----x»---x-A-—x——A—xwff*f"M 8 g
s i g
S 150 e T
el + Q
3 i £
T 100 Read (80 GB) —x%— 14 3
Read (60 GB) --3-- +
50 | Write (80 GB) ---+-- itd,
Write (60 GB) -+ N
i1
P B e o L 0
0 10 20 30 40 50 60 70 80 90

Percent Write Operations

Figure 8: Application read and write latencies (in seconds) as
a function of write percentage. As long as the write percent-
age remains below 90%, avoiding synchronous RAM evictions,
performance is independent of the write rate.

Read Latency as a function of the flash read time

600 T T 1 . T
Read lookaside (80 GB) —x—
Read naive (80 GB) ----
500 | Read unified (80 GB) ---x--- |
Read lookaside (60 GB) -+
Read naive (60 GB) ——+-
400 F Read unified (60 GB) ---+--

Latency (in us)

0 20 40 60 80 100
Flash read time (in us)

Figure 9: Application read latencies (in tts) for a range of flash
read latencies (shown) and write latencies (proportional), in us.

writes should be taken with a grain of salt.

The benefit of flash caching increases with write ratio
because writes never incur a file server latency by miss-
ing in the cache: they always go straight to cache and are
written back in the background.

7.7 Flash Timings

As flash devices vary a good deal in performance, we
wanted to test a variety of flash timing configurations.
Once again, the results were as expected: where the flash
latencies appear directly, they scale with the flash speed;
where they are hidden, changing the flash speed has no
effect; and where they participate in the total latency, the
overall latency scales linearly.

Read Latency as a function of Working Set Size

Latency (in us)

400

No flash warmed —+—
100 | 64 GB flash, not warmed ---- =
64 GBIfIash warrped .- % v

O 1 1
0 100 200 300 400 500 600

Working Set Size (in GB)

Figure 10: Effect of persistence. The not-warmed case is
equivalent to having a non-persistent cache and crashing at the
beginning of the simulator run. The no flash case is provided
for comparison.

Figure 9 shows the application-level read latency for
a range of flash timings for both standard traces and all
three cache architectures. The leftmost point represents
the potential performance of phase-change memory.

When the working set fits in flash, the architecture
makes little difference, but when it falls out, we see the
benefit of the larger effective sizes of the unified archi-
tecture. In all cases, however, application latency scales
linearly with the flash latency, so improvements in flash
timings are readily visible to the application.

7.8 Persistence

We approximated the cost making the flash persistent by
doubling the flash write latency to model performing two
flash writes per block, one of the data and one for the
meta-data describing the block. (We did not attempt to
simulate the recovery phase.) We investigated the ben-
efit by skipping the warming phase of our traces; this
is equivalent to having a non-persistent flash cache and
crashing at the start of the simulator run.

The result is that the increased flash write latency as-
sociated with persistence is invisible to the application.
This is consistent with our other results where the flash
write latency is also invisible. However, the benefit of
persistence, or rather the potential cost of not providing
persistence, is substantial, as shown in Figure 10.

7.9 Cache Consistency

As discussed in Section 3.8, flash caches introduce two
problems related to consistency: their larger size, and,

136 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Invalidations as a function of % Write Operations

120 T T T T
No flash (80 GB) —+—
No flash (60 GB) -->--
= 100 F 64 GB flash (80 GB) ---%-- |
2 . . _ 64 GB flash (60 GB) -
B . ™ A ” S " S ° S . S
2 80F -
[5]
k=]
e}
S 60} b
2
12
=
S 40f e
©
k]
©
g 20F -
K- X
0 1 1 1 1
0 20 40 60 80 100
Percent Write Operations
Read Latency as a function of % Write Operations
' ' No flash (80 GB) —+—
1000 [No flash (60 GB) --%--
64 GB flash (80 GB) ---%--
64 GB flash (60 GB) &
& 800 -
=1
£
& 600 | s
o}
g - BV - o & .
o 400 | I e
o) R =
o Bl - T
-8
200 = -
0 1 1 1 1
0 20 40 60 80 100

Percent Write Operations

Figure 11: Invalidations required, and read latency, as a func-
tion of write percentage.

for recoverable caches, that the cache is offline during
reboots. These may affect cache consistency protocols.

We generated two additional families of traces, using
two hosts, to investigate the effect of size on consistency
control. As a worst-case scenario we make the two hosts
share one working set. In the first family, we examine
varying write percentages; in the second, we examine
a range of working set sizes. Writing a new version of
a block into a cache must invalidate all copies in other
caches. We measure the fraction of (application-level)
block writes that require invalidations.

Figure 11 shows the percentage of blocks written re-
quiring invalidation and application read latency, as a
function of the write percentage. The write latencies (for
the 64 GB flash) are comparable to those in Figure 8.

Figure 12 shows, for the baseline setting of 30%
writes, the percentage of invalidations and the applica-
tion read latency as a function of the working set size.
The write latency results are uniform and are not shown.

The primary finding is that for workloads that fit in
flash, the percentage of writes requiring invalidation is

Invalidations as a function of Working Set Size
100 T T T T

No flash —+—
64 GB flash --%-- -

o N ® ©
S o o o

Invalidations (% of total blocks)
- n w S (4]
o o o o o

—+
1 1 1 1 1

0 100 200 300 400 500 600 700
Working Set Size (in GB)

o

Read Latency as a function of Working Set Size
1000 T T T T T T

900
800

N T ———— -
600
500
400
300
200 |- -

Read Latency (in us)

100 - No flash —+— <
64 (IIiB flash e

0 1 1 1
0 100 200 300 400 500 600 700

Working Set Size (in GB)

Figure 12: Invalidations required, and read latency, as a func-
tion of working set size.

high, even relative to workloads that fit in RAM with
no flash. The invalidation rate drops off for out-of-cache
workloads, but neither as quickly nor as significantly
as with the smaller RAM cache. This has implications
for read performance as well. Comparing the application
read latency graphs (Figure 11 to Figure 8 and Figure 12
to Figure 4), we see that while the flash provides an ad-
vantage, read latency increases with the fraction of in-
validations, because invalidated blocks must be reread
from the filer. Although this is a worst case analysis (both
servers share the entire working set), these results high-
light critical areas in cache management design.

8 Conclusions

The results of our simulations show that even in its sim-
plest implementation, a client-side flash cache provides
significant benefits to applications. We now review our
findings regarding the design questions from Section 1.
The flash cache does not need to be integrated with the

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 137

file system. While doing so increases the effective size of
the cache, given the relative sizes (and prices) of RAM
and flash this effect is fairly small and may not justify the
implementation complexity.

The flash cache can be as large relative to RAM as
desired. In fact, except for workloads that fit entirely into
RAM, it makes sense to limit the RAM cache to the space
needed to buffer writes, keeping the cache only in flash.

Any writeback policy that avoids synchronous writes
and does not allow the cache to become full of dirty
data produces good performance. Prompt writeback from
flash exposes cache consistency events at no cost, and
these cache consistency events are potentially important.

It is not necessary to make the cache persistent (that is,
recoverable) to benefit from it. However, doing so offers
significant additional benefit.

Cache consistency is a serious issue when multiple
hosts actively modify a shared working set. Even with
a write-through flash cache, such workloads cause sub-
stantially higher invalidation traffic than we see with tra-
ditional RAM-based caches. Also, traditional cache con-
sistency protocols may not be able to cope with a recov-
erable cache being offline while recovering.

There is much follow-on work to be done. The most
important area of further research is adapting file servers
to these larger caches, ensuring that we can retain excel-
lent read-ahead behavior when we do miss in the flash. In
the presence of data shared among multiple hosts, each
with its own flash cache, it is necessary to explore the
details of maintaining cache consistency among the mul-
tiple caches. Finally, flash caching is a good candidate
for a custom flash translation layer [19] — exploring ap-
proaches and algorithms as well as establishing satisfac-
tory lifetime for this application remains as future work.

9 Acknowledgements

This work was supported by NetApp. In addition, James
Lentini, Keith Smith, and Chris Small, all of NetApp,
were tremendously helpful in providing us with the
means and expertise to validate our simulator.

References

[1] Smart Array technology: Advantages of battery-backed
cache. http://h10032.wwwl.hp.com/ctg/Manual/
c00257513.pdf, 2002.

[2] Oracle, Sun launch high-end OLTP server. PCWorld, Sep 2009.

[3] EMC outlines strategy to accelerate flash adoption. In EMCWorld
2011 (May 2011), http://www.emc.com/about /news/
press/2011/20110509-05.htm.

[4]

[3]

[6]

(7]

(8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

(23]

AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. Trans. Storage 5 (December 2009), 16:1-16:30.

BUTT, A. R., GNIADY, C., AND HU, Y. C. The performance
impact of kernel prefetching on buffer cache replacement algo-
rithms. In Proc. SIGMETRICS 2005 (Banff, Alberta, Canada,
2005), ACM, pp. 157-168.

BYAN, S., ET AL. Mercury: Host-side flash caching for the data
center. In 28th IEEE Symposium on Mass Storage Systems and
Technologies (MSST 2012) (April 2012), pp. 1 —12.

CHEN, P. M., NG, W. T., CHANDRA, S., Aycock, C., RA-
JAMANI, G., AND LOWELL, D. The Rio file cache: Surviving
operating system crashes. In Proc. ASPLOS (October 1996).

FORNEY, B. C., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Storage-aware caching: revisiting caching for
heterogeneous storage systems. In Proc. FAST (Monterey, CA,
2002), USENIX Association, pp. 5-5.

HOWARD, J. H., ET AL. Scale and performance in a distributed
file system. ACM Trans. Comput. Syst. 6 (February 1988), 51-81.

Joukov, N., WONG, T., AND ZADOK, E. Accurate and efficient
replaying of file system traces. In Proc. FAST (San Francisco,
CA, 2005), USENIX Association, pp. 25-25.

KOLLER, R., ET AL. Write policies for host-side flash caches. In
Proc. FAST (San Jose, CA, 2013), USENIX Assoc., pp. 45-58.

KouraAl, K. CacheMind: Fast performance recovery using a
virtual machine monitor. In Dependable Systems and Networks
Workshops (DSN-W) (July 2010), pp. 86 —92.

MCCALPIN, J. D. Stream: Sustainable memory bandwidth in
high performance computers. Tech. rep., University of Virginia,
Charlottesville, Virginia, 1991-2011. A continually updated tech-
nical report. http://www.cs.virginia.edu/stream/.

MESNIER, M. P., ET AL. Trace: parallel trace replay with ap-
proximate causal events. In Proc. FAST (San Jose, CA, 2007),
USENIX Association, p. 24.

MICROSOFT. ReadyBoost. http://windows.
microsoft.com/en-US/windows7/products/
features/readyboost, 2009.

NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K.
Caching in the Sprite network file system. ACM Trans. Comput.
Syst. 6 (February 1988), 134—-154.

NETAPP. Flash Cache. http://www.netapp.com/us/
products/storage-systems/flash-cache/.
RAIDON. HyBrid RunneR iH2420-2S-S2 data sheet.
http://www.raidon.com.tw/content.php?sno=
0000462&p_1d=113,2010.

SAXENA, M., SWIFT, M. M., AND ZHANG, Y. FlashTier: a
lightweight, consistent and durable storage cache. In Proc. Eu-
roSys (Bern, Switzerland, 2012), ACM, pp. 267-280.

SEAGATE. Momentus XT product data sheet. http:
//www.seagate.com/docs/pdf/datasheet/disc/
ds_momentus_xt_retail.pdf, 2009.

SHEPLER, S., ET AL. NFS version 4 protocol. http://www.
ietf.org/rfc/rfc3530.txt, April 2003.
VIJAYAKUMAR, K., MUELLER, F., MA, X., AND ROTH, P. C.
Scalable I/O tracing and analysis. In Proc. Workshop on Petascale
Data Storage (Portland, Oregon, 2009), ACM, pp. 26-31.
YADGAR, G., FACTOR, M., AND SCHUSTER, A. Karma: know-

it-all replacement for a multilevel cache. In Proc. FAST (San Jose,
CA, 2007), USENIX Association, pp. 25-25.

138

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Practical and effective sandboxing for non-root users

Taesoo Kim and Nickolai Zeldovich
MIT CSAIL

Abstract

MBOX is a lightweight sandboxing mechanism for non-
root users in commodity OSes. MBOX’s sandbox usage
model executes a program in the sandbox and prevents
the program from modifying the host filesystem by layer-
ing the sandbox filesystem on top of the host filesystem.
At the end of program execution, the user can examine
changes in the sandbox filesystem and selectively com-
mit them back to the host filesystem. MBOX implements
this by interposing on system calls and provides a variety
of useful applications: installing system packages as a
non-root user, running unknown binaries safely without
network accesses, checkpointing the host filesystem in-
stantly, and setting up a virtual development environment
without special tools. Our performance evaluation shows
that MBOX imposes CPU overheads of 0.1-45.2% for var-
ious workloads. In this paper, we present MBOX’s design,
efficient techniques for interposing on system calls, our
experience avoiding common system call interposition
pitfalls, and MBOX’s performance evaluation.

1 Introduction

In this paper, we present MBOX, a lightweight sandbox-
ing mechanism for non-root users in commodity OSes.
MBOX provides two attractive benefits as a sandbox; first,
protection of the host filesystem from modifications by
sandboxed programs; and second, flexibility in control-
ling the execution of the sandboxed program.

To protect the host system, MBOX overlays the host
filesystem with a sandbox filesystem and confines all mod-
ifications made by the sandboxed program to the sandbox
filesystem. As MBOX stores the sandbox filesystem as
a regular directory in the host filesystem, users can use
standard Unix tools to examine the modifications, commit
them back to the host filesystem, or even archive them
for later use as a layered sandbox filesystem for other
programs.

MBOX implements the layered sandbox filesystem with
system call interposition. By interposing on system calls,
MBOX can provide additional features missing from com-
modity OSes, which are useful to non-root users in a
variety of real-world scenarios: enabling non-root users
to install system packages with standard package man-
agers, checkpointing the whole filesystem instantly, run-
ning unknown binaries safely without network access,
and setting up virtual development environments without

special tools. More importantly, all use cases neither re-
quire root privilege nor require modification to the OS
kernel and applications.

Overview MBOX aims to make running a program in a
sandbox as easy as running the program itself. For exam-
ple, one can sandbox a program (say wget) by running as
below:

$ mbox -- wget google.com

Network Summary:

> [11279] -> 173.194.43.51:80

> [11279] Create socket(PF_INET,...)

> [11279] -> a00::2607:£8b0:4006:803:0

Sandbox Root:

> /tmp/sandbox-11275

> N:/tmp/index.html

[c]Jommit, [i]gnore, [d]iff, [1]ist, [s]hell, [qJuit ?>

wget is a utility to download files from the web. In
the above example, MBOX prevents wget from writing
the downloaded index.html to the host filesystem, and
instead redirects it to the sandbox filesystem (stored at
/tmp/sandbox-11275). Since the sandbox filesystem is
just a regular directory in the host filesystem, the user can
use standard Unix tools to perform operations on the files
modified by the program. For example, the user can com-
mit the index.html file back to the place where wget
would have downloaded the file if it was not sandboxed.

The advantages of using MBOX come from the fact that
we can restrict the sandboxed program or change its be-
havior while protecting the host filesystem. For example,
we can enable interesting use cases like monitoring where
wget connects to and what it downloads, or restricting its
remote network accesses (see §2).

Contributions In this paper, we

¢ describe the MBOX abstraction, usage model, and a
wide range of use cases.

* present seccomp/BPF as an efficient system call inter-
position technique, and our experience with avoiding
common system call interposition mistakes [4].

» implement and evaluate these ideas in MBOX, a Linux-
based open source tool that requires no changes to the
OS kernel or applications.

QOutline §2 provides practical use cases of MBOX. §3
describes its design. §4 explains MBOX’s interposition

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 139

technique. §5 discusses its implementation, §6 evaluates,
§7 compares MBOX with related work, and §8 concludes.

2 Use cases

We motivate the usefulness of MBOX by describing five
real-world use cases that are difficult to achieve in com-
modity OSes as a non-root user.

2.1 Installing packages without root access
$ mbox -R -- apt-get install git
(-R: emulate a fakeroot environment)

Installing packages requires root privilege in Linux be-
cause normal users do not have write access to system
directories such as /bin and /1ib; so, to install a pack-
age, non-root users need to perform tedious jobs like
resolving dependencies manually and compiling source
code, even though package managers already perform
these jobs. With MBOX, users can instead install pack-
ages with standard package managers by running them in
a sandbox with a writable sandbox filesystem. As package
managers often check for root privilege, MBOX optionally
emulates a root-like environment (fakeroot) so users can
execute them without any modification. After installing
a package with MBOX, the sandbox filesystem contains
not only newly installed files, but also the correspond-
ing package databases, separate from the host filesystem.
Users, therefore, can even install or remove packages by
reusing the same sandbox filesystem (see §2.4). We tested
that MBOX supports Ubuntu’s apt-get, Debian’s dpkg,
and Python’s pip package managers.

2.2 Running unknown binary safely

$ mbox -n -- wget google.com
(-n: disable remote network accesses)

When running unknown binaries, users can protect the
host filesystem from modification by running them with
MBOX. However, if these binaries misbehave or are com-
promised, they still can access a user’s private data and
disclose it to attackers. To prevent this, MBOX provides
a way to restrict or monitor remote network accesses of
sandboxed processes. If users want to restrict network
accesses, MBOX blocks all socket-related system calls;
for example, the above command kills wget at the first
socket () system call. However, by default, MBOX inter-
prets socket-related system calls and summarizes network
activity, as in the wget example in §1.

2.3 Checkpointing filesystem

$ mbox -i -- sh
(-i: enable interactive commit-mode)

Using MBOX, one can instantly branch out a new filesys-
tem from the current host filesystem by running a new
shell. The shell and all subsequent processes created from
the shell run in the same sandbox, and share the same

layered filesystem view. For example, editing emacs con-
figuration files often requires killing and rerunning emacs
to check if it works with the new configuration. When it
fails with an error, we might need to run vanilla emacs
to continue fixing the error. With MBOX, one can check-
point the host filesystem and edit configuration files with
emacs running in the sandbox; emacs instances on the
host system still function correctly, even if the edited file
has an error. When done with editing, users can commit
the modified configuration files to the host filesystem, re-
vert them by discarding changes, or stash them for later
use. These workflows are what make users feel comfort-
able when using SCM tools like Git; with MBOX, users
get similar safety and convenience for filesystem data.

2.4 Build/development environment

$ mbox -r outdir -- make
(-r dir: specify a sandbox directory)

When building a project’s source tree, we often see the
directory entangled with both original source files and
generated object files. By running a build script with
MBOX, we can redirect all generated object files to the
sandbox filesystem; also, cleaning up the project directory
(say make clean) becomes a simple rm -rf outdir.
Combined with package installations (§2.1), any user can
conveniently setup a development environment that is
safely separated from the system libraries. For example,
without using virtualenv for Python and cabal-dev
for Haskell, we can create virtual environments with the
pip and cabal tools that major distributions come with.

2.5 Profile-based sandbox

$ mbox -p build.prof -- ./configure
(-p prof: enable profile-based policy)

MBOX supports another important use case poorly sup-
ported by commodity OSes. In Unix-like OSes, a process
created by a user runs with that user’s privilege, and can
access the user’s private files. In some cases, the pro-
cess needs access to the user’s files to do useful work;
however, often there are cases where the user does not
want to expose sensitive data to the process. For example,
when a user executes a ./configure script, she does
not want the script to read her private ssh key stored in
the $HOME/ . ssh directory. With MBOX, users can easily
hide private directories, and allow access to only the nec-
essary parts of a filesystem by describing them as below.

build.prof
[£s]
allow:
hide: ~
If a user runs the ./configure script with the above
profile, MBOX hides the user’s home directory yet allows
access to the current working directory. Therefore, the
script cannot steal the user’s private files, but can still

140 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Sandbox FS

System calls

Layered FS Read(Write
view

Record logs
(e.g., network)

System call interposition
- Redirect file read/write to sandbox
- Restrict network accesses
- Emulate a fakeroot environment

A Read
— ' —]

Figure 1: Overview of MBOX’s design. MBOX interposes on a sand-
boxed program’s system calls to provide a sandbox filesystem overlaid
on the host filesystem; to restrict network accesses; and to emulate a
fakeroot environment.

Host FS

configure properly by accessing the system libraries and
header files. In addition, for scripts that are never expected
to access the network, users can additionally specify an
option to restrict network accesses (§2.2).

3 MBOX abstraction

When a user runs a program with MBOX, MBOX creates
a layered sandbox filesystem, where all modifications by
the program take place, on top of the host filesystem. The
host filesystem remains intact and is never modified by the
sandboxed program. When the sandboxed program ter-
minates, users can examine modified files in the sandbox
filesystem, and commit them back to the host filesystem
if they want. Since the sandbox filesystem is stored in
persistent storage, users have complete control over files
and directories afterward, and can even reuse them later
as a sandbox layer of other programs. We call this us-
age model the MBOX abstraction. Figure 1 provides an
overview of the MBOX design.

3.1 Layered filesystems

Unlike traditional filesystems in which every process has
the same namespace, MBOX needs to provide a private
filesystem to each process running in different sandboxes.
MBOX stacks a private filesystem layer on top of the host
filesystem, and provides a logically unified view of both
filesystems to a sandboxed program. We call the private
filesystem layer, where all modification happens by the
program, the sandbox filesystem, and call both the sand-
box and host filesystems together the layered filesystem.
To provide a layered filesystem, MBOX interposes on sys-
tem calls of a sandboxed program. On every system call
entry, MBOX decides which system call arguments should
be rewritten so that changes by the system call redirect
to the sandbox filesystem, rather than affecting the host
filesystem.

Copy-on-write The sandbox filesystem is created with
no content when a user executes a program with MBOX.
Since the sandbox filesystem is empty, all reads by the pro-
gram will be forwarded to the host filesystem. Once the
sandboxed program writes to a file, the sandbox filesystem
will contain the modified file and subsequent reads will be
redirected to the sandbox filesystem. Thus, the application
running inside the sandbox is able to access the modified
file and works as it would without the sandbox. The
layered filesystem in effect implements copy-on-write:
MBOX duplicates the file into the sandbox filesystem and
protects the original file from modifications.

Persistent storage The sandbox filesystem is not a
filesystem, but is a regular directory in the host filesystem,
s0 it can persist even after the sandboxed program termi-
nates. The persistent sandbox gives users more freedom to
examine, archive, and even duplicate the sandbox filesys-
tem, as normal files and directories, with familiar utilities.
Also, users can reuse the previous sandbox filesystem as
a sandbox layer of any other program, so that users can
consider the layered filesystem persistently branched out
of the host filesystem, yet easy to discard.

3.2 Committing changes

When a sandboxed program terminates, users can commit
modified files back to the host filesystem with tools that
MBOX provides. To help users decide what files to com-
mit, MBOX allows the user to check the differences of
files in host and sandbox filesystems before committing.

When committing a modified file back to the host
filesystem, the original file that the sandbox branched
out from might have been changed by programs running
on the host filesystem. Faced with such concurrent modi-
fications to the same file in both the host and the sandbox
filesystem, MBOX flags a conflict, and requires the user to
decide how to merge the changes, much like any version
control system.

To detect conflicts, MBOX records a hash of the orig-
inal file contents when creating a copy of the file in the
sandbox filesystem, and checks if the contents of the file
in the host filesystem still match the hash before com-
mitting any changes from the sandbox. For conflicts in
text files, standard Unix tools like diff and patch can
often resolve the conflict, but in other cases like custom
or binary files, users should manually merge them with
application-specific tools.

4 Interposing system calls

In this section, we describe the recently introduced
seccomp/BPF [1] as a means for interposing system calls;
common pitfalls of using ptrace and seccomp/BPF for
sandboxing; and how to use them to restrict network ac-
cesses and construct a fakeroot environment.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 141

Program (tracee)

Tracer
- Invoke the program (tracee)
- Setup ptrace (TRACEME ...) :
- Install seccomp/BPF (FILTER) :

@ System calls enter ® P”O(CQSST/V’,’,’_’”‘{gdb"/_ ;"; i,{)e"() @ wait() ®) ptrace(GET/SETREGS)
(e.g., open("/a", rw)) exit eg., "a 'sboxfs/a User space
®@ Run BPF Kernel
BPF_STMT(LD, OFF_SYSCALL) @Send ptrace event [
BPF JUMP(fopen, 0.1) (EVENT_SECCOMP) | Ptrace
BPF_STMT(RET)
-_seccomp/BPF @ ptrace(SYSCALL, ...)

Figure 2: Interposing a system call with seccomp/BPF and ptrace. At startup, the tracer invokes the tracee, sets up ptrace and installs a BPF
program. When the tracee generates a system call (D, the BPF program runs and decides whether to intercept or not Q). If the system call needs to be
handled by MBOX, BPF will send a seccomp event 3 to the tracee waiting for a ptrace event @. Then, the tracer queries the states of the tracee via
the ptrace interface (5, or overwrites the tracee’s memory with the process_vm_writev() system call ®. To continue the tracee, but stop at the
exit of the current system call, the tracer needs to invoke ptrace with SYSCALL.

4.1 Using seccomp/BPF

seccomp [2] is a mechanism for isolating a process by
allowing only a certain set of system calls. Linux 3.5
further introduced support for using Berkeley Packet Fil-
ter (BPF) bytecode to examine system calls when using
seccomp [1]; for example, the BPF bytecode can decide
whether the process can invoke the socket() system
call. In seccomp/BPF, the input to the BPF program is
the system call number, its arguments, and the instruction
pointer, and it is invoked on every entry and exit of a
system call. The BPF program decides whether to allow
the system call to proceed or not; an additional option
is to generate a ptrace event to the tracer, if the cur-
rent process has one. Using seccomp/BPF, the tracer can
download a BPF program and wait for a ptrace event, as
described in Figure 2, instead of stopping on every tracee
system call. This allows MBOX to interpose on just the
necessary system calls, improving overall performance,
as we show in §6.

4.2 Avoiding common pitfalls

It is easy to make mistakes when implementing a sandbox
mechanism, making the resulting implementation vulner-
able to adversaries due to minor mistakes. In particular,
ptrace and seccomp/BPF are difficult to use correctly
for interposing on system calls. We will now describe our
experience in trying to avoid some of the pitfalls in using
ptrace and seccomp/BPF for system call interposition.

4.2.1 Time-of-check-to-time-of-use (TOCTTOU)

Using ptrace to intercept system call entry allows us to
examine, sanitize, and rewrite the system call’s arguments.
If an argument points to process memory, we can read
remote memory and interpret it as the system call handler
does. However, the read value can be different from what
the system call handler will see in the kernel. For example,
an adversary’s thread can overwrite the memory that the
current argument points to, right after the tracer checks
the argument. Even verifying that sanitized arguments

still point to the right value at system call exit does not
help, because an adversary can restore it by that time.

To avoid TOCTTOU problems in rewriting memory
arguments, MBOX takes advantage of two properties of
ptrace. First, system call arguments examined using
PTRACE_GETREGS are the actual values that the handler
will see, because x86-64 uses registers to pass system
call arguments, and copies them to kernel space when
entering the system call handler. Second, ptrace allows
the tracer to write to read-only memory in the tracee with
PTRACE_POKEDATA.

MBox avoids TOCTTOU problems by mapping a page
of read-only memory in the tracee process. When MBOX
needs to examine, sanitize, or rewrite an in-memory data
structure, such as a path name, used as a system call ar-
gument, MBOX copies the data structure to the read-only
memory (using PTRACE_POKEDATA or the more efficient
process_vm_writev()), and changes the system call
argument pointer to point to this copy. For example, at
the entry of an open(path, O_WRONLY) system call, the
tracer first gets the system call’s arguments, rewrites the
path argument to point to the read-only memory, and up-
dates the read-only memory with a new path pointing to
the sandbox filesystem. Since no other threads can over-
write the read-only memory without invoking a system
call (e.g., mprotect()), MBOX avoids TOCTTOU prob-
lem when rewriting path arguments. To ensure that the
sandboxed process cannot change this read-only virtual
memory mapping (e.g., using mprotect (), mmap(), or
mremap ()), MBOX intercepts these system call and kills
the process if it detects an attempt to modify MBOX’s
special read-only page.

4.2.2 Replicating OS state

Another common mistake is to improve performance by
replicating some state of the tracee process in the tracer.
For example, in handling an openat(fd, ...) system
call, one might think that keeping track of a path for
fd whenever opening a path can improve performance,
instead of reading the actual path for £d. However, it is

142 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

impractical to correctly emulate in userspace all subtle
system calls that can change the state of a file descriptor.
In MBOX, we design a set of stateless rules for deciding
whether to rewrite a path argument of the current system
call, by paying the cost of examining states at its entry.
By controlling how a process can obtain a file descriptor
in the first place, MBOX does not need to interpose on
system calls that take only file descriptor arguments.

Rules for rewriting path arguments MBOX rewrites

a path argument as follows:

 If path exists in the sandbox filesystem, then it was
already modified by previous write operations. MBOX
rewrites path to point at the sandbox filesystem, so
that subsequent read/write should see the one in the
sandbox filesystem.

* If path was deleted before, then to pretend that path
in the host filesystem is deleted, path is rewritten to
the non-existent path in the sandbox filesystem.

e If the current system call will modify the host filesys-
tem, then, since path does not exist in the sand-
box filesystem, MBOX copies the file from the host
filesystem to the sandbox filesystem. The subsequent
read/write will see the duplicated copy in the sandbox
filesystem, by the first rule.

As one example, at the entry of an open(path, O_RDWR)
system call, if path does not exists in the sandbox filesys-
tem and was not deleted before, MBOX will copy the
file from the host filesystem to the sandbox filesystem by
the last rule, and rewrite the path to point to the sandbox
filesystem, where any later write()s will be reflected.
Any subsequent open(path, O_RDONLY) on the same
path will also be rewritten to access the sandbox filesys-
tem, by the first rule.

5 Implementation

We implemented a prototype of MBOX for Linux by ex-
tending strace 4.7, which is a system utility to trace
system calls. To improve performance, we modified
strace to use seccomp/BPF. For OSes that do not
support seccomp/BPF yet, MBOX falls back to using
ptrace as the main system call interposition mechanism
(seccomp/BPF is supported on Linux 3.5 and above).
MBOX has been tested on the x86-64 Arch distribution
with the 3.8.10 Linux kernel, and the Ubuntu 12.04.1-LTS
distribution with the 3.2.0-36 Linux kernel.

6 Evaluation

To analyze the performance characteristics of MBOX, we
ran benchmarks used in Apiary [10] in three environ-
ments: without a sandbox, with MBOX using ptrace,
and with MBOX using seccomp/BPF to intercept system
calls. We carried out all experiments on a system with

an Intel Core i7-2640M CPU, using one core with hyper-
threads disabled, and 16GB RAM, running Arch Linux
with kernel 3.8.10, if not stated specifically. Table 1 sum-
marizes the results.

6.1 End-to-end performance overhead

In the computation-heavy Octave benchmark, Octave [6]
in Table 1, MBOX exhibits negligible performance over-
heads, 0.1%, because it spends 98% of its execution time
in userspace, with few system calls. However, when
compressing files (Zip), decompressing files (Untar) or
building the Linux kernel (Build Linux), MBOX incurs
more significant overheads, 12.0%—-20.9%, because these
benchmarks invoke a lot of file-related system calls.

6.2 Interposing system calls

In the Zip and Untar benchmarks in Table 1, using
seccomp/BPF was a lot more efficient than using ptrace.
With seccomp/BPF, MBOX can intercept just the system
calls that it needs to examine, and skip system calls such
as read() and write() that take a file descriptor as an
argument. Untar generates a total of 543k system calls,
out of which 330k (60.8%) are read() and write().
Using seccomp/BPF, MBOX interposes on just 90k sys-
tem calls (16.5%). These results show that seccomp/BPF
helps MBOX reduce interposition overhead.

6.3 Concurrency

With seccomp/BPF, we can improve concurrency by
avoiding unnecessary serialization of system calls, which
enables each process to invoke system calls without being
interleaved by the tracer. For example, ptrace imposed
110.1% overhead when building the Linux kernel in par-
allel, but using seccomp/BPF incurred 45.2% overhead,
because the tracer interposed only on the necessary system
calls, thereby allowing multiple system calls to execute
simultaneously.

7 Related work

Layered filesystems UnionFS [8, 11] strongly influ-
enced the design of MBOX; we follow its namespace
unification rules and strategies for copy-on-write. How-
ever, MBOX enables them for non-root users by using
seccomp/BPF in Linux, and also provides a variety of
applications without requiring any modification of exist-
ing software. Cowdancer [12] and FL-COW [7] similarly
provide a way to redirect modifications by a process, but
since they use LD_PRELOAD, they cannot isolate a mali-
cious process, unlike MBOX. Apiary [10] confines appli-
cations using UnionFS, but its main purpose of using the
layered filesystem is to save storage by sharing package
dependencies of confined applications.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 143

Sandbox

Task Normal Ptrace Seccomp/BPF Description

Zip 15.6s 21.2s 36.5% 17.4s 12.0% Compressing all files of linux-3.8

Octave 2.1s 2.1s 0.1% 2.1s 0.1% Octave Benchmark [6] calculating matrix
Untar 13.6s 19.0s 40.3% 164s 209% Decompressing linux-3.8 source files

Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9% Compiling linux-3.8 kernel

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 452% Compiling linux-3.8 kernel with 4 parallel jobs

Table 1: Performance benchmark results. Following the benchmark from Apiary [10], we measure the total execution time of each benchmark in
normal execution, and in the sandbox using either ptrace and seccomp/BPF; for sandbox execution times, we also report the percent overhead on
top of normal execution. We used two cores with hyperthreads enabled for the last benchmark, building the Linux kernel with 4 parallel jobs.

System call interposition Garfinkel used the system
call interposition technique for enforcing security policies
in Ostia [5], and studied common mistakes and pitfalls
when using it for implementing a security tool [4]. In this
paper, we summarized our experiences of avoiding those
mistakes, especially the TOCTTOU attack, when using
seccomp/BPF as a means for rewriting system calls.

Namespace The effectiveness of MBOX comes from
the fact that every process can have a private namespace,
detached from the host filesystem. Plan9 [9] originally
proposed this idea; MBOX implements private names-
paces by using ptrace, which commodity OSes provide
to all users for debugging. MBOX, therefore, can use
private namespaces for sandboxing without changing the
kernel or applications. Docker [3] provides a container
for applications by using namespaces, newly introduced
in Linux 3.8, as a means to migrate processes transpar-
ently between OSes. We expect that the mnt, net and
ipc namespaces, combined with Aufs [8], can be used for
implementing an efficient layered filesystem, but without
enabling all applications that MBOX provides with system
call interposition.

8 Summary

We presented MBOX, a lightweight sandboxing mecha-
nism for non-root users in commodity OSes. MBOX pro-
tects the host filesystem by layering the sandbox filesys-
tem on top of it using efficient system call interposition
based on seccomp/BPF. We showed that MBOX is ef-
fective in a variety of applications, and incurs reason-
able CPU overhead. MBOX is available for download at
http://pdos.csail.mit.edu/mbox/.

Acknowledgments

We thank Silas Boyd-Wickizer, Ramesh Chandra, Cody
Cutler, Kavya Joshi, Meelap Shah, Keith Winstein, the
anonymous reviewers, and our shepherd, David Presotto,
for their feedback. This research was supported by the
DARPA Clean-slate design of Resilient, Adaptive, Secure
Hosts (CRASH) program under contract #N66001-10-2-
4089, and by NSF award CNS-1053143.

References

[1] Dynamic seccomp policies (using BPF filters). http:
//lwn.net/Articles/475019, January 2012.

[2] A. Arcangeli. Seccomp: secure computing mode. http:
//en.wikipedia.org/wiki/Seccomp. January 2013.

[3] dotCloud. Docker: The Linux container engine. http:
//www.docker.io, 2013.

[4] T. Garfinkel. Traps and pitfalls: Practical problems in sys-
tem call interposition based security tools. In Proceedings
of the Network and Distributed System Security Sympo-
sium (NDSS), February 2003.

[5] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A del-
egating architecture for secure system call interposition.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), February 2004.

[6] P. Grosjean. Octave benchmark 2: speed comparison of
various number crunching packages (version 2). http:
//sciviews.org/benchmark. January 2013.

[7] D.Libenzi. FL-COW 0.10. http://xmailserver.org/
flcow.html. January 2013.

[8] J. R. Okajima. Aufs3: Advanced multi layered unification
filesystem version 3.x. http://aufs.sf.net. January
2013.

[9] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan
9 from Bell Labs. In Proceedings of the Summer 1990
UKUUG Conference, pages 1-9, 1990.

[10] S. Potter and J. Nieh. Apiary: Easy-to-use desktop appli-
cation fault containment on commodity operating systems.
In Proceedings of the Annual USENIX Technical Confer-
ence, pages 103-116, June 2010.

[11] D. Quigley, J. Sipek, C. Wright, and E. Zadok. Unionfs:
User-and community-oriented development of a unifica-
tion filesystem. In Proceedings of the 2006 Linux Sympo-
sium, volume 2, pages 349-362, 2006.

[12] J. Uekawa. Cowdancer: copy-on-write data access
completely in userland. http://www.netfort.gr.
jp/~dancer/software/cowdancer.html.en. Jan-
uary 2013.

144 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

TABLEFS: Enhancing Metadata Efficiency in the Local File System

Kai Ren, Garth Gibson
Carnegie Mellon University
{kair, garth} @cs.cmu.edu

Abstract

File systems that manage magnetic disks have long rec-
ognized the importance of sequential allocation and large
transfer sizes for file data. Fast random access has dom-
inated metadata lookup data structures with increasing
use of B-trees on-disk. Yet our experiments with work-
loads dominated by metadata and small file access in-
dicate that even sophisticated local disk file systems like
Ext4, XFS and Btrfs leave a lot of opportunity for perfor-
mance improvement in workloads dominated by meta-
data and small files.

In this paper we present a stacked file system,
TABLEFS, which uses another local file system as an ob-
ject store. TABLEFS organizes all metadata into a sin-
gle sparse table backed on disk using a Log-Structured
Merge (LSM) tree, LevelDB in our experiments. By
stacking, TABLEFS asks only for efficient large file al-
location and access from the underlying local file sys-
tem. By using an LSM tree, TABLEFS ensures metadata
is written to disk in large, non-overwrite, sorted and in-
dexed logs. Even an inefficient FUSE based user level
implementation of TABLEFS can perform comparably to
Ext4, XFS and Btrfs on data-intensive benchmarks, and
can outperform them by 50% to as much as 1000% for
metadata-intensive workloads. Such promising perfor-
mance results from TABLEFS suggest that local disk file
systems can be significantly improved by more aggres-
sive aggregation and batching of metadata updates.

1 Introduction

In the last decade parallel and Internet service file sys-
tems have demonstrated effective scaling for high band-
width, large file transfers [48, 13, 17, 25, 38, 39]. The
same, however, is not true for workloads that are domi-
nated by metadata and tiny file access [34, 49]. Instead
there has emerged a class of scalable small-data stor-
age systems, commonly called key-value stores, that em-

phasize simple (NoSQL) interfaces and large in-memory
caches [2, 24, 33].

Some of these key-value stores feature high rates
of change and efficient out-of-memory Log-structured
Merge (LSM) tree structures [8, 23, 32]. An LSM tree
can provide fast random updates, inserts and deletes
without scarificing lookup performance [5]. We be-
lieve that file systems should adopt LSM tree techniques
used by modern key-value stores to represent metadata
and tiny files, because LSM trees aggressively aggregate
metadata. Moreover, today’s key-value store implemen-
tations are “thin” enough to provide the performance lev-
els required by file systems.

In this paper we present experiments in the most ma-
ture and restrictive of environments: a local file sys-
tem managing one magnetic hard disk. We used a Lev-
elDB key-value store [23] to implement TABLEFS, our
POSIX-compliant stacked file system, which represents
metadata and tiny files as key-value pairs. Our results
show that for workloads dominated by metadata and tiny
files, it is possible to improve the performance of the
most modern local file systems in Linux by as much as
an order of magnitude. Our demonstration is more com-
pelling because it begins disadvantaged: we use an in-
terposed file system layer [1] that represents metadata
and tiny files in a LevelDB store whose LSM tree and
log segments are stored in the same local file systems we
compete with.

2 Background

Even in the era of big data, most things in many file
systems are small [10, 28]. Inevitably, scalable sys-
tems should expect the numbers of small files to soon
achieve and exceed billions, a known challenge for both
the largest [34] and most local file systems [49]. In this
section we review implementation details of the systems
employed in our experiments: Ext4, XFS, Btrfs and Lev-
elDB.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 145

2.1 Local File System Structures

Ext4[26] is the fourth generation of Linux ext file sys-
tems, and, of the three we study, the most like traditional
UNIX file systems. Ext4 divides the disk into block
groups, similar to cylinder groups in traditional UNIX,
and stores in each block group a copy of the superblock,
a block group descriptor, a bitmap describing free data
blocks, a table of inodes and a bitmap describing free
inodes, in addition to the actual data blocks. Inodes con-
tain a file’s attributes (such as the file’s inode number,
ownership, access mode, file size and timestamps) and
four extent pointers for data extents or a tree of data ex-
tents. The inode of a directory contains links to a HTree
(similar to B-Tree) that can be one or two levels deep,
based on a 32 bit hash of the directory entry’s name. By
default only changes to metadata are journaled for dura-
bility, and Ext4 asynchronously commits its journal to
disk every five seconds. When committing pending data
and metadata, data blocks are written to disk before the
associated metadata is written to disk.

XFS[47], originally developed by SGI, aggressively
and pervasively uses B+ trees to manage all file struc-
tures: free space maps, file extent maps, directory entry
indices and dynamically allocated inodes. Because all
file sizes, disk addresses and inode numbers are 64 bits
in XFS, index structures can be large. To reduce the size
of these structures XFS partitions the disk into alloca-
tion groups, clusters allocation in an allocation group and
uses allocation group relative pointers. Free extents are
represented in two B+ trees: one indexed by the start-
ing address of the extent and the other indexed by the
length of the extent, to enable efficient search for an ap-
propriately sized extent. Inodes contain either a direct
extent map, or a B+ tree of extent maps. Each allocation
group has a B+ tree indexed by inode number. Inodes
for directories have a B+ tree for directory entries, in-
dexed by a 32 bit hash of the entry’s file name. XFS also
journals metadata for durability, committing the journal
asynchronously when a log buffer (256 KB by default)
fills or synchronously on request.

Btrfs[22, 36] is the newest and most sophisticated
local file system in our comparison set. Inspired by
Rodeh’s copy-on-write B-tree[35], as well as features
of XFS, NetApp’s WAFL and Sun’s ZFS[3, 18], Btrfs
copies any B-tree node to an unallocated location when
it is modified. Provided the modified nodes can be allo-
cated contiguously, B-tree update writing can be highly
sequential; however more data must be written than is
minimally needed (write amplification). The other sig-
nificant feature of Btrfs is its collocation of different
metadata components in the same B-tree, called the FS
tree. The FS tree is indexed by (inode number, type, off-
set) and it contains inodes, directory entries and file ex-

tent maps, distinguished by a type field: INODE_ITEM
for inodes, DIR_ITEM and DIR_INDEX for directory en-
tries, and EXTENT _DATA REF for file extent maps. Di-
rectory entries are stored twice so that they can be or-
dered differently: in one the offset field of the FS tree
index (for the directory’s inode) is the hash of the en-
try’s name, for fast single entry lookup, and in the other
the offset field is the child file’s inode number. The lat-
ter allows a range scan of the FS tree to list the inodes of
child files and accelerate user operations such as s+ stat.
Btrfs, by default, delays writes for 30 seconds to increase
disk efficiency, and metadata and data are in the same de-
lay queue.

2.2 LevelDB and its LSM Tree

Inspired by a simpler structure in BigTable[8], LevelDB
[23] is an open-source key-value storage library that fea-
tures an Log-Structured Merge (LSM) tree [32] for on-
disk storage. It provides simple APIs such as GET, PUT,
DELETE and SCAN (an iterator). Unlike BigTable, not
even single row transactions are supported in LevelDB.
Because TABLEFS uses LevelDB, we will review its de-
sign in greater detail in this section.

In a simple understanding of an LSM tree, an mem-
ory buffer cache delays writing new and changed entries
until it has a significant amount of changes to record
on disk. Delay writes are made more durable by re-
dundantly recording new and changed entries in a write-
ahead log, which is pushed to disk periodically and asyn-
chronously by default.

In LevelDB, by default, a set of changes are spilled
to disk when the total size of modified entries exceeds
4 MB. When a spill is triggered, called a minor com-
paction, the changed entries are sorted, indexed and writ-
ten to disk in a format known as SSTable[8]. These en-
tries may then be discarded by the memory buffer and
can be reloaded by searching each SSTable on disk, pos-
sibly stopping when the first match occurs if the SSTa-
bles are searched from most recent to oldest. The number
of SSTables that need to be searched can be reduced by
maintaining a Bloom filter[7] on each, but with increas-
ing numbers of records the disk access cost of finding
a record not in memory increases. Scan operations in
LevelDB are used to find neighbor entries, or to iterate
through all key-value pairs within a range. When per-
forming a scan operation, LevelDB first searches each
SSTable to place a cursor; it then increments cursors
in the multiple SSTables and merges key-value pairs in
sorted order. Compaction is the process of combining
multiple SSTables into a smaller number of SSTables by
merge sort. Compaction is similar to online defragmen-
tation in traditional file systems and cleaning process in

146 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Mem-Table BF = Bloom Filter

Disk = DU
Lo ; Compaction’ #SSTables <4
i ¥
L1 [}[][] [} <10MB
L2 <102MB

Figure 1: LevelDB represents data on disk in multiple SSTables
that store sorted key-value pairs. SSTables are grouped into
different levels with lower-numbered levels containing more re-
cently inserted key-value pairs. Finding a specific pair on disk
may search up to all SSTables in level 0 and at most one in each
higher-numbered level. Compaction is the process of combin-
ing SSTables by merge sort into higher-numbered levels.

LFES [37].

As illustrated in Figure 1, LevelDB extends this simple
approach to further reduce read costs by dividing SSTa-
bles into sets, or levels. Levels are numbered starting
from 0, and levels with a smaller number are referenced
as “lower” levels. The Oth level of SSTables follows a
simple formulation: each SSTable in this level may con-
tain entries with any key/value, based on what was in
memory at the time of its spill. LevelDB’s SSTables
in level L > 0 are the results of compacting SSTables
from level L or L — 1. In these higher levels, LevelDB
maintains the following invariant: the key range span-
ning each SSTable is disjoint from the key range of all
other SSTables at that level and each SSTable is limited
in size (2MB by default). Therefore querying for an en-
try in the higher levels only need to read at most one
SSTable in each level. LevelDB also sizes each level dif-
ferentially: all SSTables have the same maximum size
and the sum of the sizes of all SSTables at level L will
not exceed 10X MB. This ensures that the number of lev-
els, that is, the maximum number of SSTables that need
to be searched in the higher levels, grows logarithmically
with increasing numbers of entries.

When LevelDB decides to compact an SSTable at level
L, it picks one, finds all other SSTables at the same level
and level L+ 1 that have an overlapping key range, and
then merge sorts all of these SSTables, producing a set
of SSTables with disjoint ranges at the next higher level.
If an SSTable at level 0 is selected, it is not unlikely that
many or all other SSTables at level 0 will also be com-
pacted, and many SSTables at level 1 may be included.
But at higher levels most compactions will involve a
smaller number of SSTables. To select when and what
to compact there is a weight associated with compacting
each SSTable, and the number of SSTables at level O is
held in check (by default compaction will be triggered if

(@) { TableFS]
! :
User Space i [[FUSElb_Je—{ Metadata Store |
E ,
!
Process E Large File Store| | LevelDB ’i

Kernel r VFS

rFUSE Kernel Module | | Local File System—l

(b) Benchmark
User Space Process

Local File System

Figure 2: (a) The architecture of TABLEFS. A FUSE kernel
module redirects file system calls from a benchmark process to
TABLEFS, and TABLEFS stores objects into either LevelDB or
a large file store. (b) When we benchmark a local file system,
there is no FUSE overhead to be paid.

there are more than four SSTables at level 0). There are
also counts associated with SSTables that are searched
when looking for an entry, and hotter SSTables will be
compacted sooner. Finally, only one compaction runs at
a time.

3 TABLEFS

As shown in Figure 2(a), TABLEFS exploits the FUSE
user level file system infrastructure to interpose on top
of the local file system. TABLEFS represents directo-
ries, inodes and small files in one all-encompassing ta-
ble, and only writes large objects (such as write-ahead
logs, SSTables, and large files) to the local disk.

3.1 Local File System as Object Store

There is no explicit space management in TABLEFS. In-
stead, it uses the local file system for allocation and stor-
age of objects. Because TABLEFS packs directories, in-
odes and small files into a LevelDB table, and LevelDB
stores sorted logs (SSTables) of about 2MB each, the lo-
cal file system sees many fewer, larger objects. We use
Ext4 as the object store for TABLEFS in all experiments.

Files larger than T bytes are stored directly in the ob-
ject store named according to their inode number. The
object store uses a two-level directory tree in the lo-
cal file system, storing a file with inode number / as
“/LargeFileStore/J/I”” where J = I = 10000. This is to
circumvent any scalability limits on directory entries in
the underlying local file systems. In TABLEFS today,
T, the threshold for blobbing a file is 4KB, which is the
median size of files in desktop workloads [28], although
others have suggested T be at least 256KB and perhaps
as large as IMB [41].

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13)

147

3.2 Table Schema

TABLEFS’s metadata store aggregates directory entries,
inode attributes and small files into one LevelDB table
with a row for each file. To link together the hierar-
chical structure of the user’s namespace, the rows of the
table are ordered by a variable-length key consisting of
the 64-bit inode number of a file’s parent directory and its
filename string (final component of its pathname). The
value of a row contains inode attributes, such as inode
number, ownership, access mode, file size and times-
tamps (struct stat in Linux). For small files, the file’s
row also contains the file’s data.

Figure 3 shows an example of storing a sample file
system’s metadata into one LevelDB table.

All entries in the same directory have rows that share
the same first 64 bits of their table key. For readdir oper-
ations, once the inode number of the target directory has
been retrieved, a scan sequentially lists all entries hav-
ing the directory’s inode number as the first 64 bits of
their table key. To resolve a single pathname, TABLEFS
starts searching from the root inode, which has a well-
known inode number (0). Traversing the user’s directory
tree involves constructing a search key by concatenating
the inode number of current directory with the hash of
next component name in the pathname. Unlike Btrfs,
TABLEFS does not need the second version of each di-
rectory entry because the entire attributes are returned in
the readdir scan.

3.3 Hard Links

Hard links, as usual, are a special case because two or
more rows must have the same inode attributes and data.
Whenever TABLEFS creates the second hard link to a
file, it creates a separate row for the file itself, with a
null name, and its own inode number as its parent’s in-

Key Value
'_S <0, “home”™ 1, struct stat
o <1, “foo”> 2, struct stat
‘_é <1, “bar’> 3, struct stat
S| <2 “apple> 4, hard link
_8 <2, “book™ 5, struct stat,
> inline small file(<4KB)
- <3, “pear”> 4, hard link
<4, null> 4, struct stat, large file
\ pointer (> 4KB)

Figure 3: An example illustrates table schema used by
TABLEFS’s metadata store. The file with inode number 4 has
two hard links, one called “apple” from directory foo and the
other called “pear” from directory bar.

ode number in the row key. As illustrated in Figure 3,
creating a hard link also modifies the directory entry such
that each row naming the file has an attribute indicating
the directory entry is a hard link to the file object’s inode
Tow.

3.4 Scan Operation Optimization

TABLEFS utilizes the scan operation provided by Lev-
elDB to implement readdir() system call. The scan op-
eration in LevelDB is designed to support iteration over
arbitrary key ranges, which may require searching SSTa-
bles at each level. In such a case, Bloom filters cannot
help to reduce the number of SSTables to search. How-
ever, in TABLEFS, readdir() only scans keys sharing the
common prefix — the inode number of the searched di-
rectory. For each SSTable, an additional Bloom filter is
maintained, to keep track of all inode numbers that ap-
pear as the first 64 bit of row keys in the SSTable. Before
starting an iterator in an SSTable for readdir(), TABLEFS
can first check its Bloom filter to find out whether it con-
tains any of the desired directory entries. Therefore, un-
necessary iterations over SSTables that do not contain
any of the requested directory entries can be avoided.

3.5 Inode Number Allocation

TABLEFS uses a global counter for allocating inode
numbers. The counter increments when creating a new
file or a new directory. Since we use 64-bit inode num-
bers, it will not soon be necessary to recycle the inode
number of deleted entries. Coping with operating sys-
tems that use 32 bit inode numbers may require frequent
inode number recycling, a problem beyond the scope of
this paper and addressed by many file systems.

3.6 Locking and Consistency

LevelDB provides atomic insertion of a batch of writes
but does not support atomic row read-modify-write op-
erations. The atomic batch write guarantees that a se-
quence of updates to the database are applied in order,
and committed to the write-ahead log atomically. Thus
the rename operation can be implemented as a batch
of two operations: insert the new directory entry and
delete the stale entry. But for operations like chmod and
utime, since all of an inode’s attributes are stored in a sin-
gle key-value pair, TABLEFS must read-modify-write at-
tributes atomically. We implemented a light-weight lock-
ing mechanism in the TABLEFS core layer to ensure cor-
rectness under concurrent access.

148 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

(a) (b) (©

|Application| |Application| | TableFS | Application
TableFS I
User Space

Object Store
FUSE . (6.9. Ext4)

Kernel
TableFS

Object Store
(e.g. Ext4)

Figure 4: Three different implementations of TABLEFS:
(a) the kernel-native TABLEES, (b) the FUSE version of
TABLEFS, and (c) the library version of TABLEFS. In the fol-
lowing evaluation section, (b) and (c) are presented to bracket
the performance of (a), which was not implemented.

3.7 Journaling

TABLEFS relies on LevelDB and the local file system
to achieve journaling. LevelDB has its own write-ahead
log that journals all updates to the table. LevelDB can
be set to commit the log to disk synchronously or asyn-
chronously. To achieve a consistency guarantee similar
to “ordered mode” in Ext4, TABLEFS forces LevelDB
to commit the write-ahead log to disk periodically (by
default it is committed every 5 seconds).

3.8 TABLEFS in the Kernel

A kernel-native TABLEFS file system is a stacked file
system, similar to eCryptfs [14], treating a second local
file system as an object store, as shown in Figure 4(a). An
implementation of a Log-Structured Merge (LSM) tree
[32] used for storing TABLEFS in the associated object
store, such as LevelDB [23], is likely to have an asyn-
chronous compaction thread that is more conveniently
executed at user level in a TABLEFS daemon, as illus-
trated in Figure 4(b).

For the experiments in this paper, we bracket the
performance of a kernel-native TABLEFS (Figure 4(a)),
between a FUSE-based user-level TABLEFS (Figure
4(b)) with no TABLEFS function in the kernel and all
of TABLEFS in the user level FUSE daemon) and an
application-embedded TABLEFS library, illustrated in
Figure 4(c).

TABLEFS entirely at user-level in a FUSE daemon
is unfairly slow because of the excess kernel crossings
and scheduling delays experienced by FUSE file systems
[6, 45]. TABLEFS embedded entirely in the benchmark
application as a library is not sharable, and unrealistically
fast because of the infrequency of system calls. We ap-
proximate the performance of a kernel-native TABLEFS

using the library version and preceding each reference to
the TABLEFS library with a write(“/dev/null”, N bytes)
to account for the system call and data transfer overhead.
N is chosen to match the size of data passed through each
system call. More details on these models will be dis-
cussed in Section 4.3.

4 Evaluation

4.1 Evaluation System

We evaluate our TABLEFS prototype on Linux desktop
computers equipped as follows:

Linux Ubuntu 12.10, Kernel 3.6.6 64-bit version
CPU AMD Opteron Processor 242 Dual Core
DRAM 16GB DDR SDRAM

Hard Disk Western Digital WD2001FASS-00UOBO

SATA, 7200rpm, 2TB

Random Seeks 100 seeks/sec peak
Sequential Reads 137.6 MB/sec peak
Sequential Writes 135.4 MB/sec peak

We compare TABLEFS with Linux’s most sophisti-
cated local file systems: Ext4, XFS, and Btrfs. Ext4 is
mounted with “ordered” journaling to force all data to be
flushed out to disk before its metadata is committed to
disk. By default, Ext4’s journal is asynchronously com-
mitted to disks every 5 seconds. XFS and Btrfs use simi-
lar policies to asynchronously update journals. Btrfs, by
default, duplicates metadata and calculates checksums
for data and metadata. We disable both features (un-
available in the other file systems) when benchmarking
Btrfs to avoid penalizing it. Since the tested filesystems
have different inode sizes (Ext4 and XFS use 256 bytes
and Btrfs uses 136 bytes), we pessimistically penalize
TABLEFS by padding its inode attributes to 256 bytes.
This slows down TABLEFS doing metadata-intensive
workloads significantly, but it still performs quite well.
In some benchmarks, we also changed the Linux boot
parameters to limit the machines’ available memory be-
low certain threshold, in order to test out-of-RAM per-
formance.

4.2 Data-Intensive Macrobenchmark

We run two sets of macrobenchmarks on the FUSE ver-
sion of TABLEFS, which provides a full featured, trans-
parent application service. Instead of using a metadata-
intensive workload, emphasized in the previous and later
sections of this paper, we emphasize data-intensive work
in this section. Our goal is to demonstrate that TABLEFS
is capable of reasonable performance for the traditional
workloads that are often used to test local file systems.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 149

Kernel build is a macrobenchmark that uses a Linux
kernel compilation and related operations to compare
TABLEFS’s performance to the other tested file systems.
In the kernel build test, we use the Linux 3.0.1 source
tree (whose compressed tar archive is about 73 MB in
size). In this test, we run four operations in this order:

e untar: untar the source tarball;

e grep: grep “nonexistent pattern” over all of the
source tree;

e make: run make inside the source tree;
e gzip: gzip the entire source tree.

After compilation, the source tree contains 45,567 files
with a total size of 551MB. The machine’s available
memory is set to be 350MB, and therefore compilation
data are forced to be written to the disk.

Figure 5 shows the average runtime of three runs of
these four macro-benchmarks using Ext4, XFS, Btrfs
and TABLEFS-FUSE. For each macro-benchmark, the
runtime is normalized by dividing the minimum value.
Summing the operations, TABLEFS-FUSE is about 20%
slower, but it is also paying significant overhead caused
by moving all data through the user-level FUSE daemon
and the kernel twice, instead of only through the kernel
once, as illustrated in Figure 4. Table 5 also shows that
the degraded performance of Ext4, XFS, and Btrfs when
they are accessed through FUSE is about the same as
TABLEFS-FUSE.

Postmark was designed to measure the performance
of a file system used for e-mail, and web based services
[20]. It creates a large number of small randomly-sized
files between 512B and 4KB, performs a specified num-
ber of transactions on them, and then deletes all of them.

Untar Grep Make Gzip

BExt4 ®Btrfs OXFS BTableFS-FUSE DExt4+FUSE BBtrfs+FUSE BXFS+FUSE

Figure 5: The normalized elapsed time for unpacking, search-
ing building and compressing the Linux 3.0.1 kernel package.
All elapsed time in each operation is divided by the minimum
value (1.0 bar). The legends above each bar show the actual
minimum value in seconds.

CExt4 MBtrfs OXFS @ TableFS-FUSE

120,000 -
100,795

100,000 - 93,476
=
©80,000 -
5
$60,000 -
Q
£40,000 -
£

20,000

Total Trasaction Time

Figure 6: The elapsed time for both the entire run of Postmark
and the transactions phase of Postmark for the four tested file
systems.

OExt4 ™Btrfs OXFS ®TableFS-FUSE

100,000 1

m 9,259 555

] 4,000

810,000 : 3,848
037 !

2 1,069

£ 1,000

5

o

g 100 22 2029 92 2229

2 10 10,

2 10

=

IS

Deletion

Create Read

Append

Figure 7: Average throughput of each type of operation in Post-
mark benchmark.

Each transaction consists of two sub-transactions, with
one being a create or delete and the other being a read
or append. The configuration used for these experiments
consists of two million transactions on one million files,
and the biases for transaction types are equal. The ex-
periments were run with the available memory set to be
1400 MB, too small to fit the entire datasets (about 3GB)
in memory.

Figure 6 shows the Postmark results for the four tested
file systems. TABLEFS outperforms other tested file sys-
tems by at least 23% during the transctions phase. Fig-
ure 7 gives the average throughput of each type of oper-
ations individually. TABLEFS runs faster than the other
tested filesystems for read, append and deletion, but runs
slower for the creation. In Postmark, creation phase
is to create files in the alphabatical order of their file-
names. Thus the creation phase is a sequential insertion
workload for all file systems, and Ext4 and XFS perform
very efficiently in this workload. TABLEFS-FUSE pays
for the overhead from FUSE and writing file data at least
twice: LevelDB first time writes it to the write-ahead log,
and second time to an SSTable during compaction.

4.3 TABLEFS-FUSE Overhead Analysis

To understand the overhead of FUSE in TABLEFS-
FUSE, and estimate the performance of an in-
kernel TABLEFS, we ran a micro-benchmark against

150 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

TABLEFS-FUSE and TABLEFS-Library ((b) and (c) in
Figure 4). This micro-benchmark creates one million
zero-length files in one directory starting with an empty
file system. The amount of memory available to the
evaluation system is 1400 MB, almost enough to fit the
benchmark in memory.

Figure 8 shows the total runtime of the experiment.
TABLEFS-FUSE is about 3 times slower than TABLEFS-
Libary.

150

—_
o
o

Time (seconds)
0
o

o

Time (seconds)
BTableFS-FUSE ™TableFS-Sleep P TableFS-Library

Figure 8: The elapsed time for creating 1M zero-length files on
three versions of TABLEFS (See Figure 4)

Figure 9 shows the total disk traffic gathered from the
Linux proc file system (/ proc/diskstats) during the test.
Relative to TABLEFS-Library, TABLEFS-FUSE writes
almost as twice as many bytes to the disk, and reads al-
most 100 times as much. This additional disk traffic re-
sults from two sources: 1) under a slower insertion rate,
LevelDB tends to compact more often; and 2) the FUSE
framework populates the kernel’s cache with its own ver-
sion of inodes, competing with the local file system for
cache memory.

14,278

Disk Traffic in MB a

TableFS-FUSE TableFS-Sleep TableFS-Library

B DiskWriteBytes(MB) O DiskReadBytes(MB)
H DiskWriteRequests E DiskReadRequests

Figure 9: Total disk traffic associated with Figure 8

To illustrate the first point, we show LevelDB’s com-
paction process during this test in Figure 10. Figure 10
shows the total size of SSTables in each Level over time.
The compaction process will move SSTables from one
level to the next level. For each compaction in Level
0, LevelDB will compact all SSTables with overlapping

©
S

— Level-0

160 Kl
..... Level-1 e
140 -
— Level-2 .
.-
1200 -« Level3 o

-3
S

@
=}

Total Size of SSTables (MB)
5 8

AREL RS LKA LA]
0 20 40 60 80 100 120
Time (Seconds)

N
=)

(a) TABLEFS-FUSE

160l — Level-0

""" Level-1 |
— Level-2 _-as
== Level-3

Total Size of SSTables (MB)
5
3

R : e ‘
0 5 10 15 20 25 30 35 40
Time (Seconds)

(b) TABLEFS-Library

— - .
160 Level-0 K

..... Level-1 -
140 R

— Level-2 H
1200 oo Level3 -’

Total Size of SSTables (MB)
=]
S

Lanpasginparprigid
Time (Seconds)

(c) TABLEFS-Sleep

Figure 10: Changes of total size of SSTables in each level
over time during the creation of IM zero-length files for three
TABLEFS models. TABLEFS-Sleep illustrates similar com-
paction behavior as does TABLEFS-FUSE.

ranges (which in this benchmark will be almost all SSTa-
bles in level O and 1). At the end of a compaction,
the next compaction will repeat similar work, except the
number of level 0 SSTables will be proportional to the
data insertion rate. When the insertion rate is slower
(Figure 10(a)), compaction in Level 0 finds fewer over-
lapping SSTables than TABLEFS-Library (Figure 10(b))
in each compaction. In Figure 10(b), the level O size
(blue line) exceeds 20MB for much of the test, while
in 10(a) it never exceeds 20MB after the first com-
paction. Therefore, LevelDB does more compactions to
integrate the same arriving log of changes when insertion
is slower.

To negate the different compaction work, we deliber-
ately slow down TABLEFS-Library to run at the same

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 151

speed as TABLEFS-FUSE by adding sleep 80ms ev-
ery 1000 operations (80ms was empirically derived to
match the run time of TABLEFS-FUSE). This model of
TABLEFS is called TABLEFS-Sleep and is shown in Fig-
ure 9 and 10 (c). TABLEFS-Sleep causes almost the same
pattern of compactions as does TABLEFS-FUSE and in-
duces about the same write traffic (Figure 9). But un-
like TABLEFS-FUSE, TABLEFS-Sleep can use more of
the kernel page cache to store SSTables than TABLEFS-
FUSE. Thus, as shown in Figure 9, TABLEFS-Sleep
writes the same amount of data as TABLEFS-FUSE but
does much less disk reading.

To estimate TABLEFS performance without FUSE
overhead, we use TABLEFS-Library to avoid double
caching and perform a write(“/dev/null”’, N bytes) on
every TABLEFS invocation to model the kernel’s system
call and argument data transfer overhead. This model
is called TABLEFS-Predict and is used in the follow-
ing sections to predict metadata efficiency of a kernel
TABLEFS.

4.4 Metadata-Intensive Microbenchmark
Metadata-only Benchmark

In this section, we run four micro-benchmarks of the
efficiency of pure metadata operations. Each micro-
benchmark consists of two phases: a) create and b) test.
For all four tests, the create phase is the same:

e a) create: In “create”, the benchmark application
generates directories in depth first order, and then
creates one million zero-length files in the appropri-
ate parent directories in a random order, according
to a realistic or synthesized namespace.

The test phase in the benchmark are:

e bl) null: In test 1, the test phase is null because
create is what we are measuring.

e b2) query: This workload issues one million read or
write queries to random (uniform) files or directo-
ries. A read query calls stat on the file, and a write
query randomly does either a chmod or utime to up-
date the mode or the timestamp attributes.

e b3) rename: This workload issues a half million re-
name operations to random (uniform) files, moving
the file to another randomly chosen directory.

e b4) delete: This workload issues a half million
delete operations to randomly chosen files.

The captured file system namespace used in the ex-
periment was taken from one author’s personal Ubuntu

OExt4 WBtrfs OXFS #TableFS-FUSE UTableFS-Predict

Rename

Query
(50%R+50%W)

Workloads

Figure 11: Average throughput during four different workloads
for five tested systems.

ODisk Read ™Disk Write

] |

—18,725
Ext4 512 ,
2,817
XFS 756
3,039
Btrfs 584

TableFS-FUSE g5 2122
TableFS-Predict 71:' 2,096

0 4000 8000
Number of Disk Requests (Thousands)

Figure 12: Total number of disk read/write requests during
50%Read+50%Write query workload for five tested systems.

desktop. There were 172,252 directories, each with 11
files on average, and the average depth of the namespace
is 8 directories. We also used the Impressions tool [4] to
generate a “standard namespace”. This synthetic names-
pace yields similar results, so its data is omitted from this
paper. Between the create and test phase of each run,
we umount and re-mount local filesystems to clear ker-
nel caches. To test out-of-RAM performance, we limit
the machine’s available memory to 350MB which does
not fit the entire test in memory. All tests were run for
three times, and the coefficient of variation is less than
1%.

Figure 11 shows the test results averaged over three
runs. The create phase of all tests had the same per-
formance so we show it only once. For the other tests,
we show only the second, test phase. Both TABLEFS-
Predict and TABLEFS-FUSE runs are almost 2 to 3 times
faster than the other local file systems in all tests.

Figure 12 shows the total number of disk read and
write requests during the query workload, the test in
which TABLEFS has the least advantage. Both versions
of TABLEFS issue many fewer disk writes, effectively
aggregating changes into larger sequential writes. For
read requests, because of bloom filtering and in-memory

152 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

indexing, TABLEFS issues fewer read requests. There-
fore TABLEFS’s total number of disk requests is smaller
than the other tested file systems.

Scan Queries

In addition to point queries such as stat, chmod and
utime, range queries such as readdir are important meta-
data operations. To test the performance of readdir, we
modify the micro-benchmark to perform multiple read-
dir operations in the generated directory tree. To show
the trade-offs involved in embedding small files, we cre-
ate 1KB files (with random data) instead of zero byte
files. For the test phase, we use the following three oper-
ations:

e b5) readdir: The benchmark application performs
readdir() on 100,000 randomly picked directories.

e b6) readdir+stat: The benchmark application per-
forms readdir() on 100,000 randomly picked direc-
tories, and for each returned directory entry, per-
forms a stat operation. This simulates “Is -1”.

e b7) readdir+read: Similar to readdir+stat, but for
each returned directory entry, it reads the entire file
(if returned entry is a file) instead of stat.

Figure 13 shows the total time needed to complete
each readdir workload (the average of three runs). In the
pure readdir workload, TABLEFS-Predict is slower than
Ext4 because of read amplification, that is, for each read-
dir operation, TABLEFS fetches directory entries along
with unnecessary inode attributes and file data. How-
ever, in the other two workloads when at least one of the
attributes or file data is needed, TABLEFS is faster than
Ext4, XFS, and Btrfs, since many random disk accesses
are avoided by embedding inodes and small files.

OExt4 ®Btrfs OXFS ®TableFS-FUSE OTableFS-Predict

,‘39000 1 8120
'g 8000
3 7000
& 6000 -
2 5000 -
E4000 | 5965
g 3000

1830 2230
6

readdir+stat readdir+read

Workloads

readdir

Figure 13: Total run-time of three readdir workloads for five
tested file systems.

10* ‘

— TableFS-FUSE

Throughput (ops/sec)

0 2000 4000 6000 8000
Time (Minutes)

Figure 14: Throughput of all four tested file systems while cre-
ating 100 million zero-length files. TABLEFS-FUSE is almost
10X faster than the other tested file systems in the later stage
of this experiment. The data is sampled in every 10 seconds
and smoothed over 100 seconds. The vertical axis is shown on
a log scale.

Benchmark with Larger Directories

Because the scalability of small files is of topical interest
[49], we modified the zero-byte file create phase to create
100 million files (a number of files rarely seen in the local
file system today). In this benchmark, we allowed the
memory available to the evaluation system to be the full
16GB of physical memory.

Figure 14 shows a timeline of the creation rate for
four file systems. In the beginning of this test, there is
a throughput spike that is caused by everything fitting in
the cache. Later in the test, the creation rate of all tested
file systems slows down because the non-existence test
in each create is applied to ever larger on-disk data struc-
tures. Btrfs suffers the most serious drop, slowing down
to 100 operations per second at some points. TABLEFS-
FUSE maintains more steady performance with an aver-
age speed of more than 2,200 operations per second and
is 10 times faster than all other tested file systems.

All tested file systems have throughput fluctuations
during the test. This kind of fluctuation might be caused
by on disk data structure maintenance. In TABLEFS, this
behavior is caused by compactions in LevelDB, in which
SSTables are merged and sequentially written back to
disk.

Solid State Drive Results

TABLEFS reduces disk seeks, so you might expect it
to have less benefit on solid state drives, and you’d be
right. We applied the “create-query” microbenchmark
to a 120GB SATA II 2.5in Intel 520 Solid State Drive
(SSD). Random read throughput is 15,000 10/s at peak,
and random write throughput peaks at 3,500 IO/s. Se-
quential read throughput peaks at 245MB/sec, and se-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 153

OUExt4 WBtrfs OXFS ®TableFS-FUSE ©TableFS-Predict

7000 -
6000 - 5249
5000 -
4000 -
3000 -
2000
1000 -

0

1477
1063935 1242
186

Throughput (ops/second)

Create

Query

Figure 15: Average throughput in the create and query work-
loads on an Intel 520 SSD for five tested file systems.

quential write throughput peaks at 107MB/sec. Btrfs has
a “ssd” optimization mount option which we enabled.

Figure 15 shows the throughput averaged over three
runs of the create and query phases. In comparison to
Figure 11, all results are about 10 times faster. Although
TABLEFS is not the fastest, TABLEFS-Predict is com-
parable to the fastest. Figure 16 shows the total number
of disk requests and disk bytes moved during the query
phase. While TABLEFS achieves fewer disk writes, it
reads much more data from SSD than XFS and Btfs. For
use with solid state disks, LevelDB can be further opti-
mized to reduce read amplification. For example, using
SILT-like fine-grained in-memory indexing [24] can re-
duce the amount of data read from SSD, and using VT-
Tree compaction stitching [45] can reduce compaction
works for sequential workloads.

5 Related Work

File system metadata is structured data, a natural fit for
relational database techniques. However, because of
their large size, complexity and slow speed, file sys-
tem developers have long been reluctant to incorpo-
rate traditional databases into the lower levels of file
systems [31, 46]. Modern stacked file systems often
expand on the limited structure in file systems, hid-
ing structures inside directories meant to represent files
[6, 14, 15, 21], even though this may increase the number
of small files in the file system. In this paper, we return
to the basic premise, file system metadata is a natural
fit for table-based representation, and show that today’s
lightweight data stores may be up to the task. We are con-
cerned with an efficient representation of huge numbers
of small files, not strengthening transactional semantics
[16, 19, 40, 45, 50].

Early file systems stored directory entries in a linear
array in a file and inodes in simple on-disk tables, sep-
arate from the data of each file. Clustering within a file
was pursued aggressively, but for different files cluster-
ing was at the granularity of the same cylinder group. It

ODiskReadRequests ®DiskWriteRequests
|

]] 35,578
Ext4 L)
2,382
Btrfs 7F4'3 "
1,751
XFS s

TableFS-FUSE [2075

TableFS-Predict Fslz 2,035

0 10000 20000 30000 40000
Number of Disk Requests
(a) Disk Requests
ODiskReadBytes(MB) ®DiskWriteBytes(MB)
Exta | — : : 1 159,142
Birfs | ’2293’304
XFS: 3,71107'815
TableFS-FUSE P 2495 | |] 162,167
TableFS-Predict h YA I 1132,873
6 50600 1 00600 150000 200000

Total Disk Traffic (MB)
(b) Disk Bytes

Figure 16: Total number of disk requests and disk bytes moved
in the query workload on an Intel 520 SSD for five tested file
systems.

has long been recognized that small files can be packed
into the block pointer space in inodes [29]. C-FFS [12]
takes packing further and clusters small files, inodes and
their parent directory’s entries in the same disk reada-
head unit, the track. A variation on clustering for effi-
cient prefetching is replication of inode fields in direc-
tory entries, as is done in NTFS[9]. TABLEFS pursues
an aggressive clustering strategy; each row of a table is
ordered in the table with its parent directory, embedding
directory entries, inode attributes and the data of small
files. This clustering manifests as adjacency for objects
in the lower level object store if these entries were cre-
ated/updated close together in time, or after compaction
has merge sorted them back together.

Beginning with the Log-Structured File System
(LFS)[37], file systems have exploited write alloca-
tion methods that are non-overwrite, log-based and de-
ferred. Variations of log structuring have been imple-
mented in NetApp’s WAFL, Sun’s ZFS and BSD UNIX
[3, 18, 44]. In this paper we are primarily concerned
with the disk access performance implications of non-
overwrite and log-based writing, although the potential
of strictly ordered logging to simplify failure recovery in
LFS has been emphasized and compared to various write
ordering schemes such as Soft Updates and Xsyncfs
[27, 30, 43]. LevelDB’s recovery provisions are con-

154 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

sistent with delayed periodic journalling, but could be
made consistent with stronger ordering schemes. It is
worth noting that the design goals of Btrfs call for non-
overwrite (copy-on-write) updates to be clustered and
written sequentially[36], largely the same goals of Lev-
elDB in TABLEFS. Our measurements indicate, how-
ever, that the Btrfs implementation ends up doing far
more small disk accesses in metadata dominant work-
loads.

Partitioning the contents of a file system into two
groups, a set of large file objects and all of the meta-
data and small files, has been explored in hFS[51]. In
their design large file objects do not float as they are
modified, and hFS uses modified log-structured file sys-
tem approach and an in-place B-Tree to manage meta-
data, directory entries and small files. TABLEFS has this
split as well, with large file objects handled directly by
the backing object store, and metadata updates approxi-
mately log structured in LevelDB’s partitioned LSM tree.
However, TABLEFS uses a layered approach and does
not handle disk allocation, showing that metadata perfor-
mance of widely available and trusted file systems can
be greatly improved even in a less efficient stacked ap-
proach. Moreover, hFS’s B-Tree layered on LFS ap-
proach is similar to Btrfs’ copy-on-write B-Tree, and our
experiments show that the LSM approach is faster than
the Btrfs approach.

Log-Structured Merge trees [32] were inspired in part
by LFS, but focus on representing a large B-tree of small
entries in a set of on-disk B-trees constructed of recent
changes and merging these on-disk B-trees as needed for
lookup reads or in order to merge on-disk trees to re-
duce the number of future lookup reads. LevelDB [23]
and TokuFS [11] are LSM trees. Both are partitioned in
that the on-disk B-trees produced by compaction cover
small fractions of the key space, to reduce unneces-
sary lookup reads. TokuFS names its implementation
a Fractal Tree, also called streaming B-trees[5], and its
compaction may lead to more efficient range queries
than LevelDB’s LSM tree because LevelDB uses Bloom
filters[7] to limit lookup reads, a technique appropriate
for point lookups only. If bounding the variance on in-
sert response time is critical, compaction algorithms can
be more carefully scheduled, as is done in bLSM[42].
TABLEFS may benefit from all of these improvements to
LevelDB’s compaction algorithms, which we observe to
sometimes consume disk bandwidth injudiciously (See
Section 4.3).

Recently, VT-trees [45] were developed as a modifica-
tion to LSM trees to avoid always copying old SSTable
content into new SSTables during compaction. These
trees add another layer of pointers so new SSTables can
point to regions of old SSTables, reducing data copying
but requiring extra seeks and eventual defragmentation.

6 Conclusion

File systems for magnetic disks have long suffered low
performance when accessing huge collections of small
files because of slow random disk seeks. TABLEFS
uses modern key-value store techniques to pack small
things (directory entries, inode attributes, small file data)
into large on-disk files with the goal of suffering fewer
seeks when seeks are unavoidable. Our implementation,
even hampered by FUSE overhead, LevelDB code over-
head, LevelDB compaction overhead, and pessimisti-
cally padded inode attributes, performs as much as 10
times better than state-of-the-art local file systems in ex-
tensive metadata update workloads.

Acknowledgment

This research is supported in part by The Gor-
don and Betty Moore Foundation, National Sci-
ence Foundation under awards, SCI-0430781, CCF-
1019104, CNS-1042537 and CNS-1042543 (PRObE
http://www.nmc-probe.org/), Qatar National Re-
search Foundation 09-1116-1-172, DOE/Los Alamos
National Laboratory, under contract number DE-AC52-
06NA25396/161465-1, by Intel as part of ISTC-CC. We
thank the member companies of the PDL Consortium for
their feedback and support.

References

[1] FUSE. http://fuse.sourceforge.net/.
[2] Memcached. http://memcached.org/.
[3] ZFS. http://www.opensolaris.org/os/community/zfs.

[4] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. In Proccedings of the 7th conference on file and
storage technologies (2009).

[5] BENDER, M. A., FARACH-COLTON, M., FINEMAN, J. T., Fo-
GEL, Y. R., KUszMAUL, B. C., AND NELSON, J. Cache-
oblivious streaming B-trees. In Proceedings of annual ACM sym-
posium on parallel algorithms and architectures (2007).

[6] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE,
M. PLFS: a checkpoint filesystem for parallel applications. In
Proceedings of the ACM/IEEE conference on Supercomputing
(2009).

[71 BLOOM, B. Space/time trade-offs in hash coding with allow-
able errors. Communication of ACM 13, 7 (1970).

[8] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (2006).

[9] CUSTER, H. Inside the windows NT file system. Microsoft Press
(1994).

[10] DAYAL, S. Characterizing HEC storage systems at rest. In
Carnegie Mellon University, CMU-PDL-08-109 (2008).

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 155

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

ESMET, J., BENDER, M., FARACH-COLTON, M., AND KUSZ-
MAUL, B. The TokuFS streaming file system. Proceedings of the
USENIX conference on Hot Topics in Storage and File Systems
(2012).

GANGER, G. R., AND KAASHOEK, M. F. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files. In
Proceedings of the annual conference on USENIX Annual Tech-
nical Conference (1997).

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proceedings of the 19th ACM symposium on Op-
erating systems principles (2003).

HALCROW, M. A. eCryptfs: An Enterprise-class Encrypted
Filesystem for Linux. Proc. of the Linux Symposium, Ottawa,
Canada (2005).

HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A file is not a file: un-
derstanding the 1/0 behavior of Apple desktop applications. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011).

HASKIN, R., MALACHI, Y., SAWDON, W., AND CHAN,
G. Recovery management in quicksilver. In Proceedings of
the Eleventh ACM Symposium on Operating System Principles
(1987).

HDFS. Hadoop file system. http://hadoop.apache.org/.

Hitz, D., LAU, J., AND MALCOLM, M. File system design
for an NFS file server appliance. In USENIX Winter Technical
Conference (1994).

KASHYAP, A. File system extensibility and reliability using an
in-kernel database. Master Thesis, Computer Science Depart-
ment, Stony Brook University (2004).

KATCHER, J. Postmark: A new file system benchmark. In Ne-
tApp Technical Report TR3022 (1997).

KiMm, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In Proceedings of the 10th USENIX
conference on File and Storage Technologies (2012).

KRA, J. Ext4, BTRFS, and the others. In Proceeding of Linux-
Kongress and OpenSolaris Developer Conference (2009).

LEVELDB. A fast and lightweight key/value database library.
http://code.google.com/p/leveldb/.

LiMm, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
SILT: a memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011).

LUSTRE. Lustre file system. http://www.lustre.org/.

MATHUR, A., CAO, M., AND BHATTACHARYA, S. The new
Ext4 lesystem: current status and future plans. In Ottawa Linux
Symposium (2007).

McKuUsICK, M. K., AND GANGER, G. R. Soft updates: A tech-
nique for eliminating most synchronous writes in the fast filesys-
tem. Proceedings of the annual conference on USENIX Annual
Technical Conference, FREENIX Track (1999).

MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-
plication. In Proceedings of the 9th USENIX conference on File
and Storage Technologies (2011).

MULLENDER, S. J., AND TANENBAUM, A. S. Immediate files.
SoftwarePractice and Experience (1984).

NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. ACM Transactions on Com-
puter Systems, Vol.26, No.3 Article 6 (2008).

OLSON, M. A. The design and implementation of the Inversion
file system. In USENIX Winter Technical Conference (1993).

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica (1996).

ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J., AND ROSENBLUM, M. Fast crash recovery in RAM-
Cloud. In Proceedings of the 23rd ACM symposium on Operating
systems principles (2011).

PATIL, S., AND GIBSON, G. Scale and concurrency of GIGA+:
File system directories with millions of files. In Proceedings of
USENIX Conference on File and Storage Technologies (2011).

RODEH, O. B-trees, shadowing, and clones. Transactions on
Storage (2008).

RODEH, O., BACIK, J., AND MASON, C. BRTFS: The Linux B-
tree Filesystem. IBM Research Report RJI10501 (ALM1207-004)
(2012).

ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. In Proceedings of
the thirteenth ACM symposium on Operating systems principles
(1991).

ROSS, R., AND LATHAM, R. PVEFS: a parallel file system. In
Proceedings of the ACM/IEEE conference on Supercomputing
(2006).

SCHMUCK, F. B., AND HASKIN, R. L. GPFS: A shared-disk
file system for large computing clusters. In Proceedings of the
1st USENIX conference on file and storage technologies (2002).

SEARS, R., AND BREWER, E. A. Stasis: Flexible transactional
storage. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (2006).

SEARS, R., INGEN, C. V., AND GRAY, J. To BLOB or Not
To BLOB: Large Object Storage in a Database or a Filesystem?
Microsoft Technical Report (2007).

SEARS, R., AND RAMAKRISHNAN, R. bLSM: a general purpose
log structured merge tree. Proceedings of the ACM SIGMOD
International Conference on Management of Data (2012).

SELTZER, M., GANGER, G., McKusIck, K., SMITH, K.,
SOULES, C., AND STEIN, C. Journaling versus soft updates:
Asynchronous meta-data protection in file systems. Proceedings
of the annual conference on USENIX Annual Technical Confer-
ence (2000).

SELTZER, M. 1., BosTtic, K., McKuUsICK, M. K., AND
STAELIN, C. An implementation of a log-structured file system
for UNIX. USENIX Winter Technical Conference (1993).

SHETTY, P., SPILLANE, R., MALPANI, R., ANDREWS, B.,
SEYSTER, J., AND ZADOK, E. Building workload-independent
storage with VT-Trees. In Proccedings of the 11th conference on
file and storage technologies (2013).

STONEBRAKER, M. Operating System Support for Database
Management. Commun. ACM (1981).

SWEENEY, A. Scalability in the XFS file system. In Proceedings
of the 1996 USENIX Annual Technical Conference (1996).

WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. Scal-
able performance of the panasas parallel file system. In Proceed-
ings of the 6th USENIX conference on File and Storage Technolo-
gies (2008).

WHEELER, R. One billion files: pushing scalability limits of
linux filesystem. In Linux Foudation Events (2010).

WRIGHT, C. P., SPILLANE, R., SIVATHANU, G., AND
ZADOK, E. Extending ACID Semantics to the File System.
ACM Transactions on Storage (2007).

ZHANG, Z., AND GHOSE, K. hFS: A hybrid file system proto-
type for improving small file and metadata performance. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (2007).

156

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Characterization of Incremental Data Changes for Efficient Data Protection

Hyong Shim, Philip Shilane, and Windsor Hsu
Backup Recovery Systems Division
EMC Corporation

Abstract

Protecting data on primary storage often requires cre-
ating secondary copies by periodically replicating the
data to external target systems. We analyze over 100,000
traces from 125 customer block-based primary storage
systems to gain a high-level understanding of I/O char-
acteristics and then perform an in-depth analysis of over
500 traces from 13 systems that span at least 24 hours.
Our analysis has the twin goals of minimizing overheads
on primary systems and improving data replication effi-
ciency. We compare our results with a study a decade
ago [20] and provide fresh insights into patterns of incre-
mental changes on primary systems over time.

Primary storage systems often create snapshots as
point-in-time copies in order to support host I/O while
replicating changed data to target systems. However,
creating standard snapshots on a primary storage system
incurs overheads in terms of capacity and I/O, and we
present a new snapshot technique called a replication
snapshot that reduces these overheads. Replicated data
also requires capacity and I/O on the target system, and
we investigate techniques to significantly reduce these
overheads. We also find that highly sequential or ran-
dom I/O patterns have different incremental change char-
acteristics. Where applicable, we present our findings as
advice to storage engineers and administrators.

1 Introduction

Protecting data on primary storage systems often re-
quires periodically creating secondary copies by trans-
ferring changed data to external target systems, which
may be in the same facility or remotely located. How-
ever, as the size of data to be protected continues to grow
exponentially, the traditional approach to data protection,
e.g., copying all the data on the primary storage system
to a target system (such as backup servers) at regular in-
tervals, is fast becoming infeasible. A better approach
is to only copy the data blocks that have been modified
since the last transfer, unlike standard backup software
that copies modified files or whole directories. So, un-
derstanding how data changes on primary storage over
time is key to both improving existing data protection
solutions and enabling new solutions.

Specifically, we analyzed the size, rate, and pattern of
data changes over time under various host I/O access pat-
terns on EMC Symmetrix VMAX systems [8], a tier-1

block-based primary storage system. We analyzed over
100,000 traces from 125 enterprise systems from some
of the world’s largest corporations to gain high-level in-
sights into storage characteristics. We then selected over
500 traces that spanned at least 24 hours from 13 systems
to analyze various incremental transfer intervals. We be-
lieve the number of traces and systems used for analysis
is substantially larger than in previously published stud-
ies and our results are of value to any organization de-
signing or configuring data protection architectures.

Replicating changed data from a primary system to a
target system may take a substantial amount of time, de-
pending on the change rate and transfer throughput. Dur-
ing the transfer period, the primary system must main-
tain the point-in-time version of storage until the transfer
completes, even while hosts write to the primary system.
Snapshots [2, 5, 10, 22] are a general purpose mecha-
nism to capture the point-in-time view of data, and trans-
ferring snapshots to target storage is one technique for
data protection [20]. As two examples, snapshots kept
within primary storage allow a user to recover acciden-
tally deleted files, and snapshots are increasingly used
to maintain a consistent state of the system to be copied
to target storage while a primary system continues oper-
ation. We have focused our analysis on snapshot over-
heads when used for replication.

We found that using standard snapshots for replica-
tion incurs significant overhead in terms of space usage
and I/O. We observe that only the point-in-time state of
the changed blocks (instead of all of the blocks) needs
to be maintained, so we can relax the semantics of snap-
shots, which we call a replication snapshot. A repli-
cation snapshot protects the changed blocks that need to
be replicated without necessarily maintaining the values
of blocks that do not need to be copied to target storage.
Typical snapshot implementations are designed to cre-
ate semi-persistent versions, while replication snapshots
are designed specifically to support periodic replication
and are then released. Also, implementing replication
snapshots along with a replication protocol allows sepa-
rate primary storage and target storage vendors to jointly
support efficient replication.

Storage overheads on primary storage can be avoided
when host writes are protected with a synchronous re-
mote mirroring mechanism [14], in which host writes
are, in effect, sent to both primary and target storage.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 157

2% of capacity with replication snapshots.

1. 8% of capacity needs to be reserved for snapshot overheads to support incremental transfers every 12 hours. The reserve is as low as

2. Primary I/0 should be over-provisioned by 100% to support copy-on-write related write-amplification of host writes during replication.
The over-provision can be as low as 20% with a replication snapshot.

3. Having a write buffer effectively decreases snapshot I/O overheads but has little impact on storage overheads.

4. The daily transfer size with small blocks is generally 40% of what hosts write.

5. Scheduling at least 6 hours between transfers allows blocks to achieve nearly peak dirtiness.

Volume capacity is not predictive of bandwidth requirements.

6. Scheduling at least 12 hours between transfers drastically reduces peak network bandwidth requirements.

is at least one hour.

7. Target storage must support as much as 20% of the I/O per second capabilities of primary storage when the replication interval

Table 1: Rules-of-thumb from our analysis

Such a mechanism, however, typically requires that tar-
get system have storage capacity and I/O performance
similar to those of the primary system, which does not
scale well to transferring data changes over a long dis-
tance to protect against site disasters. Our analysis fo-
cuses on data-protection cases where target systems have
larger capacity but potentially lower I/O capabilities than
primary systems. This is because data protection systems
must be large enough to hold multiple versions of pri-
mary storage such as daily copies for a month or longer.
As guidance to storage engineers and administrators, we
summarize our findings in a set of rules-of-thumb, which
are presented in Table 1. Our contributions include: a de-
tailed analysis of data change characteristics for a large
set of traces collected from deployed systems, a design
for replication snapshots to reduce overheads on primary
storage, and an evaluation of overheads on primary and
target storage to guide design and configuration.

A related study by Patterson et al. [20] investigated
how to efficiently create primary system snapshots at re-
mote systems. The main differences between the present
work and Patterson’s include our investigation of using
various units of data aggregation to transport changed
data and their impact on the size of transferred data and
I/O rate on the target system. We also investigate how
incremental data changes are impacted by different host
write I/O patterns used to produce the data change. Im-
portantly, it has been a decade since the earlier study,
and it is worth revisiting this analysis to understand how
I/0 properties have changed using a newer, larger set of
traces.

2 Collected Traces

We collected 1I/O traces from over 100,000 logical vol-
umes from 125 EMC Symmetrix VMAX [8] systems in-
stalled at enterprise customer sites. The number of log-
ical volumes captured for each primary storage system
ranged from 12 to over 14,000. These systems supported
database, email, file system, and other business applica-
tions. Unfortunately, no other information is available re-
garding which applications wrote to and read from which
logical volumes. While such information would have

been useful, enterprise primary storage systems should
be designed to support a wide range of applications.

Traced data includes sector-level read/write 1/O re-
quests received by primary storage systems as applica-
tions performed I/O operations on their hosts connected
to the primary systems in, for example, storage area net-
works (SANs). Traced data was collected into a trace file
per volume. The trace file (or simply trace) contains a
number of records, each of which contains the following
data fields: timestamp from the beginning of the trace,
read/write command, port at which I/O is received, logi-
cal volume number, logical sector address (ranging from
0 to largest address), and number of sectors to read or
write.

Table 2 and Table 3 summarize I/O activities, rate, and
throughput in the traced systems. See the captions of
the tables for the descriptions of analyzed I/O properties.
Each row of the tables corresponds to a subset of logi-
cal volumes that share some common properties and are
analyzed together. The trace sets are:

1hr_1Wrt: logical volumes traced for at least 1 hour and
that received at least 1 write I/O

1hr_1GBWrt: a subset of 1hr_1Wrt, which includes
volumes traced for at least 1 hour and that received
at least 1GB worth of writes

24hr_1GBWrt a subset of 1hr_.1GBWrt, which in-
cludes volumes traced for at least 24 hours and that
received at least 1GB worth of writes

24hr_1GBWrt_Random: a subset of 24hr_1GBWrt,
which includes volumes that received largely ran-
dom write I/O requests (See Section 2.1)

24hr_1GBWrt_Sequential: a subset of 24hr_1GBWrt,
which includes volumes that received largely se-
quential write I/O requests (See Section 2.1)

The 24hr_1GBWrt* trace sets were selected for de-
tailed analysis because they provide a consistent basis for
a wide range of simulations across replication intervals.

As the large standard deviations in the tables indicate,
the traced volumes widely vary in host I/O activities they
supported. The tables do confirm the long-held view that
hosts issue more read I/O requests than write I/O requests

158 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

45
3 40 capacity estimated with largest address 1
% 35 write footprint .
2 30
S 25 .
g 20
£ 15 i
g 1
e L4 X A 1 E E
197&76,%6'7{309%’6‘@1097
Size (GB)

Figure 1: Storage capacity estimates and write footprint
for 1Thr_ 1GBWrt.

and (not surprisingly) read more data than they write.
Note in the W_rlen column of Table 2 that the average
run length of dirty data written after a random seek is
much longer for 1Thr_1Wrt and 1hr_1GBWrt trace sets
than for the 24hr_ 1GBWrt sets. This is because a small
fraction of volumes included in these sets received long
bursts of sequential writes that skewed the average values
for the entire sets. This can be seen in the standard de-
viations, which are 10 times the corresponding averages.
Such volumes are excluded from the 24hr_1GBWrt sets
as their trace periods are shorter than 24 hours.

We do not have access to the configured volume size,
so the storage capacity of each volume is estimated with
the largest logical address found in the corresponding
trace. Figure 1 shows the estimated storage capacity dis-
tribution for the 16,100 volumes in the 1hr_ 1GBWrt set.
For comparison, we also show the write footprint distri-
bution as percentage of volumes. The write footprint is
the number of unique sectors written converted to bytes.
Most volumes only had a few gigabytes of unique writes,
though volumes were estimated as hundreds of gigabytes
in capacity.

2.1 Sequential vs Random I/O

To determine if host I/O pattern has any significant im-
pact on our major findings, we further distinguish traces
in the 24hr_1GBWrt set into sequential and random.
Intuitively, a sequential trace is the result of a host writ-
ing data to consecutive locations. From surveying the
literature, we have found multiple definitions of sequen-
tial I/O (e.g., [1, 4, 12, 17, 21, 23, 24]). For our metric,
we measure how much data are written, on average, after
seeking to a random sector. By random sector, we mean
a sector that is not consecutive with the last sector written
based on logical address.

Figure 2 shows the average sequential write size
after a random seek for >500 logical volumes in
24hr _1GBWrt. The volumes are arranged on the x-
axis in increasing order of the average sequential write
size. Towards the right end of the x-axis, hosts write
>102KB of data in sequence after making a random
seek in 11% of the volumes. Towards the left end of

256

< Random
> Sequential

128

Random Seek (KB)

Average Write Size per

32
8 —————]

1 50

100 150 200 250 300 350 40
Logical Volumes

Figure 2: Average write size per random seek. We define

random and sequential volumes as having <8.5KB and

>102KB average writes per seek, respectively.

the x-axis, hosts write <8.5KB of data in sequence af-
ter making a random seek in 11% of the volumes. Un-
fortunately, there is not a clear division between se-
quential and random host I/O shown in the figure, so
for the purpose of our analysis, we use the average se-
quential write sizes of >102KB and <8.5KB as thresh-
old values in determining sequential volumes and ran-
dom volumes respectively. The sequential and ran-
dom volumes are denoted as 24hr_1GBWrt_Sequential
and 24hr_1GBWrt_Random in Table 2. In the re-
mainder of the paper, the 24hr_1GBWrt trace set is re-
ferred to as All, 24hr_1GBWrt_Sequential as Seq and
24hr_1GBWrt_Random as Random.

One drawback of our definition of sequential access
is that it does not account for interleaving writes from
different hosts because our tracing was lower in the stor-
age system. Nevertheless, we have adopted this approach
based on our observation that sequential write I/O re-
quests often appear together in sequence in trace files.
Another potential weakness of our trace analysis is that
we have not specifically analyzed time-of-day effects.
Partly, this is an artifact of our trace collection process
that has retained relative, not absolute time stamps, so
our replication intervals begin at the start of each trace.
Since we have a relatively large number of traces, such
effects are likely averaged out, but a future analysis could
clarify the impact by comparing results after offsetting
the start time.

3 Analysis Methodology

While analyzing logical volume traces, we have tracked
incremental changes over time and measured various
statistics. Our simulation entails three main components:
replication intervals, blocks, and transfer throughput.
The top half of Figure 3 illustrates host I/O as a sequence
of writes and reads, and the bottom half shows affected
sectors and blocks in a logical volume.

A replication interval simulates the fact that data pro-
tection mechanisms in primary systems often keep track
of dirty data for a user-defined period of time and repli-
cates dirty data to target storage at the end of each pe-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 159

Trace Set #Vol. #Sys. Dur. Est.Cap.| #W.reqs W.ize W_fp Wlen | #Rreqs Rosize R_fp R_rlen
(hrs) (GB) (1000s) (GB) (GB) (KB) (1000s) (GB) (GB) (KB)
lhr_1Wrt 109263 125 304 71 722 1.7 0.7 947.0 166.5 52 22 667.0
[78.3] [203] [510.4] [31.0] [11.2] [9230.3]| [1962.8] [65.7] [18.9] [11301.9]
Thr_-IGBWrt 16100 120 7.7 132 429.0 10.7 4.6 948.5 796.0 24.9 9.8 491.2
[6.7] [262] [1270.7] [80.1] [28.9] [9270.8] | [4986.7] [166.3] [45.0] [11065.7]
24hr_1GBWrt || 508 13 244 318 1802.8 51.1 19.9 284.6 78243 2415 913 132.7
All [1.2] [439] [4838.7] [337.6] [103.7] [256.1] | [23875.4] [763.2] [172.1] [3078.8]
24hr 1GBWrt || 58 9 242 238 1365.5 9.9 72 8.1 5677.1 97.0 66.5 35.6
Random [0.8] [328] [1819.7] [13.8] [12.1] [0.4] [8587.6] [111.2] [84.2] [27.3]
24hr_1GBWrt || 54 9 249 343 2542.1 280.2 102.6 461.4 2292.1 2478 64.1 687.9
Sequential [1.4] [591] [7567.2] [993.9] [301.8] [193.4] | [7533.8] [963.5] [191.3] [9118.1]

Table 2: Summary of I/O activities. The first four columns denote the number of logical volumes in a trace set, the
number of primary systems, the average trace period, and the average estimated storage capacity. The rest of the
columns show average I/O requests the host has issued. Footprint (fp) is the sum of unique sectors written or read at
least once, while run length (rlen) indicates the average size of data accessed in sequence after a random seek. The
values in square brackets are standard deviations for the corresponding averages.

I/0 Request Rate (1000s/sec) 1/0 Request Throughput (MB/sec)

Trace Set Avg. Peak Peak Avg Peak Peak Avg. Peak Peak Avg. Peak Peak

W_ate W_rate We_rate| Rorate Rorate R_rate | W_tput W_tput W_tput R_tput R_tput R_tput

1 sec 10 ms 1 sec 10 ms 1 sec 10 ms 1 sec 10 ms

lhr_1Wrt 0.0007 0.2 1.8 0.002 03 1.7 0.02 6.5 64.0 0.05 10.5 107.3

[0.008] [0.6] [2.6] [0.03] [0.8] [2.5] [0.4] [26.0] [1669.7] | [0.8] [85.5] [8089.5]
1hr_1GBWrt 0.02 0.9 4.4 0.03 0.9 3.6 0.4 30.2 224.1 0.9 32.8 359.7

[0.04] [L.3] [4.4] [0.1] [1.4] [4.1] [1.8] [60.6] [4342.7] | [3.7] [216.2] [21K]
24hr_1GBWTrt || 0.02 1.5 9.0 0.09 2.0 5.6 0.6 443 325.0 2.8 12242 5644.6
All [0.06] [1.8] [8.2] [0.3] [2.5] [7.0] [3.9] [76.7] [460.7] [8.8] [1188.2] [119K]
24hr 1GBWrt || 0.02 1.6 6.8 0.07 1.3 4.2 0.1 159 143.4 1.1 325 166.5
Random [0.02] [1.4] [5.6] [0.1] [1.0] [3.9] [0.2] [13.5] [326.6] [1.3] [50.0] [316.9]
24hr_1GBWrt || 0.03 1.2 53 0.03 1.5 43 32 98.1 584.7 2.8 70.4 517.6
Sequential [0.08] [L.7] [4.9] [0.08] [2.0] [4.3] [11.4] [121.1] [817.4] [11.1] [107.1] [880.5]

Table 3: Summary of I/O rate and throughput. The peak values for each volume are selected by considering every
10ms and 1 second period. The peak values for a given set are the average of peak values of individual volumes.

riod. In our trace analysis, we model how host write I/O Trace Timeline (w = Write I/O, r = Read I/O)
requests are collected for a given replication interval, and
one or more dirty sectors are determined from those re-
quests. Reads are ignored. We have used the following
replication intervals for analysis in this paper: 24 hours,
12 hours, 6 hours, 3 hours, 1 hour, 30 minutes, and 15
minutes. We have performed some analysis down to 1
minute replication intervals, though to simplify figures,
we generally do not show the intervals below 15 minutes.
Organizations typically select a replication interval based
on their recovery point objective, which defines the time
period for which they can tolerate losing data changes
due to a disaster. Organizations would like to shrink the
replication interval to as short as possible while consid-
ering the cost and infrastructure requirements.

Replication Interval 1

Replication Interval 2

NS NN EEEEEE NN EEE EN
V

Sectors

T T
Block Block
Logical Volume

Figure 3: Example of processing a logical volume trace
by removing read requests and recording affected sectors
and blocks. The red *w’ indicates overwriting requests.

In addition, as shown in Figure 3, dirty sectors are
mapped to a larger unit, called a block in our model. A
block is a sequence of n consecutive sectors in logical
volume space, where n >= 1. Blocks simulate the fact
that many storage systems and data protection mecha-
nisms aggregate dirty sectors into a larger unit and copy
those units when replicating modified data to target stor-
age. They do so to reduce memory and storage resources

required to maintain, for example, a map of dirty sectors.
Block sizes around 128KB are common in some storage
systems [26]. For a 1TB volume, the memory require-
ments for bit vector tracking are: 512B blocks require
256MB of RAM, 128KB blocks require 1IMB of RAM,
and 1MB blocks require 128KB of RAM.

A block is called “dirty’ if it has one or more dirty sec-
tors, and the figure shows dirty blocks in a darker shade

160 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

for Replication Interval 1. When determining the number
of dirty sectors (and blocks) during a replication inter-
val, over-writes to a given sector (and block) are counted
once. For space and figure clarity reasons, we only show
the results for extreme block-size values of 512B and
IMB, unless otherwise noted, because results changed
in a gradual manner with block size.

We also consider the impact of transfer throughput
within our model, which we define very broadly as the
throughput from reading dirty blocks on the primary sys-
tem, transferring across a network (LAN or WAN), and
storing on a target system. Based on the transfer through-
put and amount of data to transfer, we can determine the
transfer period (see Figure 3) during which a primary
system must maintain a consistent view of dirty blocks
until transfer completes. I/O from the host during the
transfer period may cause snapshot I/O (shown in the fig-
ure), and those modifications will be recorded and trans-
ferred at the end of Replication Interval 2. Note that all
modified blocks will be transferred, but because of the
point-in-time nature of transferring a snapshot, we have
to carefully manage which version of a block exists when
a snapshot is created. Managing multiple block versions
causes snapshot I/O and storage overheads.

We have analyzed throughputs between 1.5Mb/s (T1)
and 40Gb/s and typically discuss results for 1.5Mb/s (T1)
and 1Gb/s representing WAN and LAN scenarios, re-
spectively. Note that this throughput is per volume, and
storage systems can have over 10,000 volumes. If all
10,000 volumes were replicated at T1 bandwidth indi-
vidually, this would require 15Gb/s, which is impractical
for many customers. Even with that consideration, our
analysis provides general results for volumes selected for
replication.

With the described trace analysis methodology and
storage system model, we can determine how much data
should be copied to a target system at the end of each
replication interval. To determine the number of write
I/O requests needed to copy the data, we assume the
underlying data transfer protocol has an upper limit on
transfer size, which is assumed to be 1MB, so a larger
data run is split.

4 Findings for Primary Storage

At the end of a replication interval, the primary system
begins transferring changed blocks to the target, which
can take seconds to hours depending on the replica-
tion interval, the number of changed blocks, and trans-
fer throughput. During that time, the primary system
must maintain an accurate point-in-time representation
of those changed blocks, while also supporting incoming
host writes that may be directed at blocks that are in the
process of being transferred as well as blocks not being
transferred. In this section, we characterize storage and

I/O overheads for primary storage while changed blocks
are transferred to target storage under a variety of config-
urations.

For a logical volume, snapshots are a general pur-
pose technique to preserve the values for all sectors,
usually with a mapping from logical to physical sec-
tor addresses [2, 5, 10, 22]. Snapshots are often used
to preserve copies on a primary system but are also in-
creasingly being leveraged indirectly for data protection.
While there are multiple ways snapshots could be im-
plemented, copy-on-write and redirect-on-write are two
prevalent implementations. Suppose snapshot s; is cre-
ated at time . A host write to the volume at time 7 + 1
causes the version of the block at time 7 to be copied
into the snapshot (copy-on-write) or the write at # + 1 is
redirected to a snapshot (redirect-on-write). Snapshot s;
has meta data indicating whether the appropriate version
of a block is in the main volume or exists in a snapshot
region.

Depending on how sectors are modified, both snap-
shots techniques could be close to empty (no modified
sectors) or as large as the active volume (all modified
blocks). In terms of I/O, copy-on-write requires 1/O to
perform the read and write of the earlier block value.
Redirect-on-write may require I/O for read-modify-write
when a write is less than the block size, and redirect-on-
write affects data locality. Creating a clone is an alter-
native to creating a snapshot, but a clone is less space
efficient because it is a full point-in-time copy.

4.1 Replication Snapshot

While this paper focuses on transferring changed blocks,
standard snapshot functionality is not designed for this
purpose in that any incoming write I/O causes a copy-
on-write or redirect-on-write. For replication snapshots,
we finely track which blocks need to be transferred for a
given replication interval (those that have changed since
the last transfer). Only application writes to those blocks
cause copy-on-write or redirect-on-write during the time
it takes for a transfer to complete. Application writes to
non-tracked blocks can happen normally, and all modifi-
cations will be transferred in the next replication interval.
We present results from the baseline snapshot approach
as well as from two versions of replication snapshots,
which relax some of the requirements for generic snap-
shots such that only data that needs to be transferred are
tracked.

When describing snapshot techniques, we refer to an
example volume shown in Figure 4. Blocks shaded in
blue are changed at the end of a replication interval and
need to be transferred. Also, their values need to be pre-
served until replication completes while allowing host
I/O to continue.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 161

Logical volume state before transfer takes place
Block: 0 1 2 3 4

|:| = Modified block to be transferred

Figure 4: Changed blocks 0, 1, and 4 are transferred to
target storage at the end of a replication interval, and a
snapshot maintains their state while host I/O continues.

Baseline Snapshot: The standard approach performs
snapshot I/O for all incoming host writes regardless of
whether the affected block is being transferred or not.
In Figure 4, host writes to any block (0 —4) result in
snapshot I/O the first time. All blocks are released from
snapshot protection once the three changed blocks are
transferred.

Changed Block Replication Snapshot (CB): Only the
changed blocks being transferred at the end of a replica-
tion interval are tracked, so host write I/O to these blocks
causes snapshot I/O. Importantly, host write I/O to clean
blocks is processed without snapshot I/O. In our exam-
ple, host writes to blocks 0, 1, and 4 cause snapshot I/O,
but writes to blocks 2 and 3 do not. All blocks are re-
leased from snapshot protection once the three changed
blocks are transferred.

Changed Block with Early Release Replication Snap-
shot (CBER): Similar to the previous version, only
changed blocks are tracked, but a block is released
from replication snapshot tracking immediately once it
is transferred, instead of waiting for the entire transfer to
complete. In the figure, host writes to blocks 0, 1, and 4
will cause a snapshot I/O only if those blocks have not
yet been transferred based on block-by-block tracking of
transfer status.

Note that for all three snapshot versions, repeated host
I/O to the same block only causes a single snapshot 1/0.
Also, the amount of data transferred is identical for all
three snapshot techniques. The only difference is the
overhead for snapshot I/O and storage. A property af-
fecting snapshot performance is the transfer throughput,
which affects how long a snapshot persists. In simula-
tion, we have explored a range of throughputs described
in Section 3 but only present a subset of results due to
space limitations.

While CBER has lower overheads than CB in our ex-
periments, there is extra tracking information required.
There is also more communication with target storage
to confirm when individual blocks have been transferred
so that blocks can be released from replication snapshot
tracking. We leave such analysis to future work. De-
pending on specific storage system implementations, one

type of replication snapshot may be more appropriate
than another.

4.2 Storage Overhead

We performed experiments to measure the amount of ex-
tra storage space required for blocks written due to snap-
shots, which is the same for copy-on-write and redirect-
on-write. This storage overhead is required to maintain
block values while changed blocks are transferred to a
target system. Figure 5 shows results for a throughput
of 1.5Mb/s for block sizes of 512B and 1MB and three
snapshot alternatives for Random 5a, All 5b, and Se-
quential 5c hosts.

For all configurations, as the replication interval in-
creases on the horizontal axis from 15 minutes to 12
hours, the average fraction of capacity required for snap-
shots increases. For Figure 5b, we see an average stor-
age overhead of 8% for the Baseline approach with IMB
blocks at 12 hours, and we have even found a peak over-
head of 100% in some traces. Unsurprisingly, we see
a consistent pattern that the storage overhead is larger
for IMB blocks than 512B blocks. Replication snapshot
techniques such as CB and CBER reduce storage over-
head because of finer-grained tracking of block transfer
state. Considering 1MB blocks at 12 hours, storage over-
heads decrease from 8% to 4% to 2% respectively, and
we see the same trend for 512B blocks.

Our general conclusions hold for Random and Se-
quential traces, though there are several interesting dif-
ferences. For Random traces, 512B blocks have very low
capacity overheads because of the lower change rate for
Random traces. For Sequential traces, the block size has
little impact because blocks tend to be fully dirty.

Although not shown for space reasons, the trends are
identical at a higher throughput of 1Gb/s. Larger blocks
require more capacity overheads than smaller blocks, and
finer-grained snapshots reduce overhead. Because of the
higher throughput, transfer time is shorter (seconds ver-
sus minutes or hours), and storage overhead is a few per-
cent on average for every configuration.

Rule-of-thumb 1: 8% of capacity needs to be re-
served for snapshot overheads to support incremental
transfers every 12 hours. The reserve is as low as 2%
of capacity with replication snapshots.

4.3 1/0 Overhead

We have further analyzed the I/O overhead for snapshots
by measuring the fraction of host write I/O that causes
a snapshot I/O during the transfer period. This can be
thought of as I/O amplification because a host write can
cause a read and second write for copy-on-write. For
redirect-on-write, there may be a read-modify-write due
to writes smaller than the block size as well as decreased
data locality.

162 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Storage Overhead
Tput=1.5Mb/s(T1)

Storage Overhead
Tput=1.5Mb/s(T1)

Storage Overhead
Tput=1.5Mb/s(T1)

> 12 12z 12 > 12 12
85 10 10 85 10 85 10 g 10
%% 8 8 3G 8 8% 8 e
(G- > [OF=% [&F=1 o
o 6 6 of 6 of 6 : 4 6
ED 4 ad 4 ED 4 ED 4 g A 4
EX — = Er s~ A A
O o 0 et 2 88 o : S8 o, |N v 5
> £e I S > e 2 L
® 0 7o It 6 z 0 0 g @ 6 7 * 0 e @ 6 7. 0
‘5\/))/ Zal % % ‘34 A o\/))?/ ’5» '5» e/jf /);?» 3 % e/jﬁ
K Replication Interval K Replication Interval K Replication Interval
512B Baseline —o— 512BCB = 512B CBER ---v---
1MB Baseline - *- 1MB CB A 1MB CBER --v---
a. Random b. All c. Sequential

Figure 5: Snapshot storage overhead due to host write I/O for Random, All, and Sequentially written systems.

Copy-On-Write I/0O Overhead

Read-Modify-Write I/O Overhead

Tput=1Gb/s Tput=1Gb/s
QO 60 60
(o)) o<
§2 10— S5 G250 %e 50
= yve B, S
S§ 80 80 &= 40 A 2 L P
o% 60 A 60 >
=5 , Peoy =g¥pe—o -3 %0
29 4Q R R W 2 40 2220 - i e & 20
Sz ==
38 20&7‘5 """" ¥ 20 i% 10&”“7 »»»»»» R 10
’ Vo @ <‘5' 7 0 TE 0 Vos @ 6 7 0
6\97/’?» 6» 6» e/j A 6\/))/ ,6» ’5» ’5» 9/5 5.
2 Replication Interval 2 Replication Interval
512B Baseline —o— 512BCB -4~ 512B CBER --<-- 4KB Baseline —6— 4KBCB A 4KBCBER --<--
1MB Baseline -—-@-- 1MBCB -4 1MB CBER ---v--- 1MB Baseline @ 1MBCB -4 1MB CBER ---v---

Figure 6: Fraction of host write I/O that causes copy-on-
write I/O during the transfer period. The plotted lines are
for 24hr 1GBWrt All

As shown in Figure 6, copy-on-write I/O can be al-
most 100% of the host I/O for 512B blocks and Baseline
snapshots. In general, we find that smaller blocks cause a
larger number of copy-on-write I/Os than larger blocks,
though transferring larger blocks will include sectors that
were not modified. This is because host write I/O tends
to be at least somewhat sequential, and only the first I/O
to a block causes a copy-on-write I/O. We also find a con-
sistent pattern, in which improving the replication snap-
shot technique decreases the copy-on-write I/O overhead
across block sizes and replication intervals.

In contrast, redirect-on-write has different patterns
than copy-on-write, because redirect-on-write can cause
read-modify-write operations as shown in Figure 7. We
analyzed 4KB blocks instead of 512B blocks since there
is never a read-modify-write for 512B blocks. We find
that IMB blocks have a higher fraction of read-modify-
write I/0O because host I/O sizes tend to be kilobytes.

These results presented for 1Gb/s throughput are qual-
itatively similar to results for lower transfer through-
puts. One difference is that I/O overheads are larger for
high throughput than low throughput, which may seem
counter-intuitive. We present a representative transfer
period with the Baseline snapshot technique in Figure 8
for one trace (System 1799). The horizontal axis shows

Figure 7: Fraction of host write I/O that causes read-
modify-write I/O during the transfer period. The plotted
lines are for 24hr_1GBWrt All

o Sys=1799, Block=512B

30 ‘ ‘

gg 100 (72 Qc 100
=< 80| 80
3o “

T g 60 60
B Bana

02 0 SABELMEA A A A A n an] TO
29 20 20
28 0

£

3 00 % R DO DD %

% Transfer Period

Tput = 1Gb/s, Transfer Time = 8sec —&—
Tput = 1.5Mb/s, Transfer Time = thr 40min -4

Figure 8: For high throughput, most host write I/Os
cause a copy-on-write I/O, while at lower throughputs,
there is less I/O overhead.

transfer time normalized to 100%, and the vertical axis
shows the cumulative fraction of host I/O that causes a
copy-on-write I/O for both 1.5Mb/s and 1Gb/s through-
puts. For the 1Gb/s result, each mark represents a single
I/0, while for 1.5Mb/s, each mark represents 1,000 I/Os.

Transfer periods can be quite short with 1Gb/s
throughputs (8 seconds in this example) such that there
are few I/Os during that time and those I/Os tend to be
to unique blocks, which causes a copy-on-write I/O. At
1Gb/s throughput, 12-19% of systems did not experience

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13)

163

any host I/O during the transfer period for block sizes of
512B-1MB respectively. For slower throughputs, trans-
fer time is longer (1 hour and 40 minutes for the T1 ex-
ample), there are more I/Os, and many I/Os affect the
same block. Over 99% of systems had at least some host
write I/O during transfer at 1.5Mb/s.

Rule-of-thumb 2: Primary I/O should be over-
provisioned by 100% to support copy-on-write re-
lated write-amplification of host writes during repli-
cation. The over-provision can be as low as 20% with
a replication snapshot.

4.4 Analysis with Write Buffers

Our analysis thus far has not included the impact of
buffering host write I/O on the primary storage server
during incremental transfer. Write-buffering is common
in practice [3], with flushes to disk either scheduled peri-
odically or triggered through a storage API. To simulate
the impact of buffering host write I/O, we have added
a FIFO queue to our analysis throughout the replication
interval. As host writes take place during transfer time,
the corresponding blocks are added to the queue. When
our queue fills, the oldest block is evicted from the queue
and is written to storage, which causes a copy-on-write
or redirect-on-write (for the first write to a block) with
related snapshot I/O and storage overheads.

Snapshot I/O overhead for 1.5Mb/s throughput and a
12 hour replication interval is shown in Figure 9. Snap-
shot I/O overhead decreases rapidly as the write buffer
increases from 0% to 1% of the volume’s estimated ca-
pacity. Increasing the write buffer would further decrease
overheads, but write buffers are typically much less than
1% of storage capacity due to differences in cost between
memory and persistent storage. In contrast to snapshot
I/0, we found that storage overhead for snapshots was
nearly unaffected by buffer size because only the first
write to a block requires snapshot storage space. We
did find that both I/O and storage overheads decrease
with improved replication snapshot techniques. A stor-
age overhead figure is not shown due to space limitations.

Rule-of-thumb 3: Having a write buffer effectively
decreases snapshot I/0 overheads but has little im-
pact on storage overheads.

5 Findings for Target Storage

Besides improving storage overheads for primary sys-
tems, we can also analyze how target data protection
storage is impacted. How frequently can replication run?
How much data will be stored? How much bandwidth
is required? Answering these questions will guide the
design of future data protection systems.

5.1 Transfer Size Analysis

We first investigate the amount of data to be transferred
and stored for each replication interval. We investigate

1/O Overhead
Repl.Interval=12hrs, Tput=1.5Mb/s(T1)

w
o
w
o

NN
o o,

P>
NN
o O,

% Host Write 1/0
Causing Snapshot I/0

15§ 15
“,u A
Ve R AN
5 (8 @@ N 5
0 44 . A ————— 0
0% 0.75, 0.59, 7%

Write-Buffer Size (% Volume Capacity)

512B Baseline —&—
1MB Baseline @~

512B CB &
1MB CB A

512B CBER --%--
1MB CBER ---v---

Figure 9: Snapshot I/O overhead decreases rapidly as
write buffer size increases.

5000 5000
-~
g 2 1000 [S ot
e o T 500
"g; g ijk
S oy Lo o

E . ST, -_
(D% 8 50 o %
o 10

% o
Replication Interval
512B Random —&— 512B All -4 512B Seq -----
1MB Random ---@---- 1MBAll A 1MB Seq ---v---

Figure 10: Data transferred as a fraction of data written
gradually decreases as the replication interval increases.

the size of data transferred in Figure 10. Note that the
vertical axis shows the normalized data transferred (log
scale). For normalization, we divide the dirty blocks to
be transferred by the amount of data written by the host
to the primary system. Values will be less than 100%
when a host writes to the same block multiple times, and
the block only has to be transferred once because of write
collapsing.

For a block size of 512 bytes across all volumes (the
512B All line overlaps with Seq), the data transferred
starts at about 100% of the data written with the inter-
val of 15 minutes and gradually decreases to about 40%
with a 24-hour interval. For sequentially accessed logical
volumes (Seq), results are consistent across block sizes:
data transferred is >=100% of the data written when the
interval is 15 minutes and gradually reaches about 40%
of the data written at 24 hours. This is because sequen-
tial host write I/O tends to produce more completely dirty
blocks than other I/O patterns.

Data transferred can be more than 100% because all of
the sectors in a dirty block are transferred even if only a
single sector in the block is actually dirty. As the inter-
val increases, blocks are ’filled up’ with more dirty data.
Figure 11 shows that 512B blocks are always fully dirty

164 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

100 @& .
:\O\ E5 A smemmmn EEERR 4
g s 80
£ 60 (7 N
2 ' A A
S 40 e w0
2 A
R S S D G I
2 =
z ¢
’ 0
L, 9 & 7 o)
/%: é/» 4/- /5/. 6/.
7 Replication Interval
512B Random —&— 512BAll A 512BSeq ——v—-
1MB Random -—-@-— 1MBAIl -4~ 1MBSeq ---v---

Figure 11: Except for the block size of 512B, dirty blocks
are likely to contain various amounts of "clean data,” with
larger blocks more so than smaller blocks.

(line across the top). On the other hand, IMB blocks be-
come dirtier as the time between transfers increases, with
most of the change in the first six hours. As expected,
sequentially written volumes have much more fully dirty
blocks than randomly written volumes, and block dirti-
ness is related to the reduction in normalized data trans-
ferred. Though not shown due to space limitations, we
also found a distinct pattern that blocks were either fully
dirty or dirty in multiples of 4KB or 8KB, likely due to
file system and database allocation units.

These results suggest that using a large block size with
a short interval can incur a significant overhead in trans-
ferring changed data to target storage. Even for small
block sizes, >40% of data written daily is transferred to
external systems.

Rule-of-thumb 4: The daily transfer size with small
blocks is generally 40 % of what hosts write.

Rule-of-thumb 5: Scheduling at least 6 hours be-
tween transfers allows blocks to achieve nearly peak
dirtiness.

Comparison to previous study

A previous study in the SnapMirror system [20] of 12
file system servers examined reduction in data size to be
transferred to a remote mirroring site over a range of
replication intervals. In their study, the block size was
fixed at 4KB. In Figure 12, our result for over 500 log-
ical volumes (500 Avg (New)) with a 4KB block size is
plotted along with a reproduction of their figure.

We find the reduction in data size to be much smaller
than the SnapMirror results for intervals between 1
minute and 6 hours. Specifically, the SnapMirror study
reports that all 12 systems achieve at least 30% reduction
by 1 hour, while the average reduction for our traces is
less than 20%. At longer intervals, our results are closer.
For example, SnapMirror found a reduction in data size

100 100

=~ 80 80
8
85 60K 60
5 h —
=3 40 4 40
© S [Tk
S = S
[\ Jal ‘ M
e~ 20 = 20
0 ’7 ;fiiiiﬂj H@ 0
7
% %. .
Replication Interval
500 Avg éNew) —_— Cores3 Source
uild1 - Build2 - Users2 --—--o---
Cores - Pubs —-&-- Users3
Bench e Users1 -
Cores2 Bug

Figure 12: The 500 Avg (New) line plots the data trans-
ferred normalized to data written by the host for each
replication interval with our traces, while the other lines
are reproduced from Patterson et al. [20]. All results are
with 4KB blocks.

at 24-hour intervals to be between 53% and 98%, while
we observe an average reduction of 60%.

In summary, our results are qualitatively similar, with
transfer savings increasing with replication interval. The
observed discrepancies are most likely due to different
workloads used for analysis. The smaller number of sys-
tems studied for SnapMirror mostly supported software
development and related applications, e.g., source code
tree, bug tracking database, and engineer home direc-
tories, while the systems in our study support a mix of
business and consumer applications and file systems.

5.2 Bandwidth Requirements

Transferring data requires sufficient bandwidth for the
transfer to complete before the next replication interval
or a cascade of failures occurs. Peak bandwidth was
calculated for each trace, and the 90th percentile across
traces is plotted in Figure 13. Results are per volume,
so bandwidth for a storage system with many volumes
would be higher. Logical volumes supporting sequen-
tial hosts require the most network bandwidth across all
replication intervals. For replication interval > 6hours,
the required bandwidth for the logical volumes in the
Random set is similar to that for the volumes in the All
set. For sequential hosts, the number of logical volumes
that can simultaneously transfer changed data is largely
bound by network bandwidth, while for the other vol-
umes, the choice of block size has a significant impact.
Based on the results from Figure 10, storage administra-
tors can calculate how much bandwidth they will need
to transfer changed data, which is a sizable fraction (ap-
proximately 40%) of what hosts write to primary storage.

There is clearly a relationship between the amount
of data written by the host to primary storage and the

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 165

— 1024
R]
S 256§
ey NS
-5 128 r D
22 e4¢a TP
:'CC) KSR & RS ¥
g 32 e R
‘Dfﬁ ; = B 4
o A &
x 16 s
o 8 % A b :]
2 “% AL
= 4
I I S
2 77, Q@ & 7. gi
Dfr B e < g
7 T~ -
Replication Interval
512B Random —&— 512BAll A 512B Seq --v--
1MB Random --—-@---- 1MB All A 1MB Seq ---v---
Figure 13: 90th-percentile peak network bandwidth

needed to successfully transfer dirty blocks. Bandwidth
is per logical volume, and the y-axis has a log scale of
base 2.

amount transferred to target storage, and analyzing 512B
blocks shows a 99% correlation up to 30 minutes. The
correlation is lower (62-85% depending on replication
interval) for 1IMB blocks, likely due to clean data also
transferred in large blocks. We found a fairly low corre-
lation (30-53%) between estimated volume capacity and
transferred data, so capacity is less predictive of band-
width requirements than other properties such as host
write throughput.

Rule-of-thumb 6: Scheduling at least 12 hours
between transfers drastically reduces peak network
bandwidth requirements. Volume capacity is not pre-
dictive of bandwidth requirements.

5.3 1/O Analysis

A significant difference between primary storage and tar-
get storage designed for data protection is the I/O re-
quirements of each system. Primary storage is designed
to optimize for host I/O requirements related to email or
web servers, shared file systems, or databases. While
capacity matters, I/O per second is often a more critical
feature. In comparison, target storage is designed for ca-
pacity and high throughput [26], so I/O per second may
be of lower priority.

Figure 14 shows how the replication interval affects
I/O per second requirements for target storage that is not
log structured. The vertical axis is normalized relative to
host I/0O rates. Specifically, it shows the number of write
I/0 requests needed to transfer dirty blocks to the target
as a percentage of the number of host write I/O requests
for the same period in the original trace. See Section 3
for detailed information on how we compute write I/O to
target storage.

For even a fifteen minute interval, the transfer I/O rate
drops to between 10% and 40% of the host I/O rate, de-
pending on the block size and write pattern. This sharp
drop for a short interval is because we first order the dirty

50 512B Random —&— 50
3 1MB Random ---@--
40 512B All 4 4 40
1MB All A
512B Seq --v--

Target write IOPS / Host Write IOPS

Replication Interval

Figure 14: Ratio of target write IOPS to host write IOPS.

sectors accumulated over the interval by their logical ad-
dresses to compute write I/O needed for transfer to target
storage. This ordering results in longer runs of sequential
dirty sectors than created by original host write I/O re-
quests (up to the assumed maximum 1MB transfer size).
I/O savings continue up to 24 hours measured, though
there is little change between 6 hours and 24, and the
I/O rate for a larger block size is consistently lower than
that of a smaller block size. Collecting host I/Os for a
period of time is a well studied technique to reduce 1/O
requirements [3].

For sequentially accessed logical volumes, the trans-
fer I/O rates for different block sizes are almost indis-
tinguishable across all the intervals. This is because se-
quential host write I/0, along with our ordering of dirty
sectors, produces runs of sequential dirty sectors that are
>> 1MB in size, so the 1MB network transfer size lim-
itation becomes the dominating factor. For randomly ac-
cessed logical volumes, block size has a large impact on
I/O requirements, requiring from 12% to 40% at 1 hour.
These results indicate that it is worthwhile to configure
block sizes and replication intervals for mixed and ran-
domly accessed volumes.

While our work focuses on asynchronous replication
to reduce I/O and storage requirements for target sys-
tems, an alternative is to consider synchronous replica-
tion. Synchronous replication requires a target system to
have 100% of the I/O capabilities of the primary system,
which would be a horizontal line added to Figure 14 at
100% on the vertical axis. Asynchronous replication can
be more efficient than synchronous replication for two
reasons: collapsing multiple writes to the same block be-
fore replication to reduce transferred data and reordering
writes to reduce random I/O. We leave it as future work
to explore the impact of each reason.

Rule-of-thumb 7: Target storage must support as
much as 20% of the I/O per second capabilities of pri-
mary storage when the replication interval is at least
one hour.

166 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

6 Related Work

Over the years, there have been many studies of storage
workloads in various computing environments including
aspects of file access and caching [3, 4, 11, 19, 23]. Le-
ung et al. [17] analyzed I/O trace data collected from
networked file servers deployed in a data center. An-
derson [1] presented new techniques for collecting large,
detailed traces. Analysis of high performance comput-
ing (i.e. supercomputing) workloads focused on band-
width, I/O request inter-arrival times, idle time, and ac-
cess rates [6, 7, 15, 16, 18]. Gulati et al. [9] studied
characteristics and consolidation strategies for virtual-
ized systems. Analysis for database workloads [12] has
shown qualitatively similar properties to file systems.

Numerous studies have measured disk access prop-
erties including block lifetimes, access rates, response
time, sequential patterns, and caching [23, 24]. Riska
and Riedel [21] analyzed how I/O workloads on disk
drives change depending on applications and computing
environments, e.g., enterprise servers vs. desktop com-
puters vs. consumer electronics.

Unlike these earlier works, we specifically focus on
characterizing the overheads and I/O properties in trans-
ferring incremental changes on primary storage to tar-
get storage. Specifically, we analyze data changes at the
physical (block) level, in part, because creating backups
at the physical level is more efficient than doing so at
the logical (file) level [13]. Roselli et al. [23] studied
block lifetimes but not in the context of data protection.
A study a decade ago by Patterson et al. [20] character-
ized changed data at the block level for a similar goal; see
Section 5.1. Wallace et al. [26] described backup work-
load characteristics, though they intermixed full and in-
cremental workloads.

Snapshots are a common technique to create a point-
in-time version of data. WAFL [10], ZFS [5] and
BTREFS [22] all natively support snapshots with copy-
on-write as means of ensuring data consistency on disk
and enabling fast restart after system crash. In these sys-
tems, snapshots are first-class objects that can be named
and accessed by the end user. In the case of ZFS and
BTREFS, snapshots are writable and can be updated in-
dependently from the original. In addition, snapshots
are taken at the logical level, e.g., the entire file system,
directories, and/or individual files. In contrast, a repli-
cation snapshot is mainly comprised of blocks written
since the last transfer, is not writable, and does not per-
sist; once the transfer is completed, the space allocated
for copied-on-write blocks is reclaimed for use by pri-
mary storage or later snapshots.

There are several publications on snapshot overheads.
Azagury et al. [2] and Shah [25] both report up to 7%
degradation in I/O rate due to copy-on-write. We an-
alyzed replication snapshots as a technique to reduce

overheads of standard snapshots during replication. Our
two versions of replication snapshots can be classified as
write-coalescing batches with atomic update in a tax-
onomy for remote mirroring defined by Ji et. al. [14],
with the batch size determined by replication intervals.
Our asynchronous technique allows for write coalescing
to reduce write size and I/O rate on target storage.

Synchronous remote mirroring [14] can also be used
for protection of data changes, especially when the
change rate is low and/or the geographical distance be-
tween primary and target systems is relatively short,
e.g., [27, 28]. In this paper, we analyze an asynchronous
approach to allow target systems whose I/O performance
and storage capacity are characteristically different from
primary storage, e.g., purpose-built backup appliances.

7 Discussion and Conclusion

In this paper, we have analyzed I/O traces from over
100,000 logical volumes in customer block-based pri-
mary storage systems to understand I/O characteristics
and performed a detailed analysis of over 500 traces
spanning at least 24 hours to gain a better understanding
of incremental change patterns. New insights can help
data protection expand from the realm of daily backups
to more frequent updates.

Our analysis has uncovered several new findings for
both primary and target storage. Overheads on pri-
mary storage due to snapshots can require both capacity
and I/O to preserve point-in-time copies, though a write
buffer decreases I/O requirements. For target storage,
storage requirements depend on the write patterns of the
host and can vary from 40% for most hosts to 100% for
hosts that write sequentially. Replication requires band-
width, which we have shown grows proportionally with
the write-throughput of hosts. We have found that access
patterns can change from highly sequential to highly ran-
dom across different replication intervals, with a large
change in data transfer characteristics. Given that the
transfer interval is often statically configured by the tar-
get system administrator, our observations argue for dy-
namically changing block sizes and replication intervals
at run time based on the host I/O access pattern.

Many findings about data patterns align with previous
results: dirty blocks tend to be overwritten again within
minutes or hours, the change rate grows less rapidly with
longer replication intervals, and volumes tend to be mod-
ified in multiples of 4KB or 8KB. From the analysis of
over 100,000 traces, we found that there is great diversity
in storage requirements in terms of capacity, numbers of
writes and reads, as well as average and peak throughput
and I/O per second.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 167

Acknowledgments

We would like to thank Fred Douglis, Kadir Ozdemir,
Steve Smaldone, Grant Wallace, Ian Wigmore, and our
reviewers for their feedback. We also thank Bill Glynn
and the EMC VMAX team for providing the traces.

References

[1] E. Anderson. Capture, conversion, and analysis of an in-
tense NFS workload. In Proc. of the 7th USENIX Conf.
on File and Storage Tech., 2009.

[2] A. Azagury, M. E. Factor, J. Satran, and W. Micka. Point-
in-time copy: Yesterday, today and tomorrow. In Proc.
IEEE/NASA Conf. Mass Storage Systems, 2002.

[3] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and
M. Seltzer. Non-volatile memory for fast, reliable file
systems. ACM SIGPLAN Notices, 27(9):10-22, 1992.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout. Measurements of a distributed file
system. In Proc. of the 13th ACM Symposium on Operat-
ing Systems Principles, October 1991.

[5] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and
M. Shellenbaum. The zettabyte file system. In Proc. of
the 2nd Usenix Conference on File and Storage Technolo-
gies, 2003.

[6] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross. Understanding and improving
computational science storage access through continuous
characterization. ACM Trans. on Storage, 7(3), October
2011.

[7] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and
K. Riley. 24/7 Characterization of Petascale I/O Work-
loads. In Proc. of the 1st Works. on Interfaces and Ab-
stractions for Scientific Data Storage, 2009.

[8] EMC. EMC Symmetrix VMAX. http:
//www.emc.com/storage/symmetrix-vmax/
symmetrix-vmax.htm, 2013.

[9] A. Gulati, C. Kumar, and I. Ahmad. Storage workload
characterization and consolidation in virtualized environ-
ments. In Proc. of the 2nd Inter. Workshop on Virtualiza-
tion Performance: Analysis, Characterization, and Tools,
2009.

[10] D. Hitz, J. Lau, and M. Malcolm. File system design
for an nfs file server appliance. In Proceedings of the
USENIX Winter 1994 Technical Conference, pages 235—
246, 1994.

[11] W.W. Hsu and A. Smith. The performance impact of /O
optimizations and disk improvements. IBM Journal of
Research and Development, pages 255-289, March 2004.

[12] W. W. Hsu, A. J. Smith, and H. C. Young. I/O reference
behavior of production database workloads and the TPC
benchmarks - an analysis at the logical level. ACM Trans.
on Database Systems, 26:96-143, 2001.

[13] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris,
D. Hitz, S. Kleiman, and S. O’Malley. Logical vs. physi-
cal file system backup. In Proc. of the 3rd Symposium on
Operating Systems Design and Implementation, 1999.

[14] M. Ji, A. Veitch, J. Wilkes, et al. Seneca: remote mirror-
ing done write. In Proc. of the USENIX Annual Technical

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

Conf., 2003.

Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow,
Z.Zhang, and B. W. Settlemeyer. Workload characteriza-
tion of a leadership class storage cluster. In Proc. of the
5th Petascale Data Storage Workshop, 2010.

S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and
W. Allcock. 1/O performance challenges at leadership
scale. In Proc. of Supercomputing, November 2009.

A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and analysis of large-scale network file sys-
tem workloads. In Proc. of the USENIX Annual Technical
Conf., 2008.

E. L. Miller, R. H. Katz, and Y. H. Katz. Analyzing
the I/0 behavior of supercomputer applications. In Proc.
of the 11th IEEE Symposium on Mass Storage Systems,
1991.

J. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Anal-
ysis of the UNIX 4.2 BSD File System. In Proc. of the
10th Symposium on Operating System Principles, 1985.

H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. SnapMirror: file system based
asynchronous mirroring for disaster recovery. In Proc. of
the 1st USENIX Conf. on File and Storage Tech., 2002.

A. Riska and E. Riedel. Disk drive level workload char-
acterization. In Proc. of the USENIX Annual Technical
Conf., 2006.

O. Rodeh, J. Bacik, and C. Mason. Brtfs: The linux b-
tree filesystem. Technical report, IBM Research Report
RJ10501 (ALM1207-004), 2012.

D. Roselli, J. Lorch, and T. E. Anderson. A comparison
of file system workloads. In Proc. of the USENIX Annual
Technical Conf., 2000.

C. Ruemmler and J. Wilkes. Unix disk access patterns. In
Proc. of the Winter USENIX Conf., 1993.

B. Shah. Disk performance of copy-on-write snapshot
logical volumes. PhD thesis, The University Of British
Columbia, 2006.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup
workloads in production systems. In Proc. of the 10th
USENIX Conf. on File and Storage Tech., 2012.

H. Weatherspoon, L. Ganesh, T. Marian, M. Balakrish-
nan, and K. Birman. Smoke and mirrors: reflecting files
at a geographically remote location without loss of per-
formance. In Proc. of the 7th USENIX Conf. on File and
Storage Tech., 20009.

M. Zhang, Y. Liu, and Q. Yang. Cost-effective remote
mirroring using the iSCSI protocol. In 2/st IEEE Conf.
on Mass. Storage Systems and Tech., 2004.

168 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

On the Efficiency of Durable State Machine Replication

Alysson Bessani', Marcel Santos', Jodo Felix', Nuno Neves', Miguel Correia

2

{'FCUL/LaSIGE, 2INESC-ID/IST}, University of Lisbon — Portugal

Abstract

State Machine Replication (SMR) is a fundamental tech-
nique for ensuring the dependability of critical services
in modern internet-scale infrastructures. SMR alone
does not protect from full crashes, and thus in practice
it is employed together with secondary storage to ensure
the durability of the data managed by these services. In
this work we show that the classical durability enforc-
ing mechanisms — logging, checkpointing, state transfer
— can have a high impact on the performance of SMR-
based services even if SSDs are used instead of disks. To
alleviate this impact, we propose three techniques that
can be used in a transparent manner, i.e., without modi-
fying the SMR programming model or requiring extra re-
sources: parallel logging, sequential checkpointing, and
collaborative state transfer. We show the benefits of these
techniques experimentally by implementing them in an
open-source replication library, and evaluating them in
the context of a consistent key-value store and a coordi-
nation service.

1 Introduction

Internet-scale infrastructures rely on services that are
replicated in a group of servers to guarantee availabil-
ity and integrity despite the occurrence of faults. One
of the key techniques for implementing replication is the
Paxos protocol [27], or more generically the state ma-
chine replication (SMR) approach [34]. Many systems
in production use variations of this approach to tolerate
crash faults (e.g., [4, 5, 8, 12, 19]). Research systems
have also shown that SMR can be employed with Byzan-
tine faults with reasonable costs (e.g., [6, 9, 17, 21, 25]).

This paper addresses the problem of adding durability
to SMR systems. Durability is defined as the capability
of a SMR system to survive the crash or shutdown of all
its replicas, without losing any operation acknowledged
to the clients. Its relevance is justified not only by the
need to support maintenance operations, but also by the

many examples of significant failures that occur in data
centers, causing thousands of servers to crash simultane-
ously [13, 15, 30, 33].

However, the integration of durability techniques —
logging, checkpointing, and state transfer — with the
SMR approach can be difficult [8]. First of all, these
techniques can drastically decrease the performance of
a service!. In particular, synchronous logging can make
the system throughput as low as the number of appends
that can be performed on the disk per second, typically
just a few hundreds [24]. Although the use of SSDs can
alleviate the problem, it cannot solve it completely (see
§2.2). Additionally, checkpointing requires stopping the
service during this operation [6], unless non-trivial opti-
mizations are used at the application layer, such as copy-
on-write [8, 9]. Moreover, recovering faulty replicas in-
volves running a state transfer protocol, which can im-
pact normal execution as correct replicas need to transmit
their state.

Second, these durability techniques can complicate the
programming model. In theory, SMR requires only that
the service exposes an execute() method, called by the
replication library when an operation is ready to be exe-
cuted. However this leads to logs that grow forever, so in
practice the interface has to support service state check-
pointing. Two simple methods can be added to the in-
terface, one to collect a snapshot of the state and another
to install it during recovery. This basic setup defines a
simple interface, which eases the programming of the
service, and allows a complete separation between the
replication management logic and the service implemen-
tation. However, this interface can become much more
complex, if certain optimizations are used (see §2.2).

This paper presents new techniques for implement-
ing data durability in crash and Byzantine fault-tolerant

The performance results presented in the literature often exclude
the impact of durability, as the authors intend to evaluate other aspects
of the solutions, such as the behavior of the agreement protocol. There-
fore, high throughput numbers can be observed (in req/sec) since the
overheads of logging/checkpointing are not considered.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 169

(BFT) SMR services. These techniques are transpar-
ent with respect to both the service being replicated and
the replication protocol, so they do not impact the pro-
gramming model; they greatly improve the performance
in comparison to standard techniques; they can be used
in commodity servers with ordinary hardware configura-
tions (no need for extra hardware, such as disks, special
memories or replicas); and, they can be implemented in
a modular way, as a durability layer placed in between
the SMR library and the service.

The techniques are three: parallel logging, for diluting
the latency of synchronous logging; sequential check-
pointing, to avoid stopping the replicated system during
checkpoints; and collaborative state transfer, for reduc-
ing the effect of replica recoveries on the system perfor-
mance. This is the first time that the durability of fault-
tolerant SMR is tackled in a principled way with a set
of algorithms organized in an abstraction to be used be-
tween SMR protocols and the application.

The proposed techniques were implemented in a dura-
bility layer on the BFT-SMaRt state machine replica-
tion library [1], on top of which we built two services:
a consistent key-value store (SCKV-Store) and a non-
trivial BFT coordination service (Durable DepSpace).
Our experimental evaluation shows that the proposed
techniques can remove most of the performance degra-
dation due to the addition of durability.

This paper makes the following contributions:

1. A description of the performance problems affect-
ing durable state machine replication, often over-
looked in previous works (§2);

2. Three new algorithmic techniques for removing
the negative effects of logging, checkpointing and
faulty replica recovery from SMR, without requir-
ing more resources, specialized hardware, or chang-
ing the service code (§3).

3. An analysis showing that exchanging disks by SSDs
neither solves the identified problems nor improves
our techniques beyond what is achieved with disks
(52 and §5);

4. The description of an implementation of our tech-
niques (§4), and an experimental evaluation under
write-intensive loads, highlighting the performance
limitations of previous solutions and how our tech-
niques mitigate them (§5).

2 Durable SMR Performance Limitations

This section presents a durable SMR model, and then
analyzes the effect of durability mechanisms on the per-
formance of the system.

2.1 System Model and Properties

We follow the standard SMR model [34]. Clients send
requests to invoke operations on a service, which is im-
plemented in a set of replicas (see Figure 1). Operations
are executed in the same order by all replicas, by running
some form of agreement protocol. Service operations are
assumed to be deterministic, so an operation that updates
the state (abstracted as a write) produces the same new
state in all replicas. The state required for processing
the operations is kept in main memory, just like in most
practical applications for SMR [4, &, 19].
log+

. ckpt
Client App. Service

invoke . setState
e getState -
SMR Client Side ES555) SMR Server Side

N ckpt

Figure 1: A durable state machine replication architecture.

The replication library implementing SMR has a client
and a server side (layers at the bottom of the figure),
which interact respectively with the client application
and the service code. The library ensures standard safety
and liveness properties [6, 27], such as correct clients
eventually receive a response to their requests if enough
synchrony exists in the system.

SMR is built under the assumption that at most f repli-
cas fail out of a total of n replicas (we assumen =21+ 1
on a crash fault-tolerant system and n =3+ 1 on a BFT
system). A crash of more than f replicas breaks this as-
sumption, causing the system to stop processing requests
as the necessary agreement quorums are no longer avail-
able. Furthermore, depending on which replicas were af-
fected and on the number of crashes, some state changes
may be lost. This behavior is undesirable, as clients may
have already been informed about the changes in a re-
sponse (i.e., the request completed) and there is the ex-
pectation that the execution of operations is persistent.

To address this limitation, the SMR system should also
ensure the following property:

Durability: Any request completed at a client
is reflected in the service state after a recovery.

Traditional mechanisms for enforcing durability in
SMR-based main memory databases are logging, check-
pointing and state transfer [8, 16]. A replica can recover
from a crash by using the information saved in stable
storage and the state available in other replicas. It is im-
portant to notice that a recovering replica is considered
faulty until it obtains enough data to reconstruct the state
(which typically occurs after state transfer finishes).

Logging writes to stable storage information about
the progress of the agreement protocol (e.g., when cer-

170 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

tain messages arrive in Paxos-like protocols [8, 20]) and
about the operations executed on the service. Therefore,
data is logged either by the replication library or the ser-
vice itself, and a record describing the operation has to
be stored before a reply is returned to the client.

The replication library and the service code synchro-
nize the creation of checkpoints with the truncation of
logs. The service is responsible for generating snap-
shots of its state (method getState) and for setting the
state to a snapshot provided by the replication library
(method setState). The replication library also imple-
ments a state transfer protocol to initiate replicas from
an updated state (e.g., when recovering from a failure or
if they are too late processing requests), akin to previous
SMR works [6, 7, 8, 9, 32]. The state is fetched from the
other replicas that are currently running.

2.2 Identifying Performance Problems

This section discusses performance problems caused by
the use of logging, checkpointing and state transfer in
SMR systems. We illustrate the problems with a con-
sistent key-value store (SCKV-Store) implemented using
BFT-SMaRt [1], a Java BFT SMR library. In any case,
the results in the paper are mostly orthogonal to the fault
model. We consider write-only workloads of 8-byte keys
and 4kB values, in a key space of 250K keys, which cre-
ates a service state size of 1GB in 4 replicas. More details
about this application and the experiments can be found
in §4 and §5, respectively.

High latency of logging. As mentioned in §2.1, events
related to the agreement protocol and operations that
change the state of the service need to be logged in stable
storage. Table 1 illustrates the effects of several logging
approaches on the SCKV-Store, with a client load that
keeps a high sustainable throughput:

[Metric [No log [Async. [Sync. SSD [Sync. Disk]
Min Lat. (ms) 1.98 2.16 2.89 19.61
Peak Thr. (ops/s) 4772 4312 1017 63

Table 1: Effect of logging on the SCKV-Store. Single-client
minimum latency and peak throughput of 4kB-writes.

The table shows that synchronous® logging to disk can
cripple the performance of such system. To address this
issue, some works have suggested the use of faster non-
volatile memory, such as flash memory solid state drives
(SSDs) or/in NVCaches [32]. As the table demonstrates,
there is a huge performance improvement when the log is
written synchronously to SSD storage, but still only 23%

2Synchronous writes are optimized to update only the file contents,
and not the metadata, using the rwd mode in the Java’ RandomAccess-
File class (equivalent to using the O_-DSYNC flag in POSIX open). This
is important to avoid unnecessary disk head positioning.

of the “No log” throughput is achieved. Additionally, by
employing specialized hardware, one arguably increases
the costs and the management complexity of the nodes,
especially in virtualized/cloud environments where such
hardware may not be available in all machines.

There are works that avoid this penalty by using asyn-
chronous writes to disk, allowing replicas to present a
performance closer to the main memory system (e.g.,
Harp [28] and BFS [6]). The problem with this solution
is that writing asynchronously does not give durability
guarantees if all the replicas crash (and later recover),
something that production systems need to address as
correlated failures do happen [13, 15, 30, 33].

We would like to have a general solution that makes
the performance of durable systems similar to pure mem-
ory systems, and that achieves this by exploring the log-
ging latency to process the requests and by optimizing
log writes.

Perturbations caused by checkpoints. Checkpoints
are necessary to limit the log size, but their creation usu-
ally degrades the performance of the service. Figure 2
shows how the throughput of the SCKV-Store is affected
by creating checkpoints at every 200K client requests.
Taking a snapshot after processing a certain number of
operations, as proposed in most works in SMR (e.g.,
[6,27]), can make the system halt for a few seconds. This
happens because requests are no longer processed while
replicas save their state. Moreover, if the replicas are not
fully synchronized, delays may also occur because the
necessary agreement quorum might not be available.

o =~ N W

0 50 100 150 200 250 300
Time (seconds)

Throughput (Kops/sec)

Figure 2: Throughput of a SCKV-Store with checkpoints in
memory, disk and SSD considering a state of 1GB.

The figure indicates an equivalent performance degra-
dation for checkpoints written in disk or SSD, meaning
there is no extra benefit in using the latter (both require
roughly the same amount of time to synchronously write
the checkpoints). More importantly, the problem occurs
even if the checkpoints are kept in memory, since the fun-
damental limitation is not due to storage accesses (as in
logging), but to the cost to serialize a large state (1 GB).

Often, the performance decrease caused by check-
pointing is not observed in the literature, either because
no checkpoints were taken or because the service had a
very small state (e.g., a counter with 8 bytes) [6, 10, 17,
21, 25]. Most of these works were focusing on ordering

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 171

requests efficiently, and therefore checkpointing could be
disregarded as an orthogonal issue. Additionally, one
could think that checkpoints need only to be created spo-
radically, and therefore, their impact is small on the over-
all execution. We argue that this is not true in many sce-
narios. For example, the SCKV-Store can process around
4700 4kB-writes per second (see §5), which means that
the log can grow at the rate of more than 1.1 GB/min,
and thus checkpoints need to be taken rather frequently to
avoid outrageous log sizes. Leader-based protocols, such
as those based on Paxos, have to log information about
most of the exchanged messages, contributing to the log
growth. Furthermore, recent SMR protocols require fre-
quent checkpoints (every few hundred operations) to al-
low the service to recover efficiently from failed specu-
lative request ordering attempts [17, 21, 25].

Some systems use copy-on-write techniques for do-
ing checkpointing without stoping replicas (e.g., [9]), but
this approach has two limitations. First, copy-on-write
may be complicated to implement at application level in
non-trivial services, as the service needs to keep track of
which data objects were modified by the requests. Sec-
ond, even if such techniques are employed, the creation
of checkpoints still consumes resources and degrades
the performance of the system. For example, writing a
checkpoint to disk makes logging much slower since the
disk head has to move between the log and checkpoint
files, with the consequent disk seek times. In practice,
this limitation could be addressed in part with extra hard-
ware, such as by using two disks per server.

Another technique to deal with the problem is fuzzy
snapshots, used in ZooKeeper [19]. A fuzzy snapshot is
essentially a checkpoint that is done without stopping the
execution of operations. The downside is that some oper-
ations may be executed more than once during recovery,
an issue that ZooKeeper solves by forcing all operations
to be idempotent. However, making operations idem-
potent requires non-trivial request pre-processing before
they are ordered, and increases the difficulty of decou-
pling the replication library from the service [19, 20].

We aim to have a checkpointing mechanism that min-
imizes performance degradation without requiring addi-
tional hardware and, at the same time, keeping the SMR
programming model simple.

Perturbations caused by state transfer. When a
replica recovers, it needs to obtain an updated state to
catch up with the other replicas. This state is usually
composed of the last checkpoint plus the log up to some
request defined by the recovering replica. Typically, (at
least) another replica has to spend resources to send (part
of) the state. If checkpoints and logs are stored in a
disk, delays occur due to the transmission of the state
through the network but also because of the disk ac-

F T T T T T -

transfer transfer

started finished
i

o = N W b

o

50 100 150 200 250 300
Time (seconds)

Throughput (Kops/sec)

Figure 3: Throughput of a SCKV-Store when a failed replica
recovers and asks for a state transfer.

cesses. Delta-checkpoint techniques based, for instance,
on Merkle trees [6] can alleviate this problem, but cannot
solve it completely since logs have always to be trans-
ferred. Moreover, implementing this kind of technique
can add more complexity to the service code.

Similarly to what is observed with checkpointing,
there can be the temptation to disregard the state trans-
fer impact on performance because it is perceived to oc-
cur rarely. However, techniques such as replica rejuvena-
tion [18] and proactive recovery [6, 36] use state transfer
to bring refreshed replicas up to date. Moreover, recon-
figurations [29] and even leader change protocols (that
need to be executed periodically for resilient BFT repli-
cation [10]) may require replicas to synchronize them-
selves [6, 35]. In conclusion, state transfer protocols may
be invoked much more often than when there is a crash
and a subsequent recovery.

Figure 3 illustrates the effect of state transmission dur-
ing a replica recovery in a 4 node BFT system using the
PBFT’s state transfer protocol [6]. This protocol requires
just one replica to send the state (checkpoint plus log) —
similarly to crash FT Paxos-based systems — while others
just provide authenticated hashes for state validation (as
the sender of the state may suffer a Byzantine fault). The
figure shows that the system performance drops to less
than 1/3 of its normal performance during the 30 seconds
required to complete state transfer. While one replica is
recovering, another one is slowed because it is sending
the state, and thus the remaining two are unable to order
and execute requests (with f = 1, quorums of 3 replicas
are needed to order requests).

One way to avoid this performance degradation is to
ignore the state transfer requests until the load is low
enough to process both the state transfers and normal re-
quest ordering [19]. However, this approach tends to de-
lay the recovery of faulty replicas and makes the system
vulnerable to extended unavailability periods (if more
faults occur). Another possible solution is to add ex-
tra replicas to avoid interruptions on the service during
recovery [36]. This solution is undesirable as it can in-
crease the costs of deploying the system.

We would like to have a state transfer protocol that
minimizes the performance degradation due to state
transfer without delaying the recovery of faulty replicas.

172 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

3 Efficient Durability for SMR

In this section we present three techniques to solve the
problems identified in the previous section.

3.1 Parallel Logging

Parallel logging has the objective of hiding the high la-
tency of logging. It is based on two ideas: (1) log groups
of operations instead of single operations; and (2) pro-
cess the operations in parallel with their storage.

The first idea explores the fact that disks have a high
bandwidth, so the latency for writing 1 or 100 log en-
tries can be similar, but the throughput would be natu-
rally increased by a factor of roughly 100 in the second
case. This technique requires the replication library to
deliver groups of service operations (accumulated during
the previous batch execution) to allow the whole batch to
be logged at once, whereas previous solutions normally
only provide single operations, one by one. Notice that
this approach is different from the batching commonly
used in SMR [6, 10, 25], where a group of operations is
ordered together to amortize the costs of the agreement
protocol (although many times these costs include log-
ging a batch of requests to stable storage [27]). Here the
aim is to pass batches of operations from the replication
library to the service, and a batch may include (batches
of) requests ordered in different agreements.

The second idea requires that the requests of a batch
are processed while the corresponding log entries are be-
ing written to the secondary storage. Notice, however,
that a reply can only be sent to the client after the cor-
responding request is executed and logged, ensuring that
the result seen by the client will persist even if all repli-
cas fail and later recover. Naturally, the effectiveness of
this technique depends on the relation between the time
for processing a batch and the time for logging it. More
specifically, the interval 7} taken by a service to process
a batch of k requests is given by Ty = max(Ey, L), where
E; and L represent the latency of executing and log-
ging the batch of k operations, respectively. This equa-
tion shows that the most expensive of the two operations
(execution or logging) defines the delay for processing
the batch. For example, in the case of the SCKV-Store,
E; < Ly for any k, since inserting data in a hash table
with chaining (an &'(1) operation) is much faster than
logging a 4kB-write (with or without batching). This is
not the case for Durable DepSpace, which takes a much
higher benefit from this technique (see §5).

3.2 Sequential Checkpointing

Sequential checkpointing aims at minimizing the perfor-
mance impact of taking replica’s state snapshots. The

ckp

ckp ckp ckp ckp ckp ‘

ckp

|
I

Il
I

time
time

ckp

ckp

ckp ckp ckp ckp ckp

ReplicaO Replical Replica2 Replica3 Replica0 Replical Replica2 Replica3

(a) Synchronized. (b) Sequential.

Figure 4: Checkpointing strategies (4 replicas).

key principle is to exploit the natural redundancy that ex-
ists in asynchronous distributed systems based on SMR.
Since these systems make progress as long as a quorum
of n— f replicas is available, there are f spare replicas in
fault-free executions. The intuition here is to make each
replica store its state at different times, to ensure that
n — f replicas can continue processing client requests.

We define global checkpointing period P as the max-
imum number of (write) requests that a replica will ex-
ecute before creating a new checkpoint. This parameter
defines also the maximum size of a replica’s log in num-
ber of requests. Although P is the same for all replicas,
they checkpoint their state at different points of the ex-
ecution. Moreover, all correct replicas will take at least
one checkpoint within that period.

An instantiation of this model is for each replica i =
0,...,n—1 to take a checkpoint after processing the k-th
request where k mod P =i x LSJ ,e.g., for P=1000,n =
4, replica i takes a checkpoint after processing requests
i %250, 1000+ i x 250, 2000 + i x 250, and so on.

Figure 4 compares a synchronous (or coordinated)
checkpoint with our technique. Time grows from the
bottom of the figure to the top. The shorter rectangles
represent the logging of an operation, whereas the taller
rectangles correspond to the creation of a checkpoint.
It can be observed that synchronized checkpoints occur
less frequently than sequential checkpoints, but they stop
the system during their execution whereas for sequential
checkpointing there is always an agreement quorum of 3
replicas available for continuing processing requests.

An important requirement of this scheme is to use val-
ues of P such that the chance of more than f overlapping
checkpoints is negligible. Let C,,,, be the estimated max-
imum interval required for a replica to take a checkpoint
and T}, the maximum throughput of the service. Two
consecutive checkpoints will not overlap if:

wfi
x| =| =
Tinax n

P > nXCuux X Thax (D)

Cmax <

Equation 1 defines the minimum value for P that can
be used with sequential checkpoints. In our SCKV-Store
example, for a state of 1GB and a 100% 4kB-write work-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 173

load, we have C,, =~ 15s and T}, = 4700 ops/s, which
means P > 282000. If more frequent checkpoints are re-
quired, the replicas can be organized in groups of at most
f replicas to take checkpoints together.

3.3 Collaborative State Transfer

The state transfer protocol is used to update the state of
a replica during recovery, by transmitting log records (L)
and checkpoints (C) from other replicas (see Figure 5(a)).
Typically only one of the replicas returns the full state
and log, while the others may just send a hash of this data
for validation (only required in the BFT case). As shown
in §2, this approach can degrade performance during re-
coveries. Furthermore, it does not work with sequential
checkpoints, as the received state can not be directly vali-
dated with hashes of other replicas’ checkpoints (as they
are different). These limitations are addressed with the
collaborative state transfer (CST) protocol.

Although the two previous techniques work both with
crash-tolerant and BFT SMR, the CST protocol is sub-
stantially more complex with Byzantine faults. Conse-
quently, we start by describing a BFT version of the pro-
tocol (which also works for crash faults) and later, at the
end of the section, we explain how CST can be simplified
on a crash-tolerant system?.

We designate by leecher the recovering replica and by
seeders the replicas that send (parts of) their state. CST
is triggered when a replica (leecher) starts (see Figure 6).
Its first action is to use the local log and checkpoint to de-
termine the last logged request and its sequence number
(assigned by the ordering protocol), from now on called
agreement id. The leecher then asks for the most recent
logged agreement id of the other replicas, and waits for
replies until n — f of them are collected (including its
own id). The ids are placed in a vector in descending
order, and the largest id available in f + 1 replicas is se-
lected, to ensure that such agreement id was logged by at
least one correct replica (steps 1-3).

In BFT-SMaRt there is no parallel execution of agree-
ments, so if one correct replica has ordered the id-th
batch, it means with certainty that agreement id was al-
ready processed by at least f 4 1 correct replicas*. The
other correct replicas, which might be a bit late, will also
eventually process this agreement, when they receive the
necessary messages.

3Even though crash fault tolerance is by far more used in production
systems, our choice is justified by two factors. First, the subtleties of
BFT protocols require a more extensive discussion. Second, given the
lack of a stable and widely-used open-source implementation of a crash
fault tolerance SMR library, we choose to develop our techniques in a
BFT SMR library, so the description is in accordance to our prototype.

4If one employs protocols such as Paxos/PBFT, low and high wa-
termarks may need to considered.

==E=l W=k

AE=l WEEECES

A e

ESN==l - .
—| e —_—
- N

| . (A==

. c C

Fault 2
st 2-nd 3-rd jepics 4th S5-th 6-th

(b) CST (n=17).

Replica 0

Replica 1
(a) PBFT and others (n = 4).

Replica 2

Figure 5: Data transfer in different state transfer strategies.

Next, the leecher proceeds to obtain the state up to
id from a seeder and the associated validation data from
f other replicas. The active replicas are ordered by the
freshness of the checkpoints, from the most recent to
the oldest (step 4). A leecher can make this calculation
based on id, as replicas take checkpoints at determinis-
tic points, as explained in §3.2. We call the replica with
i-th oldest checkpoint the i-th replica and the checkpoint
C;. The log of a replica is divided in segments, and each
segment L; is the portion of the log required to update the
state from C; to the more recent state C;_ ;. Therefore, we
use the following notion of equivalence: C;_; = C; + L;.
Notice that L; corresponds to the log records of the re-
quests that were executed after the most recent check-
point C; (see Figure 5(b) for n = 7).

The leecher fetches the state from the (f + 1)-th
replica (seeder), which comprises the log segments L,
...» Ly41 and checkpoint Cryy (step 8). To validate this
state, it also gets hashes of the log segments and check-
points from the other f replicas with more recent check-
points (from the 1% until the f-th replica) (step 6a). Then,
the leecher sets its state to the checkpoint and replays the
log segments received from the seeder, in order to bring
up to date its state (steps 10 and 12a).

The state validation is performed by comparing the
hashes of the f replicas with the hashes of the log seg-
ments from the seeder and intermediate checkpoints. For
each replica i, the leecher replays L;; to reach a state
equivalent to the checkpoint of this replica. Then, it cre-
ates a intermediate checkpoint of its state and calculates
the corresponding hash (steps 12a and 12b). The leecher
finds out if the log segments sent by the seeder and the
current state (after executing L;4 1) match the hashes pro-
vided by this replica (step 12c¢).

If the check succeeds for f replicas, the reached state
is valid and the CST protocol can finish (step 13). If
the validation fails, the leecher fetches the data from the
(f +2)-th replica, which includes the log segments L,
..., L2 and checkpoint Cy, 5 (step 13 goes back to step
8). Then, it re-executes the validation protocol, consider-
ing as extra validation information the hashes that were
produced with the data from the (f + 1)-th replica (step
9). Notice that the validation still requires f+ 1 matching

174 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

1. Look at the local log to discover the last executed agreement;

2. Fetch the id of the last executed agreement from n — f replicas
(including itself) and save the identifier of these replicas;

3. id = largest agreement id that is available in f + 1 replicas;

4. Using id, P and n, order the replicas (including itself) with the
ones with most recent checkpoints first;

5. V < 0;// the set containing state and log hashes
6. Fori=1to f do:
(a) FetchV; = (HLy,...,HL;,HC;) from i-th replica;
(b) V+Vu{Vil
7. r< f+1;//replica to fetch state
8. Fetch S, = (Ly,...,L,,C,) from r-th replica;
9. V e VU{(H(S, L), e H(S, L), H(S,.C)))2
10. Update state using S,.Cy;
11. v < 0; // number of validations of S,
12. Fori=r—1downto I do:
(a) Replay log S,.Li1;
(b) Take checkpoint C; and calculate its hash HC};
(©) If (ViHLy ;= V,.HLy ;) A (Vi HC; = HC)), v+ +;
13. If v > f, replay log S,.L; and return; Else, r+ 4+ and go to 8;

Figure 6: The CST recovery protocol called by the leecher af-
ter a restart. Ferch commands wait for replies within a timeout
and go back to step 2 if they do not complete.

log segments and checkpoints, but now there are f+2
replicas involved, and the validation is successful even
with one Byzantine replica. In the worst case, f faulty
replicas participate in the protocol, which requires 2 f 4 1
replicas to send some data, ensuring a correct majority
and at least one valid state (log and checkpoint).

In the scenario of Figure 5(b), the 3™ replica (the
(f +1)-th replica) sends Ly, Ly, L3 and C3, while the 2"
replica only transmits HL; = H(L,), HL, = H(L,) and
HC, = H(C;), and the 1% replica sends HL; = H(L;)
and HC| = H(C}). The leecher next replays Ls to get to
state C3 + L3, and takes the intermediate checkpoint Cé
and calculates the hash HC, = H(C}). If HC) matches
HC, from the 2" replica, and the hashes of log segments
L, and L; from the 3™ replica are equal to HL, and HL,
from the 2"¢ replica, then the first validation is success-
ful. Next, a similar procedure is applied to replay L, and
the validation data from the 1% replica. Now, the leecher
only needs to replay L; to reach the state corresponding
to the execution of request id.

While the state transfer protocol is running, replicas
continue to create new checkpoints and logs since the
recovery does not stop the processing of new requests.
Therefore, they are required to keep old log segments and
checkpoints to improve their chances to support the re-
covery of a slow leecher. However, to bound the required

storage space, these old files are eventually removed, and
the leecher might not be able to collect enough data to
complete recovery. When this happens, it restarts the al-
gorithm using a more recent request id (a similar solution
exists in all other state state transfer protocols that we are
aware of, e.g., [0, 8]).

The leecher observes the execution of the other repli-
cas while running CST, and stores all received messages
concerning agreements more recent than id in an out-
of-context buffer. At the end of CST, it uses this buffer
to catch up with the other replicas, allowing it to be re-
integrated in the state machine.

Correctness. We present here a brief correctness argu-
ment of the CST protocol. Assume that b is the actual
number of faulty (Byzantine) replicas (lower or equal to
/) and r the number of recovering replicas.

In terms of safety, the first thing to observe is that CST
returns if and only if the state is validated by at least
f+ 1 replicas. This implies that the state reached by the
leecher at the end of the procedure is valid according to
at least one correct replica. To ensure that this state is
recent, the largest agreement id that is returned by f + 1
replicas is used.

Regarding liveness, there are two cases to consider.
If b+r < f, there are still n — f correct replicas run-
ning and therefore the system could have made progress
while the r replicas were crashed. A replica is able to
recover as long as checkpoints and logs can be collected
from the other replicas. Blocking is prevented because
CST restarts if any of the Fetch commands fails or takes
too much time. Consequently, the protocol is live if cor-
rect replicas keep the logs and checkpoints for a suffi-
ciently long interval. This is a common assumption for
state transfer protocols. If b+ r > f, then there may not
be enough replicas for the system to continue process-
ing. In this case the recovering replica(s) will continu-
ously try to fetch the most up to date agreement id from
n— f replicas (possibly including other recovering repli-
cas) until such quorum exists. Notice that a total system
crash is a special case of this scenario.

Optimizing CST for f = 1. When f =1 (and thus
n=4), asingle recovering replica can degrade the perfor-
mance of the system because one of n — f replicas will be
transferring the checkpoint and logs, delaying the execu-
tion of the agreements (as illustrated in Figure 7(a)). To
avoid this problem, we spread the data transfer between
the active replicas through the following optimization in
an initial recovery round: the 2" replica (f +1 = 2)
sends C; plus (HL;,HL,) (instead of the checkpoint plus
full log), while the 1% replica sends L; and HC; (instead
of only hashes) and the 3rd replica sends L, (instead of
not participating). If the validation of the received state

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 175

| G == | == =
= }4} = ,I. ——
c, c,

1-streplica 2-nd replica 3-rd replica

(a) General CST.

1-st replica

(b) Optimized CST.

2-nd replica 3-rd replica

Figure 7: General and optimized CST with f = 1.

fails, then the normal CST protocol is executed. This
optimization is represented in Figure 7(b), and in §5 we
show the benefits of this strategy.

Simplifications for crash faults. When the SMR only
needs to tolerate crash faults, a much simpler version of
CST can be employed. The basic idea is to execute steps
1-4 of CST and then fetch and use the checkpoint and log
from the 1% (most up to date) replica, since no validation
needs to be performed. If f = 1, a analogous optimiza-
tion can be used to spread the burden of data transfer
among the two replicas: the 1% replica sends the check-
point while the 2" replica sends the log segment.

4 Implementation: Dura-SMaRt

In order to validate our techniques, we extended the
open-source BFT-SMaRt replication library [1] with a
durability layer, placed between the request ordering
and the service. We named the resulting system Dura-
SMaRt, and used it to implement two applications: a con-
sistent key-value store and a coordination service.

Adding durability to BFT-SMaRt. BFT-SMaRt orig-
inally offered an API for invoking and executing state
machine operations, and some callback operations to
fetch and set the service state. The implemented pro-
tocols are described in [35] and follow the basic ideas
introduced in PBFT and Aardvark [6, 10]. BFT-SMaRt
is capable of ordering more than 100K 0-byte msg/s
(the 0/0 microbenchmark used to evaluate BFT proto-
cols [17, 25]) in our environment. However, this through-
put drops to 20K and 5K msgs/s for 1kB and 4kB mes-
sage sizes, respectively (the workloads we use — see §5).

We modified BFT-SMaRt to accommodate an inter-
mediate Durability layer implementing our techniques at
the server-side, as described in Figure 8, together with
the following modifications on BFT-SMaRt. First, we
added a new server side operation to deliver batches of
requests instead of one by one. This operation supplies
ordered but not delivered requests spanning one or more
agreements, so they can be logged in a single write by
the Keeper thread. Second, we implemented the parallel

Service

Client App. setState | execute _g
getState 5 3

linvoke g %

S

TexecBatchl . ioire N\ |
SMR Client Side invokeST | St3tate ckP>
handlersT |9 :
SMR Server Side S“’"’
N———

Figure 8: The Dura-SMaRt architecture.

checkpoints and collaborative state transfer in the Dura-
Coordinator component, removing the old checkpoint
and state transfer logic from BFT-SMaRt and defining
an extensible API for implementing different state trans-
fer strategies. Finally, we created a dedicated thread and
socket to be used for state transfer in order to decrease
its interference on request processing.

SCKV-store. The first system implemented with Dura-
SMaRt was a simple and consistent key-value store
(SCKV-Store) that supports the storage and retrieval of
key-value pairs, alike to other services described in the
literature, e.g., [11, 31]. The implementation of the
SCKV-Store was greatly simplified, since consistency
and availability come directly from SMR and durability
is achieved with our new layer.

Durable DepSpace (DDS). The second use case is
a durable extension of the DepSpace coordination ser-
vice [2], which originally stored all data only in mem-
ory. The system, named Durable DepSpace (DDS), pro-
vides a tuple space interface in which tuples (variable-
size sequences of typed fields) can be inserted, retrieved
and removed. There are two important characteristics of
DDS that differentiate it from similar services such as
Chubby [4] and ZooKepper [19]: it does not follow a
hierarchical data model, since tuple spaces are, by defi-
nition, unstructured; and it tolerates Byzantine faults, in-
stead of only crash faults. The addition of durability to
DepSpace basically required the replacement of its orig-
inal replication layer by Dura-SMaRt.

5 Evaluation

This section evaluates the effectiveness of our techniques
for implementing durable SMR services. In particular,
we devised experiments to answer the following ques-
tions: (1) What is the cost of adding durability to SMR
services? (2) How much does parallel logging improve
the efficiency of durable SMR with synchronous disk and
SSD writes? (3) Can sequential checkpoints remove the
costs of taking checkpoints in durable SMR? (4) How

176 2013 USENIX Annual Technical Conference (USENIX ATC 13)

USENIX Association

does collaborative state transfer affect replica recover-
ies for different values of f? Question 1 was addressed
in §2, so we focus on questions 2-4.

Case studies and workloads. As already mentioned,
we consider two SMR-based services implemented us-
ing Dura-SMaRt: the SCKV-Store and the DDS coordi-
nation service. Although in practice, these systems tend
to serve mixed or read-intensive workloads [11, 19], we
focus on write operations because they stress both the
ordering protocol and the durable storage (disk or SSD).
Reads, on the other hand, can be served from memory,
without running the ordering protocol. Therefore, we
consider a 100%-write workload, which has to be pro-
cessed by an agreement, execution and logging. For the
SCKV-Store, we use YCSB [11] with a new workload
composed of 100% of replaces of 4kB-values, making
our results comparable to other recent SMR-based stor-
age systems [3, 32, 37]. For DDS, we consider the inser-
tion of random tuples with four fields containing strings,
with a total size of 1kB, creating a workload with a pat-
tern equivalent to the ZooKeeper evaluation [19, 20].

Experimental environment. All experiments, includ-
ing the ones in §2, were executed in a cluster of 14 ma-
chines interconnected by a gigabit ethernet. Each ma-
chine has two quad-core 2.27 GHz Intel Xeon E5520,
32 GB of RAM memory, a 146 GB 15000 RPM SCSI
disk and a 120 GB SATA Flash SSD. We ran the [Ozone
benchmark® on our disk and SSD to understand their per-
formance under the kind of workload we are interested:
rewrite (append) for records of 1MB and 4MB (the max-
imum size of the request batch to be logged in DDS and
SCKYV-Store, respectively). The results are:

Record length Disk SSD
IMB 96.1 MB/s 128.3 MB/s
4MB 135.6 MB/s 130.7 MB/s

Parallel logging. Figure 9(a) displays latency-
throughput curves for the SCKV-Store considering
several durability variants. The figure shows that naive
(synchronous) disk and SSD logging achieve a through-
put of 63 and 1017 ops/s, respectively, while a pure
memory version with no durability reaches a throughput
of around 4772 ops/s.

Parallel logging involves two ideas, the storage of
batches of operations in a single write and the execu-
tion of operations in parallel with the secondary storage
accesses. The use of batch delivery alone allowed for a
throughput of 4739 ops/s with disks (a 75 x improvement
over naive disk logging). This roughly represents what
would be achieved in Paxos [24, 27], ZooKeeper [19]

Shttp://www.iozone.org.

T T 400

——

Naive ((Disk

aive (SSD) =
200 Batching (Disk;

» Par. Log

i Par. Lo

e
Disk) -
SSD
Pure Memory

>

-
0 L megerll] . 0 #=-
0 2 3 4 5 0

1
Throughput (Kops/sec)
(a) SCKV-Store.

2 4 6 8 10 12 14 16
Throughput (Kops/sec)
(b) Durable DepSpace.

Figure 9: Latency-throughput curves for several variants of
the SCKV-Store and DDS considering 100%-write workloads
of 4kB and 1kB, respectively. Disk and SSD logging are always
done synchronously. The legend in (a) is valid also for (b).

or UpRight [9], with requests being logged during the
agreement protocol. Interestingly, the addition of a sep-
arated thread to write the batch of operations, does not
improve the throughput of this system. This occurs be-
cause a local put on SCKV-Store replica is very efficient,
with almost no effect on the throughput.

The use of parallel logging with SSDs improves the
latency of the system by 30-50ms when compared with
disks until a load of 4400 ops/s. After this point, par-
allel logging with SSDs achieves a peak throughput of
4500 ops/s, 5% less than parallel logging with disk (4710
ops/s), with the same observed latency. This is consistent
with the 10zone results. Overall, parallel logging with
disk achieves 98% of the throughput of the pure memory
solution, being the replication layer the main bottleneck
of the system. Moreover, the use of SSDs neither solves
the problem that parallel logging addresses, nor improves
the performance of our technique, being thus not effec-
tive in eliminating the log bottleneck of durable SMR.

Figure 9(b) presents the results of a similar experi-
ment, but now considering DDS with the same durabil-
ity variants as in SCKV-Store. The figure shows that a
version of DDS with naive logging in disk (resp. SSD)
achieves a throughput of 143 ops/s (resp. 1900 ops/s),
while a pure memory system (DepSpace), reaches 14739
ops/s. The use of batch delivery improves the perfor-
mance of disk logging to 7153 ops/s (a 50x improve-
ment). However, differently from what happens with
SCKV-Store, the use of parallel logging in disk further
improves the system throughput to 8430 ops/s, an im-
provement of 18% when compared with batching alone.
This difference is due to the fact that inserting a tuple re-
quires traversing many layers [2] and the update of an hi-
erarchical index, which takes a non-negligible time (0.04
ms), and impacts the performance of the system if done
sequentially with logging. The difference would be even
bigger if the SMR service requires more processing. Fi-
nally, the use of SSDs with parallel logging in DDS was
more effective than with the SCKV-Store, increasing the

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 177

peak throughput of the system to 9250 ops/s (an improve-
ment of 10% when compared with disks). Again, this is
consistent with our IOzone results: we use 1kB requests
here, so the batches are smaller than in SCKV-Store, and
SSDs are more efficient with smaller writes.

Notice that DDS could not achieve a throughput near
to pure memory. This happens because, as discussed in
§3.1, the throughput of parallel logging will be closer
to a pure memory system if the time required to pro-
cess a batch of requests is akin to the time to log this
batch. In the experiments, we observed that the workload
makes BFT-SMaRt deliver batches of approximately 750
requests on average. The local execution of such batch
takes around 30 ms, and the logging of this batch on disk
entails 70 ms. This implies a maximum throughput of
10.750 ops/s, which is close to the obtained values. With
this workload, the execution time matches the log time
(around 500 ms) for batches of 30K operations. These
batches require the replication library to reach a through-
put of 60K 1kB msgs/s, three times more than what BFT-
SMaRt achieves for this message size.

Sequential Checkpointing. Figure 10 illustrates the
effect of executing sequential checkpoints in disks with
SCKV-Store® during a 3-minute execution period.

When compared with the results of Figure 2 for syn-
chronized checkpoints, one can observe that the unavail-
ability periods no longer occur, as the 4 replicas take
checkpoints separately. This is valid both when there is
a high and medium load on the service and with disks
and SSDs (not show). However, if the system is under
stress (high load), it is possible to notice a periodic small
decrease on the throughput happening with both 500MB
and 1GB states (Figures 10(a) and 10(b)). This behav-
ior is justified because at every | £| requests one of the
replicas takes a checkpoint. When this occurs, the replica
stops executing the agreements, which causes it to be-
come a bit late (once it resumes processing) when com-
pared with the other replicas. While the replica is still
catching up, another replica initiates the checkpoint, and
therefore, a few agreements get delayed as the quorum
is not immediately available. Notice that this effect does
not exist if the system has less load or if there is sufficient
time between sequential checkpoints to allow replicas to
catch up (“Medium load” line in Figure 10).

6 Although we do not show checkpoint and state transfer results for
DDS due to space constraints, the use of our techniques bring the same
advantage as on SCKV-Store. The only noticeable difference is due to
the fact that DDS local tuple insertions are more costly than SCKV-
Store local puts, which makes the variance on the throughput of se-
quential checkpoints even more noticeable (especially when the leader
is taking its checkpoint). However, as in SCKV-Store, this effect is
directly proportional to the load imposed to the system.

3 4 T T 3
@2 K
[72] 172
g 3 MMW g
< <
5 21 1 s
I e <% .
< = -
o 1r High load 1 911 High load N
o Medium load -~ o Medium load -~
s 0 1 | 0 1 |
F oo 50 100 150 & 0 50 100 150

Time (seconds)

(a) 5S00MB state.

Time (seconds)
(b) 1GB state.

Figure 10: SCKV-Store throughput with sequential check-
points with different write-only loads and state size.

Collaborative State Transfer. This section evaluates
the benefits of CST when compared to a PBFT-like state
transfer in the SCKV-Store with disks, with 4 and 7 repli-
cas, considering two state sizes. In all experiments a sin-
gle replica recovery is triggered when the log size is ap-
proximately twice the state size, to simulate the condition
of Figure 7(b).

Figure 11 displays the observed throughput of some
executions of a system with n = 4, running PBFT and
the CST algorithm optimized for f = 1, for states of
500MB and 1GB, respectively. A PBFT-like state trans-
fer takes 30 (resp. 16) seconds to deliver the whole 1 GB
(resp. S00MB) of state with a sole replica transmitter. In
this period, the system processes 741 (resp. 984) write
ops/sec on average. CST optimized for f = 1 divides
the state transfer by three replicas, where one sends the
state and the other two up to half the log each. Overall,
this operation takes 42 (resp. 20) seconds for a state of
1GB (resp. 5S00MB), 28% (resp. 20%) more than with
the PBFT-like solution for the same state size. However,
during this period the system processes 1809 (resp. 1426)
ops/sec on average. Overall, the SCKV-Store with a state
of 1GB achieves only 24% (or 32% for SOOMB-state)
of its normal throughput with a PBFT-like state transfer,
while the use of CST raises this number to 60% (or 47%
for 500MB-state).

Two observations can be made about this experiment.
First, the benefit of CST might not be as good as ex-
pected for small states (47% of the normal throughput
for a 500MB-state) due to the fact that when fetching
state from different replicas we need to wait for the slow-
est one, which always brings some degradation in terms
of time to fetch the state (20% more time). Second,
when the state is bigger (1GB), the benefits of dividing
the load among several replicas make state transfer much
less damaging to the overall system throughput (60% of
the normal throughput), even considering the extra time
required for fetching the state (+28%).

We did an analogous experiment for n = 7 (not shown
due to space constraints) and observed that, as expected,
the state transfer no longer causes a degradation on the
system throughput (both for CST and PBFT) since state
is fetched from a single replica, which is available since

178 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

/G 4 - T T - 4 - T T -
3 transfer transfer g transfer transfer
n started finished 7] started finished
% 3 % 3 i i
& 5 i
<2f <2 g
g | PBFT | 3
S csT —| 5
3 =)
<3 ; I <3 j ‘
£ 50 100 150 £ 50 100 150
Time (seconds) Time (seconds)
(a) 500MB and n = 4. (b) IGB and n =4.
Figure 11: Effect of a replica recovery on SCKV-Store

throughput using CST with f = 1 and different state sizes.

n =7 and there is only one faulty replica (see Figure 5).
We repeated the experiment for n = 7 with the state of
1GB being fetched from the leader, and we noticed a
65% degradation on the throughput. A comparable ef-
fect occurs if the state is obtained from the leader in CST.
As a cautionary note, we would like to remark that when
using spare replicas for “cheap” faulty recovery, it is im-
portant to avoid fetching the state from the leader replica
(asin [4, 8, 19, 32]) because this replica dictates the over-
all system performance.

6 Related Work

Over the years, there has been a reasonable amount of
work about stable state management in main memory
databases (see [16] for an early survey). In particular,
parallel logging shares some ideas with classical tech-
niques such as group commit and pre-committed transac-
tions [14] and the creation of checkpoints in background
has also been suggested [26]. Our techniques were how-
ever developed with the SMR model in mind, and there-
fore, they leverage the specific characteristics of these
systems (e.g., log groups of requests while they are ex-
ecuted, and schedule checkpoints preserving the agree-
ment quorums).

Durability management is a key aspect of practical
crash-FT SMR-like systems [3, 8, 19, 20, 32, 37]. In par-
ticular, making the system use the disk efficiently usually
requires several hacks and tricks (e.g., non-transparent
copy-on-write, request throttling) on an otherwise small
and simple protocol and service specification [8]. These
systems usually resort to dedicated disks for logging, em-
ploy mostly synchronized checkpoints and fetch the state
from a leader [8, 19, 32]. A few systems also delay state
transfer during load-intensive periods to avoid a notice-
able service degradation [19, 37]. All these approaches
either hurt the SMR elegant programming model or lead
to the problems described in §2.2. For instance, recent
consistent storage systems such as Windows Azure Stor-
age [5] and Spanner [12] use Paxos together with several
extensions for ensuring durability. We believe works like
ours can improve the modularity of future systems re-
quiring durable SMR techniques.

BFT SMR systems use logging, checkpoints, and state
transfer, but the associated performance penalties often
do not appear in the papers because the state is very
small (e.g., a counter) or the checkpoint period is too
large (e.g., [6, 10, 17, 21, 25]). A notable exception is
UpRight [9], which implements durable state machine
replication, albeit without focusing on the efficiency of
logging, checkpoints and state transfer. In any case, if
one wants to sustain a high-throughput (as reported in the
papers) for non-trivial states, the use of our techniques is
fundamental. Moreover, any implementation of proac-
tive recovery [6, 36] requires an efficient state transfer.

PBFT [6] was one of the few works that explicitly
dealt with the problem of optimizing checkpoints and
state transfer. The proposed mechanism was based on
copy-on-write and delta-checkpoints to ensure that only
pages modified since the previous checkpoint are stored.
This mechanism is complementary to our techniques, as
we could use it together with the sequential checkpoints
and also to fetch checkpoint pages in parallel from differ-
ent replicas to improve the state transfer. However, the
use of copy-on-write may require the service definition
to follow certain abstractions [7, 9], which can increase
the complexity of the programming model. Additionally,
this mechanism, which is referred in many subsequent
works (e.g., [17, 25]), only alleviates but does not solve
the problems discussed in §2.2.

A few works have described solutions for fetching dif-
ferent portions of a database state from several “donors”
for fast replica recovery or database cluster reconfigura-
tion (e.g., [23]). The same kind of techniques were em-
ployed for fast replica recovery in group communication
systems [22] and, more recently, in main-memory-based
storage [31]. There are three differences between these
works and ours. First, these systems try to improve the
recovery time of faulty replicas, while CST main objec-
tive is to minimize the effect of replica recovery on the
system performance. Second, we are concerned with the
interplay between logging and checkpoints, which is fun-
damental in SMR, while these works are more concerned
with state snapshots. Finally, our work has a broader
scope in the sense that it includes a set of complemen-
tary techniques for Byzantine and crash faults in SMR
systems, while previous works address only crash faults.

7 Conclusion

This paper discusses several performance problems
caused by the use of logging, checkpoints and state trans-
fer on SMR systems, and proposes a set of techniques
to mitigate them. The techniques — parallel logging, se-
quential checkpoints and collaborative state transfer —
are purely algorithmic, and require no additional sup-
port (e.g., hardware) to be implemented in commodity

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 179

servers. Moreover, they preserve the simple state ma-
chine programming model, and thus can be integrated in
any crash or Byzantine fault-tolerant library without im-
pact on the supported services.

The techniques were implemented in a durability layer
for the BFT-SMaRt library, which was used to develop
two representative services: a KV-store and a coordina-
tion service. Our results show that these services can
reach up to 98% of the throughput of pure memory sys-
tems, remove most of the negative effects of checkpoints
and substantially decrease the throughput degradation
during state transfer. We also show that the identified
performance problems can not be solved by exchanging
disks by SSDs, highlighting the need for techniques such
as the ones presented here.

Acknowledgements.
John Howell and Lorenzo Alvisi, our shepherd, for the com-

Thanks to the anonymous reviewers,

ments that helped improve the paper. This work was partially
supported by the EC FP7 through project TCLOUDS (ICT-
257243), by the FCT through project RC-Clouds (PTDC/EIA-
EIA/115211/2009), the Multi-annual Program (LASIGE), and
contract PEst-OE/EEI/LA0021/2011 (INESC-ID).

References

[1] BFT-SMaRt project page. http://code.google.com/p/
bftsmart, 2012.

[2] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: a
Byzantine fault-tolerant coordination service. In EuroSys, 2008.

[3] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and
P. Li. Paxos replicated state machines as the basis of a high-
performance data store. In NSDI, 2011.

[4] M. Burrows. The Chubby lock service. In OSDI, 2006.

[5] B. Calder et al. Windows azure storage: A highly available cloud
storage service with strong consistency. In SOSP, 2011.

[6] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and
proactive recovery. ACM Transactions on Computer Systems,
20(4):398-461, Nov. 2002.

[7] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstrac-
tion to improve fault tolerance. ACM Transactions on Computer
Systems, 21(3):236-269, Aug. 2003.

[8] T.Chandra, R. Griesemer, and J. Redstone. Paxos made live - An
engineering perspective. In PODC, 2007.

[9] A.Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riché. UpRight cluster services. In SOSP, 2009.

[10] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[11] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
SOCC, 2010.

[12] J. Corbett et al. Spanner: Google’s globally-distributed database.
In OSDI, 2012.

[13] J. Dean. Google: Designs, lessons and advice from building large
distributed systems. In Keynote at LADIS, Oct. 2009.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and
D. Wood. Implementation techniques for main memory database
systems. In SIGMOD, 1984.

D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In OSDI, 2010.

H. Garcia-Molina and K. Salem. Main memory database sys-
tems: An overview. IEEE Transactions on Knowledge and Data
Engineering, 4(6):509-516, Dec. 1992.

R. Guerraoui, N. Knezevi¢, V. Quéma, and M. Vukoli¢. The next
700 BFT protocols. In EuroSys, 2010.

Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software reju-
venation: analysis, module and applications. In FTCS, 1995.

P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for Internet-scale services. In USENIX ATC,
2010.

F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance
broadcast for primary-backup systems. In DSN, 2011.

R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schroder-Preikschat, and K. Stengel. CheapBFT:
resource-efficient Byzantine fault tolerance. In EuroSys, 2012.

R. Kapitza, T. Zeman, F. Hauck, and H. P. Reiser. Parallel state
transfer in object replication systems. In DAIS, 2007.

B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration
in replicated databases based on group communication. In DSN,
2001.

J. Kirsh and Y. Amir. Paxos for system builders: An overview. In
LADIS, 2008.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM Transac-
tions on Computer Systems, 27(4):7:1-7:39, Dec. 2009.

K.-Y. Lam. An implementation for small databases with high
availability. SIGOPS Operating Systems Rev., 25(4), Oct. 1991.

L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133-169, May 1998.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira.
Replication in the Harp file system. In SOSP, 1991.

J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J. Douceur, and
J. Howell. The SMART way to migrate replicated stateful ser-
vices. In EuroSys, 2006.

R. Miller. Explosion at The Planet causes major outage. Data
Center Knowledge, June 2008.

D. Ongaro, S. M. Ruble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In SOSP,
2011.

J. Rao, E. J. Shenkita, and S. Tata. Using Paxos to build a scal-
able, consistent, and highly available datastore. VLDB, 2011.

M. Ricknids. Lightning strike in Dublin downs Amazon, Mi-
crosoft clouds. PC World, Aug. 2011.

F. B. Schneider. Implementing fault-tolerant service using the
state machine aproach: A tutorial. ACM Computing Surveys,
22(4):299-319, Dec. 1990.

J. Sousa and A. Bessani. From Byzantine consensus to BFT
state machine replication: A latency-optimal transformation. In
EDCC, 2012.

P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissimo.
Highly available intrusion-tolerant services with proactive-
reactive recovery. [EEE Transactions on Parallel and Distributed
Systems, 21(4):452-465, Apr. 2010.

Y. Wang, L. Alvisi, and M. Dahlin. Gnothi: Separating data
and metadata for efficient and available storage replication. In
USENIX ATC, 2012.

180

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

Estimating Duplication by Content-based Sampling

Fei Xie Michael Condict Sandip Shete

{fei.xie, michael.condict, sandip.shete}@netapp.com

Advanced Technology Group, NetApp Inc.

Abstract

We define a new technique for accurately estimating the amount of duplication in a storage volume from a small
sample and we analyze its performance and accuracy. The estimate is useful for determining whether it is worth-
while to incur the overhead of deduplication. The technique works by scanning the fingerprints of every block in
the volume, but only including in the sample a single copy of each fingerprint that passes a filter. The selectivity of
the filter is repeatedly increased while reading the fingerprints, to produce the target sample size. We show that the
required sample size for a reasonable accuracy is small and independent of the size of the volume. In addition, we
define and analyze an on-line technique that, once an initial scan of all fingerprints has been performed, efficiently
maintains an up-to-date estimate of the duplication as the file system is modified. Experiments with various real
data sets show that the accuracy is as predicted by theory. We also prototyped the proposed technique in an enter-

prise storage system and measured the performance overhead using the I0zone micro-benchmark.

1 Introduction

Deduplication detects and removes duplicate data
blocks (blocks at different locations that have the same
contents) from a storage system. In a system imple-
menting perfect deduplication, only one copy of dupli-
cate data blocks is stored, but in such a way that the
user’s view of the system remains unchanged. A. El-
Shimi et al. [21] provide a nice overview of the recent
research work in the area of data deduplication.

The benefit of deduplication in a primary storage sys-
tem varies for different workloads. For certain work-
loads that have a low level of duplication, one would
turn off the deduplication feature to avoid its effect on
1/O performance and to avoid the metadata overhead of
deduplication. It is desirable to have an efficient and
effective deduplication estimator to allow customers to
quickly estimate the deduplication benefit on their pri-
mary data sets before they turn on deduplication, and to
allow the storage system to prioritize the scheduling of
deduplication tasks for different data sets.

Existing deduplication estimators are either not fast
enough or not accurate enough. A simple but intrusive
and time-consuming way to discover the benefit of
deduplication is to actually turn on deduplication. If the

benefit is not satisfactory, deduplication can be reverted.

Alternatively, one could roughly estimate the potential
benefit of deduplication based on the type of workload.
This approach often does not produce accurate esti-
mates, since it does not look at the content of data.

Taking the content into account, one could attempt to
estimate the level of duplication by reading a small ran-
dom sample of the data set, and calculating the amount
of duplication in it. This is much harder than it sounds,
because of the large error in estimating the true number
of occurrences of an item that only occurs once or twice
in the sample. Furthermore, it has been proven that for
any random-sampling-based estimation function, there
are block-frequency distributions that cause it to be
very inaccurate, unless the sample percentage is very
large fraction of the data [1].

We defined and implemented an accurate and light-
weight deduplication-estimation technique for a prima-
ry storage system. At a very high level, the technique
samples the blocks based on the block fingerprint value,
and only selects the fingerprints that satisfy some predi-
cate on their value (i.e., a filter). That is, any two
blocks with the same fingerprint are either both includ-
ed in the sample or both excluded from the sample.
This is why the sample is said to be content-based.

The remainder of this paper consists of a comparison to
previous work (Section 2), an analysis of the algorithm
(Section 3), a discussion of the design and implementa-
tion of the system (Section 4), a performance study
(Section 5), and our conclusions (Section 6).

2 Related Work

Many commercial storage vendors provide deduplica-
tion estimators to allow customers to estimate potential
space savings. A popular approach is to use rule-of-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 181

thumb estimation methods which involve looking at
metadata information like the type of data set, the fre-
quency that data is changed, annual data growth rate,
data retention, etc., which tend to influence deduplica-
tion ratios [11]. Many commercial estimators [9], [10]
have adopted this method. Note that these estimators do
not access the actual data in order to calculate the esti-
mates, and so, can sometimes be extremely inaccurate.

The problem of estimating the duplication in a data set
can be thought of as estimating the number of distinct
block values in the set, given that the total number of
blocks in use is known. This means that solutions to the
latter problem can be applied to the former.

Distinct elements estimation is a well-studied problem,
and frequently appears in literature concerning data-
streaming algorithms, statistics, and databases. P.B.
Gibbons [8] looks at many previous approaches to dis-
tinct value estimation and the difficulties with them. In
the database world, the early literature has extensively
studied sampling techniques, which involve gathering a
uniform random sample of the data, and using it to ap-
proximately answer distinct-value queries on relational
databases [5, 6, 7]. Although these estimators use so-
phisticated techniques to handle various input distribu-
tions, they are all unable to guarantee good accuracy for
their estimates [1, 4]. Charikar et al. [1] proved this
formally, establishing a strong negative result, namely
that no estimator can guarantee a small error for all
possible input distributions unless it examines a large
fraction of the input data. Raskhodnikova et al. [2] and
Valiant et al. [3] further provided near-linear and sub-
linear lower bounds, respectively, on the sample size
required for the estimate. The conclusion is that, in or-
der to ensure high-accuracy, distribution-independent
estimates, it is necessary to examine almost the entire
data set.

Estimation algorithms that require scanning all the data
once are referred to as single-pass algorithms. Flajolet
and Martin, in their seminal work [12], presented the
first single-pass algorithm for distinct values estimation
in a large collection of data using small limited storage.
Their probabilistic counting algorithm uses hash func-
tions to map set of values to bitmap vectors, such that
each distinct value maps to the i bit in the vector with
270D probability. Alon et al. [13] further build upon
this work and proposed more practical hash functions,
space bounds and provable error guarantees on their
estimates. This line of research continues with more
space/time efficient algorithms and better estimates of
distinct values [14, 15]. Some similar approaches use
adaptive sampling, which continuously maintain a
bounded-size up-to-date sample of distinct values for

the purpose of providing a very quick estimate of the
cardinality of the data set [17, 18, 26]. Our sampling
technique is in many respects similar to these.

D. Harnik et al. [19] are the first in the area of storage
deduplication to provide a provably accurate two-phase
algorithm for a one-time estimate of deduplication rati-
os, using very low storage space. Our technique differs
from theirs in that, after a single pass over existing data
for the initial estimate, it uses an adaptive technique to
incrementally maintain an up-to-date estimate that takes
into account any changes to the data.

3 Theory

Consider a data set consisting of a group of data blocks
(of fixed size or variable size) with possible duplicates.
We are interested in estimating the percentage of space
that can be saved by deduplication. Thus, we define the
deduplication ratio R as follows.

_ Size in bytes of distinct blocks in data set

Size in bytes of the data set

We assume a hash function that generates a fingerprint
for each data block. The proposed content-based sam-
pling applies a modulo-based filter to all the block fin-
gerprints of a data set. A block fingerprint passes the
filter and is added to the sample iff:

Fingerprint Mod M = X

Where the divisor M is an integer greater than 1, and
the remainder X is an integer between 0 and M - 1.
Throughout this paper, we refer to M as the filter divi-
sor. The idea is to split the fingerprint space into M
partitions, and to use one of the partitions in the esti-
mate. More specifically, the total size of the distinct
(deduplicated) blocks in the sample is used to estimate
the total size of the distinct blocks in the entire data set.

Assume there are K different block sizes in the data set.
The sample can be partitioned into K groups of identi-
cal-sized blocks. Assume the ith (i = 1...K) block group
in the sample has n; distinct blocks of size s;. Let N;
denote the total number of distinct blocks of size s; in
the data set. Let S be the size in byte of the distinct
blocks in the data set. The estimate of S, denoted by S,
is defined as:

S =M-Zin s

The deduplication ratio can be estimated as S*/Sdataise[,
where Sga set 1S the size of the data set before dedupli-
cation, which is known before the. In the case of fixed-
size blocks, we can ignore the block size and count only
the number of distinct blocks in the sample. Figure 1
illustrates the idea of content-based sampling.

182 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

The main theoretical result of this work is the relation-
ship between the filter divisor and the accuracy of the
estimate. Define the relative error of the estimate as

err=(5—-S%/S

We show that if the fingerprinting algorithm has good
uniformity and negligible collision probability, the rela-
tive error follows a normal distribution with zero mean
(i.e., the estimate is unbiased) and known variance.

Fingerprint
Content-based Sampling 0110001
Data 0000111
Chunking (fixed or Counting
variable size ‘ distinct
' Sampling: fingerprints
IF “fomod M =X"7?
. 11 1
Block 1 Hashing ° voo 0110001
Block 2 — T e g
Block 3 pooo i 0000111
Block 4 1001001 T
Block5 0000111

Figure 1. Illustration of the Content-based sampling

We assume a storage system that maintains a relatively
strong fingerprint for data blocks, so that we can ignore
the impact of collisions. A previous work in the net-
working domain [16] takes collisions into account in
the estimate. As shown in that work, the expected error
introduced by collisions (which always causes an un-
derestimate) is computable from the size of the uncor-
rected estimate S”. Thus, we could apply these results
to correct for collisions, if necessary.

Theorem 1. Assume the fingerprinting has the uni-
formity property and negligible collision probability.
For large N; (i = 1,.., K), err has a normal distribution
with zero as the mean and (M — 1) - §/S as the variance,
where § is defined as § = Y5 s, (N; - 5,)/S.

The proof of Theorem 1 is in Appendix A. The a-f ac-
curacy of the estimate is defined as:

Definition of a-f accuracy. Given o and § (a, S € [0,
1]), the relative error err satisfies the following condi-
tion.

Prob(lerr|za)<1-p

The relationship between M and the a-f accuracy is
described in the following theorem.

Theorem 2. M satisfies the a-f accuracy if:

a?s

Ms ermmsTt O

where erf() is the inverse of the Gauss error function
and § is defined in Theorem 1 (proof in Appendix B).

To have the smallest possible sample size, one would
choose the largest M that satisfies a given accuracy re-

quirement. However, S and § are not known before the
estimation. In practice, we could address this problem
as follows. Variable-size chunking algorithms (e.g.,
[24]) typically have a known average block size, which
can be used to approximate S. Also, 5 is known for the
fixed-size blocks case. Rewrite inequality (1) as:

S 2lerfIB)s

M-1— a?
The left side of (2) could be approximated by the total
size of distinct blocks in sample (distinct block count in
the fixed-size blocks case), which is countable during
the sampling. The minimum “distinct sample size” that
satisfies (2) is called the target sample size. Table 1
gives some a, £ values and the corresponding target
sample size in number of blocks. As long as there are
enough distinct blocks in the sample, we can increase
the selectiveness of the filter to reduce sample size in
the following Adaptive Sampling Approach.

@

During the sampling process, the ratio of the distinct
block count in sample to the target sample size is peri-
odically monitored. If the ratio is greater than 2, we find
the largest power of two that is less than or equal to the
ratio (denoted as f). M and X are updated as follows:

Stepl: X=X+ M- rand(f)

Step2: M=M-f
The function rand(f) generates a random integer be-
tween 0 and f — 1. This allows us to randomly choose
a fingerprint partition while we aggressively divide the
fingerprint space. Finally, we remove the unqualified
blocks from the existing sample, and continue the sam-
pling with the new, more restrictive filter.

TABLE 1. Target sample size vs a-f accuracy

Target sample size o p
270 0.1 0.9
1843 0.06 0.99
12030 0.03 0.999
1513670 0.01 0.9999

4 Design and Implementation

We chose an enterprise-class network-attached storage
system as the reference system in which to implement
the estimation technique. The system uses a log-
structured file system [22] with 4KB blocks. Individual
data blocks of a file can be identified by a file handle
together with an offset within the file (called a file
block number). Our implementation estimates the num-
ber of unique data blocks in a volume. Ignoring the
initialization delay due to the one-time full-volume scan,
an up-to-date estimate can be returned on-demand with-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 183

in a couple of minutes, no matter how large the volume
is. A large part of the recurring maintenance runs in the
background, in a non-intrusive fashion.

Change
Logging

E;"ﬂsr;gi::g: MFGI\::::D One time at
point The beginning

Estimation Operation:
Recurring when
certain conditions
are met

Figure 2. System Components

The major modules built into the reference storage sys-
tem are depicted in Figure 2. The change logging is a
software module that samples data blocks during the
consistency point. Metadata blocks are not sampled.
The storage system computes a 64-bit variant of the
Adler checksum [23] for each block as the RAID
checksum. This checksum, available at the time of a
consistency point, is used as the fingerprint. Existing
blocks in the volume are sampled by a scanner module.
The sample is stored in a fingerprint sample file (FPS).
The FPS contains a header and a sequence of entries
(20 bytes per entry) in the format of {file handle, file
block number, fingerprint}.

The estimation operation merges the sample from
change logging to the FPS, and updates the estimate
accordingly. File swapping is used in the merging, so
that the ongoing change logging process is not affected.
After merging, we count the distinct blocks by sorting
the FPS. We remove stale entries (i.e., blocks removed
or over-written) before counting. This is done by com-
paring the fingerprint in the entry with the fingerprint of
the real block. We maintain a stale inode cache during
the validation, to reduce the number of unnecessary
block-read attempts.

Adaptive sampling is triggered at the end of the estima-
tion operation. Once the filter divisor increases, the
change logging produces a smaller sample. The FPS is
shrunk as well. The initial value of M can be set by the
user. The initial value of X is chosen randomly.

The estimation operation is triggered if we have enough
data in the change logs or there is file deletion in the
volume (i.e., volume size decrease). These conditions
are checked periodically. This ensures minimum impact
to read-intensive workloads.

5 Performance Study

We studied the accuracy of our estimate using real-
world data sets (see TABLE 2). Given a data set, we
compared the empirical error’s standard deviation and
the theoretical ones, for various values of M. There
were 1000 data points for each empirical statistics, gen-
erated by varying the remainder X from 0 to 999. We
tested estimations over both 4KB fixed-size blocks, and
variable-size blocks [24]. The variable block size is
between 2KB and 8KB. The true deduplication ratio
was obtained as follows. In the case of variable-size
blocks, we trust the results of deduplicating over the
MDS5 hash values of the blocks. For fixed-size blocks,
we deduplicated the data set in a NetApp® system.

TABLE 2. Information of the data sets

Names Size Dedup ¢ Description
Ratio
Corp. Web 1.5TB ~50% Corporate web directory
Debian 260GB ~60% 2-month Debian build
Sharepoint 29GB ~18% Corporate Sharepoint

We consistently saw good matches between the empiri-
cal results and the theoretical results, for both the varia-
bles-size and fixed-size cases (see Figure 3 for details).
For the sake of space, we only report selected results in
this paper.

Error Std_Dev vs Filter Size (4kB block)
3 data sets, 64-bit RAID checksum

Error Std_Dev vs Filter Size (variable size block)
1,578 Corp Web Directory, MDS fingerprint
0.035
0.035 Corp. Web (empirical)
- , ——Corp. Web [thearetical) 003
003 y 4 Debian (empirical]
g ¢ = = Debian [theoretical)
005 | & f& Sharepoint (empirical]
002 : — ~Sharepoint (theoretical)

Empirical values

—Theoretical curve

=
=1
G

=3
=3

=
=
&

0.01

Error Standard Deviation
Error Standard Deviation

0 20000 40000 60000 80000 0 10000 20000 30000 40000
Filter Divisor M Filter Divisor M

Figure 3. Accuracy test result

The evaluations of the prototype were done using a
NetApp FAS 3070 storage system running Data ON-
TAP® 8.1 [25]. I0zone [20] was chosen as the synthet-
ic I/O trace generator, since it can generate traces with
duplicated content. The storage system exported a NFS
v3 volume to the trace-generating client.

There are two major types of test, namely 64KB se-
quential write and 64KB sequential read. All the tests
were set to 50% inter-file duplication and 0% intra-file
duplication. Five files are accessed in parallel in the
tests, which saturated a 1GB network link. The dedupli-
cation ratio of the synthetic data set is 0.6. Every 4

184 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

minutes, the system checked whether the estimation
operation should be triggered. Every 5 seconds, the
storage system sampled the CPU usage, number of
64KB 1/0O per second (IPOS), disk read rate, and disk
write rate. A single test run lasted for about 80 minutes.
There were 15 test runs for a single setting.

CPU Usage COF for 64K8 Seq. Write 10PS CDF for 64KB Seq. Write

g
g

g
g

o 3 o 0 —Base
g 80 —Base EBD% ssovs Target sample size = 1000
]
g we B Target sample size = 1000 : o Target Sample Size = 5000 /
o
& - Target Sample Size = 5000 s} 0% ... Target sample size = 10000
5 S0% 5 S0 _
2 Target sample size = 10000 o — —Target sample size = 15000
w 40% & 4o
8 — —Target sample size = 15000 s
5 30% < 3%
5 0% S
- g
10% 10%
0% — [—

0.1 0.15 02 025 03
Normalized CPU usage

092 054 036 098 1
Normalized |OPS

Figure 4. CDF for normalized CPU usage and IOPS

We first look at the results for 64KB sequential writes.
We only report the cumulative distribution function
(CDF) curves of CPU usage and IPOS in Figure 4. As
expected, the estimation test consumes more CPU and
has less IOPS, compared to the base case. Besides these
results, our data shows that the average changes in CPU
usage, IOPS, and disk reads are less than 0.5% for all
the tested target sample sizes. The average disk read
rate increases from 1% to 4% as the target sample size
increases from 1000 to 15000. The additional disk
reads are mainly contributed by the random disk access
from the counting module.

Latency Histogram for both read and write tests

Base, 64KB Seq. Write

0.9
target sample size = 1000, Seq. Write

5 08 mtarget sample size = 5000, Seq. Write
5 07 #target sample size = 10000, Seq. Write
206 itarget sample size = 15000, Seq. Write
] 05 Base, 64KB Seq. Read
e = target sample size = 1000, Seq. Read
504
=
Lo3
— 02

0.1

0 -3 Z —

1ms 2ms 4ms ems 8ms 10ms 12ms 14ms
Latency Range

Figure 5. Latency histogram for both read and write tests

There is no significant impact to the system in the se-
quential read test. This is because the estimation code
has negligible overhead for a read-only workload. The
CDF results are not reported due to space limitations.
Figure 5 plots the client-side latency histogram reported
by 10zone. This plot shows that estimation’s impact to
the I/O latency is also negligible.

We also studied the estimation accuracy of our adaptive
sampling in the 64KB sequential write case. Figure 6
plots the results in one test run. As the volume size

grows, the filter divisor is doubled while the corre-
sponding distinct block count in the sample floats be-
tween 2500 and 1000. M was initially set to 4096. The
error is high at the beginning due to the small sample
size, and remains below 5% later.

Distinct sample size and errorin one run

target sample size = 1000 * M=4096
3000 50% 4 m=8192
45% M=16384
2500 .
2 * 40% . m=32768
£ = x 35%
; 2000 - © W M=65536
= x % 30%
o A x 3 —=— |Error|
5 1s00 X 2500 —=
2 - x o 3
(=} —_—
e I~ 20% —
G - =
% 1000 1% S
= 500 % 10%
-
5%
T PR
o | SR 0%
0 50000000 100000000

Volume Size (in 4KB block)

Figure 6. Adaptive sampling in one experiment run.

6 Concluding Remarks

The main contribution of this work is a method that
estimates duplication in a storage system with statisti-
cally guaranteed accuracy using a single scan of the
data set. It is also notable for requiring only a small,
fixed amount of memory resources for a given level of
accuracy, independent of the size of the volume. This
makes it amenable to efficient in-line use and to main-
tain an accurate estimate in the face of a rapidly chang-
ing data set, which allows storage users to better assess
the utility of data deduplication. We implemented the
technique as a practical enhancement to a commercial
storage system, and confirmed that the accuracy was
within the statistically expected range for a variety of
real-world data sets. The performance impact of our
technique was found to be less than a few percent.

7 References

[1] M. Charikar, et al. Towards Estimation Error Guarantees for
Distinct Values. Proceedings of the 19th ACM Symposium on
Principles of Database Systems. ACM, New York, 2000.

[2] S. Raskhodnikova, et al. Strong Lower Bounds for Approximat-
ing Distribution Support Size and the Distinct Elements Prob-
lem. SIAM Journal on Computing, pages 813-842, 2009.

[3] G. Valiant, and P. Valiant. Estimating the Unseen: An n/log(n)-
sample Estimator for Entropy and Support Size, Shown Optimal
via New CLTs. In the 43rd ACM Symposium on Theory of
Computing, STOC, pages 685-694, 2011.

[4] S. Chaudhuri et al. Random sampling for histogram construc-
tion: How much is enough? In Proc. ACM SIGMOD Interna-
tional Conf. on Management of Data, pages 436447, June 1998.

[5] P.J. Haas, et al. Sampling-based estimation of the number of
distinct values of an attribute. In Proc. 21st International Conf.
on Very Large Data Bases, pages 311-322, September 1995.

[6] G. Ozsoyoglu, et al. On estimating COUNT, SUM, and AV-
ERAGE relational algebra queries. In Proc. Conf. on Database
and Expert Systems Applications , pages 406-412, 1991.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 185

[7] F.Olken. Random Sampling from Databases. PhD thesis, Com-
puter Science, U.C. Berkeley, April 1993.

[8] P. B. Gibbons. Distinct-values estimation over data streams. In
Manuscript, 2009.

[9] http://www.emcemearegistration.com/tapereplace/esquare/calcu
lator.php - EMC Data Domain

[10] http://www.itcalc.com/ - NetApp Inc.

[11] https://www.snia.org/sites/default/files/Understanding Data De
duplication_Ratios-20080718.pdf

[12] P. Flajolet et al. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci. 31(2): 182-209 (1985).

[13] N. Alon et al. The space complexity of approximating the fre-
quency moments. ACM STOC, 1996, pp. 20-29.

[14] P. Flajolet, et al. Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In AOFA 2007.

[15] D. M. Kane et al. An optimal algorithm for the distinct elements
problem. In PODS, pp. 41-52, 2010.

[16] C. Estan, G. Varghese, and M. E. Fisk. Bitmap algorithms for
counting active flows on high-speed links. IEEE/ACM Transac-
tions on Networking, 14(5):925-937, 2006.

[17] P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. VLDB01, pp 541-550

[18] Counting distinct items over update streams. ACM Journal
Theoretical Computer Science 378(3):211-222, 2007

[19] D. Harnik et al. Estimation of deduplication ratios in large data
sets. In Mass Storage Systems and Technologies (MSST), 2012

[20

[

10zone Filesystem Benchmark http://www.10zone.org/

[21] A. El-Shimi et al. Primary Data Deduplication -- Large Scale
Study and System Design. USENIX ATC *12.

[22] D. Hitz et al. File system design for a file server appliance. In
USENIX Technical Conference, 1994, pages 235245

[23

—

P. Corbett el al. Row-Diagonal Parity for Double Disk Failure
Correction. In Proceedings of the 2004 Usenix FAST, pp: 1- 14.

[24] E. Kave et al. A Framework for Analyzing and Improving Con-
tent-Based Chunking Algorithms No. HPL-2005-30R1.

[25] www.netapp.com/us/library/technical-reports/tr-3982.html
[26

[}

A. Chen & A. Cao. Distinct counting with a self-learning bit-
map. IEEE ICDE ‘09. Pages 1171-1174.

Appendix A

Denote the total number of distinct fixed-size blocks in
the sample and data set as n; and N, , respectively.

Lemma 1. Assume the fingerprint has uniformity prop-
erty and negligible collision probability. For large N, ,
err has a normal distribution with zero as the mean and
(M —1)/N, as the variance.

Proof: Because of good uniformity, any fingerprint in
the data sets has 1/M probability to be sampled. Since
the collision is negligible, the number of distinct fin-
gerprints is approximately equal to the number of dis-
tinct blocks in the sample. The sampling can be treated
as a Bernoulli trail of length N, and successful rate 1/M.

The number of successes in the trail is equal to ng.
Therefore n,; follows a binomial distribution. Based on
the definition of err, it can be represented as:

err=(R—R")/R=1—-ny4-M/N,

When N, is large, the distribution of n, can be approxi-
mated as a normal distribution with E[n,] = N,/ M and
Var[ng] = Ny - (M — 1)/M?. Therefore err follows a
normal distribution of zero mean and (M — 1)/N; as
the variance. m

Proof of Theorem 1: The sample in the variable-size
blocks case can be seen as a group of K fixed-size block
samples. According to Lemma 1, when N, is large, n;
has a normal distribution: E[n;] = N; / M and Var[n;] =
N; - (M —1)/M?. Since S is a linear combination of n;
(i=1,...K), S also follows a normal distribution with

E[S']= YK, s;N;=S and Var[S']=M-1)-
K N.-s;2
i=1°Y1 i -
Since err = (S — S*)/S, it also has a normal distribu-
tion. E[err] is simply zero. The variance is calculated as:

Var[S*] o 52
Varlerr] = = M-1)- ZNi é
i=1
K
M- Ns; (M—1)-5
TS s TS

i=1

This proves the theorem. m

Appendix B

Proof: The proof of this theorem is simply based on the
Empirical Rule of the normal distribution. Since the
error has a normal distribution, the accuracy of the es-
timation has the following property.

Prob (lerrl >e- \/Var[err]) <1- erf(s/w/f)

, where erf() is the error function and € is a constant.
Substitute the variance of err from Theorem 1, we have:

Prob(lerr| = e-\/(M—1)-5/S)<1- erf(s/\/f)

We substitute & with erf~2(8) - V2 in the above ine-
quality, which yields:

Prob (lerrl > erf1(B) V2 /(M —1) -§/S)

<1-p
This means that as long as:
Me— 5
T 2-(erfTHPB? S

the estimation satisfies a-f accuracy. m

1

NetApp, the NetApp logo, Go further, faster, and Data
ONTAP are trademarks or registered trademarks of
NetApp, Inc. in the United States and/or other countries.

186 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

MutantX-S: Scalable Malware Clustering Based on Static Features

Xin Hu!

Abstract

The current lack of automatic and speedy labeling of a
large number (thousands) of malware samples seen ev-
eryday delays the generation of malware signatures and
has become a major challenge for anti-virus industries.
In this paper, we design, implement and evaluate a novel,
scalable framework, called MutantX-S, that can effi-
ciently cluster a large number of samples into families
based on programs’ static features, i.e., code instruction
sequences. MutantX-S is a unique combination of sev-
eral novel techniques to address the practical challenges
of malware clustering. Specifically, it exploits the in-
struction format of x86 architecture and represents a pro-
gram as a sequence of opcodes, facilitating the extrac-
tion of N-gram features. It also exploits the hashing
trick recently developed in the machine learning com-
munity to reduce the dimensionality of extracted feature
vectors, thus significantly lowering the memory require-
ment and computation costs. Our comprehensive eval-
uation on a MutantX-S prototype using a database of
more than 130,000 malware samples has shown its abil-
ity to correctly cluster over 80% of samples within 2
hours, achieving a good balance between accuracy and
scalability. Applying MutantX-S on malware sam-
ples created at different times, we also demonstrate that
MutantX-S achieves high accuracy in predicting labels
for previously unknown malware.

1 Introduction

According to the Symantec’s latest Internet Threat Re-
port, 403 million new variants of malware were created
in 2011, a 41% increase from 2010. This exponential
growth of malware samples has created a major challenge
for anti-virus (AV) companies: how to efficiently process
this huge influx of new samples and accurately labels
them? It is practically impossible to manually analyze
several thousands of suspicious samples received every
day. As a result, a large fraction of samples are left un-
labeled, which delays the signature generation. One pos-
sible solution is to automatically cluster malware sam-
ples and assign them labels according to their similarities.
The intuition is that malware programs bearing signifi-
cant similarities are likely to have been derived from the
same code base, and hence from the same malware fam-
ily. One can thus group similar malware and label them

Sandeep Bhatkar’> Kent Griffin> Kang G. Shin’
I IBM T.J. Waston Research Center ° Symantec Research Labs > University of Michigan, Ann Arbor

with high accuracy by analyzing only a few representa-
tive samples. Moreover, the label of a new sample can be
automatically derived and previous mitigation techniques
can be re-used if it is determined to belong to an exist-
ing family. Therefore, accurate clustering plays a crucial
role in helping AV companies categorize large amount
of incoming samples by avoiding duplicate work and en-
abling malware analysts to prioritize limited resources on
novel and representative samples [17, 12, 7]. In this pa-
per, we design, implement and evaluate MutantX-S, a
novel and scalable system, that can efficiently cluster a
large number of malware samples into families based on
their static features, i.e., code instruction sequences.

Many existing malware clustering/classification sys-
tems are based on dynamic behavioral features such as
runtime API or system call traces [6, 7, 24]. The major
benefit of using dynamic behavioral features is that they
are less susceptible to mutation schemes frequently em-
ployed by malware writers to evade binary analysis, e.g.,
packing or obfuscation. However dynamic-feature-based
approaches also suffer from several limitations. First,
they may have only limited coverage of an application’s
behavior, failing to reveal the entire capabilities of a given
malware program. This is because a dynamic analysis
can only capture API or system call traces corresponding
to the code path that was taken during a particular exe-
cution. Different code paths may be taken in different
runs, depending on the program’s internal logics and/or
external environments. Also, malware often include trig-
gers in their programs and exhibit an interesting behav-
ior only when certain conditions are met. For example
bot programs wait for commands from botmasters and
some malware are designed to launch attacks on a certain
time. Although there exists work that forces a program
to run all code paths [21], they are too expensive to an-
alyze large amount of malware. Second, dynamic analy-
sis is inherently resource-intensive and doesn’t scale well.
With limited resource and the sheer number of malware,
a dynamic-analysis system can execute and monitor each
sample only for a short period of time, e.g., a couple of
minutes. Unfortunately, this time is often too short for
typical malware to reveal all their true behavior.

In this paper, we present Mut ant X—S, a new and prac-
tical system that exploits static features of code instruc-
tion sequences for efficient and automatic malware clus-

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 187

tering and labeling. MutantX-S is motivated by the
common observation that majority of today’s malicious
programs are variations of a relative small number of
malware families and thus share similar instruction se-
quences. Analyzing static features of malware offers sev-
eral unique benefits. First, it has the potential to cover all
possible code paths, yielding more accurate representa-
tions of the entire functionalities of the program. More-
over, approaches based on static features are much more
scalable than their dynamic counterparts, as they do not
require resource-intensive and time-consuming monitor-
ing of program behavior. This is particularly important
for AV companies to process a rapidly-increasing number
of new malware samples. Unfortunately, static analysis is
well-known to suffer from run-time packing and obfus-
cation techniques. Therefore, the goal of MutantX-S is
not to replace existing dynamic-behavior-based systems,
but to complement them to achieve higher clustering ac-
curacy and better coverage of malware programs.

MutantX-S features a unique combination of tech-
niques to address the deficiencies of static malware anal-
ysis. First, it tailors a generic unpacking technique to
handle run-time packers without needs to know its spe-
cific packing algorithm. Second, it employs an efficient
encoding mechanism that exploits the IA32 instruction
format to encode a program into opcode sequences that
are resilient to low level mutations. In addition, it applies
a hashing-trick and a close-to-linear clustering algorithm
to allow MutantX-S to efficiently handle large num-
ber of malware with very high dimensional features. We
have successfully implemented a fully-automated proto-
type of Mut ant X-S and evaluated its performance using
over 130,000 distinct malicious programs. Our evalua-
tion demonstrates MutantX-S’ efficiency and efficacy
of creating clusters corresponding to malware families
and accurately predicting labels for new malware.

The rest of the paper is organized as follows. Section 2
surveys related work of malware analysis. Section 3
describes the architecture of MutantX-S followed by
elaboration of all subcomponents including unpacking
(Section 4), feature extraction (Section 5) and clustering
(Section 6). The performance evaluation is presented in
Section 7. Section 8 discusses the limitation and potential
improvement, and Section 9 concludes the paper.

2 Related Work

Malware pose one of the severest threats to computer sys-
tems and the Internet. Various schemes have been pro-
posed to automatically cluster/classify malware based on
either dynamic behavior or features.

Dynamic-analysis approaches have the major benefit
of handling obfuscated malware samples based on their
runtime system or API calls. Lee and Mody [18] used
a sequence of runtime events (e.g., registry and file sys-

tem modifications) to cluster similar malware programs.
Rieck et al. [23] applied SVM (Support Vector Machine)
to learn the frequency of run-time behavior, and classi-
fied unknown samples to their closest kin. Later, Bai-
ley et al. [6] applied a hierarchical clustering algorithm
to group similarly-behaving malware samples. Unfor-
tunately, the complexity of this clustering algorithm is
O(n?), limiting its applicability only to a small number
of samples. To address this problem, Bayer et al. [7] and
Rieck et al. [24] developed different methods to scale the
clustering. Bayer et al. [7] applies locality-sensitive hash-
ing (LSH) to efficiently compute an approximate hierar-
chical clustering with a significantly smaller number of
distance computations. By contrast, Rieck et al. [24] ap-
plied a prototype-based clustering algorithm that reduces
the runtime complexity by performing clustering only on
representative samples. Comparing to LSH clustering, a
prototype-based algorithm facilitates the analysis of be-
havior groups because each prototype represents a partic-
ular malware group [24]. In MutantX-S, we adopt the
same prototype-based algorithm as in [24] because of its
efficiency and explicit expression of malware features.
Static analysis, on the other hand, uses features ex-
tracted directly from malware binaries. Christodorescu
et al. [8] discovered malicious patterns from disassem-
bled malware that are resilient to obfuscation. Wich-
erski [30] utilizes static features from PE headers, e.g.,
entry point, import table, etc., to group malware pro-
grams. Karim et al. [13] demonstrates the effectiveness
of N-gram and N-perm on assembly instructions by using
them to study the malware evolution. Similar features
have also been used in [15] to validate various learning
methods. MutantX-S falls into the static-analysis cat-
egory since it relies on features extracted from the mal-
ware instructions. MutantX-S differs from previous
approaches in its unique combination of novel techniques
to improve its scalability in handling very large malware
datasets. Another independently developed system sim-
ilar to Mutant X-S is BitShred [12] which also focuses
on malware comparison and triage on a large scale. How-
ever, BitShred compares malware using their byte se-
quences which is susceptible to binary level obfuscation.

3 Architecture

Figure 1 shows an overview of MutantX-S. At a high
level, Mut ant X—S takes a set of malicious or suspicious
samples as input and extracts their features using static
analysis to avoid the computational overhead and maxi-
mize code coverage. Specifically, Mut antX—S first uses
existing tools (e.g., PeID! [3]) to identify malware files
that are likely processed by packing tools such as UPX

1a popular packer detection tool that currently detect more than 470
different packer signatures in executables

188 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

[28], ASPack [5]. These files will be unpacked with a
generic unpacking technique tailored for MutantX-S.
Together with samples that are in their original binary
(not packed), they are disassembled to code instructions.
These pre-processing steps ensure that features inherent
to malware families can be successfully extracted without
influence of encryption or compression. Then, all mal-
ware samples are processed with three steps to extract
representative features: (1) Instruction Encoding for con-
verting each instruction to a sequence of operation codes
that capture the underlying semantics of the programs,
(2) N-gram analysis for constructing feature vectors used
to compute program similarities, and (3) Hashing Trick
for compressing the feature vectors, which significantly
improves the speed of similarity computation with only
a small penalty in accuracy. Finally, a prototype-based
clustering algorithm is applied on compressed feature
vectors and partitions samples into clusters, each repre-
senting a group of similar malware programs.

Preprocess FeatureExtraction
Disassem |t][Instruction Hashing
Mal -
l i ':>[L] | Encoding 2™ 92™ [rick

— iy2
|_|Fami|y 2J<:|| Cluster |
I Malware Families

Figure 1: A system overview of MutantX-S

4 Generic Unpacking Algorithm

Run-time packing is arguably the most popular tech-
niques used by malware writers to circumvent anti-virus
detection. More than 80% of malware programs are es-
timated to be packed [10]. A typical packer like UPX
works as follows. UPX first compresses all the code and
data sections of a portable executable (PE) binary? into a
single section. Then, it creates a new PE binary contain-
ing the compressed data followed by the unpacker code.
The entry point in the new PE header is altered to point
to the unpacker code such that when the packed program
runs the unpacker will first be executed . The unpacker
decompresses the original program codes into memory
and then jump to the first instruction of the restored codes
(i.e., the original entry point) to resume execution. This
packing process enables malware programs to disguise
their malicious instructions as random-looking data while
keeping the original functionality intact. Since all static
analysis tools including MutantX-S rely on features
extracted from original instructions, it is imperative for
them to handle packing correctly and efficiently.

While there exist unpacking tools such as U