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Abstract

Backing up important data is an essential task for sys-
tem administrators to protect against all kinds of failures.
However, traditional tools like rsync exhibit poor per-
formance in the face of today’s typical data sizes of hun-
dreds of gigabytes. We address the problem of efficient,
periodic, multi-gigabyte state synchronization. In con-
trast to approaches like rsync which determine changes
after the fact, our approach tracks modifications online.
Tracking obviates the need for expensive checksum com-
putations to determine changes. We track modification
at the block-level which allows us to implement a very
efficient delta-synchronization scheme. The block-level
modification tracking is implemented as an extension to
a recent (3.2.35) Linux kernel.

With our approach, named dsync, we can improve
upon existing systems in several key aspects: disk I/O,
cache pollution, and CPU utilization. Compared to tradi-
tional checksum-based synchronization methods dsync
decreases synchronization time by up to two orders of
magnitude. Benchmarks with synthetic and real-world
workloads demonstrate the effectiveness of dsync.

1 Introduction

“Everything fails all the time.” is the modus operandi
when it comes to provisioning critical IT infrastructure.
Although the definition of critical is up for debate, redun-
dancy is key to achieving high availability. Redundancy
can be added at many levels. For example, at the hard-
ware level, deploying two network cards per server can
allow one network card to fail, yet the server will still
be reachable. Performance may be degraded due to the
failure but the server is still available.

Adding hardware redundancy is just one piece of the
availability puzzle. To ensure data availability in the
presence of failures, the data must be replicated. How-
ever, synchronizing tens, hundreds, or even thousands of

gigabyte of data across the network is expensive. It is ex-
pensive in terms of network bandwidth, if a naı̈ve copy-
everything approach is used. It is also expensive in terms
of CPU cycles, if a checksum-based delta-copy approach
is used. Although a delta-copy minimizes network traf-
fic, it relies on a mechanism to identify differences be-
tween two versions of the data in question. Determining
the differences after the fact is less efficient than record-
ing modifications while they are happening.

One problem with synchronizing large amounts of
data, e.g., for backups, is that the backup operation takes
on the order of minutes to hours. As data sets continue
to grow, consumer drives now hold up to 4 TB, so does
the time required to synchronize them. For example, just
reading 4 TB stored on a single spinning disk takes more
than 6 hours [14]. Copying hundreds of gigabytes over a
typical wide area network for remote backups will pro-
ceed at a fraction of the previously assumed 170 MB/s.
Ideally, the time to synchronize should be independent of
the data size; with the size of updated/added data being
the main factor influencing synchronization speed.

The key insight is, that between two synchronizations
of a data set, most of the data is unmodified. Hence, it
is wasteful to copy the entire data set. Even if the data
sets are almost identical, the differences have to be deter-
mined. This is done, for example, by computing block-
wise checksums. Only blocks with mismatching check-
sums are transferred. Instead of detecting changes after
the fact, we propose to track and record them at run time.
Online tracking obviates checksum computations, while
still only transferring the changed parts of the data. The
benefits of online modification recording are plentiful:
(1) minimizes network traffic, (2) no CPU cycles spent
on checksum computation, (3) minimizes the data read
from and written to disk, and (4) minimizes page cache
pollution.

We implemented a prototype of our synchronization
solution, named dsync, on Linux. It consists of a
kernel modification and two complimentary userspace
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tools. The kernel extension tracks modifications at the
block device level. The userspace tools, dmextract and
dmmerge, allow for easy extraction and merging of the
modified block level state.

To summarize, in this paper, we make the following
contributions:

• Identify the need for better mechanisms to synchro-
nize large, binary data blobs across the network.

• Propose an extension to the Linux kernel to enable
efficient synchronization of large, binary data blobs.

• Extend the Linux kernel with block-level tracking
code.

• Provide empirical evidence to show the effective-
ness of our improved synchronization method.

• We share with the scientific community all code,
measurements, and related artifacts. We encour-
age other researchers to replicate and improve our
findings. The results are available at https://

bitbucket.org/tknauth/devicemapper/.

2 Problem

The task at hand is to periodically synchronize two phys-
ically distant data sets and to do so efficiently. The qual-
ifier “periodically” is important because there is little to
optimize for a one-off synchronization. With periodic
synchronizations, on the other hand, we can potentially
exploit the typical case where the majority of the data is
unmodified between successive synchronizations.

There exists no domain-specific knowledge about the
data being synchronized, i.e., we have to treat it as a bi-
nary blob. Using domain-specific knowledge, such as file
system meta-data, alternative optimizations are possible.
Synchronization tools routinely use a file’s last modified
time to check whether to consider it for a possible trans-
fer.

We are primarily interested in large data sizes of multi-
ple giga- to terabytes. The techniques we present are also
applicable to smaller sizes, but the problems we solve
with our system are more pressing when data sets are
large. One example in the cloud computing environment
are virtual machine disks. Virtual machine disks change
as a result of the customer starting a virtual machine, per-
forming computation, storing the result, and shutting the
virtual machine down again. As a result of the users’
actions, the disk’s contents change over time. However,
only a fraction of the entire disk is actually modified. It
is the cloud provider’s responsibility to store the virtual
machine disk in multiple locations, e.g., for fault toler-
ance. If one data center becomes unavailable, the cus-
tomer can restart their virtual machine in a backup data

center. For example, a cloud provider may synchronize
virtual machine disks once per day between two data cen-
ters A and B. If data center A becomes unavailable, data
center B has a copy which is at most 24 hours out of
date. If customers need more stringent freshness guaran-
tees, the provider may offer alternative backup solutions
to the ones considered in this paper.

Copying the entire data is a simple and effective way
to achieve synchronization. Yet, it generates a lot of gra-
tuitous network traffic, which is unacceptable. Assuming
an unshared 10 Gigabit Ethernet connection, transferring
100 GB takes about 83 seconds (in theory anyway and
assuming an ideal throughput of 1.2 GB/s). However,
10 Gigabit Ethernet equipment is still much more expen-
sive than commodity Gigabit Ethernet. While 10 Gigabit
may be deployed inside the data center, wide-area net-
works with 10 Gigabit are even rarer. Also, network links
will be shared among multiple participants – be they data
streams of the same applications, different users, or even
institutions.

The problem of transmitting large volumes of data
over constrained long distance links, is exacerbated by
continuously growing data sets and disk sizes. Offsite
backups are important to provide disaster recovery and
business continuity in case of site failures.

Instead of indiscriminatly copying everything, we
need to identify the changed parts. Only the changed
parts must actually be transmitted over the network.
Tools, such as rsync, follow this approach. The idea
is to compute one checksum for each block of data at the
source and destination. Only if there is a checksum mis-
match for a block, is the block transferred. While this
works well for small data sizes, the checksum compu-
tation is expensive if data sizes reach into the gigabyte
range.

As pointed out earlier, reading multiple gigabytes
from disks takes on the order of minutes. Disk I/O opera-
tions and bandwidth are occupied by the synchronization
process and unavailable to production workloads. Sec-
ond, checksum computation is CPU-intensive. For the
duration of the synchronization, one entire CPU is ded-
icated to computing checksums, and unavailable to the
production workload. Third, reading all that data from
disk interferes with the system’s page cache. The work-
ing set of running processes is evicted from memory,
only to make place for data which is used exactly once.
Applications can give hints to the operating system to
optimize the caching behavior [3]. However, this is not a
perfect solution either, as the OS is free to ignore the ad-
vice if it cannot adhere to it. In addition, the application
developer must be aware of the problem to incorporate
hints into the program.

All this is necessary because there currently is no way
of identifying changed blocks without comparing their
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checksums. Our proposed solution, which tracks block
modifications as they happen, extends the Linux kernel
to do just that. The implementation details and design
considerations form the next section.

3 Implementation

A block device is a well known abstraction in the Linux
kernel. It provides random-access semantics to a linear
array of blocks. A block typically has the same size as
a page, e.g., 4 KiB (212 bytes). The actual media un-
derlying the block device may consist of even smaller
units called sectors. However, sectors are not addressable
by themselves. Sectors are typically 512 byte in size.
Hence, 8 sectors make up a block. Block devices are
generally partitioned and formatted with a file system.
For more elaborate use cases, the Linux device mapper
offers more flexibility to set up block devices.

3.1 Device mapper

The Linux device mapper is a powerful tool. The device
mapper, for example, allows multiple individual block
devices to be aggregated into a single logical device. In
device mapper terminology, this is called a linear map-
ping. In fact, logical devices can be constructed from
arbitrary contiguous regions of existing block devices.
Besides simple aggregation, the device mapper also sup-
ports RAID configurations 0 (striping, no parity), 1 (mir-
roring), 5 (striping with distributed parity), and 10 (mir-
roring and striping). Another feature, which superficially
looks like it solves our problem at hand, is snapshots.
Block devices can be frozen in time. All modifications to
the original device are re-directed to a special copy-on-
write (COW) device. Snapshots leave the original data
untouched. This allows, for example, to create consistent
backups of a block device while still being able to service
write requests for the same device. If desired, the exter-
nal modifications can later be merged into the original
block device. By applying the external modifications to
a second (potentially remote) copy of the original device,
this would solve our problem with zero implementation
effort.

However, the solution lacks in two aspects. First, ad-
ditional storage is required to temporarily buffer all mod-
ifications. The additional storage grows linearly with the
number of modified blocks. If, because of bad planning,
the copy-on-write device is too small to hold all modi-
fications, the writes will be lost. This is unnecessary to
achieve what we are aiming for. Second, because modifi-
cations are stored out-of-place, they must also be merged
into the original data at the source of the actual copy; in
addition to the destination. Due to these limitations we

consider device mapper snapshots as an inappropriate so-
lution to our problem.

Because of the way the device mapper handles and in-
terfaces with block devices, our block-level tracking so-
lution is built as an extension to it. The next section de-
scribes how we integrated the tracking functionality into
the device mapper,

3.2 A Device Mapper Target
The device mapper’s functionality is split into sepa-
rate targets. Various targets implementing, for example,
RAID level 0, 1, and 5, already exist in the Linux ker-
nel. Each target implements a predefined interface laid
out in the target_type 1 structure. The target_type

structure is simply a collection of function pointers. The
target-independent part of the device mapper calls the
target-dependant code through one of the pointers. The
most important functions are the constructor (ctr), de-
structor (dtr), and mapping (map) functions. The con-
structor is called whenever a device of a particular tar-
get type is created. Conversely, the destructor cleans up
when a device is dismantled. The userspace program
to perform device mapper actions is called dmsetup.
Through a series of ioctl() calls, information rele-
vant to setup, tear down, and device management is ex-
changed between user and kernel space. For example,

# echo 0 1048576 linear /dev/original 0 | \

dmsetup create mydev

creates a new device called mydev. Access to the
sectors 0 through 1048576 of the mydev device are
mapped to the same sectors of the underlying device
/dev/original. The previously mentioned function,
map, is invoked for every access to the linearly mapped
device. It applies the offset specified in the mapping.
The offset in our example is 0, effectively turning the
mapping into an identity function.

The device mapper has convenient access to all the in-
formation we need to track block modifications. Every
access to a mapped device passes through the map func-
tion. We adapt the map function of the linear mapping
mode for our purposes.

3.3 Architecture
Figure 1 shows a conceptual view of the layered archi-
tecture. In this example we assume that the tracked
block device forms the backing store of a virtual machine
(VM). The lowest layer is the physical block device, for
example, a hard disk. The device mapper can be used

1http://lxr.linux.no/linux+v3.6.2/include/linux/

device-mapper.h#L130
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Figure 1: Two configurations where the tracked block
device is used by a virtual machine (VM). If the VM used
a file of the host system as its backing store, the loopback
device turns this file into a block device (right).

to create a tracked device directly on top of the physical
block device (Figure 1, left). The tracked block device
replaces the physical device as the VM’s backing store.

Often, the backing store of a virtual machine is a file in
the host’s filesystem. In these cases, a loopback device
is used to convert the file into a block device. Instead
of tracking modifications to a physical device, we track
modifications to the loopback device (Figure 1, right).
The tracked device again functions as the VM’s backing
store. The tracking functionality is entirely implemented
in the host system kernel, i.e., the guests are unaware of
the tracking functionality. The guest OS does not need to
be modified, and the tracking works with all guest oper-
ating systems.

3.4 Data structure
Storing the modification status for a block requires ex-
actly one bit: a set bit denotes modified blocks, unmod-
ified blocks are represented by an unset bit. The status
bits of all blocks form a straightforward bit vector. The
bit vector is indexed by the block number. Given the
size of today’s hard disks and the option to attach multi-
ple disks to a single machine, the bit vector may occupy
multiple megabytes of memory. With 4 KiB blocks, for
example, a bit vector of 128 MiB is required to track the
per-block modifications of a 4 TiB disk. An overview of
the relationship between disk and bit vector size is pro-
vided in Table 1.

The total size of the data structure is not the only
concern when allocating memory inside the kernel; the
size of a single allocation is also constrained. The ker-
nel offers three different mechanisms to allocate mem-
ory: (1) kmalloc(), (2) __get_free_pages(), and
(3) vmalloc(). However, only vmalloc() allows us
to reliably allocate multiple megabytes of memory with
a single invocation. The various ways of allocating
Linux kernel memory are detailed in “Linux Device
Drivers” [7].

Total memory consumption of the tracking data struc-
tures may still be a concern: even commodity (consumer)
machines commonly provide up to 5 SATA ports for at-
taching disks. Hard disk sizes of 4 TB are standard these
days too. To put this in context, the block-wise dirty sta-
tus for a 10 TiB setup requires 320 MiB of memory. We
see two immediate ways to reduce the memory overhead:

1. Increase the minimum unit size from a single block
to 2, 4, or even more blocks.

2. Replace the bit vector by a different data structure,
e.g., a bloom filter.

A bloom filter could be configured to work with a frac-
tion of the bit vector’s size. The trade-off is potential
false positives and a higher (though constant) computa-
tional overhead when querying/changing the dirty status.
We leave the evaluation of tradeoffs introduced by bloom
filters for future work.

Our prototype currently does not persist the modifica-
tion status across reboots. Also, the in-memory state is
lost, if the server suddenly loses power. One possible so-
lution is to persist the state as part of the server’s regular
shutdown routine. During startup, the system initializes
the tracking bit vector with the state written at shutdown.
If the initialization state is corrupt or not existing, each
block is marked “dirty” to force a full synchronization.

3.5 User-space interface
The kernel extensions export the relevant information to
user space. For each device registered with our cus-
tomized device mapper, there is a corresponding file in
/proc, e.g., /proc/mydev. Reading the file gives a
human-readable list of block numbers which have been
written. Writing to the file resets the information, i.e., it
clears the underlying bit vector. The /proc file system
integration uses the seq_file interface [15].

Extracting the modified blocks from a block device
is aided by a command line tool called dmextract.
The dmextract tool takes as its only parame-
ter the name of the device on which to oper-
ate, e.g., # dmextract mydevice. By conven-
tion, the block numbers for mydevice are read from
/proc/mydevice and the block device is found at
/dev/mapper/mydevice. The tool outputs, via stan-
dard out, a sequence of (blocknumber,data) pairs. Out-
put can be redirected to a file, for later access, or di-
rectly streamed over the network to the backup location.
The complementing tool for block integration, dmmerge,
reads a stream of information as produced by dmextract
from standard input, A single parameter points to the
block device into which the changed blocks shall be in-
tegrated.
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Disk size Disk size Bit vector size Bit vector size Bit vector size Bit vector size
(bytes) (bits) (bytes) (pages)

4 KiB 212 20 20 20 1 bit
128 MiB 227 215 212 20 4 KiB

1 GiB 230 218 215 23 64 KiB
512 GiB 239 227 224 212 16 MiB

1 TiB 240 228 225 213 32 MiB
4 TiB 242 230 227 215 128 MiB

Table 1: Relationship between data size and bit vector size. The accounting granularity is 4 KiB, i.e., a single block
or page.

Following the Unix philosophy of chaining together
multiple programs which each serve a single purpose
well, a command line to perform a remote backup may
look like the following:

# dmextract mydev | \

ssh remotehost dmmerge /dev/mapper/mydev

This extracts the modifications from mydev on the lo-
cal host, copies the information over a secure channel to
a remote host, and merges the information on the remote
host into an identically named device.

4 Evaluation

The evaluation concentrates on the question of how much
the synchronization time decreases by knowing the mod-
ified blocks in advance. We compare dsync with four
other synchronization methods: (a) copy, (b) rsync,
(c) blockmd5sync, (d) ZFS send/receive. Blockmd5sync
is our custom implementation of a lightweight rsync.
The following sections cover each tool/method in more
detail.

4.1 Synchronization tools
4.1.1 scp/nc

scp, short for secure copy, copies entire files or direc-
tories over the network. The byte stream is encrypted,
hence secure copy, putting additional load on the end-
point CPUs of the transfer. Compression is optional
and disabled for our evaluation. The maximum through-
put over a single encrypted stream we achieved with
our benchmark systems was 55 MB/s using the (default)
aes128-ctr cipher. This is half of the maximum through-
put of a 1 gigabit Ethernet adapter. The achievable net-
work throughput for our evaluation is CPU-bound by the
single threaded SSH implementation. With a patched
version of ssh 2 encryption can be parallelized for some

2http://www.psc.edu/index.php/hpn-ssh

ciphers, e.g., aes128-ctr. The application level through-
put of this parallelized version varies between 70 to
90 MB/s. Switching to a different cipher, for example,
aes128-cbc, gives an average throughput of 100 MB/s.

To transfer data unencrypted, nc, short for netcat, can
be used as an alternative to ssh. Instead of netcat, the
patched version of ssh also supports unencrypted data
transfers. Encryption is dropped after the initial secure
handshake, giving us a clearer picture of the CPU re-
quirements for each workload. The throughput for an un-
encrypted ssh transfer was 100 MB/s on our benchmark
systems. We note, however, that whilst useful for evalua-
tion purposes, disabling encryption in a production envi-
ronment is unlikely to be acceptable and has other practi-
cal disadvantages, for example, encryption also helps to
detect (non-malicious) in-flight data corruption.

4.1.2 rsync

rsync is used to synchronize two directory trees. The
source and destination can be remote in which case
data is transferred over the network. Network trans-
fers are encrypted by default because rsync utilizes se-
cure shell (ssh) access to establish a connection between
the source and destination. If encryption is undesirable,
the secure shell can be replaced by its unencrypted sib-
ling, rsh, although we again note that this is unlikely
to be acceptable for production usage. Instead of rsh,
we configured rsync to use the drop-in ssh replacement
which supports unencrypted transfers. rsync is smarter
than scp because it employs several heuristics to min-
imize the transferred data. For example, two files are
assumed unchanged if their modification time stamp and
size match. For potentially updated files, rsync com-
putes block-wise checksums at the source and destina-
tion. In addition to block-wise checksums, the sender
computes rolling checksums. This allows rsync to effi-
ciently handle shifted content, e.g., a line deleted from a
configuration file. However, for binary files this creates
a huge computational overhead. Only if the checksums
for a block are different is that block transferred to the
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destination. For an in-depth description of the algorithm
please refer to the work of Tridgell and Mackerras [16].
While rsync minimizes the amount of data sent over
the network, computing checksums for large files poses a
high CPU overhead. Also note, that the checksum com-
putation takes place at both the source and destination,
although only the source computes rolling checksums.

4.1.3 Blockwise checksums (blockmd5sync)

rsync’s performance is limited by its use of rolling
checksums at the sender. If we discard the requirement
to detect shifted content, a much simpler and faster ap-
proach to checksum-based synchronization becomes fea-
sible. We compute checksums only for non-overlapping
4KiB blocks at the sender and receiver. If the checksums
for block Bi do not match, this block is transferred. For
an input size of N bytes, �N/B� checksums are computed
at the source and target, where B is the block size, e.g.,
4 kilobytes. The functionality is implemented as a mix of
Python and bash scripts, interleaving the checksum com-
putation with the transmission of updated blocks. We do
not claim our implementation is the most efficient, but
the performance advantages over rsync will become ap-
parent in the evaluation section.

4.1.4 ZFS

The file system ZFS was originally developed by Sun
for their Solaris operating system. It combines many
advanced features, such as logical volume management,
which are commonly handled by different tools in a tra-
ditional Linux environment. Among these advanced fea-
tures is snapshot support; along with extracting the dif-
ference between two snapshots. We include ZFS in our
comparison because it offers the same functionality as
dsync albeit implemented at a different abstraction level.
Working at the file system layer allows access to infor-
mation unavailable at the block level. For example, up-
dates to paths for temporary data, such as /tmp, may be
ignored during synchronization. On the other hand, ad-
vanced file systems, e.g., like ZFS, may not be available
on the target platform and dsync may be a viable alter-
native. As ZFS relies on a copy-on-write mechanism
to track changes between snapshots, the resulting disk
space overhead must also be considered.

Because of its appealing features, ZFS has been ported
to systems other than Solaris ([1], [9]. We use ver-
sion 0.6.1 of the ZFS port available from http://

zfsonlinux.org packaged for Ubuntu. It supports the
necessary send and receive operations to extract and
merge snapshot deltas, respectively. While ZFS is avail-
able on platforms other than Solaris, the port’s matu-
rity and reliability may discourage administrators from

adopting it. We can only add anecdotal evidence to
this, by reporting one failed benchmark run due to issues
within the zfs kernel module.

4.1.5 dsync

Our synchronization tool, dsync, differs from rsync in
two main aspects:

(a) dsync is file-system agnostic because it operates on
the block-level. While being file-system agnostic
makes dsync more versatile, exactly because it re-
quires no file-system specific knowledge, it also con-
strains the operation of dsync at the same time. All
the file-system level meta-data, e.g., modification
time stamps, which are available to tools like, e.g.,
rsync, are unavailable to dsync. dsync implicitly
assumes that the synchronization target is older than
the source.

(b) Instead of computing block-level checksums at the
time of synchronization, dsync tracks the per-block
modification status at runtime. This obviates the
need for checksum calculation between two subse-
quent synchronizations.

In addition to the kernel extensions, we implemented
two userspace programs: One to extract modified blocks
based on the tracked information, called dmextract.
Extracting modified blocks is done at the synchroniza-
tion source. The equivalent tool, which is run at the syn-
chronization target, is called dmmerge. dmmerge reads
a stream consisting of block numbers interleaved with
block data. The stream is merged with the target block
device. The actual network transfer is handled either by
ssh, if encryption is required, or nc, if encryption is un-
necessary.

4.2 Setup
Our benchmark setup consisted of two machines: one
sender and one receiver. Each machine was equipped
with a 6-core AMD Phenom II processor, a 2 TB spin-
ning disk (Samsung HD204UI) as well as a 128 GB SSD
(Intel SSDSC2CT12). The spinning disk had a 300 GB
“benchmark” partition at an outer zone for maximum se-
quential performance. Except for the ZFS experiments,
we formatted the benchmark partition with an ext3 file
system. All benchmarks started and ended with a cold
buffer cache. We flushed the buffer cache before each
run and ensured that all cached writes are flushed to disk
before declaring the run finished. The machines had a
Gigabit Ethernet card which was connected to a switch.
We ran a recent version of Ubuntu (12.04) with a 3.2 ker-
nel. Unless otherwise noted, each data point is the mean
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of three runs. The synchronized data set consisted of a
single file of the appropriate size, e.g., 16 GiB, filled with
random data. If a tool interfaced with a block device, we
created a loopback device on top of the single file.

4.3 Benchmarks
We used two types of benchmarks, synthetic and realis-
tic, to evaluate dsync’s performance and compare it with
its competitors. While the synthetic benchmarks allow
us to investigate worst case behavior, the realistic bench-
marks show expected performance for more typical sce-
narios.

4.3.1 Random modifications

In our synthetic benchmark, we randomly modified vary-
ing percentages of data blocks. Each block had the same
probability to be modified. Random modification is a
worst case scenario because there is little spatial local-
ity. Real world applications, on the other hand, usu-
ally exhibit spatial locality with respect to the data they
read and write. Random read/write accesses decrease
the effectiveness of data prefetching and write coalesc-
ing. Because conventional spinning hard disks have a
tight limit on the number of input/output operations per
second (IOPS), random update patterns are ill suited for
them.

4.3.2 RUBiS

A second benchmark measures the time to synchronize
virtual machine images. The tracked VM ran the RU-
BiS [5] server components, while another machine ran
the client emulator. RUBiS is a web application modeled
after eBay.com. The web application, written in PHP,
consists of a web server, and a data base backend. Users
put items up for sale, bid for existing items or just browse
the catalog. Modifications to the virtual machine image
resulted, for example, from updates to the RUBiS data
base.

A single run consisted of booting the instance, sub-
jecting it to 15 minutes of simulated client traffic, and
shutting the instance down. During the entire run, we
recorded all block level updates to the virtual machine
image. The modified block numbers were the input to
the second stage of the experiment. The second stage
used the recorded block modification pattern while mea-
suring the synchronization time. Splitting the experiment
into two phases allows us to perform and repeat them in-
dependently.

4.3.3 Microsoft Research Traces

Narayanan et al. [11] collected and published block level

traces for a variety of servers and services at Microsoft
Research 3. The traces capture the block level operations
of, among others, print, login, and file servers. Out of
the available traces we randomly picked the print server
trace. Because the print server’s non-system volume was
several hundred gigabytes in size, we split the volume
into non-overlapping, 32 GiB-sized ranges. Each oper-
ation in the original trace was assigned to exactly one
range, depending on the operation’s offset. Further anal-
ysis showed that the first range, i.e., the first 32 GiB of
the original volume, had the highest number of write op-
erations, close to 1.1 million; more than double of the
second “busiest” range.

In addition to splitting the original trace along the
space axis, we also split it along the time axis. The trace
covers over a period of seven days, which we split into
24 hour periods.

To summarize: for our analysis we use the block mod-
ification pattern for the first 32 GiB of the print server’s
data volume. The seven day trace is further divided into
seven 24 hour periods. The relative number of modified
blocks is between 1% and 2% percent for each period.

4.4 Results

4.4.1 Random modifications

We start the evaluation by looking at how the data set
size affects the synchronization time. The size varies be-
tween 1 and 32 GiB for which we randomly modified
10% of the blocks. The first set of results is shown in
Figure 2. First of all, we observe that the synchronization
time increases linearly with the data set size; irrespec-
tive of the synchronization method. Second, rsync takes
longest to synchronize, followed by blockmd5sync on
HDD and copy on SSD. Copy, ZFS, and dsync are fastest
on HDD and show similar performance. On SSD, dsync
and blockmd5sync are fastest, with ZFS being faster than
copy, but not as fast as dsync and blockmd5sync. With
larger data sizes, the performance difference is more
markedly: for example, at 32 GiB dsync, copy, and ZFS
perform almost identically (on HDD), while rsync takes
almost five times as long (420 vs. 2000 seconds). To our
surprise, copying the entire state is sometimes as fast as
or even slightly faster than extracting and merging the
differences. Again at 32 GiB, for example, copy takes
about 400 seconds, compared with 400 seconds for dsync
and 420 seconds for ZFS.

We concluded that the random I/O operations were in-
hibiting dsync to really shine. Hence, we performed a
second set of benchmarks where we used SSDs instead
of HDDs. The results are shown in Figure 3. While

3available at ftp://ftp.research.microsoft.com/pub/

austind/MSRC-io-traces/
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Figure 2: Synchronization time for five different syn-
chronization techniques. Lower is better. Data on the
source and target was stored on HDD.
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Figure 3: Synchronization time for five different syn-
chronization techniques. Lower is better. Data on the
source and target was stored on SSD.
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Figure 4: CPU utilization for a sample run of three syn-
chronization tools. 100% means all cores are busy.
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Figure 5: Network transmit traffic on the sender side
measured for the entire system. rsync and dsync trans-
mit about the same amount of data in total, although the
effective throughput of rsync is much lower.

the increased random I/O performance of SSDs does not
matter for rsync, its synchronization time is identical to
the HDD benchmark, SSDs enable all other methods to
finish faster. dsync’s time to synchronize 32 GiB drops
from 400 s on HDD to only 220 s on SSD.

Intrigued by the trade-off between hard disk and solid
state drives, we measured the read and write rate of our
drives outside the context of dsync. When extracting or
merging modified blocks they are processed in increas-
ing order by their block number. We noticed that the
read/write rate increased by up to 10x when processing
a sorted randomly generated sequence of block numbers
compared to the same unsorted sequence. For a random
but sorted sequence of blocks our HDD achieves a read
rate of 12 MB/s and a write rate of 7 MB/s. The SSD
reads data twice as fast at 25 MB/s and writes data more
than 15x as fast at 118 MB/s. This explains why, if HDDs
are involved, copy finishes faster than dsync although
copy’s transfer volume is 9x that of dsync: sequentially
going through the data on HDD is much faster than se-
lectively reading and writing only changed blocks.

To better highlight the differences between the meth-
ods, we also present CPU and network traffic traces for
three of the five methods. Figure 4 shows the CPU
utilization while Figure 5 shows the outgoing network
traffic at the sender. The trace was collected at the
sender while synchronizing 32 GiB from/to SSD. The
CPU utilization includes the time spent in kernel and user
space, as well as waiting for I/O. We observe that rsync
is CPU-bound by its single-threaded rolling checksum
computation. Up to t = 500 the rsync sender process is
idle, while one core on the receiver-side computes check-

sums (not visible in the graph). During rsync’s second
phase, one core, on our 6-core benchmark machine, is
busy computing and comparing checksums for the re-
maining 1400 s (23 min). The network traffic during
that time is minimal at less than 5 MB/s. Copy’s exe-
cution profile taxes the CPU much less: utilization oscil-
lates between 0% and 15%. On the other hand, it can be
visually determined that copy generates much more traf-
fic volume than either rsync or dsync. Copy generates
about 90 MB/s of network traffic on average. dsync’s ex-
ecution profile uses double the CPU power of copy, but
only incurs a fraction of the network traffic. dsync’s net-
work throughput is limited by the random read-rate at the
sender side.

Even though the SSD’s specification promises 22.5 k
random 4 KiB reads [2], we are only able to read at a sus-
tained rate of 20 MB/s at the application layer. Adding
a loopback device to the configuration, reduces the ap-
plication layer read throughput by about another 5 MB/s.
This explains why dsync’s sender transmits at 17 MB/s.
In this particular scenario dsync’s performance is read-
limited. Anything that would help with reading the modi-
fied blocks from disk faster, would decrease the synchro-
nization time even further.

Until now we kept the modification ratio fixed at 10%,
which seemed like a reasonable change rate. Next we
explore the effect of varying the percentage of modi-
fied blocks. We fix the data size at 8 GiB and randomly
modify 10%, 50%, and 90% percent of the blocks. Fig-
ure 6 and 7 show the timings for spinning and solid-
state disks. On HDD, interestingly, even though the
amount of data sent across the network increases, the net
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Figure 6: For comparison, rsync synchronizes the same
data set 6, 21, and 41 minutes, respectively. Copy took
between 1.5 and 2 minutes.

synchronization time stays almost constant for ZFS and
blockmd5sync; it even decreases for dsync. Conversely,
on SSD, synchronization takes longer with a larger num-
ber of modified blocks across all shown methods; al-
though only minimally so for ZFS. We believe the in-
crease for dsync and blockmd5sync is due to a higher
number of block-level re-writes. Updating a block of
flash memory is expensive and often done in units larger
than 4 KiB [8]. ZFS is not affected by this phenomenon,
as ZFS employs a copy-on-write strategy which turns
random into sequential writes.

4.4.2 RUBiS results

We argued earlier, that a purely synthetic workload of
random block modifications artificially constraints the
performance of dsync. Although we already observed
a 5x improvement in total synchronization time over
rsync, the gain over copy was less impressive. To high-
light the difference in spatial locality between the syn-
thetic and RUBiS benchmark, we plotted the number of
consecutive modified blocks for each; prominently illus-
trated in Figure 8.

We observe that 80% of the modification involve only
a single block (36k blocks at x = 1 in Figure 8). In com-
parison, there are no single blocks for the RUBiS bench-
mark. Every modification involves at least two consec-
utive blocks (1k blocks at x = 2). At the other end of
the spectrum, the longest run of consecutively modified
blocks is 639 for the RUBiS benchmarks. Randomly up-
dated blocks rarely yield more than 5 consecutively mod-
ified blocks. For the RUBiS benchmark, updates of 5
consecutive blocks happen most often: the total number
of modified blocks jumps from 2k to 15k moving from 4
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Figure 7: Varying the percentage of modified blocks for
an 8 GiB file/device. For comparison, rsync synchro-
nizes the same data set in 5, 21, and 41 minutes, respec-
tively. A plain copy consistently took 1.5 minutes.

to 5 consecutively modified blocks.
Now that we have highlighted the spatial distribution

of updates, Figure 9 illustrates the results for our RUBiS
workload. We present numbers for the HDD case only
because this workload is less constrained by the number
of I/O operations per second. The number of modified
blocks was never the same between those 20 runs. In-
stead, the number varies between 659 and 3813 blocks.
This can be explained by the randomness inherent in each
RUBiS benchmark invocation. The type and frequency
of different actions, e.g., buying an item or browsing the
catalog, is determined by chance. Actions that modify
the data base increase the modified block count.

The synchronization time shows little variation be-
tween runs of the same method. Copy transfers the en-
tire 11 GiB of data irrespective of actual modifications.
There should, in fact, be no difference based on the num-
ber of modifications. rsync’s execution time is domi-
nated by checksum calculations. dsync, however, trans-
fers only modified blocks and should show variations.
The relationship between modified block count and syn-
chronization time is just not discernible in Figure 9. Al-
ternatively, we calculated the correlation coefficient for
dsync which is 0.54. This suggests a positive correlation
between the number of modified blocks and synchroniza-
tion time. The correlation is not perfect because factors
other than the raw modified block count affect the syn-
chronization time, e.g., the spatial locality of updates.

The performance in absolute numbers is as follows:
rsync, which is slowest, takes around 320 seconds to
synchronize the virtual machine disk. The runner up,
copy, takes 200 seconds. The clear winner, with an av-
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Figure 8: Difference in spatial locality between a syn-
thetic and realistic benchmark run. In both cases 45k
blocks are modified. For the synthetic benchmark 80%
are isolated individual blocks (36k at x=1). The realistic
benchmark shows a higher degree of spatial locality, as
observed, for example, by the jump from 2.5k (x=3) to
15k (x=4) blocks.

erage synchronization time of about 3 seconds, is dsync.
That is a factor 66x improvement over copy and more
than 100x faster than rsync. dsync reduces the net-
work traffic to a minimum, like rsync, while being 100x
faster. Table 2 summarizes the results.

4.4.3 Microsoft Research Traces

In addition to our benchmarks with synchronizing a sin-
gle virtual machine disk, we used traces from a Microsoft
Research (MSR) printer server. The speed with which
the different methods synchronize the data is identical
across all days of the MSR trace. Because of the homo-
geneous run times, we only show three days out of the
total seven in Figure 10.
rsync is slowest, taking more than 900 seconds

(15 minutes) to synchronize 32 GiB of binary data.
The small number of updated blocks (between 1-2%)
decreases the runtime of rsync noticeably. Previ-
ously, with 10% updated blocks rsync took 35 min-
utes (cf. Figure 2) for the same data size. Copy and
blockmd5sync finish more than twice as fast as rsync,
but are still considerably slower than either ZFS or dsync.
The relative order of synchronization times does not
change when we swap HDDs for SSDs (Figure 11).
Absolute synchronization times improve for each syn-
chronization method. blockmd5sync sees the largest de-
crease as its performance is I/O bound on our setup: the
SSD offers faster sequential read speeds than the HDD,
230 MB/s vs 130 MB/s.
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Figure 9: Synchronization time for (a) copy, (b) rsync,
and (c) dsync. Block modifications according to the RU-
BiS workload.

4.5 Discussion

One interesting question to ask is if there exist cases
where dsync performs worse than rsync. For the scenar-
ios investigated in this study dsync always outperformed
rsync by a significant margin. In fact, we believe, that
dsync will always be faster than rsync. Our reasoning
is that the operations performed by rsync are a super-
set of dsync’s operations. rsync must read, transmit,
and merge all the updated blocks; as does dsync. How-
ever, to determine the updated blocks rsync must read
every block and compute its checksum at the source and
destination. As illustrated and mentioned in the capture
for Figure 4, the computational overhead varies with the
number of modified blocks. For identical input sizes, the
execution time of rsync grows with the number of up-
dated blocks.

The speed at which dsync synchronizes depends to a
large degree on the spatial distribution of the modified
blocks. This is most visible in Figures 6. Even though
the data volume increases by 5x, going from 10% ran-
domly modified blocks to 50%, the synchronization takes
less time. For the scenarios evaluated in this paper, a sim-
ple copy typically (cf. Figure 6, 2) took at least as long as
dsync. While dsync may not be faster than a plain copy
in all scenarios, it definitely reduces the transmitted data.

Regarding the runtime overhead of maintaining the
bitmap, we do not expect this to noticeably affect per-
formance in typical use cases. Setting a bit in memory is
orders of magnitude faster than actually writing a block
to disk.
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Figure 10: Synchronization times for realistic block-
level update patterns on HDDs. Lower is better.

5 Related work

File systems, such as ZFS, and only recently btrfs, also
support snapshots and differential backups. In ZFS lingo
the operations are called send and receive. The delta be-
tween two snapshots can be extracted and merged again
with another snapshot copy, e.g., at a remote backup ma-
chine. Only users of ZFS, however, can enjoy those fea-
tures. For btrfs, there exists a patch to extract differences
between to snapshot states [6]. This feature is, however,
still considered experimental. Besides the file system,
support for block tracking can be implemented higher up
still in the software stack. VMware ESX, since version
4, is one example which supports block tracking at the
application layer. In VMware ESX server the feature is
called changed block tracking. Implementing support for
efficient, differential backups at the block-device level,
like dsync does, is more general, because it works regard-
less of the file system and application running on top.

If updates must be replicated more timely to reduce the
inconsitency window, the distributed replicated block de-
vice (DRBD) synchronously replicates data at the block
level. All writes to the primary block device are mir-
rored to a second, standby copy. If the primary block de-
vice becomes unavailable, the standby copy takes over.
In single primary mode, only the primary receives up-
dates which is required by file systems lacking concur-
rent access semantics. Non-concurrent file systems as-
sume exclusive ownership of the underlying device and
single primary mode is the only viable DRBD configura-
tion in this case. However, DRBD also supports dual-
primary configurations, where both copies receive up-
dates. A dual-primary setup requires a concurrency-
aware file system, such as GFS or OCFS, to maintain
consistency. DRBD is part of Linux since kernel version
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Figure 11: Synchronization times for realistic block-
level update patterns on SSDs. Lower is better.

2.6.33.
There also exists work to improve the efficiency of

synchronization tools. For example, Rasch and Burns
[13] proposed for rsync to perform in-place updates.
While their intention was to improve rsync performance
on resource-constraint mobile devices, it also helps with
large data sets on regular hardware. Instead of creating
an out-of-place copy and atomically swapping this into
place at the end of the transfer, the patch performs in-
place updates. Since their original patch, in-place up-
dates have been integrated into regular rsync.

A more recent proposal tackles the problem of page
cache pollution [3]. During the backup process many
files and related meta-data are read. To improve system
performance, Linux uses a page cache, which keeps re-
cently accessed files in main memory. By reading large
amounts of data, which will likely not be accessed again
in the near future, the pages cached on behalf of other
processes, must be evicted. The above mentioned patch
reduces cache pollution to some extent. The operating
system is advised, via the fadvise system call, that
pages, accessed as part of the rsync invocation, can be
evicted immediately from the cache. Flagging pages ex-
plicitly for eviction, helps to keep the working sets of
other processes in memory.

Effective buffer cache management was previously
discussed, for example, by Burnett et al. [4] and Plonka
et al. [12]. Burnett et al. [4] reverse engineered the
cache replacement algorithm used in the operating sys-
tem. They used knowledge of the replacement algorithm
at the application level, here a web server, to change
the order in which concurrent requests are processed.
As a result, the average response time decreases and
throughput increases. Plonka et al. [12] adapted their net-
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tool sync state
time [s] transferred [MB]

rsync 950 310
copy 385 32768

blockmd5sync 310 310
ZFS 42 310

dsync 38 310

Table 2: Performance summary for realistic benchmark.

work monitoring application to give the operating system
hints about which blocks can be evicted from the buffer
cache. Because the application has ultimate knowledge
about access and usage patterns, the performance with
application-level hints to the OS is superior. Both works
agree with us on the sometimes adverse effects of the de-
fault caching strategy. Though the strategy certainly im-
proves performance in the average case, subjecting the
system to extreme workloads, will reveal that sometimes
the default is ill suited.

6 Conclusion

We tackled the task of periodically synchronizing large
amounts of binary data. The problem is not so much
how to do it, but how to do it efficiently. Even today,
with widespread home broadband connections, network
bandwidth is a precious commodity. Using it to trans-
mit gigabytes of redundant information is wasteful. Es-
pecially for data sets in the terabyte range the good old
“sneakernet” [10] may still be the fastest transmission
mode. In the area of cloud computing, large binary data
blobs prominently occur in the form of virtual machine
disks and images. Backup of virtual machine disks and
images, e.g., fault tolerance, is a routine task for any data
center operator. Doing so efficiently and with minimal
impact on productive workloads is in the operator’s best
interest.

We showed how existing tools, exemplified by rsync,
are ill-suited to synchronize gigabyte-sized binary blobs.
The single-threaded checksum computation employed
by rsync leads to synchronization times of 32 minutes
even for moderate data sizes of 32 GB. Instead of cal-
culating checksums when synchronization is requested,
we track modifications on line. To do so, we extended
the existing device mapper module in the Linux kernel.
For each tracked device, the modified block numbers can
be read from user-space. Two supplemental tools, called
dmextract and dmmerge, implement the extraction and
merging of modified blocks in user-space. We call our
system dsync.

A mix of synthetic and realistic benchmarks demon-

strates the effectiveness of dsync. In a worst case work-
load, with exclusively random modifications, dsync syn-
chronizes 32 GB in less than one quarter of the time that
rsync takes, i.e., 7 minutes vs 32 minutes. A more re-
alistic workload, which involves the synchronization of
virtual machines disks, reduces the synchronization time
to less than 1/100th that of rsync.
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