
RouteDetector: Sensor-based Positioning System
that Exploits Spatio-Temporal Regularity of Human Mobility

Takuya Watanabe
Waseda University

Mitsuaki Akiyama
NTT Secure Platform Labs

Tatsuya Mori
Waseda University

Abstract
We developed a novel, proof-of-concept side-channel at-
tack framework called RouteDetector, which identifies a
route for a train trip by simply reading smart device sen-
sors: an accelerometer, magnetometer, and gyroscope.
All these sensors are commonly used by many apps with-
out requiring any permissions. The key technical compo-
nents of RouteDetector can be summarized as follows.
First, by applying a machine-learning technique to the
data collected from sensors, RouteDetector detects the
activity of a user, i.e., “walking,” “in moving vehicle,”
or “other.” Next, it extracts departure/arrival times of ve-
hicles from the sequence of the detected human activi-
ties. Finally, by correlating the detected departure/arrival
times of the vehicle with timetables/route maps collected
from all the railway companies in the rider’s country,
it identifies potential routes that can be used for a trip.
We demonstrate that the strategy is feasible through field
experiments and extensive simulation experiments using
timetables and route maps for 9,090 railway stations of
172 railway companies.

1 Introduction

Modern smart devices, such as smartphones, smart
watches, and smart glasses, have powerful embedded
sensors such as accelerometers, magnetometers, gyro-
scopes, ambient light sensors, and heart rate monitors.
While these sensors are used to provide new user expe-
riences, they also bring the new line of side-channel at-
tacks [1, 2, 3, 4, 5, 6, 7, 8].

Let us consider a new side-channel attack called SPS
(sensor-based positioning system), which also exploits
sensors of smart devices. The ultimate goal of an SPS
attack is to estimate the location of a user by reading sen-
sors but without using conventional geolocation method-
ologies such as GPS, cell tower signals, or WiFi. Clearly,
achieving the goal is difficult, primarily due to the high
degree of freedom of user mobility.

The goal of this work is to make the SPS attack fea-
sible. To this end, we exploit the spatio-temporal regu-
larity of human mobility patterns [9]; e.g., a person may
use a fixed route on a transportation system for her/his
commuting. Also, vehicles of transportation systems are
generally expected to exhibit a temporal regularity un-
less they encounter operation problems such as natural
disasters or rail accidents. We expect that exploiting the
regularity enables us to reduce the degree of freedom of
human mobility.

With this approach in mind, we develop a novel
proof-of-concept attack framework called RouteDetec-
tor, which targets the location of passengers of transport
service. It aims to identify the route of your train trip
(i.e., the sequence of train stations) by simply reading
three hardware sensors – accelerometer, magnetometer,
and gyroscope – which are all accessible from any apps
without requiring any permissions. A unique technical
concept of RouteDetector is that it makes use of not only
data collected from multiple sensors embedded in a smart
device, but it also leverages external data that can extract
privacy information by correlating with collected sensor
data.

The key technical components of RouteDetector can
be summarized as follows: First, by applying a machine-
learning technique to the data collected from sensors,
RouteDetector classifies the activity of a user, e.g., walk-
ing, riding on a moving vehicle, or other status such
as still. Next, using the sequences of the detected ac-
tivities, RouteDetector extracts departure/arrival times
of vehicle(s). Finally, RouteDetector correlates the ex-
tracted departure/arrival times of vehicle(s) with timeta-
bles/route maps of all vehicles and searches the potential
mobility paths.

The key findings of this work are summarized as fol-
lows:

• Our field experiments using smart devices demon-
strate that the RouteDetector framework can de-

1

tect departure/arrival times of vehicles with errors
smaller than six seconds on average.

• Our extensive simulation experiments using timeta-
bles and route maps for 9,090 railway stations of
172 railway companies demonstrate that given a
sequence of departure/arrival times, RouteDetector
can identify routes used for a trip by train, and the
average number of identified routes becomes close
to one if the number of stations used on a trip is
more than six.

These findings support that the attack is feasible.
The rest of this paper is organized as follows. Sec-

tion 2 describes the threat models we assume for Rout-
eDetector In section 3, we present the details of the Rout-
eDetector framework. Section 4 shows the results of per-
formance evaluation. Section 6 discusses the limitations
of RouteDetector and future research directions. We also
discuss the possible counter measures against RouteDe-
tector. Section 7 summarizes the related work. We con-
clude our work in section 8.

2 Threat models

Our threat model assumes that a malicious software,
which requires only a permission of Internet connection,
is installed on the victim’s device. The software keeps
collecting sensor values and estimating the activities of
the owner of the device; i.e., walking (running), moving
on a vehicle, or other. Sequences of detected activities
are periodically sent to the adversary’s computer. The ad-
versary’s computer estimates the route of transportation
by analyzing the sequences. Note that it is also possible
that the user device computes the estimation of routes
and sends the estimated results to the adversary. It is
easy for an adversary to know the hardware model of the
smart device; for instance, in the Android platform, by
accessing the fields of Android.os.Build class, he/she
can obtain the hardware information, such as brand, man-
ufacturer, and/or model. He/she can also know whether a
smart device is being held in someone’s hand or is inside
a bag by reading the ambient light sensor or proximity
sensor. Because the threat model targets passengers on
public transportation systems, it is not useful where no
public transportation system is available. We also as-
sume that the adversary knows the list of public trans-
portation systems that would likely be used by the victim.
For instance, if a victim lives in a particular country, the
adversary assumes that the victim may use any of rail-
ways available in that country. We also need to assume
that the transportation system operates punctually; other-
wise, RouteDetector’s estimation may be inaccurate. We
will study the issue in Sec. 4. Other limitations will be
discussed in Sec. 6.

Sensor data
(Sec. 3.2)	

Candidate
 routes

(Sec. 3.5)	

User activity
(Sec. 3.3)

still	

walk / run	

vehicle	

Tokyo 	 Kanda	 Akihabara	 Okachimachi	

Ikeshita	 Imaike	 Chigusa	
Shin-

Sakaecho	

Sapporo	
Kita 13 Jo

Higashi	
Higashi

Kuyakusho Mae	

DPT.
8:31

ARR.
8:34	

DPT.
8:34

Yamanote Line (Tokyo)	

Higashiyama Line (Nagoya)	

Toho Line (Hokkaido)	

ARR.
8:33

DPT.
8:33	

ARR.
8:36	

vehicle	 still	 vehicle	 still	 vehicle	

Kanjo Dori
Higashi	

Vehicle DPT./ARR.
sequence
(Sec. 3.4)	

Figure 1: High-level overview of the RouteDetector
framework.

3 RouteDetector Framework

In this section, we present an overview of the RouteDe-
tector framework (Sec. 3.1). Then, we describe the sen-
sors we used for our analysis (Sec. 3.2). We then de-
scribe the key technical components of the RouteDetec-
tor framework; the detection of user activities in Sec. 3.3,
detection of departure/arrive time sequences of vehicles
in Sec. 3.4, and the extraction of candidate routes in
Sec. 3.5.

3.1 Goal and Overview

The goal of the RouteDetector framework is to identify
the route of a vehicle used by an owner of a smart de-
vice by reading the device’s sensors. If a vehicle is a
passenger train, a route is defined as a set of stations
along a path. Figure 1 depicts the high-level overview
that achieves the goal, together with the number of corre-
sponding subsections that describe the technical details.

First, it reads values from sensors. As sensors, we
picked up accelerometer, linear acceleration, magne-
tometer, and rotation vector, which are all accessible
from any app without requiring any permissions. Details
of data collection are described in Sec. 3.2. Next, we ex-

2

Table 1: Summary of sensors.

Sensor Type unit Permission Description

accelerometer physical m/s2 Not required Acceleration applied to a device including the gravity.
linear acceleration virtual m/s2 Not required Acceleration applied to a device excluding the gravity.
magnetometer physical µT Not required Strength of geomagnetic field.
gyroscope physical rad/s Not required A device’s rate of rotation.

tract user activities from the collected sensor data. The
user activities are defined as a set of three classes, walk-
ing, riding on a moving vehicle (vehicle in short), and
others, which includes various activities such as stand-
ing, sitting, or sleeping. To this end, we pre-process raw
sensor data so that we can apply a supervised machine-
learning (ML) approach. As a supervised ML algorithm,
we adopt random forest, which is known to achieve ro-
bust and good performance for multi-class classification
tasks. Details of data pre-processing and ML applica-
tion are described in Sec. 3.3. From the extracted user
activities, we can identify sequences of vehicle depar-
ture/arrival times. For instance, if we find a consecu-
tive pairs of vehicle and others, it is likely that a user
was on a vehicle. We can also consider cases in which
a user made a transit. Details of detecting vehicle de-
parture/arrival time sequence are described in Sec. 3.4.
Finally, from an extracted vehicle departure/arrival time
sequence, we search candidate routes, using timetables
and railway route maps that cover the potential residen-
tial area of the victim, e.g., a country. We develop a
fast algorithm that works in a breadth-first search man-
ner. Details of extracting departure/arrival time sequence
are described in Sec. 3.4.

3.2 Sensor Data
Of the available sensors embedded into a smart device,
we adopt four sensors; accelerometer, linear accelera-
tion, magnetometer, and rotation vector. Table 1 sum-
marizes the sensors we used. Although we tested other
sensors, such as an ambient light sensor, the data was
not effective in detecting user activities. Note that the
four sensors can be divided into two classes: physical
sensors and virtual sensors. While the accelerometer,
magnetometer, and gyroscope are physical sensors that
read raw values, the remaining sensor, linear accelera-
tion, is a virtual sensor whose values are computed based
on physical sensors. We note that the sensors are acces-
sible from any app without requiring any permissions;
therefore, they are prone to be covertly abused by a ma-
licious developer.

We developed an Android app that collects the sensor
data. All the values are collected at a rate of 10 Hz, i.e.,
read 10 values per second. The app also has a function

Raw
sensor data	

Feature
extraction	

Feature
vector	Scalarization

Pre-processing

Figure 2: Overview of data pre-processing.

to generate labels that are used for supervised ML.

3.3 Detection of User Activities

Using the collected sensor data, we classify user activ-
ities into three distinct classes, walk, vehicle, and oth-
ers. Note that vehicle refers to the status when a user
is on a moving vehicle. If n user is standing on a vehi-
cle, which is stopping at a station, his/her status is likely
classified as others. We first pre-process raw sensor data
in Sec. 3.3.1. Next, we apply a supervised machine-
learning (ML) approach to the pre-processed data to de-
tect user activities in Sec. 3.3.2.

3.3.1 Data Pre-processing

We apply several data pre-processing techniques to the
raw sensor data. Figure 2 summarizes the data pre-
processing scheme. First, to eliminate the effect of differ-
ences in the directions in 3D space, we compute a norm

for each 3D vector; i.e., a =
√

a2
x +a2

y +a2
z . Figures 3 (a)

and (b) are examples of scalarized data. We then divide
time series data into a set of blocks. A block consists of
N samples for each sensor data; i.e., for each sensor data,
a block bi has data: D(i)(a)= {a(i)

1 ,a
(i)
2 , . . . ,a

(i)
N }. We exper-

imentally set N as N = 20, which corresponds to 2 sec-
onds length with the 10-Hz rate of sensor data sampling.
For each block, we extract features that can be used to
characterize the patterns of temporal variability for the
three classes. To this end, we adopted simple metrics;
i.e., mean, standard deviation, minimum, and maximum.
Finally, we normalize the data by subtracting means and
dividing by standard deviations. In summary, the time
series data is divided into blocks, and each block con-
sists of four features for four sensors, resulting in feature
vectors with 4×4 = 16 dimensions.

3

3.3.2 Classifying User Activities

Using the pre-processed sensor data, we classify activ-
ities into three classes; walk, vehicle, and others. As a
classification scheme, we adopt the Random forest al-
gorithm, which is an ensemble learning algorithm used
for classification or regression. In the training phase, the
Random forest algorithm constructs multiple decision
trees using randomly sampled data. In the classification
phase, it predicts the most plausible class by taking the
majority votes of the multiple decision trees. The good
feature of Random forest is that it naturally achieves
multi-class classification with a measure of score. We
note that we also tested other supervised machine learn-
ing algorithms, such as SVM or logistic regression. It
turned out that the differences in performance among the
algorithms were not significant, but the Random forest
algorithm worked best.

3.4 Detection of Departure/Arrival Time
Sequences of Vehicles

Using the detected user activities, we extract sequences
of vehicle departure/arrival times. Among the user activ-
ities, we are most interested in vehicle activity because
the start/end of the activity corresponds with the depar-
ture/arrival, respectively. However, as shown in Fig. 3
(c), the predicted activities include some noise due to the
inevitable classification errors. To reduce the effect of
classification errors, we leverage the temporal correla-
tion of the activities; i.e., once a user gets on a vehicle, it
is likely that he/she stays on the vehicle for several min-
utes. Namely, we use the exponentially weighted moving
average (EWMA) to account for temporal correlation of
data.

Let An be the classified activity at block n, and W,
V, and O be the set of blocks that are classified as walk,
vehicle, and others, respectively. We define Wn, Vn, and
On as

Wn = 1W(An)
Vn = 1V(An)
On = 1O(An),

where 1Y (x) is an indicator function that is defined as

1Y (x) =

1 if x ∈ Y
0 if x < Y.

First, we compute the EWMA of Vn; i.e.,

Vn = λVn+ (1−λ)Vn−1,

where Vn is EWMA and 0 ≤ λ ≤ 1 is a constant param-
eter that determines the smoothing factor. If λ is close

(a) pre-processed sensor data (scalarized)

A

L

M

10:55 11:00 11:05 11:10 11:15 11:20 11:25

G

(b) magnification of (a)

A

L

M

10:55 11:00 11:05 11:10 11:15 11:20 11:25

G

(c) predicted user activities

On

Wn

10:55 11:00 11:05 11:10 11:15 11:20 11:25

Vn

(d) smoothened user activities

On

Wn

10:55 11:00 11:05 11:10 11:15 11:20 11:25

Vn

escalator

(e) corrected activities and DPT./ARR. detection

Ôn

Ŵn
transfer

10:55 11:00 11:05 11:10 11:15 11:20 11:25

V̂n

d a

Figure 3: (a): pre-processed sensor data, (b) magnification of (a)
in Y-axis, (c) predicted user activities, (d) smoothened user activities,
and (e) corrected user activities and departure/arrival times. In pan-
els (a) and (b), A, L, M, and G represents accelerometer, linear ac-
celeration, magnetometer, and gyroscope, respectively. In panel (e),
circles/squares are detected departure/arrival times, respectively.

to one/zero, the EWMA has a larger weight on the last
observation/past observations. The parameter λ is em-
pirically configured, as we will show later. Although the
EWMA introduces a certain time lag to the original data,
the size of the lag was negligible, as we will show later.
Using the EWMA, the classified activities are corrected,
as

V̂n =

1 if Vn ≥ 0.5
0 if Vn < 0.5.

Figure 3 (d) shows smoothened user activities with the
EWMA.

4

Q1:	 (*,	 *,	 Td1,	 Ta1,	 *)	

S1	

S2	

S4	

S5	

S6	

S8	

S3	 S7	

S9	

S11	l(S1,S4,Td1,Ta1,L1)	

S10	 S12	

l(S1,S5,Td1,Ta1,L2)	

l(S2,S6,Td1,Ta1,L3)	

l(S2,S6,Td1,Ta1,L4)	

l(S4,S8,Td2,Ta2,L1)	 l(S8,S11,Td3,Ta3,L1)	

None	

None	
l(S5,S9,Td2,Ta2,L2)	

l(S10,S12,Td3,Ta3,L4)	l(S7,S10,Td2,Ta2,L2)	

Q2:	 (S4,	 *,	 Td2,	 Ta2,	 L1)	 Q3:	 (S8,	 *,	 Td3,	 Ta3,	 L1)	

Q6:	 (S6,	 *,	 Td2,	 Ta2,	 L3)	

Q4:	 (S5,	 *,	 Td2,	 Ta2,	 L2)	

Q7:	 (S7,	 *,	 Td2,	 Ta2,	 L4)	

Q5:	 (S9,	 *,	 Td3,Ta3,	 L2)	

Q8:	 (S10,	 *,	 d3,	 a3,	 L4)	

Input:	 dpt./arr.	 Time	 sequences	
{Td1,Ta1},	 {Td2,Ta2},	 {Td3,Ta3}	

Output:	 candidate	 routes	
Route1:	 {S1,S4,S8,S11}	
Route2:	 {S3,S7,S10,S12}	

Figure 4: Diagram of the route detection algorithm.

Next, using the corrected activities V̂n, we extract de-
parture/arrival time sequences using the following algo-
rithm, where τ is a threshold that determines the mini-
mum length of time for a trip between two stations. In
this calculation, we set τ = 60 (seconds).

Algorithm 1 Vehicle DEP./ARR. time sequences detec-
tion algorithm.
1: D =false ▷ Initial state
2: for all n = 1,2, . . . do
3: if V̂n = 0 AND V̂n+1 = 1 then
4: Td = tn+1 ▷ tn is time at block n.
5: D =true ▷ A vehicle has been departured.
6: if V̂n = 1 AND V̂n+1 = 0 AND D = 1 then
7: Ta = tn+1
8: D =false
9: if Ta −Td > τ then

10: return Ta,Td

We note that using blocks that were not classified as ve-
hicles, i.e., {n; V̂n = 0}, Wn and On can be corrected using
the similar procedure. Tracking Wn and On is useful for
detecting transferring lines; i.e., if we observe a sequence
of classified activities such as vehicle (3 mins), walk (2
mins), others (4 mins), and vehicle (5 mins), it is likely
that a person changed lines. Figure 3 (e) shows such an
example. The victim first got on a train and got off the
train after three stations. He/she then changed lines (see
the area “transfer” shown in the graph of Ŵn), and got on
the next train.

As we shall see later, the activity of riding an escala-
tor could be misclassified as being on a vehicle, although
a person may be using it for transferring lines. Such a
misclassification can be safely removed with this heuris-
tic. Figure 3 (d) and (e) show such an example where all
the ground-truth escalator points, which were misclassi-
fied as “vehicle” by random forest, are successfully elim-
inated in the corrected user activities. The heuristics are
also useful for eliminating other errors regarding activity

detection.

3.5 Extracting Candidate Routes

Finally, using the extracted sequences of depar-
ture/arrival times, we estimate candidate routes. We for-
mulate the estimation task as follows. Using railway
route maps, we first create a single graph that consists of
nodes (stations) connected by links (railroads). Next, us-
ing timetables corresponding to the railway route maps,
we extend the graph so that it expresses temporal struc-
ture. Let us call the extended graph a “train graph.” In
a train graph, a link l(A,B,Td,Ta,L) expresses a vehicle
that departures station A at time Td and arrives at sta-
tion B at time Ta; A and B are adjacent stations on line
L. Note that we do not need to build/keep an entire train
graph beforehand. Instead, we compile a set of all links
and dynamically build subgraphs by applying our search
algorithm to the set of links.

We use Fig. 4 to demonstrate how the algorithm
of searching candidate routes works. In the exam-
ple, we have the input departure/arrival time sequence
of {Td j,Ta j} (j = 1,2,3). Given the input, we first
extract a set of links that satisfies l(∗,∗,Td1,Ta1,∗)
(Q1: query 1). In the example, we found
four links; (S 1,S 4,Td1,Ta1,L1), (S 1,S 5,Td1,Ta1,L2),
(S 2,S 6,Td1,Ta1,L3), and (S 3,S 7,Td1,Ta1,L4). For
each link above, we recursively search the succeeding
links. For instance, to find a link (vehicle) that de-
parts station S 4 at time Td2 and arrives at station X
at time Ta2 on line L1, we search a link that satisfies
l(S 4,∗,Td1,Ta1,L1) (see Q2) and found S 8 is the des-
tination station. If we do not find any links that sat-
isfy the given condition, we remove the paths from the
search (see Q5, Q6). By continuing the above proce-
dure, we can enumerate paths that satisfy the input depar-
ture/arrival time sequences; i.e., routes {S 1,S 4,S 8,S 11}

5

Table 2: Smart devices used for our analysis.

Device name (abbreviation) Type OS
HTC J Butterfly (HTC) Smartphone Android 4.1.1
Nexus 7 (Nexus) Smart Tablet Android 4.4.4

and {S 3,S 7,S 10,S 12} in the example.
Finally, when we get multiple routes for a given time

sequence, it is useful that we can sort them according to
some metrics. To this end, we compute the popularity
of routes, as follows: For each link consisting of a route,
we compute the number of other links that share the same
pair of origin/destination stations with that link. We then
sum up the numbers along the links of a route and define
the result as a score. If a route has a larger score, it means
that a larger number of trains run on that route. We adopt
this score as a metric that expresses the popularity of a
route.

4 Evaluation

In this section, we evaluate the performance of the Rout-
eDetector framework. We first summarize the datasets
we used for our analysis. Second, we evaluate the ac-
curacy of the user activities detection scheme. We then
evaluate the accuracy of departure/arrival time sequence
detection. Finally, we evaluate the effectiveness of the
candidate routes detection scheme.

4.1 Data
The data we collected for evaluation is broadly classified
into two datasets. The first set consists of sensor data
used for detecting departure/arrival time sequences. The
second set consists of timetables and railway route maps
that are used for building a train map, which is then used
to search candidate routes for a given time sequence.

4.1.1 Sensor Data

Table 2 presents the two smart devices used for our anal-
ysis. As we shall see later, different hardware sensors
generally exhibit different values when given the same
input. Therefore, we need to train each classification
model for each device. Details regarding to the differ-
ences in device hardware will be discussed in Section 6.

Table 3 summarizes the sensor data we collected.
These data were measured across seven lines, operated
by two railway companies. Four lines, Yamanote Line,
Chuo Line, Keihin-Tohoku Line, and Saikyo Line, are
operated by East Japan railway company. Three subway
lines, Fukutoshin Line, Marunouchi Line, and Nanboku

Table 3: Sensor data collected for our analysis.

Data name Device Type # stations # lines # blocks
HTC H HTC H 57 5 12,007
HTC B HTC B 29 1 2,561
Nexus H Nexus H 29 1 2,543
Nexus B Nexus B 54 5 8,576

Table 4: Statistics of the train map built from railway
route maps and timetables. Number of links is taken
from timetables for weekdays.

railway companies # lines # stations # links
172 597 9,090 2,277,397

Line are operated by Tokyo Metro. Of these lines, Ya-
manote Line is one of the busiest and most important
lines that connect major stations in Tokyo. As shown
in the table, we distinguish between two measurement
types: a device held by hand (H) or located inside a still
bag (B), which could be placed on the knee or on a rack.
As we mentioned in Section 2, an adversary can distin-
guish the hardware of devices. He/she can also know
whether a smart device is being held in someone’s hand
or is inside a bag by reading the ambient light sensor or
proximity sensor.

4.1.2 Railway Route Maps and Timetables

While the coverage of collected sensor data is limited to
a certain location, we use entire train services operated
in Japan for building a train map. Table 4 summarizes
the data we collected. Note that a link l(A,B,Td,Ta,L)
is defined in Section 3.5. We also note that if we can
further specify the residential location of a victime, e.g.,
Kyoto area, the amount of data and candidate routes can
be further reduced.

4.2 User activities detection
We applied our user activities detection scheme to the
data shown in Table 5. The parameters of random forest
were empirically optimized as n = 50 and m = 4, where
n is the number of trees and m is the number of features
used for each tree. To assess the generalization of the
result, we employed 10-times, 10-fold cross-validation
tests. We focused on the accuracy of detecting vehicles
because it plays a crucial role in determining the depar-
ture/arrival time sequence. If a block of vehicle was in-
correctly classified as walk or others, we defined it as a
false negative. If a block of walk or others was classified
as vehicle, we define it was false positive.

6

Table 5: Numbers of labeled blocks used for evaluating
performance of activity detection. All the labeled blocks
are collected at the stations of Yamanote Line.

Data vehicle walk others
HTC H 609 1,327 510
HTC B 691 1,360 510
Nexus H 686 1,352 505
Nexus B 602 1,304 505

Table 6: Performance of detecting vehicle activity. ACC,
FNR, and FPR are accuracy, false negative rate, and false
positive rate, respectively.

Data ACC (mean/std) FNR (mean/std) FPR (mean/std)
HTC H 0.941/0.011 0.042/0.022 0.078/0.013
HTC B 0.965/0.009 0.024/0.012 0.047/0.014
Nexus H 0.943/0.013 0.041/0.014 0.074/0.021
Nexus B 0.969/0.009 0.023/0.012 0.041/0.016

Table 6 summarizes the results. We noticed that clas-
sification accuracies are generally good in all the cases.
We also noticed that measurement types of H, i.e., a de-
vice was inside a still bag, gave better accuracies. The
result is intuitively natural because holding a smart de-
vice by hand may introduce motion noise.

4.3 Departure/Arrival Time Sequences De-
tection

Next, we applied our departure/arrival time sequence de-
tection algorithm to the extracted user activities. For
each dataset, we picked up departure/arrival time se-
quences of 30 stations. The 30 samples are divided into
a training set and a test set. Using the training set, the
parameter of EWMA, λ, was optimized so that the dif-
ference between the detected departure/arrival time and
observed departure/arrival time is minimized. Note that
“detected” times are derived from sensors, “observed”
times are manually labeled ones, and “scheduled” times
are derived from a timetable corresponding to a train. To
evaluate the performance, we employed 10-times, 3-fold
cross-validation tests; i.e., 30 samples are randomly di-
vided into 20 samples for a training set and 10 samples
for a testing set, using different random seeds. Table 7
summarizes the absolute errors between detected and ob-
served departure/arrival times. Note that observed depar-
ture/arrival times are not necessarily the scheduled times
listed in timetables. The difference between the observed
and scheduled times is shown in Fig. 5.

As we see, the detected departure/arrival times are
close to the observed departure/arrival times. Maximal

Table 7: Absolute errors between detected times and ob-
served (ground truth) times; departure (top) and arrival
(bottom). m and σ are mean and standard deviation, re-
spectively.

absolute errors of detected departure times.
Data min (sec) max (sec) m (sec) σ

HTC H 1.97 3.54 2.79 0.46
HTC B 2.04 3.06 2.53 0.23
Nexus H 2.33 7.94 4.60 1.84
Nexus B 1.55 2.76 2.17 0.24

absolute errors of detected arrival times.
Data min (sec) max (sec) m (sec) σ

HTC H 2.52 6.75 4.13 1.18
HTC B 1.71 4.63 3.21 0.77
Nexus H 3.07 10.78 6.03 2.22
Nexus B 2.22 5.16 3.43 0.80

120 90 60 30 0 30 60 90 120
time difference (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

departure
arrival

Figure 5: Distributions of difference between observed
and scheduled times. Departure times (top) and arrival
times (bottom).

time differences are less than 3-11 seconds. Time dif-
ferences are within 3-7 seconds. Note that all the de-
parture/arrival events are perfectly detected. In addi-
tion, the observed departure/arrival times are also close
to the scheduled times. Roughly 85% of trains depart
within 60 seconds after the scheduled time has passed.
Roughly 75% of trains arrived within 30 seconds around
the scheduled time.

In summary, the detected departure/arrival times by
the RouteDetector framework are close to the observed
departure/arrival times, which are close to the sched-
uled times. In the next subsection, we show how we
search routes given the detected departure/arrival time
sequences. We also present several case studies in Sec. 5.

4.4 Candidate Routes Detection

While the evaluation of departure/arrival time detection
scheme required empirical data, the evaluation of the
candidate routes detection algorithm can be generalized

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of links

100

101

102

103

of
 ca

nd
ida

te
 ro

ut
es

mean
median
max, mean

Figure 6: Number of links vs. number of candidate
routes.

by exploring paths on a train graph1. Using the train
graph constructed from the data shown in Table 4, we
study the relationship between the number of links and
the number of corresponding candidate routes. Figure 6
shows the results. We can see that average number of
identified routes becomes close to one if the number of
stations used on a trip is more than six; i.e., if we observe
more stations, the sequence of departure/arrival times be-
come more unique. Even if the number of links is one,
roughly 50% of time sequences Td,Ta have less than four
candidate routes.

Next, we study how quickly the search algorithm
works. From the entire train graph, we first enumerate
the routes whose lengths are less than 15 links, where
we allowed, at most, two line changes. The number of
enumerated routes was 6,404,455,757. Using the C++
implementation of the algorithm that runs on a commod-
ity PC, all these routes were searched within 74 mins. On
average, a route was searched within 7.1 microseconds.
Thus, the candidate routes detection worked quickly even
though the scale of the train graph was huge.

5 Case study

In this section, we demonstrate the feasibility of the
RouteDetector framework through the field experiments.
Using sensor data collected from smartphone or tablet,
we try to identify a route used for a trip. For brevity,
we present three typical cases below. Figure 7 presents a
map of lines used for the case study.

Case 1 In this case, the train trip involved two lines,
Yamanote line and Marunouchi line as shown in Fig. 7.
Figure 3 presents the measured/derived data for the case
1. From Fig. 3 (e), we detected departure/arrival time

1Because enumerating all the possible paths on a train graph could
cause an explosion of states, we limit our search to the paths with
lengths less than 15 stations.

Akihabara	

Kokkai	
Gijido-‐mae	Shibuya	

Nishi	 Waseda	

Kanda	

Tabata	

Tokyo	

Case 1	

Case 2	

Case 3	

Yamanote Line	

F
u
ku

to
sh

in
 L

in
e
	

Marunouchi Line	

Figure 7: Map of lines used for case study analysis.

Table 8: Detected/observed/scheduled times for case 1.
Detected and observed times are rounded.

activities detected observed scheduled
walking etc. –
departure 10:56 10:56 10:56
arrival 10:58 10:58 10:58
departure 10:58 10:58 10:58
arrival 11:00 11:00 11:00
departure 11:00 11:00 11:00
arrival 11:03 11:03 11:03
walking etc. –
departure 11:10 11:10 11:10
arrival 11:12 11:12 11:12
departure 11:12 11:12 11:12
arrival 11:14 11:14 11:14
walking etc. –

sequence. The results are summarized in Table 8. As
we see, all the detected departure/arrival times were cor-
rectly detected. Next, given this time sequence, we
search the corresponding routes. The result is shown in
Table 9, which shows two routes are identified. Of the
identified two routes, the route #1 had higher score and
was identical to the ground truth. Thus, the RouteDetec-
tor successfully detected a route used for a train trip from
sensor data.

Case 2 The case 2 was measured at Yamanote line.
There was no transferring lines. The origin/destination
stations were Tabata station and Kanda station, respec-
tively. The trip involved 8 stations. Figure 8 presents the
detected activities and departure/arrival time sequence.
In this case, the detected departure/arrival times were
correctly detected. Given the time sequence, a unique
route was identified. The identified route was identical
to the ground truth.

8

Table 9: Two identified routes for case 1.

No. ground truth route #1 route #2
1 Kokkai-gijido-mae Kokkai-gijido Edogawabashi
2 Kasumigaseki Kasumigaseki Gokokuji
3 Ginza Ginza Higashi Ikebukuro
4 Tokyo Tokyo Ikebukuro

transfer
4 Tokyo Tokyo Ikebukuro
5 Kanda Kanda Kanamecho
6 Akihabara Akihabara Sengawa

score – 2,664 2,277

Ôn

Ŵn

00:10 00:15 00:20

V̂n

d a

Figure 8: Detected activities of the case 2.

Case 3 The case 3 was measured at Fukutoshin Line.
Again, there was no transferring lines. The ori-
gin/destination stations were Nishi Waseda station and
Shibuya station, respectively. In this case, while the de-
tected departure/arrival times were identical to the ob-
served times, they were slightly different from the sched-
uled time; i.e., the train was delayed at the time of mea-
surement. We will discuss the issue of train operation in
the next section. Given the detected time sequence, no
train route was identified from the train graph.

6 Discussion

In this section, we discuss several limitations of the Rout-
eDetector framework. We also discuss countermeasures
against the new threat brought by the RouteDetector
framework.

Ôn

Ŵn

21:20 21:25 21:30 21:35 21:40 21:45

V̂n

d a

Figure 9: Detected activities of the case 3.

Table 10: Detected/observed/scheduled times for case 3.

activities detected observed scheduled
walking etc. –
departure 21:27 21:27 21:26
arrival 21:29 21:29 21:28
departure 21:30 21:30 21:28
arrival 21:32 21:32 21:32
departure 21:33 21:33 21:32
arrival 21:35 21:35 21:35
departure 21:35 21:35 21:35
arrival 21:37 21:37 21:37
departure 21:37 21:37 21:37
arrival 21:39 21:39 21:39
walking etc. –

6.1 Limitations
Cross-Device Differences Our thread model assumes
that an adversary knows the type of hardware to be at-
tacked; i.e., he/she needs to have training data for de-
tecting user activities for each device. In fact, we found
that a random forest classifier trained to work with smart-
phone data did not work well for detecting the activities
of tablet users. This observation suggests that a differ-
ence in hardware sensors is sensitive to the user activ-
ity detection scheme. One approach to this problem is
to prepare training models for various devices. Another
possible approach is to apply some data-processing tech-
niques that can absorb the differences in the measure-
ments of sensor values. We leave the issue for our future
work.

Types of Vehicles While the target of this work was
passenger trains, there are other types of transportation
services, such as monorails or airplanes. If we can as-
sume that vehicles are operated accurately according to
timetable schedules, we may have a good chance to de-
tect a route used for a trip. We conjecture that the Rout-
eDetector will not work well for automobile transport
services such as public bus transportation because of
large deviations in operation timeline.

Train Operation Clearly, the success of the RouteDe-
tector framework relies on the accuracy of the train oper-
ation. The detection accuracy may be limited in an envi-
ronment where many trains tend to be delayed. For such
a case, we need to study up to what amount of delay the
attack works. To this end, we could artificially add a ran-
dom delay and see how the framework reacts. We leave
the analysis for our future work. We note that even in
case of delay, some transportation systems provide infor-
mation in real-time. Such information could be used to
make the system more tolerant to delay.

We also note that by continuously targeting a victim,
an adversary can obtain multiple observations, which

9

likely include the correct estimations; e.g., commuting
routes. Thus, by collecting many candidate routes used
by a target, an adversary can figure out locations fre-
quently visited by the target in a statistical way.

6.2 Countermeasures
Let us discuss some ways to mitigate or eliminate the risk
caused by the attacks using the RouteDetector frame-
work. Michalevsky et al., presented Gyrophone [6],
which is an attack that recognizes speech by reading gy-
roscope. They mentioned countermeasures in their paper
that apply low-pass filtering to the raw samples provided
by sensors. If certain pass frequencies are enough for
most of the applications, the filtering can be done with-
out negative effects. In addition, they mentioned that it
should be controlled by permission mechanisms or cer-
tain explicit authorization by the user when certain ap-
plications require an unusually high sampling rate. In the
same way, restricting access to raw sensor data and build-
ing some filtration mechanism that can remove sensitive
information without sacrificing other functions would be
promising approaches as countermeasures against the at-
tack with RouteDetector. For instance, to build a pe-
dometer app, a developer can use a specific API that can
retrieve step counts, instead of reading row sensor values
of accelerometer. Thus, building wrapper APIs that pro-
vide many useful functions, while hiding raw data, is a
promising approach to thwart sensor-based side-channel
attacks.

7 Related work

Techniques of sensor data analysis on mobile devices are
mainly used for extending the range of application of
mobile services, e.g., activity recognition and location-
based services. On the contrary, attackers can expose
user’s privacy by using above similar techniques analyz-
ing sensor data. We introduce techniques for both benign
and malicious uses.

Positioning without GPS An indoor positioning sys-
tem (IPS) is presented as a solution to detect/navigate
objects or people inside a building [10]. Instead of us-
ing GPS, IPS techniques make use of other information
sources such as radio wave, acoustic signals, and optical
signals. As an example of malicious use of the position-
ing technique, Michalevsky et al. demonstrated that their
developed PowerSpy application enables the attacker to
infer the target device’s location over those routes or ar-
eas by simply analyzing the target device’s power con-
sumption [8].

Device fingerprinting A device fingerprinting is other
positive usage of sensors to identify and authenticate

physical devices. Many studies reported that various IDs
on a smartphone, e.g., IMEI (device ID), are easily stolen
by malicious apps. To thwart ID-theft, Dey presented Ac-
celPrint, which is a system that fingerprints based on the
accelerometer, in order to identify devices without any
specific ID or cookie [5]. Das et al. also discussed the
feasibility of using sensors embedded in smartphones,
i.e., microphones and speakers, to uniquely identify in-
dividual devices [7].

Activity Recognition The CenceMe system developed
by Miluzzo et al. [11] combines the inference of individ-
uals’ activity using sensors’ information with sharing of
it through social networking services. To classify activ-
ities (sitting, standing, walking, running) of individuals,
the preprocessor of CenceMe calculates the mean, stan-
dard deviation, and number of peaks of the accelerometer
readings along the three axes of the accelerometer. Rout-
eDetector’s activity detection scheme is similar to this
one, but it is extended to capture the motion of vehicles.
RouteDetector also uses other hardware sensors, such as
a magnetometer and gyroscope, which also play a key
role in improving detection accuracy.

The accelerometer sensor provides an attacker with
other opportunities to build new attacks. Many attacks
targeting motion sensors, i.e., accelerometers and gyro-
scopes, that are embedded in smartphones are inferring
user inputs, e.g., passwords on touch-screens by monitor-
ing readings collected from motion sensors [1, 2, 3, 4].

Sensor Access Control Although various kinds of sen-
sor information contribute to extend and improve mobile
computing and services, privacy issues have already been
exposed as mentioned above. One of the most practical
defenses is access control to sensor data. Unnecessary
access by apps to sensor data should be controlled by
OS or middleware on a device. FlaskDroid [12] and ip-
Shield [13] are implemented as middleware on Android
OS and provide fine-grain access control mechanism to
resources including sensor information.

8 Conclusion

A novel, proof-of-concept side-channel attack frame-
work called RouteDetector was introduced. The key idea
behind the framework is to leverage spatio-temporal reg-
ularity of human mobility; i.e., we targeted passengers of
train systems. Our field experiments demonstrated that
the RouteDetector framework detected departure/arrival
times of vehicles with errors less than 6 seconds on aver-
age. Our extensive simulation experiments using timeta-
bles and route maps for 9,090 railway stations of 172
railway companies demonstrated that the RouteDetector
successfully identified routes used for a trip by train, and
the average number of identified routes became close to

10

one if the number of stations used on a trip was more than
six. These results quantitatively support that the attack is
feasible.

Acknowledgements

A part of this work was supported by JSPS Grant-in-
Aid for Challenging Exploratory Research (KAKENHI),
Grant number 15K12038.

References

[1] L. Cai and H. Chen, “TouchLogger: Inferring
Keystrokes On Touch Screen From Smartphone
Motion,” in The 6th USENIX Workshop on Hot Top-
ics in Security (HotSec), 2011.

[2] E. Owusu, J. Han, S. Das, A. Perrig, and
J. Zhang, “ACCessory: Password Inference using
Accelerometers on Smartphones,” in The Twelfth
Workshop on Mobile Computing Systems and Ap-
plications (HotMobile), 2012.

[3] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Infer-
ring User Inputs on Smartphone Touchscreens Us-
ing On-board Motion Sensors,” in The fifth ACM
conference on Security and Privacy in Wireless and
Mobile Networks, 2012.

[4] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and
R. R. Choudhury, “TapPrints: Your Finger Taps
Have Fingerprints,” in The 10th International Con-
ference on Mobile Systems, Applications, and Ser-
vices (MobiSys), 2012.

[5] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and
S. Nelakuditi, “AccelPrint: Imperfections of Ac-
celerometers Make Smartphones Trackable,” in
The 2014 Network and Distributed System Security
(NDSS) Symposium, 2014.

[6] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyro-
phone: Recognizing Speech from Gyroscope Sig-
nals,” in The 23rd USENIX Security Symposium,
2014.

[7] A. Das, N. Borisov, and M. Caesar, “Do You
Hear What I Hear?: Fingerprinting Smart Devices
Through Embedded Acoustic Components,” in The
2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014.

[8] Y. Michalevsky, G. Nakibly, A. Schulman,
and D. Boneh, “Powerspy: Location tracking
using mobile device power analysis,” CoRR,
vol. abs/1502.03182, 2015.

[9] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi,
“Understanding individual human mobility pat-
terns,” Nature, vol. 453, pp. 779–782, June 2008.

[10] Y. Gu, A. Lo, and I. Niemegeers, “A Survey of
Indoor Positioning Systems for Wireless Personal
Networks,” in IEEE Communications Surveys &
Tutorials, 2009.

[11] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson,
H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng,
and A. T. Campbell, “Sensing Meets Mobile Social
Networks: The Design, Implementation and Evalu-
ation of the CenceMe Application,” in The 6th ACM
conference on Embedded network sensor systems
(SenSys), 2008.

[12] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexi-
ble and Fine-Grained Mandatory Access Control on
Android for Diverse Security and Privacy Policies,”
in The 22nd USENIX Security Symposium, 2013.

[13] S. Chakraborty, C. Shen, K. R. Raghavan,
Y. Shoukry, M. Millar, and M. Srivastava, “ip-
Shield: A Framework For Enforcing Context-
Aware Privacy,” in The 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), 2014.

11

