
74    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , M A R K L A M O U R I N E , A N D M E L I S S A G R A Y

Peopleware
Tom DeMarco and Timothy Lister
Addison Wesley, 2013. 238 pp.
ISBN 978-0-321-93411-6
Reviewed by Elizabeth Zwicky

Peopleware is an old favorite of mine, and I approached this
edition with some trepidation, the way you approach anything
you loved when younger that has now been updated; will it turn
out to have lost its luster, either through age or through savage
updating? On the whole, I was very happy. The original copyright
shown is 1987, and in the intervening roughly quarter-century, a
lot has changed, but the fundamentals of programming and man-
aging people have not. The update manages to remove most of the
dated references and adds a good bit of purely new material.

Peopleware is an introduction to the human side of managing
technology teams. It is eminently readable—it comes in short,
vivid chunks that say things programmers want to hear in terms
that management can understand. If you are feeling that there is
something fundamentally missing from the practice of technol-
ogy management, this will fill that gap and fire you up.

I’m somewhat sad that after this long, the humanistic approach
found here still feels fresh, startling, and avant-garde. Paying
more attention to human issues than new technologies, like
personal jet packs and hover cars, seems destined to remain
the wave of the future. And yet there are signs of hope—when
a phone rings audibly in my office, people are startled and
displeased. It’s a rare event, rare enough that the last time a
repetitive noise went on for a while, one of my colleagues leapt
up angrily to search out and silence the phone, only to realize
that the rest of the office was laughing at him. The annoying
noise was in fact a crow on the windowsill. The good news here
is that our office environment is both quiet and near a window;
the bad news is that the entire team was within sight and ear
shot of the crow and the ensuing search. So there’s still work
for Peopleware to do.

Adaptive Software Development
James A. Highsmith
Addison Wesley, 2000. 348 pp.
ISBN-0-932633-40-4
Reviewed by Elizabeth Zwicky

Somehow this crept onto a list of new releases, so I was puz-
zled to read through an entire book on software development
practices for rapidly changing environments that never used
the terms “Agile” or “Extreme” as we now know them. It’s still
a worthwhile book, with a detailed explanation of a practical
and human-centered approach to development in high-change
environments. It is quite kind to the waterfall model, suggest-
ing places it is appropriate and ways to gently move people away
from it. And it is heavily influenced by Peopleware while being
much more traditional in tone and format.

This would be a great bridge book for somebody who wants or
needs to move to a more flexible style of managing projects, but
would like to do so without overt, radical breaks with tradition.

The Practice of Network Security Monitoring
Richard Bejtlich
No Starch Press, 2013. 334 pp.
ISBN 978-1-59327-509-9
Reviewed by Elizabeth Zwicky

This book will tell you how to install Security Onion and its
add-ons, how to work with those tools (including tricks, traps,
and subtleties involved), and it provides significant discussion
of how to place monitoring taps. Bejtlich provides some advice
on how you keep track of what’s going on when you don’t know
what you’re dealing with. These are all significant challenges
for new network security administrators.

I feel convinced that this book would help me set up a network
security monitoring system based on open source systems and
use it to improve the security of pretty much any network. On the
other hand, this is a task where I don’t really need all that much
help—I know a lot about how networks work and about the prac-
ticalities of securing them. I’m less convinced that somebody
without all that background would find it sufficient.

What it doesn’t talk about, except in vague and abstract terms, is
the actual practice of network security monitoring—what alerts
are important? which ones are not? There’s a lot of good informa-
tion here, but it doesn’t quite jell into a clear problem statement
and answer, and it isn’t quite enough for a security novice.

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  75

BOOKS

Graph Databases
Ian Robinson, Jim Webber, and Emil Eifrem
O’Reilly Media, 2013. 200 pp.
ISBN 978-1-449-35626-2
Reviewed by Elizabeth Zwicky

In a world where we all used graph databases, you could just
write a book about how to use them. But most of us don’t, so this
is a relatively broad introduction, covering what graph databases
are, why you might want one, and how you would design, query,
and optimize one.

Simplifying somewhat further than is advisable, a graph data

base allows you to query data by talking about objects and
relationships instead of by talking about rows and fields. Graph
databases are considerably more efficient at certain kinds of
queries than traditional databases. If you want to ask “What
did Customer 43 order recently?” any old database will do. If
you want to ask “What might Customer 43 order next?” you will
rapidly find yourself asking, “What other customers ordered
the same items as Customer 43?” and a suitably designed graph
database will vastly improve your experience. (Or so the authors
claim, very believably.)

If you’re in a position to implement a system using new database
technology, graph databases are an interesting tool to have avail-
able to you, and this introduction, while it clearly doesn’t cover
all the corners of the space, should get you started.

Advanced Programming in the UNIX Environment,
3rd Edition
W. Richard Stevens and Stephen A. Rago
Addison Wesley, 2013. 994 pp.
ISBN 978-0-321-63773-4
Reviewed by Mark Lamourine

A lot has changed since I first read the late Richard Stevens’
Advanced Programming in the Unix Environment. Stephen Rago
has just released his second update. There are very few books
I enjoy rereading and fewer still tech books, but I enjoyed this
refresher course.

Advanced Programming describes the interface between pro-
grams and the kernel in a *NIX system. Even when a program
uses higher level libraries, in the end this is what they come
down to.

There are numerous tutorials on programming languages and
programming in general. There are textbooks describing the
*NIX kernel internals. Stevens and Rago don’t just list the kernel
system calls and their arguments. They illustrate their use and
the behavior of the kernel in response. This gives the reader a
sense not just of how to use each call, but when and why. It also

gives them the ability to work backward from the behaviors of a
system to the calls that would be the cause.

In 1993 the systems described were AT&T System V R4 and
4.3BSD. In 2013 Rago has added FreeBSD, Linux, MacOS, and
Solaris 10 (arguing that while Solaris is derived from SYSVR4,
it has 15 years of enhancements). While this might seem to add
quite a bit, it seems that standardization has largely served its
purpose. Variations still exist but they’re not nearly as large as
might be expected. The 3rd edition is almost 1,000 pages com-
pared to 740 for the first edition, but Rago has added two sec-
tions on threading and one on network sockets to address topics
that didn’t exist in the early 1990s.

There are remarkably few actual system calls (functions that
cause a process to switch from user to kernel mode). The
remainder of the interfaces are known as system libraries and
are generally built on top of the system calls. These are used to
manage the core system resources (files, processes, threads,
and memory) to communicate between processes (signals,
semaphores, shared memory) and between systems and devices
(serial I/O and networking). Stevens and Rago explore each of
these in some depth, highlighting differences between operating
system flavors.

The authors begin most chapters by explaining some aspect of a
running *NIX system: files and I/O, processes and interprocess
communication, errors and the process environment variables.
They show what each feature is for, how it affects the operation
of the system, and how programs interact with it. Only then do
they introduce the system calls with realistic example code.
Each chapter closes with a traditional summary and a set of
exercise questions.

Stevens and Rago close the book with a couple of chapters that
present complete uncontrived examples of real-world systems
programming.

Advanced Programming is known as a classic for good reasons.
The writing is clear and precise. The examples are detailed but
to the point. The chapters follow a progression from topics that
will likely be familiar and commonly used to those that may be
more specialized or esoteric. The rationale for or history behind
a design choice or variation is provided when it offers some
insight into how a feature is to be used. This is one of the rare
books that works both as an introduction and as a reference.

I’ve done a fair amount of systems level programming and I
recommend Advanced Programming to pretty much anyone who
programs *NIX systems seriously; however, I’m a system admin-
istrator by trade and avocation. There are two divided and vocal
camps on the question of whether programming is required
for system administration. I won’t weigh in on the question of
requirement, but I don’t think it can hurt to at least learn how to

76    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

BOOKS

read C code. I think it can be a tremendous benefit to understand
the kernel system calls, especially when tracing and debugging
processes. I recommend Advanced Programming to anyone who’s
interested in understanding the interfaces between *NIX pro-
grams and the system that runs them.

The Go Programming Language Phrasebook
David Chisnall
Addison Wesley, 2012. 264 pp.
ISBN 978-0-321-81714-3
Reviewed by Mark Lamourine

In The Go Programming Language Phrasebook David Chisnall
provides all of the information an experienced coder needs to
begin experimenting with Go. He doesn’t spend a lot of time on
the minutiae of the language and libraries, deferring instead
to other books and resources when a reader might want more
detail. He concentrates on the features that make Go significant
and on the idioms and coding patterns that make the best use of
those features.

It turns out that Go is designed not to illustrate some new pro
gramming paradigm, but in response to the known shortcomings
of the aging C programming language in the context of system
software development where it still dominates. Much of the Go
syntax looks like C, but where it differs there is a reason. Usu-
ally the changes are meant to eliminate common coding errors
or to decrease the complexity of implementing modern coding
patterns. The most significant new features, “goroutines” and
“channels,” provide a cleaner means of implementing concur-
rency both on individual multicore computers and in networked
distributed systems. It is also notable that, although Go is a
compiled language, the development environment offers a way to
run many programs from source code on the command line as if
they were scripted.

The author avoids the worst impulses of writers of this kind of
book. The phrasebook format can lead an author to provide a
code snippet for every variation of every feature of every library.
Chisnall focuses on writing about Go and uses the code snip-
pets only to illustrate a point. He details not just how Go differs
from other common languages but why. Because Go is meant to
replace C, a low-level language, the machine details, such as the
placement of structures in memory, will peek up through to the
coder. Chisnall doesn’t shy away from discussing how coding
style and idiom will affect the behavior of the machine and how
Go features contrast with other languages. Go is still a young
language, and Chisnall informs the reader where there are cave-
ats, gaps, or areas of continuing development that might make
his examples obsolete.

In addition to the standard language primer and features (vari-
ables and types, scoping, objects, arrays, and collections) and
the new features (goroutines and channels), Chisnall includes
sections on working with the Go runtime environment, packag-
ing and distributing code, and debugging. The one thing notably
missing is any mention of a unit testing framework.

The Go Programming Language Phrasebook is an excellent intro-
duction both to a new alternative for systems programming and
a survey of the challenges faced by coders implementing modern
concurrent and distributed applications. Because Go produces
executable binaries for any modern OS and architecture, I will
certainly consider trying it the next time I need to code a binary
from scratch, and this book will be the first source I pick up.

Realm of Racket: Learn to Program
One Game at a Time!
Matthias Felleison, David Van Horn, Conrad Barski,
Forrest Bice, Rose DeMaio, Spencer Florence, Feng-Yun Mimi
Lin, Scott Lindeman, Nicole Nussbaum, Eric Paterson,
Ryan Plessner
No Starch Press, 2013. 294 pp.
ISBN 978-1-59327-491-7
Review by Mark Lamourine and Melissa Gray

I’ve read a number of books aimed at introducing software
development to new readers, but I wouldn’t have picked Lisp as
a first language. Realm of Racket is an introductory text aimed
at college freshman and written at least in part by students at
Northeastern University. The students get top billing on the
cover. The language is Racket, a derivative of Scheme, which is
in turn a Lisp variant. The authors try to set an informal tone
with comic strip artwork and a game and quest narrative which
seemed to me to be a bit childish for the audience. It’s been a long
time since I was a college freshman.

Luckily I had a handy intern in the cube across from me, and she
agreed to read it and give me her impressions. On reading them I
had to reconsider my first take on the book. This is what she had
to say:

The information is laid out in an accessible and engaging way. I
think it would be effective and understandable for college freshmen
regardless of previous programming experience. The story and
cartoons are engaging. High-level material is clearly explained
and given to the reader gradually in a way that builds on the
previous chapters. As someone who has taken both high school
and college intro programming courses, game-based examples
and exercises are a good way to teach logic and decision-based
programming. So I think this is a strong feature of this book.

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  77

BOOKS

The “read front to back” method this book employs might be bother
some for impatient students who would rather skip through a
textbook by topic. However, if a student’s goal is really to learn the
material, this ends up being a great method because you can learn
things in a logical order.

So, Melissa didn’t seem to be as put off as I thought she’d be.
When I asked her about it she shrugged and directed me back to
the text and the teaching arch and I had to take a new look.

The chapter topics and sequence presented are not what I’ve
come to expect for procedural languages, but are natural for
Lisp. Variables, conditionals, and functions come first, but then
the authors present recursion and lambdas before coming back
to looping constructs and trees. They don’t stop there, though,
and this is where the youthful comic strip cover seems mislead-
ing. The authors continue, introducing more advanced topics,
memoization, and lazy evaluation. The book closes with several
chapters developing a simple distributed game using client-
server constructs and messaging.

There’s a lot packed into this book and it’s not really aimed at
the tweens that some other No Starch programming books have
been, though I wouldn’t hesitate to offer it to a motivated high
school student. The DrRacket IDE runs on Windows, MacOS,
and Linux so that students can begin work in whatever environ-
ment they are comfortable. The IDE is also fairly comprehensive,
containing tools for interaction, development, and debugging.
The Racket language includes module constructs that I don’t
remember seeing when I learned Scheme. DrRacket also pro-
vides a GUI library that I know wouldn’t work on my VT100.

In the end I’m impressed. Realm of Racket and DrRacket both are
well thought out and well suited to their tasks.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by sending email to
board@usenix.org.

P R E S I D E N T
Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T
John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y
Carolyn Rowland
carolyn@usenix.org

T R E A S U R E R
Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S
David Blank-Edelman, Northeastern University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S
Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

Nominating Committee for USENIX
Board of Directors
The biennial election of the USENIX Board of Directors
will be held in early 2014. The USENIX Board has
appointed Margo Seltzer to serve as chair of the Nominat-
ing Committee. The composition of this committee and
instructions on how to nominate individuals will be sent
to USENIX members electronically and will be published
on the USENIX Web site this fall.

