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Abstract

The fabrication of digital Integrated Circuits (ICs) is in-
creasingly outsourced. Given this trend, security is rec-
ognized as an important issue. The threat agent is an
attacker at the IC foundry that has information about the
circuit and inserts covert, malicious circuitry. The use of
3D IC technology has been suggested as a possible tech-
nique to counter this threat. However, to our knowledge,
there is no prior work on how such technology can be
used effectively. We propose a way to use 3D IC tech-
nology for security in this context. Specifically, we ob-
fuscate the circuit by lifting wires to a trusted tier, which
is fabricated separately. This is referred to as split man-
ufacturing. For this setting, we provide a precise notion
of security, that we call k-security, and a characterization
of the underlying computational problems and their com-
plexity. We further propose a concrete approach for iden-
tifying sets of wires to be lifted, and the corresponding
security they provide. We conclude with a comprehen-
sive empirical assessment with benchmark circuits that
highlights the security versus cost trade-offs introduced
by 3D IC based circuit obfuscation.

1 Introduction

The security of digital integrated circuits (ICs), the build-
ing blocks of modern computer hardware systems, can
be compromised by covertly inserted malicious circuits.
The threat from such maliciously inserted hardware is
of increasing concern to government and military agen-
cies [2] and commercial semiconductor vendors. Re-
cently, Skorobogatov et al. [28] demonstrated the pres-
ence of a backdoor in a military grade FPGA manufac-
tured by Actel that enabled access to configuration data
on the chip. The authors initially conjectured that the
backdoor was maliciously inserted since the key used to
trigger the backdoor was undocumented. Actel has since
clarified that the backdoor was inserted by design for in-

ternal test purposes [23]. Nonetheless, this incident has
further heightened the perceived threat from maliciously
inserted hardware, and effective counter-measures to de-
ter or prevent such attacks are of increasing importance.

The threat of maliciously inserted hardware arises
from two factors. First, owing to their complexity, digital
ICs are designed at sites across the world. In addition,
parts of the design are often outsourced or purchased
from external vendors. Second, a majority of semicon-
ductor design companies are fabless, i.e., they outsource
IC manufacturing to a potentially untrusted external fab-
rication facility (or foundry). Both factors make it easier
for a malicious attacker in a design team or a malicious
foundry (or a collusion between the two) to insert covert
circuitry in a digital IC.

Three-dimensional (3D) integration, an emerging IC
manufacturing technology, is a promising technique to
enhance the security of computer hardware. A 3D IC
consists of two or more independently manufactured ICs
that are vertically stacked on top of each other — each
IC in the stack is referred to as a tier. Interconnections
between the tiers are accomplished using vertical metal
pillars referred to as through-silicon vias (TSV).

3D IC manufacturing can potentially enhance hard-
ware security since each tier can be manufactured in a
separate IC foundry, and vertically stacked in a secure
facility. Thus, a malicious attacker at any one foundry
has an incomplete view of the entire circuit, reducing the
attacker’s ability to alter the circuit functionality in a de-
sired manner.

Tezarron, a leading commercial provider of 3D stack-
ing capabilities, has alluded to the enhanced security of-
fered by 3D integration in a white paper [1]. The white
paper notes that “A multi-layer circuit may be divided
among the layers in such a way that the function of each
layer becomes obscure. Assuming that the TSV connec-
tions are extremely fine and abundant, elements can be
scattered among the layers in apparently random fash-
ion.” However, the paper does not provide any formal
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Figure 1: A two tier 3D IC. In this instance, the top tier is
an interposer, i.e., it only implements metal wires, while
the bottom tier has both transistors/gates and wires.

notion of security for split manufacturing, nor does it
propose techniques to quantify security or achieve a cer-
tain security level. These are the open challenges that we
address in this paper.

Our threat model assumes a malicious attacker in an
IC foundry who wants to modify the functionality of a
digital IC in a specific, targeted manner. The attack pro-
posed by King et al. [19] modifies the state of hardware
registers in a processor to raise the privilege level of the
attacker — this is an example of a targeted attack since it
requires the attacker to determine the gate or wire in the
circuit that corresponds to the privilege bit. Fault inser-
tion attacks in cryptographic hardware also require that
certain vulnerable bits be targeted. For example, it has
been shown that if the LSB bit of the 14 round of a
DES implementation is set to logic zero, the secret key
can be recovered in as few as two messages [9]. How-
ever, to succeed, the attacker must be able to determine
which gate corresponds to the LSB bit of the 14" round.

To effect a targeted attack, an attacker must first iden-
tify specific logic gates or wires in the circuit that im-
plement the functionality that he wants to monitor and/or
modify; for example, the gate or wire that corresponds
to the privilege bit for the privilege escalation attack pro-
posed in [19]. A malicious foundry can identify the func-
tionality of every gate and wire in the circuit if it gets to
fabricate the entire chip, i.e., if a conventional planar, 2D
fabrication process is used. On the other hand, as we
show in this paper, 3D integration significantly reduces
the ability of an attacker in a malicious foundry to cor-
rectly identify gates or wires in the circuit that he wants
to attack.

The specific 3D integration technology that we exploit
in this work, since it is the only one that is currently in

large volume commercial production [8], splits a design
into two tiers. The bottom tier consists of digital logic
gates and metal wires used to interconnect logic gates.
The top tier, also referred to as an interposer, only con-
sists of metal wires that provide additional connections
between logic gates on the bottom tier.

The bottom tier — this tier is expensive to fabricate
since it implements active transistor devices and passive
metal — is sent to an external, untrusted foundry for fab-
rication. This is referred to as the untrusted tier. The top
tier implements only passive metal and can be fabricated
at lower cost in a trusted fabrication facility. We refer to
this tier as the trusted tier.

Assume, for the sake of argument, that all interconnec-
tions between logic gates are implemented on the trusted
tier, the attacker (who only has access to the untrusted
tier) observes only a “sea” of disconnected digital logic
gates. From the perspective of the attacker, gates of the
same type, for example all NAND gates, are therefore in-
distinguishable from each other. (Assuming that the rel-
ative size or placement of gates reveals no information
about interconnections between gates. This is addressed
in Section 4.) Assume also that the attacker wants to at-
tack a specific NAND gate in the circuit, and not just any
NAND gate. The attacker now has two choices: (a) the
attacker could randomly pick one NAND gate to attack
from the set of indistinguishable NAND gates, and only
succeed in the attack with a certain probability; or (b) the
attacker could attack all indistinguishable NAND gates,
primarily in cases where the attacker wants to monitor
but not modify gates in the circuit, at the expense of a
larger malicious circuit and thus, an increased likelihood
of the attack being detected. In either instance, the at-
tacker’s ability to effect a malicious, targeted attack on
the circuit is significantly hindered. We refer to this tech-
nique as circuit obfuscation.

In general, we define a k-secure gate as one that, from
the attacker’s perspective, cannot be distinguished from
k — 1 other gates in the circuit. Furthermore, a k-secure
circuit is defined as one in which each gate is at least
k-secure.

Contributions We make the following contributions:

e We propose a concrete way of leveraging 3D IC
technology to secure digital ICs from an active at-
tacker at the foundry. Whereas the use of 3D IC
technology for security has been alluded to before,
we are not aware of prior work like ours that dis-
cusses how it can be used meaningfully.

e We propose a formal notion of security in this con-
text that we call k-security. We give a precise char-
acterization of the underlying technical problems —
computing k-security and deciding which wires to
lift — and identify their computational complexity.
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e We have devised a concrete approach to address-
ing the problem of lifting wires, which comprises a
greedy heuristic to identify a candidate set of wires
to be lifted, and the use of a constraint (SAT) solver
to compute k-security.

e We have conducted a thorough empirical assess-
ment of our approach on benchmark circuits, in-
cluding a case-study of a DES circuit, that illustrates
the inability of an attacker to effectively attack cir-
cuits secured using 3D IC based obfuscation.

2 Preliminaries and Related Work
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Figure 2: Secure 3D IC design and fabrication flow.

In this section, we overview the IC manufacturing pro-
cess in the specific context of 3D integration, and discuss
the attack model that we assume in this paper. We also
discuss related work on hardware security including both
attacks and countermeasures, and on the use 3D integra-
tion for enhancing the security of computer hardware.

2.1 3D IC Design and Fabrication

Digital ICs consist of a network of inter-connected dig-
ital logic gates. This network of gates is often referred
to as a netlist. Digital logic gates are built using com-
plementary metal-oxide-semiconductor (CMOS) transis-

tors. In a conventional planar/2D IC, CMOS transistors,
and by extension digital logic gates, lie in a single layer
of silicon. In addition, there are several layers of metal
wires used to inter-connect the gates.

3D integration enables the vertical stacking of two or
more planar ICs. Each IC in the vertical stack is referred
to as a tier. Vertical interconnects (TSVs) are provided
to allow the transistors and metal wires in each tier to
connect to each other.

The initial motivation for 3D integration came from
the potential reduction in the average distance between
logic gates — in a 3D IC, the third, vertical dimension
can be used to achieve a tighter packing of logic gates [6].
However, a number of issues, including high power den-
sity, temperature and cost, have plagued high volume,
commercial availability of logic-on-logic 3D ICs [13].

A more practical 3D IC technology that has been
demonstrated in a commercial product (a Xilinx
FPGA [8]) is shown in Figure 1. It consists of two tiers.
The bottom tier contains both transistors/gates and metal
wires, while the top tier, the interposer, contains only
metal wires. The two tiers are interfaced using uniformly
spaced metallic bond-points. TSVs make use of these
bond-points to provide connections between wires in the
top and bottom tiers. This technology has also been re-
ferred to as 2.5D integration [14]. In the rest of this pa-
per, we use 3D instead of 2.5D since our techniques can
easily be generalized to full 3D.

Since the bottom tier consists of CMOS transistors, it
is fabricated at one of the few foundries worldwide with
advanced lithographic capabilities at high cost. The top
tier, i.e., the interposer, only contains passive metal and
can be fabricated at significantly reduced cost [21].

Figure 2 shows a 3D IC design flow with appropri-
ate modifications for security. The design flow begins
with the design specified using a hardware description
language (HDL), which is then synthesized to a netlist of
gates. The types of gates allowed in the gate netlist are
specified in a technology library.

In the wire lifting stage, the edges (or wires) in the
netlist that are to be implemented on the top tier are se-
lected. These are referred to as lifted wires. The rest of
the netlist, implemented on the bottom tier, is referred to
as the unlifted netlist and consists of unlifted gates and
unlifted wires.

The unlifted gates are then placed on the surface of
the bottom tier, i.e., the (x,y) co-ordinates for each gate
are selected. Unlifted wires are routed using the bottom
tier metal layers. Two bond-points are selected for ev-
ery lifted wire; one each for the two gates that the wire
connects. The gates are connected to the correspond-
ing bond-points. Finally, lifted wires are routed between
pairs of bond-points in the top tier using the top tier rout-
ing resources.
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Finally, the two tiers are fabricated at separate
foundries. The chips from the two foundries are verti-
cally stacked to create the final 3D IC chip that is shipped
to the vendor.

We now discuss the attack model that we address in
this paper, in the context of the 3D design and fabrication
flow outlined above.

2.2 Attack Model

The attack model that we address in this paper is that of a
malicious attacker in the foundry. This attack model has
been commonly used in the hardware security literature
because of the serious threat it presents [18]. We further
strengthen the attack by assuming a malicious observer
in the design stage, working in collusion with the mali-
cious attacker in the foundry.! The malicious observer
has full knowledge of the circuit as it goes through the
design process, but can not effect any changes. The ma-
licious attacker in the foundry can, on the other hand,
effect changes in the circuit layout before the chip is fab-
ricated.

To defend against this attack, the following steps of
the design and fabrication flow are assumed to be se-
cure, i.e., executed by a trusted party: (a) the wire lift-
ing, placement and routing steps in the design, and (b)
the fabrication of the top tier (therefore also referred to
as the trusted tier).

Discussion = Three aspects of the attack and defense
models deserve further mention. First, we note that the
attack model described above subsumes a number of
other practically feasible attack models. It is stronger
than a malicious attacker in the foundry working by him-
self. It is also stronger than a malicious attacker in the
foundry with partial design knowledge — for example,
the attacker is likely to know the functionality and in-
put/output behaviour of circuit he is attacking (an ALU
or a DES encryption circuit, etc.). Providing the attacker
with the precise circuit netlist can only strengthen the at-
tack.

Second, the steps in the design and fabrication process
that are assumed to be trusted are also relatively easy to
perform in a secure manner, compared to the untrusted
steps. Wire lifting and placement/routing (in the design
stage) are performed using automated software tools, the
former based on algorithms that we propose in this pa-
per, and the latter using commercially available software
from electronic design automation (EDA) vendors. In
comparison, writing the HDL code is manually intensive,
time-consuming and costly. Furthermore, only the top
tier is fabricated in a trusted foundry. The top tier only

'Note that 3D IC based circuit obfuscation cannot, and is not in-
tended to, defend against malicious attackers in the design stage who
can alter the HDL or circuit netlist.

consists of passive metal wires that are inexpensive com-
pared to the active CMOS transistors and metal wires in
the untrusted, bottom tier [21].

Finally, we assume that that all IC instances are man-
ufactured before being sent out for stacking. If this were
not the case, an attacker could intercept a stacked IC and
reverse engineer the connections on the top tier. Armed
with this knowledge, the attacker could then insert ma-
licious hardware in future batches of the IC as they are
being fabricated in the foundry.

2.3 Related Work

In this section, we discuss related work in the literature
on hardware security and, specifically, the use of 3D ICs
in this context. We also discuss the relationship of our
work to database and graph anonymizing mechanisms.

Hardware Security Malicious circuits are expected to
consist of two components, a trigger and the attack itself.
The trigger for the attack can be based on data, for exam-
ple when a specific cheat code appears at selected wires
in the circuit [19], or on time, i.e., the trigger goes off
after a certain period of time once the IC is shipped [33].

Once triggered, the malicious attack can either trans-
mit or leak sensitive information on the chip, modify the
circuit functionality or degrade the circuit performance.
Tehranipoor and Koushanfar discuss a number of specific
backdoors that fall within one of these categories [31].

Countermeasures against malicious attacks can be cat-
egorized in various ways. Design based countermea-
sures modify or add to the design of the circuit itself
to provide greater security. These include N-variant IC
design [4], data encryption for computational units [33]
and adding run-time monitors to existing hardware [32].
Our work falls within this category. In contrast, test-
ing based counter-measures use either pre-fabrication or
post-fabrication testing and validation to detect, and in
some cases, disable malicious circuits. A survey of these
techniques can be found in [11].

Another way to categorize countermeasures is by their
impact on the attack. Countermeasures to detect mali-
cious circuits include IC fingerprinting [3] and unused
circuit identification [17]. Some countermeasures can
be used to disable malicious circuitry; for example, the
power cycling based defense against timer triggers [33].
The proposed defense mechanism aims to deter attackers
by hiding a part of the circuit and making it more difficult
for the attacker to effect a successful attack.

3D Integration for Hardware Security = Valamehr et
al. [32] also exploit 3D integration capabilities to en-
hance the security of computer hardware, although in
a manner orthogonal to ours. Their proposal involves
adding a “control tier” on top of a regular IC to moni-
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tor the activity of internal wires in the IC in a cost ef-
fective way. By monitoring internal wires on the chip,
the control tier is able to detect potentially malicious ac-
tivity and take appropriate recourse. Adding the moni-
tors vertically on top of the IC to be protected reduces
the power and performance cost of monitoring the IC. A
similar technique was proposed by Bilzor [7].

Or technique exploits 3D integration in a different
way, i.e., we use it to provide a malicious attacker in an
IC foundry with an incomplete view of the circuit netlist,
thus deterring the attack. Although the potential for this
kind of defense mechanism has been alluded to before by
Tezarron [1], ours is the first work, to our knowledge, to
address this technique in any consequential way.

Hardware Obfuscation = Hardware obfuscation tech-
niques have been proposed to make circuits more diffi-
cult to reverse engineer. In particular, Roy et al. [26]
augment a combinational circuit with key bits in such a
way that the circuit only provides correct outputs when
the key bits are set to pre-determined values. Rajendran
et al. [24] further strengthen this defense mechanism by
increasing the bar on the attacker to determine the secret
key.

A difference between key-based circuit obfuscation
mechanisms and circuit obfuscation via split manufac-
turing is that the notion of security in the former is con-
ditioned on the computational capabilities of the attacker.
In contrast, our notion of security is unconditional in
that no matter the computational capabilities of the at-
tacker, he cannot distinguish each gate from k — 1 other
gates. We note that these mechanisms are not necessar-
ily mutually exclusive — it might be possible to leverage
split manufacturing based circuit obfuscation to further
strengthen key-based circuit obfuscation, or vice-versa.

Independent of this work, Rajendran et al. [25] have
recently examined the security obtained from split manu-
facturing. However, the authors provide no well-founded
notion of security for split manufacturing, as we do in
this paper. The authors do not address the wire lifting
problem at all, and implicitly assume that the circuit is
partitioned using traditional min-cut partitioning heuris-
tics. Finally, it is assumed that the attacker reconstructs
the circuit by simply connecting the closest gates with
disconnected inputs/outputs.

Anonymizing Databases and Social Networks  Our
work bears relationship to prior work on anonymizing
databases and social network graphs, but also has signif-
icant differences. A database is k-anonymous if the in-
formation for each individual is indistinguishable from
k — 1 other individuals [30] in the database. The no-
tion of k-anonymity for a social network is similar, ex-
cept that instead of operating on relational data, it op-
erates on a graph. Two individuals in a social network

are indistinguishable if their local neighbourhoods are
the same [34].

In our setting, the similarity of the local neighborhood
of two gates is only a necessary but not sufficient condi-
tion for indistinguishability. This is because the attacker
is assumed to have access to the original circuit netlist
and an incomplete view of the same netlist, and must
thus match all gates in the incomplete netlist to gates in
the original netlist.

The circuit obfuscation problem also introduces a
number of distinct practical issues. These include the
additional information that might be conveyed by the
circuit layout (for example, the physical proximity of
gates), and the role of the number of gate types in the
technology library.

3 Problem Formulation

In this section, we formulate the circuit obfuscation prob-
lem that we address in this paper as a problem in the
context of directed graphs. We begin by discussing the
example circuit for a full adder that we show in Figure 3.

CIN 3 COUT

(a) Original circuit netlist.

Lifted Wires

Isomorphic
Sub-Circuits
(b) Unlifted netlist.

Figure 3: Original and unlifted netlists corresponding to
a full adder circuit. Grey wires in the unlifted netlist are
lifted and are not observed by the attacker.

Example As we mention in Section 1, in the most
powerful attack model we consider, an attacker is in pos-
session of two pieces of information: the originally de-
signed (complete) circuit netlist, and the layout of the
circuit that is sent to the foundry for fabrication, which
we call the unlifted netlist. The latter results from the
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defender lifting wires from the former. Assume that the
defender chooses to lift the wires A — {1,2}, B — {1,2},
C|N — {3,4}, 1— {3,4} and 3 — COUT-

Note that gates in the unlifted netlist in Figure 3(b) are
labeled differently from those in the original circuit in
Figure 3(a). This reflects the fact that the attacker ob-
tains the original circuit netlist and the unlifted netlist in
completely different formats. The original netlist is a set
of gates and wires in HDL format. On the other hand,
the unlifted netlist is reconstructed from the circuit lay-
out, which is a set of shapes and their locations on the
surface of the chip, as also discussed in Section 4.3. The
labeling and ordering of objects in the circuit layout file
is unrelated to that in the netlist of the original circuit.
Although not required, the defender can perform an ad-
ditional random re-labeling and re-ordering step before
the layout of H is sent to the foundry.

Given these two pieces of information, the attacker
now seeks a bijective mapping of gates in the unlifted
netlist to gates in the complete circuit netlist. If the at-
tacker is successful in obtaining the correct mapping, he
can carry out a targeted attack on any gate (or gates) of
his choosing. The security obtained from lifting wires in
the context of this example can be explained as follows.
From the attacker’s perspective, either Gate u or Gate w
in the unlifted netlist could correspond to Gate 1 in the
original netlist. Thus the attacker’s ability to carry out a
targeted attack on Gate 1 is hindered. The same can be
said for the attacker’s ability to carry out a targeted at-
tack on Gate 2, 3 or 4. However, note that the attacker
can determine the identity of Gate 5 with certainty — it
must correspond to Gate y since this is the only OR gate
in the netlist. Thus, in this example, the lifting does not
provide any security for Gate 5.

Informally, our notion of security is based on the ex-
istence of multiple isomorphisms (mappings) between
gates in the unlifted netlist and the original netlist. In
our example, there exist 4 distinct bijective mappings be-
tween the gates in the unlifted and original netlists. How-
ever, this notion of security may be seen as too permis-
sive. It can be argued that given the fact that across all
mappings, gate 5 is mapped uniquely, we have no secu-
rity at all (i.e., security of 1). A more restrictive notion
of security, one that we adopt in this paper, requires that
for each gate in the original netlist, there exist at least k
different gates in the unlifted netlist that map to it over
all isomorphisms. This is intended to capture the intu-
ition that the attacker is unable to uniquely identify even
a single gate. We now formalize our notion of security.

3.1 Formulation as a Graph Problem

We now formulate our problem as a graph problem. A
circuit can be perceived as a directed graph — gates are

vertices, and wires are edges. The direction of an edge
into or out of a vertex indicates whether it is an input or
output wire to the gate that corresponds to the vertex. If
G is a graph, we denote its set of vertices as V[G], and its
set of edges as E[G]. Each vertex in the graph is associ-
ated with a color that is used to distinguish types of gates
(e.g, AND and OR) from one another. Consequently, a
graph G is a 3-tuple, (V,E,c), where V is the set of ver-
tices, E the set of edges and the function ¢: V — N maps
each vertex to a natural number that denotes its color. For
example, the circuit in Figure 3 and its unlifted portion
can be represented by the graphs in Figure 4.

Figure 4: Full adder graphs: G is the full graph represen-
tation of the full adder circuit, H is the remaining graph
after wires have been lifted.

A main challenge for the defender is to lift wires in a
way that provides security. Our notion of security corre-
sponds to a certain kind of subgraph isomorphism.

Definition 1 (Graph isomorphism). Given two graphs
G| = (V1,E1,c1),Gr = (Va, Ep, ), we say that G is iso-
morphic to G, if there exists a bijective mapping ¢ : Vi —
Va such that (u,v) € E\ if and only if (¢ (u),¢(v)) € E»
and ¢ (u) = c2(@(u)),c1(v) = ca(9(v)). That is, if we
rename the vertices in Gy according to ¢, we get Gy. A
specific such mapping ¢ is called an isomorphism.

Definition 2 (Subgraph isomorphism). We say that G| =
(V1,E1,c1) is a subgraph of Gy = (Va, Ea,¢2) if Vi C Vs,
and (u,v) € Ey only if (u,v) € E;. We say that G is sub-
graph isomorphic to H if a subgraph of G is isomorphic
to H. The corresponding mapping is called a subgraph
isomorphism.

For example, in Figure 4, a subgraph isomorphism, ¢,
is9(1)=U,0(2)=V,0(3) =X,0(4) =W,0(5) =Y.
Intuition Let G be the graph that represents the orig-
inal circuit with all wires, and H the graph of the circuit
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after wires have been lifted. Then, the attacker knows
that G is subgraph isomorphic to H. What he seeks is
the correct mapping of vertices in G to H (or vice versa).
This is equivalent to him having reconstructed the circuit,
and now, he can effect his malicious modifications to the
circuit that corresponds to H.

From the defender’s standpoint, therefore, what we
seek intuitively is that there be several subgraph isomor-
phisms between G and H. As we mention in Section
1, this then gives the kind of security in a k-anonymity
sense — the attacker cannot be sure which of the map-
pings is the correct one, and therefore is able to recon-
struct the circuit with probability 1/k only. As we men-
tion there and discuss in more detail in the related work
Section, though our notion of security has similarities to
k-anonymity, there are important differences, and we call
it k-security instead.

k-security We now specify our notion of security. We
do this in three stages. (1) We first define a problem that
captures our intuition of a gate being indistinguishable
from another gate. We do this by requiring the existence
of a particular kind of subisomorphic mapping between
graphs that represent circuits. (2) We then define the
notion of a k-secure gate. Such a gate is indistinguish-
able from at least kK — 1 other gates in the circuit. (3)
Finally, we define the notion of k-security, which is secu-
rity across all gates in the circuit. This definition requires
simply that every gate in the circuit is k-secure.

In the following definition, we characterize the prob-
lem GaTE-SuUBISO, which captures (1) above — a notion
of what it means for a gate to be indistinguishable from
another.

Definition 3 (Gate-SuBiso). Given as input (G,E' u,v),
where G is a DAG, E' C E[G], and two distinct vertices
u,v € V[G), let H be the graph we get by removing the
edges that are in E' from G. Then, Gate-Susiso is the
problem of determining whether there exists a mapping
¢:V[G] — V[H] that is a subgraph isomorphism from G
to H such that ¢ (u) = v.

The above definition is a special case of the well-
known subgraph isomorphism problem [16]. In the sub-
graph isomorphism problem, we take as input two graphs
A, B, and ask whether B is subgraph isomorphic to A. In
Gate-SuBIso, both the graphs G,H are restricted to be
DAGs, and H is a specific subgraph of G — one with
some edges removed from G. Of course, we know that H
is subgraph isomorphic to G, with the identity mapping
from a vertex to itself serving as evidence (a certificate).
However, in the GATE-SuBISO problem, we require the ex-
istence of a subgraph isomorphism that is different from
the identity mapping, and furthermore, require that the
vertex u be mapped under that subgraph isomorphism to
a specific vertex v.

The intuition behind Gate-SuBiso is the following. G
is the graph that corresponds to the original circuit, and
H is the graph that corresponds to the circuit after wires
are lifted. The above definition for GATE-SuBISO asks
whether there exists a mapping under which the vertex
u in the original circuit is indistinguishable from v in the
unlifted circuit. That is, given that u # v, an attacker does
not know whether u in G corresponds to u or v in H.

Based on GATE-SUBISO above, we now define the no-
tion of a k-secure gate. It captures the intuition that the
gate is indistinguishable from at least k — 1 other gates.

Definition 4 (k-secure gate). Given a DAG, G, a vertex
u in it, and a subgraph H of G constructed from G by
removing some edges, E' C E|G] only. We say that u is
k-secure if there exist k distinct vertices vy,...,vx in G
(and therefore in H), and mappings @1, ..., ¢ from V|G|
to V[H] such that every §; is a subgraph isomorphism
from G to H, and for all i € [1,k], ¢;(u) = v;.

The above definition expresses that u is indistinguish-
able from each of the v;’s. Of course, one of the v;’s may
be u itself. Therefore, every gate is 1-secure, and if a gate
is not 2-secure, then that gate is uniquely identifiable, for
this particular choice of E’. The maximum that & can be
is |V[G]], the number of a vertices in G.

Given the above definition for a k-secure gate, it is now
straightforward to extend it to the entire graph (circuit).
We do this with the following definition.

Definition 5 (k-security). Given a DAG G, and a DAG
H that we get from G by removing the edges from a set
E' C E[G]. We say that (G,E') is k-secure if every vertex
in G is k-secure.

The above definition is a natural extension of the no-
tion of a k-secure gate, to every gate in the circuit. What
it requires for k-security is that every vertex in the corre-
sponding graph is indistinguishable from at least k ver-
tices. We point out that some gates may be more than
k-secure; k-security is a minimum across all gates. As
the maximum k for any gate is |V[G]|, a graph can be,
at best, |V[G]|-secure. Every graph is 1-secure, which is
the minimum.

We denote as 0(G, E') the maximum k-security we are
able to achieve with G,E’. In Figure 4, for example, we
know that o evaluates to 1, because the node 5 can be
mapped to itself only. The nodes 1, 2, 3 and 4, however,
are 2-secure gates. The reason is that each can be mapped
either to itself, or to another node.

Computational complexity We now consider the
computational complexity of determining the maximum
k-security, 0. We consider a corresponding decision
problem, k-SEcURITY-DEC, which is the following. We
are given as input (G, E’ k) where G is a DAG, E’' C E[G]
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is a set of edges in G, and k € [1,|V[G]|]. The problem
is to determine whether lifting the edges in E’ results in
k-security.

We point out that if we have an oracle that decides
k-SEcuriTY-DEC, then we can compute the maximum k-
security we can get by lifting E’ from G using binary
search on k. That is, the problem of computing o is easy
if deciding k-SECURITY-DEC is easy.

Theorem 1. k-Securiry-DEc € NP-complete under
polynomial-time Turing reductions.

To prove the above theorem, we need to show that
k-SEcurITY-DEC is in NP, and that it is NP-hard. For the
former, we need to present an efficiently (polynomial-
sized) certificate that can be verified efficiently. Such
a certificate is k mappings each of which is a subgraph
isomorphism, for each vertex u € V[G]. Each such map-
ping can be encoded with size O(|V[G]|), and there are
at most k|V[G]| such mappings, and therefore the certifi-
cate is efficiently-sized. The verification algorithm sim-
ply checks that each mapping is indeed a subgraph iso-
morphism, and that u is mapped to a distinct vertex in
each of the k mappings that corresponds to it. This can
be done in time O(|V[G]|?).

We show that k-Security-DEc is NP-hard un-
der polynomial-time Turing reductions in the Ap-
pendix. (Henceforth, we drop the qualification “un-
der polynomial-time Turing reductions,” and simply say
NP-complete and NP-hard.) Indeed, our proof demon-
strates that deciding even 2-security is NP-hard. The
knowledge that k-SecuriTy-DEC is NP-complete imme-
diately suggests techniques for approaches for solving
k-SEcurITY-DEC, and thereby computing k-security. We
discuss this further in the next section.

Choosing E’  Lifting edges E’ from G incurs a cost
c(G,E"). A simple cost metric, one that we adopt in
this paper is ¢(G,E’) = |E’|, i.e., the cost is proportional
to the number of lifted edges. Given the cost of lifting
edges, the defender’s goal is to determine E’, the set of
edges that should be lifted, such that o(G,E’) > k and
¢(G,E’) is minimized.

We observe that from the standpoint of computational
complexity, the problem of determining E’ given G,k,
where G is the graph and E’ is the set of edges to be lifted
so we get k-security, is no harder than k-SEcuriTy-DEC.
That is, that problem is also in NP.

To prove this, we need to show that there exists an ef-
ficiently sized certificate that can be verified efficiently.
Such a certificate is E’, and k subgraph isomorphisms
for every vertex. The latter component of the certificate
is the same as the one we used in our proof above for
k-SecUrITY-DEC’s membership in NP. The verification
algorithm, in addition to doing what the verification al-

gorithm for k-SEcurITY-DEC above does, also checks that
E' is indeed a subset of G’s edges.

We note that the k-security from lifting all the edges
in G is no worse than lifting any other set of edges, and
the k-security from lifting no edges in G is no better than
lifting any other set of edges. More generally, given any
ny,ny such that |[E[G]| > n; > ny, we know that for ev-
ery G, there exists a set of edges of size n; that if lifted,
provides at least as much security as every set of edges
of size ny. That is, there is a natural trade-off between
the number of edges we lift, i.e., cost, and the security
we achieve. In Section 4, we outline an approach to de-
termine the cost-security trade-off using a greedy wire
lifting procedure.

3.2 Discussion

Given our notion of k-security, a natural question to ask is
whether there are stronger or different attack models for
which k-security would be inadequate. We discuss this
in the context of two attack models that differ from the
one assumed. Finally, we also discuss a related question
— that of the computational capabilities of the attacker.

General targeted attack models  The notion of k-
security is premised on an attack model in which the at-
tacker needs to precisely identify one or more gates in
the unlifted netlist, for example, the privilege escalation
bit in a microprocessor [19] or the LSB of the 14" round
in a DES implementation [9]. However, one can imagine
a scenario in which the attack would be successful if the
attacker correctly identifies any one of n gates. For ex-
ample, there could be multiple privilege escalation bits
in the microprocessor implementation.

More concretely, in the example in Figure 3, assume
that the attacker wants to change the circuit functionality
by inverting the output of Gate 2. The same objective
can be accomplished by inverting the output of Gate 4.
However, as we observe before, Gate v in the unlifted
netlist must correspond to either Gate 2 or Gate 4. Thus,
although this gate is 2-secure, the attack would be suc-
cessful with probability 1.

Although our notion of security does not directly ad-
dress the alternate attack model described above, it can
be easily modified to do so. Say that the defender is
aware that Gate v and Gate x are each equally vulnera-
ble to the same kind of attack. Then, the defender can
insist that Gate v is k-secure if and only if it is indistin-
guishable from k — 1 other gates excluding Gate x. Such
information that the defender may have about the rela-
tive vulnerability of gates can be built into the notion of
k-security.

Access to lifting procedure Our attack model
strengthens the attacker with access to the original cir-
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cuit netlist, G, along with the unlifted netlist H. Since
the attacker has access to G, it is reasonable to ask if an
even stronger attacker with access to G and the procedure
used to lift wires would compromise security. It would
not.

Graph G Graph Hi

e 06 6 0 0 06 0 0

I 1
| -
| .
| - !
| . !
| . !
| - !
| . !
| - !
| .

| [ |
| . I
| . !
| - !
| . !
| .

L i |

Figure 5: Example illustrating that the unlifted netlist H
is 2-secure even if the attacker knows that edge 2 — 3
was lifted from original netlist G.

In fact, even if there is a deterministic choice of edges
that must be lifted to provide a certain security level,
knowledge of which edges are lifted does not compro-
mise security, as long as G and H are differently la-
beled. We illustrate this with an example in Figure 5,
where wire 2 — 3 must be lifted to provide 2-security.
This knowledge does not compromise the security ob-
tained from lifting. When there is choice, i.e., lifting two
or more edges provides the same security, the choice is
made uniformly at random. This is discussed in Sec-
tion 4.

Computational capabilities of the attacker  Our no-
tion of k-security is not predicated on the computational
capabilities of the attacker. In fact, we assume that the
attacker is able to identify (all) subgraph isomorphisms
from H to G. Nonetheless, given that the attacker’s goal
might be to identify a single gate in the netlist, it is natu-
ral to ask why (and whether) the attacker needs determine
a mapping for each gate in H.

In particular, the attacker can identify all gates in H
with the same type and connectivity, i.e., number and
type of gates it connects to, as the one he is interested in
attacking. Prior work on k-anonymity for social network
graphs assumes this kind of attack strategy. From the
perspective of the attacker, this strategy is sub-optimal.
This is because, for any gate in G that the attacker wants
to target, this strategy will provide at least as many candi-
date mappings in H as the strategy in which the attacker
enumerates all subgraph isomorphisms.

4 Approach

Having considered the computational complexity of the
problem that underlies our work in the previous section,
in this section, we propose a concrete approach for it.
As our discussions in the prior section reveal, there are
two parts to the solution: (a) computing the maximum

k-security for (G,E'), given the graph G that represents
the complete circuit, and, (b) choosing the set E’.

We propose an approach for each in this section.
For the problem of computing security, we employ
constraint-solving. We discuss this in Section 4.1. For
the problem of choosing E’, we propose a greedy heuris-
tic. We discuss that in Section 4.2. We conclude this
section with Section 4.3 with some practical considera-
tions, specifically, scalability and layout-anonymization.

4.1 Computing Security

As shown in Section 3, the problem of determining the
security level of circuit G, given the unlifted netlist H
is NP-complete. Given the relationship of the problem
to subgraph isomorphism, a natural approach to solving
this problem would be to use graph (sub)isomorphism
algorithms proposed in literature — of these, the VF2
algorithm [12] has been empirically shown to be the most
promising [15]. However, in our experience, VF2 does
not scale for circuits with > 50 gates (more on scalability
in Section 4.3).

Instead, motivated by the recent advances in the
speed and efficiency of SAT solvers, we reduce the sub-
isomorphism problem to a SAT instance and use an off-
the-shelf SAT solver to decide the instance.

Reduction to SAT  Given graphs G and H, we de-
fine a bijective mapping ¢ from the vertex set of H to
the vertex set of G as follows: Boolean variable ¢;;
is true if and only if vertex ¢; € H maps to a vertex
rj € G. Here V[G] = {rl,rg,...7r‘V[G”} and V[H] =
{at,q2, - qvim)}

We now construct a Boolean formula that is true if and
only if graphs G and H are sub-isomorphic for the map-
ping ¢. We will construct the formula in parts.

First, we ensure that each vertex in G maps to only one
vertex in H:

[VIH][|[V]G]| [VIG]|
P = H ) <¢i.j H _‘(Pi,k>

i Jj ki

and vice-versa:

[VIG]|[V[H]| [V[H]|
F = H Z <¢i,j H ﬂ‘l’k,j)

i ki
Finally we need to ensure that each edge in H
maps to an edge in G. Let E[H] = {e1,e2,..., e}
and E[G] = {f1,f2,.-.,fig|g)}- Furthermore, let ¢, =

<qsrc(ek)anest(ek)> € E[H] and fi = <rsrc(fk)7rdest(fk)> €
E[G]. This condition can be expressed as follows:

|EH]| |E[G]|
F = I;[ Z[’ ¢src(ek),src(f/) A ¢dest(ek),dest(f[)
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The formula F that is input to the SAT solver is then
expressed as a conjunction of the three formulae above:
F = FL ANF, ANF3. The formula F has O(|V[H]||V[G]|)
variables and O(|E[H]||E[G]|) clauses.

4.2 Wire Lifting Procedure

To determine a candidate set of edges, E’, to lift, we em-
ploy a greedy heuristic. Our heuristic is shown as Algo-
rithm 1.

1 E' + E|G]

2 while [E'| > 0do

3 s+ 0

4 foreach e € E' do

5 E' < E —{e}

6 if 6(G,E’) > s then
7 s+ o(G,E)

8 ep < e

9 E' + E'U{e}

10 if s < k then return E’

n  E+—E—{e}
12 return E’

Algorithm 1: lift_wires(G, k)

In our heuristic, we begin with the best security we can
achieve. This occurs when we lift every edge in E[G];
that is, we set E' to E[G] at the start in Line 1. We then
progressively try to remove edges from E’, in random
order. We do this if not lifting a particular edge e still
gives us sufficient security.

That is, we iterate while we still have candidate edges
to add back (Line 2). If we do, we identify the “best”
edge that we can add back, i.e., the one that gives us the
greatest security level if removed from E’. If even the
best edge cannot be removed from E’, then we are done
(Line 10).

The heuristic does not necessarily yield an optimal set
of edges. The reason is that we may greedily remove
an edge e; from E’ in an iteration of the above algo-
rithm. And in later iterations, we may be unable to re-
move edges e and e3. Whereas if we had left e; in E’,
we may have been able to remove both e; and e3. Note
that removing as many edges from E’ is good, because
our cost is monotonic in the size of E’ (set of edges be-
ing lifted).

4.3 Practical Considerations

From a graph-theoretic perspective, the wire lifting pro-
cedure outlined provides a set of wires to lift that guaran-
tees a certain security level. However, two practical con-
siderations merit further mention — the scalability of the

proposed techniques to “large” circuits, and the security
implication of the attacker having access to the layout of
H, as opposed to just the netlist.

Scalability Although the SAT based technique for
computing security scales better than the VF2 algorithm,
we empirically observe that it times out for circuits with
> 1000 gates. To address this issue, we propose a circuit
partitioning approach that scales our technique to larger
circuits of practical interest. We note that circuit parti-
tioning is, in fact, a commonly used technique to address
the scalability issue for a large number of automated cir-
cuit design problems.

Algorithm 2 is a simplified description of the par-
titioning based wire lifting procedure. The function
partition(G) recursively partitions the vertex set of the
graph into P mutually exclusive subsets and returns sub-
graphs {G1,Gy,...,Gp} of size such that they can be
tractably solved by the SAT based greedy wire lifting
procedure. The final set of lifted wires includes the union
of all wires that cross partitions, and those returned by
P calls to Algorithm 1. We have used this technique to
lift wires from circuits with as many as 35000 gates (see
Section 5).

1 {G1,Ga,...,Gp} < partition(G)
2 ErR+— E— Uie[l,P] E;

3 forie[1,P]do

4 Eg < ErUlift wires(Gi, Syeq)
5 return Ep

Algorithm 2: lift_wires_big(G, $y¢)

Layout anonymization We have, so far, assumed that
the unlifted circuit H is a netlist corresponding to the un-
lifted gates and wires. However, in practice, the attacker
observes a layout corresponding to H, from which he re-
constructs the netlist of H. We therefore need to ensure
that the layout does not reveal any other information to
the attacker besides the reconstructed netlist.

Existing commercial layout tools place gates on the
chip surface so as to minimize the average distance, typ-
ically measured as the Manhattan distance, between all
connected gates in the circuit netlist. Thus, if the com-
plete circuit G is used to place gates, the physical prox-
imity of gates will reveal some information about lifted
wires — gates that are closer in the bottom tier are more
likely to be connected in the top tier. The attacker can
use this information to his advantage.

Instead of using the netlist G to place gates, we instead
use the netlist H. Since this netlist does not contain any
lifted wires, these wires do not have any impact on the
resulting placement. Conversely, we expect the physical
proximity of gates to reveal no information about hidden
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wires in the top tier. In Section 5, we empirically validate
this fact. However, anonymizing the layout with respect
to the hidden wires does result in increased wire-length
between gates, which has an impact on circuit perfor-
mance. This impact is also quantified in Section 5.

5 Results

We conduct our experimental study using two exemplar
benchmarks, the c432 circuit from the ISCAS-85 bench-
mark suite [10] (a 27-channel bus interrupt controller)
with ~ 200 gates, and a larger DES encryption circuit
with /= 35000 gates. We use the c432 circuit to investi-
gate security-cost trade-offs obtained from the proposed
techniques and use the larger DES circuit for a case
study.

All experimental results are obtained using an IBM
0.13u technology. For 3D integration, bond points are
assumed to be spaced at a pitch of 4um, allowing for one
bond-point per 16um?. This is consistent with the design
rules specified in the Tezzaron 0.13m technology kit.

Circuit synthesis was performed using the Berkeley
SIS tool [27]. Placement and routing is performed us-
ing Cadence Encounter. Finally, we used miniSAT as
our SAT solver [29].

5.1 Security-Cost Trade-offs

Figure 6 graphs the security level for the c432 circuit as a
function of E[H]|, the number of unlifted wires in the un-
trusted tier. E[H] = 0 corresponds to a scenario in which
all wires are lifted, while E[H] = E[G] corresponds to a
case in which all wires are in the untrusted tier.

s1-greedy — |

min-max -
si1-rand ---- ]

min-max -

Security

0 20 40 60 80 100 120 140 160

Figure 6: Maximum, average and minimum security lev-
els for the c432 circuit using the proposed greedy wire
lifting procedure and random wire lifting.

Proposed Vs. Random Wire Lifting Figure 6 com-
pares the proposed greedy wire lifting technique with a

baseline technique in which wires are lifted at random.
In both cases, we show the maximum, average and mini-
mum security achieved by these techniques over all runs.
Observe that greedy wire lifting provides significantly
greater security compared to random wire lifting. With
80 unlifted wires, the greedy solution results in a 23-
secure circuit, while all random trials resulted in 1-secure
(equivalently, completely insecure) circuits.

Number of Lifted Edges vs. Security Figure 6 re-
veals that, for c432, at least 145 of the 303 (=~ 47%)
wires must be lifted to get any meaningful degree of se-
curity. If any fewer wires are lifted, circuit obfuscation
provides no security at all. However, once more than this
minimum number of wires is lifted, the security offered
increases quite rapidly.

Another observation that merits mention are the
plateaus in security level, for example between E[H| =
30 and E[H] = 55. In other words, in some cases, wires
can be retained in the untrusted tier without any degrada-
tion in security.

Impact of Layout Anonymization Figure 7 shows
three layouts for the c432 circuit. The far left corre-
sponds to the original 1-secure c432 circuit without any
wire lifting. The other two layouts correspond to the
top and bottom tiers of an 8-secure version of c432 with
~ 66% lifted wires. Of particular interest is the wire rout-
ing in the trusted top tier — because the placement of
the corresponding gates in the untrusted bottom tier have
been anonymized, the lifted wires are routed seemingly
randomly. This is in stark contrast to the wire routing in
the original circuit that is far more structured.

Figure 8 shows the histogram of wire lengths for the
three layouts shown in Figure 7. Note that, in the origi-
nal 1-secure circuit, a large majority of wires are short; in
other words, connected gates are placed closer together.
Wire lengths on the bottom untrusted tier of the 8-secure
circuit also skew towards shorter values — however,
these wires are already observable to the attacker and he
gains no additional information from their lengths. On
the other hand, the wire length distribution of the top tier
is more evenly spread out. This reflects that fact that
the physical proximity of gates in the bottom tier reveals
very little information about the lifted wires.

A Chi Square test was performed to determine if the
distribution of wirelengths in the top tier is different from
one that would be obtained from a random placement of
gates. The test does not provide any evidence to reject
the null hypothesis (N = 11, x> = 0.204 and p = 0.999),
i.e., it does not reveal any significant difference between
the two distributions.

Area, Delay and Power Cost  Area, delay (inversely
proportional to clock frequency) and power consumption
are important metrics of circuit performance. 3D integra-
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(a) Original Circuit

(b) Bottom Tier of 8-Secure Circuit

(c) Top Tier of 8-Secure Circuit

Figure 7: Layout of c432 without any lifting (left), and the bottom (middle) and top (right) tiers of an 8-secure version

of c432. Green and red lines correspond to metal wires.
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Figure 8: Comparison of the c432 circuit wire lengths
the original 1-secure circuit and the bottom and top tiers
of the 8-secure circuit.

tion based circuit obfuscation introduces overheads on all
three metrics.

The area of a 3D circuit is determined by the larger of
two areas: the area consumed by the standard cells in the
bottom tier, and the area consumed by the bond-points
required to lift wires to the top tier. The bond-point den-
sity is limited by technology (1 bond-point per 16um? in
our case) and therefore more lifted wires correspond to
increased area.

Delay and power are strong functions of wire length,
as increased wire length results in increased wire capac-
itance and resistance. Layout anonymization results in
increased wire length as we have observed before.

Table 1 shows the area, power and delay for the c432
circuit for different security levels. Compared to the orig-
inal circuit, the 8-secure circuit has 1.6 x the power con-
sumption, 1.8 delay, and about 3 x the area.

Choice of Technology Library  The technology li-
brary determines the type of gates that are allowed in the

circuit netlist. Diverse technology libraries with many
different gate types allow for more optimization, but also
hurt security. Figure 9 shows the security levels achiev-
able for c432 for five different technology libraries with
between three and seven gates.

5.2 Case Study: DES Circuit

We use the DES encryption benchmark circuit to demon-
strate that applicability of our techniques, including cir-
cuit partitioning based wire lifting, to larger circuits. The
DES circuit takes as input a fixed-length string of plain-
text and transforms the string into cipher text using 16
rounds of obfuscation, as shown in the block-level cir-
cuit diagram in Figure 10.

The original, 1-secure implementation of DES that we
synthesized has ~ 35000 logic gates, which results in an
intractable SAT instance. However, using recursive cir-
cuit partitioning, we are able to lift wires to obtain a 64-
secure implementation. We note that a security level of
16 is obtained in the first few rounds of partitioning by

Table 1: Power, delay, wire length and area analysis for
different levels of security on the c432 circuit. 1* is the
base circuit with no wires lifted and 48" has all of the
wires lifted.

Power Delay  Total Wire Total
Security Ratio  Ratio Length (um) Area (um?)

1 1.00 1.00 2739 1621

2 1.54 1.73 6574 4336

4 1.55 1.76 7050 4416

8 1.61 1.82 8084 4976

16 1.62 1.86 8161 5248
24 1.71 1.98 9476 6048
32 1.73 1.99 9836 6368
48" 1.92 2.14 13058 8144
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Table 2: Technology libraries used for the experiment in
Figure 9. lib-x corresponds to a library with x different

gate types.
Library max(S;) |V(G)| |E(G)| Gates
lib-3 48 209 303 inv, nor, nand
lib-4 24 181 271 +nand_3
lib-5 13 169 259  +nor.3
lib-6 7 165 252 +nand_4
lib-7 4 159 246 +nor 4
50 T
ol lib-3 — |
||b_4 ........
40 ||b_5 ........ q

||b_6 ........ |

35

Security

L L L L L L
0 20 40 60 80 100 140 160

[E(H)I

Figure 9: Obtainable security levels for the c432 circuit
with different technology libraries.

removing only 13% of the wires, i.e., all wires that lie
between successive DES rounds. This is because the cir-
cuit description of each DES round is identical — thus,
once the wires between the rounds have been removed,
each round can be confused for any other round. The fi-
nal 64-secure implementation has only 30% of the wires
unlifted, and consumes 2.38 x the area of the original 1-
secure circuit.

Attack Scenario Boneh et al. [9] have shown that spe-
cific bits in a DES implementation are particularly sus-
ceptible to fault attacks. For example, if the attacker is
able to insert an attack such that the LSB output of the
14" round is stuck at logic zero, the secret key can be
recovered using as few as two messages.

Figure 11 shows how such an attack might be effected
using a trigger (we do not address here how this trigger
may be activated) and three additional gates in an inse-
cure (or 1-secure) circuit. When the trigger is set, the out-
put is set to zero, but is equal to the correct value when
the trigger is at logic zero.

Now, assume that wire lifting is performed to make the
circuit 64-secure. Given the set of lifted wires, we note
that the LSB of the 14" round is, in fact, 256-secure, i.e.,
there are 255 other gates in the circuit that are indistin-
guishable from the LSB of the 14" round.

Plaintext

Round 01

Round 14

Round 15

) 4 Round 16

FB |

Ciphertext

Figure 10: Block diagram of the DES encryption circuit.

The attacker now has two choices. he can either attack
one of the 256 options, and only succeed with probabil-
ity ﬁ, or he can choose to carry out a multiplexed attack
on all 256 gates. This is shown in Figure 11. In this at-
tack, the trigger transmits a sequence of 8-bits that iden-
tify which of the 256 signals the attacker wants to attack.
These 8-bits feed an 8:256 demultiplexer that generates
individual triggers for each of the 256 signals that are
indistinguishable.

The attacker can now iteratively insert attacks in each
gate one at a time and conceivably determine which iter-
ation actually corresponds to the LSB of the 14" round.
However, in doing so, the attacker incurs two costs: (i)
the modified attack circuit now requires 1280 gates in-
stead of just 3, a 420x overhead; (ii) the attacker would
require, in the worst case 255X more messages to re-
cover the key.

5.3 Discussion

We have so far illustrated the quantitative trade-off be-
tween cost and security using benchmark circuits. We
now discuss this trade-off qualitatively. In particular, we
address aspects relating to both the security that 3D IC
based split manufacturing can provide and the cost that it
incurs in doing so.

From a security standpoint, we note that our notion of
k-security is conservative. This is for two reasons. First,
we have assumed a strong attack model in which the at-
tacker has access to the original circuit netlist. In prac-
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Attacking a non-secure circuit

Trigger Modified
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Target

Attacking a k-secure circuit
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Figure 11: Attack scenarios of 1- and k-secure circuits.

tice, the attacker might only have access to the Boolean
functionality of the circuit under attack, but not its gate
level implementation. Second, in realistic attack scenar-
ios, the attacker might need to identify more than one
gate in the netlist. In both settings k-security serves as a
lower bound on the security obtained from 3D IC based
split manufacturing.

Furthermore, hardware attacks that are inserted in the
foundry are different from other attack scenarios in that
they are single shot, and require more effort, risk and ex-
pense to carry out. Thus, even relatively low values of k
are likely to act as a significant deterrent for the attacker.
If the attacker picks one gate to attack at random from
the candidate set, he is only successful with probability

% and receives a payoff which is greater than his cost.

However, with probability k;kl, the attacker incurs a (sig-
nificant) cost and receives no payoff. With k£ = 100 for
example, the attacker’s payoff must be > 99x his cost
for him to break even (on average). Alternatively, the at-
tacker could try attacking all 100 gates that are candidate
mappings for his desired target (as shown in Figure 11),
but this would incur a significantly increased risk of de-
tection during post-fabrication testing.

From a cost standpoint, our empirical evaluations sug-
gesta 1.5 x —2x overhead in area, performance (perfor-
mance is proportional to circuit delay) and power con-
sumption, which is the price we pay for security. Al-
though there is relatively little work in this area, these
overheads compare well to those of competing solutions
such as field programmable gate arrays (FPGAs). In
an FPGA, the desired circuit netlist is programmed on
the FPGA after fabrication, so an attacker in a foundry
receives no information about the circuit the designer
wants to implement. However, benchmark studies have

shown that FPGAs are 20x, 12x and 4 x worse than cus-
tom digital ICs in terms of area, power and performance,
respectively [20]. In addition, the FPGA itself could be
attacked during fabrication in a way that allows an at-
tacker in the field (after fabrication) to recover the circuit
that has been programmed on it.

Finally, we note that the proposed technique can be se-
lectively applied to only small, security critical parts of
the design. Thus the area, performance and power over-
heads of split manufacturing would be amortized over the
parts of the design that are conventionally implemented.
It might also be possible to use split manufacturing in
conjunction with other security techniques proposed in
the literature such as key-based obfuscation [26, 24].
Key-based obfuscation is only conditionally secure, con-
ditioned on the attacker’s computational capabilities. We
believe that split manufacturing can be used to further
strengthen key-based obfuscation and make it uncondi-
tionally secure, although we leave this investigation as
future work.

6 Conclusion

In this paper, we have proposed the use of 3D integration
circuit technology to enhance the security of digital ICs
via circuit obfuscation. The specific 3D technology we
exploit allows gates and wires on the bottom tier, and
only metal wires on the top. By implementing a subset of
wires on the top tier, which is manufactured in a trusted
fabrication facility, we obfuscate the identity of gates in
the bottom tier, thus deterring malicious attackers.

We introduce a formal notion of security for 3D in-
tegration based circuit obfuscation and characterize the
complexity of computing security under this notion. We
propose practical approaches to determining the security
level given a subset of lifted wires, and of identifying a
subset of wires to lift to achieve a desired security level.
Our experimental results on the c432 and DES bench-
mark circuits allow us to quantify the power, area and
delay costs to achieve different security levels. In addi-
tion, we show, using a DES circuit case study, that 3D
IC based circuit obfuscation can significantly reduce the
ability of an attacker to carry out an effective attack.
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A k-Securiry-DEec is NP-hard

In this section, we provide outlines of the proofs that un-
derlie our assertion in Section 3 that k-SEcURITY-DEC is
NP-hard under polynomial-time Turing, or Cook, reduc-
tions [5]. Such reductions work the following way. Sup-
pose we want to reduce problem A to B. We show that if
we have an oracle for B, then A € P.

Such reductions are unlikely to be as strong as Karp-
reductions [5], that are customarily used to show NP-
hardness. Indeed, the Karp-reduction is a special case
of the Cook-reduction, and some of our reductions be-
low are Karp-reductions. Nevertheless, the existence of
a Cook-reduction from a problem that is NP-hard is ev-
idence of intractability [22]. In particular, in the above
example, if A reduces to B, then if B € P, then A € P.

Recall from Section 3 that k-SEcurITY-DEC is the fol-
lowing decision problem. Given as input (G,E’ k)
where E’ C E[G], does lifting the edges in E’ give us
k-security? We show that k-SecuriTy-DEC is NP-hard
in three steps. First, we show that Sus-Iso-SELF (de-
fined below) is NP-hard. We then reduce SuB-Iso-SELF
to GaTe-SUBISO (see Section 3), thereby showing that
Gate-SuBiso is NP-hard. Finally, we reduce GATE-SUBISO
to k-SECURITY-DEC.

All graphs we consider are directed, acyclic (DAGs).
Thus, all subisomorphisms we consider are for the spe-
cial case that the graphs are DAGs. It turns out that the
subgraph isomorphism problem is NP-hard for even the
restricted case, SuB-Iso-9, below.

Definition 6 (Sus-Is0-9). Sus-Iso-9 is the following spe-
cial case of the subgraph isomorphism problem. Given
as input (G,H) where G is a DAG and H is a directed
tree, SuB-1s0-9 is the problem of determining whether
there exists a subgraph of G that is isomorphic to H.

SuB-Is0-9 is known to be NP-hard [16].

Definition 7 (Sus-Iso-SELF). Given as input (G,H) such
that G is a DAG and H is obtained from G by removing
the edges in a set E' C E[G], Sus-Iso-SELF is the problem
of determining whether there exists a subgraph isomor-
phism ¢ from G to H that is not the identity mapping.

Theorem 2. Sus-Iso-SELF € NP-hard.

Note that the above theorem is not qualified that it is
under Cook-reductions. This is because we have a Karp-
reduction from Sus-Iso-9 ro Sus-Iso-SELF. The reduction
proceeds in several steps. First, we show that Sus-Iso-9
restricted to the case that |V [G]| = |V[H]| leaves the prob-
lem NP-hard. We do this by first observing that for any
prospective instance (G,H) of Sus-Iso-9, we can assume
that |V[H]| < |V[G]|. We simply add |V [G]| — |V [H]| ver-
tices to H.

Then, we show that if we add the further restriction
that G and H are strongly connected (i.e., every vertex
reachable from every other vertex), the problem is still
NP-hard. For this reduction, we first check whether the
two graphs are strong connected. If not, we introduce a
new vertex of a colour distinct from every vertex in the
graphs which has an edge to and from every other vertex.

We then show that Sus-Iso-SELF is NP-hard as follows.
We introduce into G an exact copy of H that is disjoint
from G. We call this new graph G/, and the subgraph
of G’ that is the copy of H, H'. We further restrict H
and H’ to not have any automorphisms. To achieve this,
we introduce |V[H]| vertices each of a distinct colour,
associated with each u € V[H]. Call this vertex v,. We
connect u and v, with an edge. We do the same in H'. We
also add a subgraph G” to H which has |V[G]| vertices
and no edges. (This guarantees that the new subgraph is
subgraph isomorphic to G.) We call this new graph H" .

We use the same technique as above of adding
coloured vertices to ensure that G (within G') and G” in
H" are not automorphic. Finally, we connect every new
vertex added above to the vertices of G, to every original
vertex of H', and every new vertex added to H' to every
original vertex of G. We do the same in H”. We now are
able to show that (G, H) is a true instance of Sus-Iso-9 if
and only if (G, H") is an instance of Sus-Iso-SELF.

Theorem 3. Gare-Susiso € NP-hard under Cook-
reductions.

Recall that Gate-SuBiso comprises those instances
(G,E',u,v), where, if H is produced from G by remov-
ing the edges in E’, and u, v are distinct vertices in G (and
therefore H), there is a subgraph isomorphism from G to
H that maps u to v. In our reduction, we assume that we
have an oracle for Gare-SuBiso. We simply invoke it for
every pair of vertices u,v € G. If any of them is true, then
we know that (G,H) is a true instance of SuB-Iso-SELF.
Otherwise, it is not.

Theorem 4. k-Security-Dec € NP-hard under Cook-
reductions.

We Karp-reduce GATE-SUBISO to k-SECURITY-DEC. Let
(G,E' k) be a prospective instance of k-SECURITY-DEC,
and H is produced from G by removing the edges in E’.
We first ensure that every vertex other than u is 2-secure.
We do this by introduce a new vertex for every vertex
other than u that has exactly the same connectivity. Then,
in G, we introduce a new vertex of a completely new
colour and attach it to # and v. We include the edge be-
tween v and this new vertex in E’. Call the G so modified
G", and the new set of edges E”. We can now show that
(G",E",2) is a true instance of k-SecuriTy-DEC if and
only if (G, E’,u,v) is a true instance of GATE-SUBISO.
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