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Abstract

Large distributed storage systems use erasure codes to re-
liably store data. Compared to replication, erasure codes
are capable of reducing storage overhead. However, re-
pairing lost data in an erasure coded system requires
reading from many storage devices and transferring over
the network large amounts of data. Theoretically, Min-
imum Storage Regenerating (MSR) codes can signifi-
cantly reduce this repair burden. Although several ex-
plicit MSR code constructions exist, they have not been
implemented in real-world distributed storage systems.
We close this gap by providing a performance analysis
of Butterfly codes, systematic MSR codes with optimal
repair I/O. Due to the complexity of modern distributed
systems, a straightforward approach does not exist when
it comes to implementing MSR codes. Instead, we show
that achieving good performance requires to vertically
integrate the code with multiple system layers. The en-
coding approach, the type of inter-node communication,
the interaction between different distributed system lay-
ers, and even the programming language have a signif-
icant impact on the code repair performance. We show
that with new distributed system features, and careful im-
plementation, we can achieve the theoretically expected
repair performance of MSR codes.

1 Introduction
Erasure codes are becoming the redundancy mechanism
of choice in large scale distributed storage systems.
Compared to replication, erasure codes allow reduction
in storage overhead, but at a higher repair cost expressed
through excessive read operations and expensive compu-
tation. Increased repair costs negatively affect the Mean
Time To Data Loss (MTTDL) and data durability.

New coding techniques developed in recent years
improve the repair performance of classical erasure
codes (e.g. Reed-Solomon codes) by reducing exces-
sive network traffic and storage I/O. Regenerating Codes
(RGC) [13] and Locally Repairable Codes (LRC) [19]

are the main representatives of these advanced coding
techniques. RGCs achieve an optimal trade-off between
the storage overhead and the amount of data transferred
(repair traffic) during the repair process. LRCs offer an
optimal trade-off between storage overhead, fault toler-
ance and the number of nodes involved in repairs. In
both cases, the repairs can be performed with a fraction
of the read operations required by classical codes.

Several explicit LRC code constructions have been
demonstrated in real world production systems [20, 35,
28]. LRCs are capable of reducing the network and stor-
age traffic during the repair process, but the improved
performance comes at the expense of requiring extra stor-
age overhead. In contrast, for a fault tolerance equivalent
to that of a Reed-Solomon code, RGCs can significantly
reduce repair traffic [28] without increasing storage over-
head. This specifically happens for a subset of RGCs
operating at the Minimum Storage Regenerating tradeoff
point, i.e. MSR codes. At this tradeoff point the stor-
age overhead is minimized over repair traffic. Unfortu-
nately, there has been little interest in using RGCs in real-
-world scenarios. RGC constructions of interest, those
with the storage overhead below 2×, require either en-
coding/decoding operations over an exponentially grow-
ing finite field [8], or an exponential increase in number
of sub-elements per storage disk [14, 31]. Consequently,
implementation of RGCs in production systems requires
dealing with complex and bug-prone algorithms. In this
study we focus on managing the drawbacks of RGC-
MSR codes. We present the first MSR implementation
with low-storage overhead (under 2×), and we explore
the design space of distributed storage systems and char-
acterize the most important design decisions affecting the
implementation and performance of MSRs.

Practical usage of MSR codes equals the importance
of a code design. For example, fine-grain read accesses
introduced by MSR codes may affect performance neg-
atively and reduce potential code benefits. Therefore,
understanding the advantages of MSR codes requires
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characterizing not only the theoretical performance, but
also observing the effect the code has on real-world dis-
tributed systems. Because of the complex and multi-
-layer design of distributed storage systems, it is also
important to capture the interaction of MSR codes with
various system layers, and pinpoint the system features
that improve/degrade coding performance.

We implement an MSR code in two mainstream dis-
tributed storage systems: HDFS and Ceph. These are the
two most widely used systems in industry and academia,
and are also based on two significantly different dis-
tributed storage models. Ceph does online encoding
while data is being introduced to the system. HDFS per-
forms encoding as a batch job. Moreover, Ceph applies
erasure codes in a per-object basis whereas HDFS does it
on groups of objects of the same size. And finally, Ceph
has an open interface to incorporate new code implemen-
tations in a pluggable way, while HDFS has a monolithic
approach where codes are embedded within the system.

The differences between HDFS and Ceph allow us to
cover an entire range of system design decisions that one
needs to make while designing distributed storage sys-
tems. The design observations presented in this study
are intended for designing future systems that are built
to allow effortless integration of MSR codes. To summa-
rize, this paper makes the following contributions: (i) We
design a recursive Butterfly code construction —a two-
parity MSR code— and implement it in two real-world
distributed storage systems: HDFS and Ceph. Compared
to other similar codes, Butterfly only requires XOR op-
erations for encoding/decoding, allowing for more effi-
cient computation. To the best of our knowledge, these
are the first implementations of a low overhead MSR
code in real-world storage systems. (ii) We compare
two major approaches when using erasure codes in dis-
tributed storage systems: online and batch-based encod-
ing and point the major tradeoffs between the two ap-
proaches. (iii) We examine the performance of Butterfly
code and draw a comparison between the theoretical re-
sults of MSR codes and the performance achievable in
real systems. We further use our observations to suggest
appropriate distributed system design that allows best us-
age of MSR codes. Our contributions in this area include
communication vectorization and a plug-in interface de-
sign for pluggable MSR encoders/decoders.

2 Background

In this section we introduce erasure coding in large-scale
distributed storage systems. In addition we provide a
short overview of HDFS and Ceph distributed filesys-
tems and their use of erasure codes.

2.1 Coding for Distributed Storage

Erasure codes allow reducing the storage footprint of
distributed storage systems while providing equivalent
or even higher fault tolerance guarantees than replica-
tion. Traditionally, the most common type of codes used
in distributed systems were Reed-Solomon (RS) codes.
RS are well-known maximum distance separable (MDS)
codes used in multiple industrial contexts such as optical
storage devices or data transmission. In a nutshell, Reed-
Solomon codes split each data object into k chunks and
generate r linear combinations of these k chunks. Then,
the n = k + r total chunks are stored into n storage de-
vices. Finally, the original object can be retrieved as long
as k out of the n chunks are available.

In distributed storage systems, achieving long
MTTDL and high data durability requires efficient data
repair mechanisms. The main drawback of traditional
erasure codes is that they have a costly repair mechanism
that compromises durability. Upon a single chunk fail-
ure, the system needs to read k out of n chunks in order
to regenerate the missing part. The repair process entails
a k to 1 ratio between the amount of data read (and trans-
ferred) and the amount of data regenerated. Regenerating
Codes (RGC) and Locally Repairable Codes (LRC) are
two family of erasure codes that can reduce the data and
storage traffic during the regeneration. LRCs reduce the
number of storage devices accessed during the regener-
ation of a missing chunk. However, this reduction re-
sults in losing the MDS property, and hence, relaxing the
fault tolerance guarantees of the code. On the other hand,
RGCs aim at reducing the amount of data transferred
from each of the surviving devices, at the expense of in-
creased number of devices contacted during repair. Ad-
ditionally, when RGCs minimize the repair traffic with-
out any additional storage overhead, we say that the code
is a Minimum Storage Regenerating (MSR) code.

LRCs have been demonstrated and implemented in
production environments [20, 35, 28]. However, the use
of LRCs in these systems reduces the fault tolerance
guarantees of equivalent traditional erasure codes, and
cannot achieve the minimum theoretical repair traffic de-
scribed by RGCs. Therefore, RGCs seem to be a bet-
ter option when searching for the best tradeoff between
storage overhead and repair performance in distributed
storage systems. Several MSR codes constructions ex-
ist for rates smaller that 1/2 (i.e. r ≥ k) [26, 23, 29, 30],
however, designing codes for higher rates (more storage
efficient regime) is far more complex. Although it has
been shown that codes for arbitrary (n,k) values can be
asymptotically achieved [9, 30], explicit finite code con-
structions require either storing an exponentially grow-
ing number of elements per storage device [7, 31, 24, 14],
or increasing the finite field size [27]. To the best of our
knowledge, Butterfly codes [14] are the only codes that
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allow a two-parity erasure code (n− k = 2) over a small
field (i.e. GF(2)), and hence, they incur low computa-
tional overhead. The relatively simple design and low
computational overhead make Butterfly codes a good
candidate for exploring the challenges of implementing
a MSR code in real distributed storage systems.

2.2 Hadoop Filesystem

Hadoop is a scalable runtime designed for managing
large-scale computation/storage systems. Hadoop sup-
ports a map-reduce computational model and therefore
is very suitable for algorithms that target processing of
large amounts of data. The Hadoop filesystem (HDFS)
is its default storage backend, and was initially devel-
oped as an open source version of the Google filesys-
tem [17] (GFS), containing many of the features initially
designed for GFS. HDFS is currently one of the most
widely used distributed storage systems in industrial and
academic deployments.

In HDFS there are two types of physical nodes: the
Namenode server and multiple Datanode servers. The
Namenode server contains various metadata as well as
the location information about all data blocks residing
in HDFS, whereas Datanode servers contain the actual
blocks of data. The “centralized metadata server” archi-
tecture lowers the system design complexity, but poses
certain drawbacks: (i) Limited metadata storage This
problem has been addressed by recent projects (such as
Hadoop Federation [4]) that allow multiple namespaces
per HDFS cluster. (ii) Single point of failure - In case
of the Namenode failure, the entire system is unaccessi-
ble until the Namenode is repaired. Recent versions of
HDFS address this problem by introducing multiple re-
dundant Namenodes, allowing fast failover in case the
Namenode fails.

Starting with the publicly available Facebook’s im-
plementation of a Reed-Solomon code for HDFS [2],
Hadoop allows migration of replicated data into more
storage efficient encoded format. The erasure code is
usually used to reduce the replication factor once the data
access frequency reduces. Hence, the encoding process
in HDFS is not a real-time task, instead it is performed
in the background, as a batch job. While the batch-based
approach provides low write latency, it also requires ad-
ditional storage where the intermediate data resides be-
fore being encoded.

2.3 Ceph’s Distributed Object Store

Ceph [32] is an open source distributed storage system
with a decentralized design and no single point of failure.
Like HDFS, Ceph is self-healing and a self-managing
system that can guarantee high-availability and consis-
tency with little human intervention. RADOS [34] (Reli-
able, Autonomic Distributed Object Store) is Ceph’s core

component. It is formed by a set of daemons and libraries
that allow users accessing an object-based storage system
with partial and complete read/writes, and snapshot ca-
pabilities. RADOS has two kinds of daemons: monitors
(MONs), that maintain consistent metadata, and object
storage devices (OSDs). A larger cluster of OSDs is re-
sponsible to store all data objects and redundant replicas.
Usually a single OSD is used to manage a single HDD,
and typically multiple OSDs are collocated in a single
server.

RADOS storage is logically divided into object con-
tainers named pools. Each pool has independent ac-
cess control and redundancy policies, providing isolated
namespaces for users and applications. Internally, and
transparent to the user/application, pools are divided into
subsets of OSDs named placement groups. The OSDs
in a placement group run a distributed leader-election to
elect a Primary OSD. When an object is stored into a
pool, it is assigned to one placement group and uploaded
to its Primary OSD. The Primary OSD is responsible to
redundantly store the object within the placement group.
In a replicated pool this means forwarding the object
to all the other OSDs in the group. In an erasure en-
coded pool, the Primary splits and encodes the object,
uploading the corresponding chunks to the other OSDs
in the group. Hence, the encoding process in Ceph is
performed as real-time job, i.e. the data is encoded while
being introduced into the system. The placement group
size directly depends on the number of replicas or the
length of the code used. OSDs belong to multiple place-
ment groups, guaranteeing good load balancing without
requiring large amount of computing resources. Given
the cluster map, the pool policies, and a set of fault do-
main constraints, RADOS uses a consistent hashing al-
gorithm [33] to assign OSDs to placement groups, and
map object names to placement groups within a pool.

3 Butterfly Codes
Vector codes are a generalization of classical erasure
codes where k α-dimensional data vectors are encoded
into a codeword of n α-dimensional redundant vectors,
for n > k. As it happens for classical erasure codes, we
say that a vector code is systematic if the original k vec-
tors form a subset of the n codeword vectors, that is, the
codeword only adds n− k redundant vectors. In this pa-
per we refer to the codeword vectors as code columns,
and to the vector components as column elements.

Butterfly Codes are an MDS vector code construction
for two-parities (i.e. n− k = 2) of an explicit Regener-
ating Code operating at the minimum storage regenerat-
ing (MSR) point. This means that to repair a single disk
failure, Butterfly codes require to transfer 1/2 of all the
remaining data, which is optimal. Additionally, Butterfly
codes are binary vector codes defined over GF(2), allow-
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ing implementation of encoding and decoding operations
by means of simple exclusive-or operations.

A preliminary construction of the Butterfly code was
presented earlier [14], and in this section we provide a
new recursive construction of the code. Compared to the
original construction, the recursive approach has a sim-
plified design that results in a simpler implementation.
Furthermore, the recursive design partitions the problem
in a way that allows for a better reuse of precomputed
values, leading to better cache locality. Due to space lim-
itations we omit the exhaustive cache behavior analysis.

3.1 Butterfly Encoder

Let Dk be a matrix of boolean values of size 2k−1 × k,
for k ≥ 2. Dk represents a data object to be encoded and
stored in the distributed storage system. For the purpose
of describing the encoding/decoding process, we repre-
sent Dk by the following components:

Dk =

[
a A
b B

]
, (1)

where A and B are 2k−2 × k− 1 boolean matrices, and a
and b are column vectors of 2k−2 elements.

Let D j
k be the jth column of Dk, j ∈ {0, . . . ,k − 1}.

Therefore, the matrix Dk can be written as a vector of k
columns Dk = (Dk−1

k , . . . ,D0
k). From a traditional erasure

code perspective each of the columns is an element of
GF(2k−1), and after encoding we get a systematic code-
word Ck = (Dk−1

k , . . . ,D0
k ,H,B), where H and B are two

vector columns representing the horizontal and butterfly
parities respectively.

To describe how to generate H and B, we define two
functions such that H =H(Dk) and B = B(Dk):

• if k = 2, then:

H
([

d1
0 d0

0
d1

1 d0
1

])
=

[
d1

0 ⊕d0
0

d1
1 ⊕d0

1

]
; (2)

B
([

d1
0 d0

0
d1

1 d0
1

])
=

[
d1

1 ⊕d0
0

d1
0 ⊕d0

0 ⊕d0
1

]
. (3)

• if k > 2, then:

H(Dk) =

[
a⊕H(A)

Pk−1 [Pk−1b⊕H(Pk−1B)]

]
; (4)

B(Dk) =

[
Pk−1b⊕B(A)

Pk−1 [a⊕H(A)⊕B(Pk−1B)]

]
, (5)

where Pk represents a k × k permutation matrix
where the counter-diagonal elements are one and
all other elements are zero. Notice that left-
multiplication of a vector or a matrix by Pk flips the
matrix vertically.

It is interesting to note that the double vertical flip in
(4) is intentionally used to simultaneously compute H

C4

D3
4 D2

4 D1
4 D0

4 H B
d0 c0 b0 a0 d0+ c0+b0+a0 d7+ c3+ b1+ a0
d1 c1 b1 a1 d1+ c1+b1+a1 d6+ c2+ b0+a0+a1
d2 c2 b2 a2 d2+ c2+b2+a2 d5+ c1+b1+a1+b3+a3+a2
d3 c3 b3 a3 d3+ c3+b3+a3 d4+ c0+b0+a0+b2+ a3
d4 c4 b4 a4 d4+ c4+b4+a4 d3+c3+b3+a3+ c7+b7+a7+b5+ a4
d5 c5 b5 a5 d5+ c5+b5+a5 d2+c2+b2+a2+ c6+b6+a6+b4+a4+a5
d6 c6 b6 a6 d6+ c6+b6+a6 d1+c1+b1+a1+ c5+ b7+a7+a6
d7 c7 b7 a7 d7+ c7+b7+a7 d0+c0+b0+a0+ c4+ b6+ a7

a

b

Figure 1: Butterfly codeword for k = 4, C4. One can observe
how C4 can be computed by recursively encoding submatrix A
(red highlight) and B (yellow highlight) from (1) and adding
the extra non-highlighted elements.

and B over the same data Dk. Because of the double ver-
tical flip, the recursion can be simplified, and encoding
of Dk can be done by encoding A and Pk−1B. In Figure 1
we show an example of the recursive encoding for k = 4.

3.2 Butterfly Decoder

In this section we show that Butterfly code can decode
the original data matrix when any two of the codeword
columns are missing, and hence it is an MDS code.

Theorem 1 (MDS). The Butterfly code can recover from
the loss of any two columns (i.e. two erasures).

Proof. The proof is by induction over the number of
columns, k. In the base case, k = 2, one can carefully
verify from (2) and (3) that the code can recover from
the loss of any two columns. The inductive step proceed
as follows. Let’s assume that the Butterfly construction
gives an MDS code for k−1 columns, for k > 2. We will
prove that the construction for k columns is also MDS.
We distinguish the following cases:
(1) The two parity nodes are lost. In this case we encode
them again through H and B functions.
(2) One of the parities is lost, along with one data col-
umn. In this case we can use the remaining parity node
to decode the lost data column, and then re-encode the
missing parity node.
(3) Two data columns are lost, neither of which is the
leftmost column. In this case we can generate from the
parity columns the vectors H(A), B(A), by XOR-ing a
and Pk−1b. By using the inductive hypothesis, we can re-
cover the top half of the missing columns (which is part
of the A matrix). Similarly, we can generate by simple
XOR the values H(Pk−1B) and B(Pk−1B). By the induc-
tion hypothesis we can recover the bottom half of the
missing columns (which is part of the B matrix).
(4) The leftmost column along with another data column
D j

k, j �= k−1, are lost. From the bottom half of the but-
terfly parity B(Dk) we can obtain B(Pk−1B), and then de-
code the bottom half of D j

k. From the bottom half of the
horizontal parity H(Dk) we can now decode b. Follow-
ing the decoding chain, from the top half of the butterfly
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parity B(Dk) we can obtain B(A), and then decode the
top half of D j

k. Finally, from the top half of the horizon-
tal parity H(Dk) we can obtain a.
Theorem 2 (optimal regeneration). In the case of one
failure, the lost column can be regenerated by communi-
cating an amount of data equal to 1/2 of the remaining
data (i.e., 1/2 of k+1 columns). If the lost column is not
the butterfly parity, the amount of communicated data is
exactly equal to the amount read form surviving disks
(i.e. optimal I/O access).

Due to space constrains we do not provide a proof
here. Instead, in the next section we provide the details
required to regenerate any of the codeword columns.

3.3 Single Column Regeneration

The recovery of a single column falls under four cases.
Note that in all of them, the amount of data that is trans-
ferred is optimal, and equal to half of the remaining data.
Moreover, the amount of data that is accessed (read) is
also optimal (and equal to the data that is transferred),
except in case (4) when we recover the butterfly parity.
Case (1) is the most common. The data to be trans-
ferred is selected by algebraic expressions, but there are
more intuitive ways to understand the process. The inde-
ces correspond to locations in the butterfly parity that do
not require the additional elements; similarly, they corre-
spond to inflexion points in the butterfly lines (v-points);
also they correspond to 0 value for bit j − 1 of the bi-
nary representation of numbers ordered by the reflected
Gray code. Finally, the recovery in case (4) is based on a
self-duality of the butterfly encoding.

(1) One column from {D1
k , . . . ,D

k−1
k } is lost Let D j

k
be the lost columnn. Every remaining column (system-
atic data and parities), will access and transfer the el-
ements in position i for which

⌊
i

2 j−1

⌋
≡ 0 mod 4, or⌊

i
2 j−1

⌋
≡ 3 mod 4. Let Dk−1 be the matrix of size (k−

1)× 2k−2 formed from the transmitted systematic data,
and Hk−1,Bk−1 the columns of size 2k−2 formed from the
transmitted parity information. Let h =H(Dk−1)⊕Hk−1
and b = B(Dk−1)⊕Bk−1 (i.e., we use butterfly encoding
on the matrix Dk−1). The data lost from D j is now con-
tained by h and b. More precisely, for i ∈ {0, . . . ,2k−2},
let p =

⌊
i+2 j−1

2 j

⌋
2 j + i, and let r = p mod 2 j. Then

D j
k(p)← h(i), and D j

k(p−2r+2 j −1)← b(i).

(2) Column D0
k is lost In this case, the columns

D1
k , . . . ,D

k−1
k ,H will access and transfer the elements

with even index, and the column B will access and trans-
fer the elements with odd index. Similar to case (1), the
vectors h and b are obtained by applying butterfly encod-
ing, and they provide the even, repectively odd, index
elements of the lost column.

(3) First parity column H is lost All the remaining
columns access and transfer their lower half, namely all
the elements with index i ∈ {2k−2, . . . ,2k−1 − 1}. The
horizontal parity over the systematic transmitted data
provides the lower half of H, and the butterfly parity over
D0

k−1, . . . ,D
k−2
k−1 XOR-ed with data from B will provide

the top half of H.

(4) Second parity column B is lost In this case Dk−1
k

will access and transfer its top half, while H will do
the same with its bottom half. The rest of the columns
D0

k , . . . ,D
k−2
k will access all of their data, but they will

perform XOR operations and only transfer an amount of
data equal to half of their size. Each D j

k for j �= k − 1
will compute and transfer values equal to their contribu-
tions in the bottom half of B. Therefore a simple XOR
operation between the data transferred from the system-
atic columns will recover the bottom half of B. Interest-
ingly, computing a butterfly parity over the data trans-
ferred from D j

k, where j �= k− 1, and XOR-ing it corre-
spondingly with the bottom half of H will recover the top
half of B.

4 Butterfly Codes in HDFS
To avoid recursion in Java, and possible performance
drawbacks due to non-explicit memory management,
in HDFS we implement an iterative version of Butter-
fly [14]. Our implementation of Butterfly code in HDFS
is based on publicly available Facebook’s Hadoop [2]
version. In this section we provide implementation and
optimization details of our Butterfly implementation.

4.1 Erasure Coding in HDFS

We use the Facebook HDFS implementation as a starting
point for the Butterfly implementation. Facebook ver-
sion of Hadoop contains two daemons, RaidNode and
BlockFixer, that respectively create parity files and fix
corrupted data. Once inserted into the HDFS, all files
are initially replicated according to the configured repli-
cation policy. The RaidNode schedules map-reduce jobs
for erasure encoding the data. The encoding map-reduce
jobs take groups of k newly inserted chunks, and gener-
ate n− k parity chunks, as presented in Figure 2. The
parity chunks are then stored back in HDFS, and the
replicas can be garbage collected. Lost or corrupted
data is detected and scheduled for repair by the Block-
Fixer daemon. The repair is performed using map-reduce
decode tasks. Upon decoding completion, the recon-
structed symbol is stored back to HDFS.

4.2 Butterfly Implementation in HDFS

The encoding and repair process in HDFS-Butterfly fol-
lows a 4-step protocol: (i) in the first step the encod-
ing/decoding task determines the location of the data
blocks that are part of the k symbol message; (ii) the sec-
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D = ( D  D  …    D  )
k-1 

HDFS Data Blocks 
        (symbols)

(n,k) code in HDFS: Parity Blocks

Symbol Size:

2 k-1 elements

k-2 0

C = ( D  D  …    D    H     B)
k-1 k-2 0

Figure 2: Erasure Coding (k,n) in HDFS: (i) each symbol is
part of a separate HDFS block, (ii) k symbols represent a mes-
sage, n symbols represent a codeword (initial message blocks
+ parity blocks), (ii) In Butterfly, each symbol is divided in
α = 2k−1 elements.

ond step assumes fetching the data to the node where
the task is running; (iii) in the third step the encod-
ing/decoding computation is performed, and finally (iv)
the newly created data is committed back to HDFS.

The first step, locating the data necessary for encod-
ing/decoding process, is identical to the initial Facebook
implementation: position of the symbol being built is
used to calculate the HDFS file offset of the entire k-
symbol message/codeword (data necessary for building
the symbol). Calculating the offsets is possible because
the size of the data being repaired equals the size of an
entire HDFS block. In case the symbol being repaired
is smaller than the HDFS block size, we rebuild all the
symbols contained in that HDFS block. Therefore, we al-
ways fetch k consecutive HDFS blocks – k-symbol mes-
sage. The location of the parity symbols/blocks during
the decoding is determined using similar approach.

The second step, data fetching, is performed asyn-
chronously and in parallel, from multiple datanodes. The
size of the fetched data is directly related to the But-
terfly message size, i.e. set of butterfly symbols spread
across different datanodes. We allow the size of a But-
terfly symbol to be a configurable parameter. We set the
symbol element size to �=symbol size/2k−1. The advan-
tage of tunable symbol size is twofold: (i) improved data
locality: size of the data chunks used in computation can
be tuned to fit in cache; (ii) computation - communica-
tion overlap: “rightszing” the data chunk allows commu-
nication to be completely overlapped by computation.

The third step implements Butterfly encoding and de-
coding algorithms. While Section 3.2 presents formal
definition of Butterfly, in Figure 3 we describe an exam-
ple of Butterfly encoding/decoding schemes in HDFS.
Figure 3 is intended to clarify the encoding/decoding
process in HDFS-Butterfly through a simple example,
and encoding/decoding of specific components might
be somewhat different. Our encoding/decoding imple-
mentation is completely written in Java. While mov-
ing computation to a JNI module would significantly in-
crease the level of applicable optimizations (including
vectorization), these benefits would be shadowed by the
cost of data movements between Java and JNI modules.
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Figure 3: Regenerating column 1 for HDFS-Butterfly with
k = 4. The line represents the elements that are xored to re-
generate the first two symbols. The dark gray elements are the
total required ones. White elements are skipped during com-
munication.

Our Java computation is aggressively optimized through
manual loop reordering and unrolling but we saw lit-
tle benefits from these optimizations. By instrumenting
the computational code, we found that the time spent in
memory management significantly outweighs the ben-
efits computational optimizations. We also parallelize
computational loops in the OpenMP fashion. The degree
of parallelization is a configurable parameter.

During the fourth step, the encoding/decoding task de-
tects physical location of all the symbols (HDFS blocks)
contained in the k-symbol message. The newly created
symbol is placed on a physical node that does not con-
tain any of the other message symbols, i.e. we avoid
collocating two symbols from the same message on the
same physical node. In this way we increase the system
reliability in case of a singe node failure.

4.3 Communication Protocol

HDFS is a streaming filesystem and the client is designed
to receive large amounts of contiguous data. If the data
stream is broken, client assumes communication error
and starts an expensive process of re-establishing con-
nection with the datanode. However, the Butterfly repair
process does not read remote data in a sequential manner.
As explained in Figure 3, not all of the vector-symbol’s
elements are used during the decoding process (in Fig-
ure 3 only gray elements are used for reconstructing Sym-
bol 1). The elements used for decoding can change, de-
pending on the symbol ID being repaired. In our ini-
tial implementation, we allowed the datanode to skip
reading unnecessary symbol components and send back
only useful data (method sendChunks() in the HDFS
datanode implementation). Surprisingly, this approach
resulted in very low performance due to the interruptions
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in client–datanode data stream.
To avoid the HDFS overhead associated with stream-

ing non-contiguous data, we implement vector commu-
nication between the client and the datanode: datanode
packs all non-contiguous data chunks into a single con-
tiguous buffer (gray components in Figure 3) and streams
the entire buffer to the client side. On the client side, the
received data is extracted and properly aligned follow-
ing the requirements of the decoding process. Vector-
ization of communication introduced multi-fold perfor-
mance improvement in HDFS.

To implement vectorized communication, we intro-
duce symbol ID parameter to client→datanode request.
symbol ID represents the position of the requested sym-
bol in the butterfly message. In HDFS, the client dis-
covers data blocks (symbols) needed for the decoding
process. Therefore, the client passes symbol ID to the
datanode, and the datanode uses this information to read
from a local storage and send back only useful vector
components.

4.4 Memory Management

Butterfly decoding process requires an amount of DRAM
capable of storing an entire k symbol message. When the
symbol size equals the size of the HDFS block (64 MB),
the amount of DRAM equals (k+ 2)x64M. In addition,
unpacking the data upon completing vector communica-
tion requires additional buffer space. The RaidNode dae-
mon assigns recovery of multiple corrupted symbols to
each map-reduce task for sequential processing. Tasks
are required to allocate large amounts of memory when
starting symbol recovery, and free the memory (garbage
collect) upon decoding completion. Frequent and not
properly scheduled garbage collection in JVM brings
significant performance degradation.

To reduce the garbage collection overhead, we imple-
mented a memory pool that is reused across multiple
symbol decoders. The memory pool is allocated during
the map-reduce task setup and reused later by the com-
putation and communication threads. Moving the mem-
ory management from JVM to the application level in-
creases implementation complexity, but at the same time
we measured overall performance benefits of up to 15%.

5 Butterfly Codes in Ceph
Starting from version 0.80 Firefly, Ceph supports erasure
code data redundancy through a pluggable interface that
allows the use of a variety of traditional erasure codes
and locally repairable codes (LRC). Unlike HDFS, Ceph
allows encoding objects on-line as they are inserted in
the system. The incoming data stream is partitioned into
small chunks, or stripes, typically around 4096 bytes.
Each of these small chunks is again split into k parts
and encoded using the erasure code of choice. The de-
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Figure 4: Ceph-Butterfly encoding example. For simplicity
reasons k = 2. Object is divided in multiple stripes, and the
Butterfly elements within each of the stripes are encoded.

scribed stripe-based approach allows the encoding pro-
cess to be performed simultaneously while the data is
being streamed in the system. Acknowledgment con-
firming the completed write operation is sent to the user
immediately upon the data uploading and encoding are
completed. Figure 4 describes the encoding process.

The stripe size in Ceph determines the amount of
memory required to buffer the data before the encoding
process starts, i.e. larger stripe size requires more mem-
ory. Note that the entire encoding process takes place
within a single server, therefore the memory is likely to
be a scarce resource. In addition, having larger stripe
sizes negatively affects the object write latency since one
would get less benefits from pipelining the encoding pro-
cess. Hence, from the performance point of view, it is de-
sirable to use small stripe sizes. However, erasure code
implementations benefit from operating on larger data
chunks, because of being able to perform coarser com-
putation tasks and read operations. In case of Butter-
fly codes, the performance is even more impacted by the
stripe size, due to the large number of elements stored
per column. As described in Figure 3, the Butterfly re-
pair process requires accessing and communicating non-
-contiguous fragments of each code column. Small frag-
ments incur high network and even higher HDD over-
head. Due to internal HDD designs, reading random
small fragments of data results in suboptimal disk per-
formance. Because each Ceph stripe contains multiple
Butterfly columns with k ·2k−1 elements per column, us-
ing large stripes is of great importance for the Butterfly
repair process. In Section 6 we evaluate the effects that
Ceph stripe size has on Butterfly repair performance.

5.1 Plug-In Infrastructure

To separate the erasure code logic from that of the OSD,
RADOS uses an erasure code plug-in infrastructure that
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allows dynamical use of external erasure code libraries.
The plug-in infrastructure is designed for traditional and
LRC codes. Third-party developers can provide indepen-
dent erasure code implementations and use the plug-in
infrastructure to achieve seamless integration with RA-
DOS. We summarize the three main plug-in functions:
– encode(): Given a data stripe, it returns a list of n en-
coded redundant chunks, each to be stored in a different
node in the placement group. This function is not only
used to generate parity chunks, but it is also responsible
to stripe data across n nodes.
– minimum to decode(): Given a list of available chunks,
it returns the IDs of the chunks required to decode the
original data stripe. During the decoding process, Ceph
will fetch the chunks associated with these IDs.
– decode(): Given a list of redundant chunks (corre-
sponding to the IDs returned by minimum to decode) it
decodes and returns the original data stripe.

Because it was intended for traditional and LRC
codes, the Ceph erasure coding plug-in infrastructure
does not differentiate between repairing missing redun-
dant chunks, and decoding the original data. When RA-
DOS needs to repair a missing chunk, it uses the decode
function to decode all the k original message symbols,
and then uses the encode function to only regenerate the
missing ones. The described model does not allow re-
covering a missing chunk by only partially downloading
other chunks, a feature that is indispensable for efficient
MSR implementation.

Efficient integration of Butterfly code with Ceph re-
quires re-defining the plug-in interface. The interface we
propose is a generalization of the existing one, and is us-
able across all types of RGCs as well as existing LRCs
and traditional codes. Compared to the previous inter-
face, the new plug-in provides the following two extra
functions:
– minimum to repair(): Given the ID of a missing chunk,
it returns a list of IDs of the redundant blocks required to
repair the missing one. Additionally, for each of the re-
quired IDs, it specifies an additional list of the subparts
that need to be downloaded (a list of offsets and lengths).
Ceph will download all the returns subparts from the cor-
responding nodes.
– repair(): Given the ID of a missing chunk, and the list
of chunk subparts returned by minimum to repair, the
function reconstructs the missing chunks.

In order to implement the new plug-in infrastructure,
parts of the OSD implementation had to be changed.
These changes in Ceph do not allow to support both sys-
tems simultaneously. For back-compatibility with legacy
erasure code plug-ins, we implemented a proxy plug-in
that dynamically links with existing plug-ins. In prac-
tice, if the new plug-in system does not find a requested
plug-in library, the legacy proxy plug-in is loaded.

5.2 Butterfly Implementation

Matching the previous plug-in interface, Butterfly is im-
plemented as an external C library and compiled as a
new-style RADOS erasure code plug-in. The level of
algorithmic and implementation optimizations included
in Ceph-Butterfly is significantly higher than HDFS-
-Butterfly, due to HDFS’s dependency on Java. Our
implementation of Butterfly in Ceph follows the recur-
sive description provided in Section 3. Compared to
HDFS, the recursive approach simplifies implementa-
tion. The recursive approach also achieves better data
locality, which provides better encoding throughput.

6 Results
In this section, we evaluate the repair performance of
our two Butterfly implementations, HDFS-Butterfly and
Ceph-Butterfly.

6.1 Experimental Setup

To evaluate our Butterfly implementations we use a clus-
ter of 12 Dell R720 servers, each with one HDD ded-
icated to the OS, and seven 4TB HDDs dedicated to
the distributed storage service. This makes a total clus-
ter capacity of 336TB. The cluster is interconnected
via 56 Gbps Infiniband network using IPoIB. High-
-performance network ensures that the communication
bandwidth per server exceeds the aggregated disk band-
width. In addition to 12 storage nodes, we use one node
to act as a metadata server. In HDFS a single DataNode
daemon per server manages the seven drives and an ad-
ditional NameNode daemon runs on the metadata server.
In Ceph each server runs one OSD daemon per drive and
the MON daemon runs separately on the metadata server.

For the erasure code we consider two different con-
figurations: k = 5 and k = 7. Since Butterfly codes add
two parities, these parameters give us a storage overhead
of 1.4x and 1.3x respectively, with a number of elements
per code column of 16 and 64 respectively. Having two
different k values allows capturing the impact that the
number of code columns (and hence the IO granularity)
has on the repair performance. We compare the Butter-
fly code performance against the default Reed Solomon
code implementations in HDFS and Ceph for the same k
values. For both systems we evaluate the performance to
repair single node failures. Upon crashing a single data
node, the surviving 11 servers are involved in recreating
and storing the lost data.

Our experiments comprise 2 stages: (i) Initially we
store 20,000 objects of 64MB each in the storage sys-
tem. Including redundant data, that accounts for a total
of 1.8TB of total stored data. Due to the data redundancy
overhead, on average each node stores a total 149.33GB
for k = 5, and 137.14GB for k = 7. (ii) In the second
stage we power-off a single storage server and let the 11
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surviving servers repair the lost data. We log CPU uti-
lization, IO activity and network transfers of each server
during the recovery process.

6.2 Repair Throughput

In Figure 5 we show aggregate repair throughput across
all 12 nodes, in MB/s. Figure 5(a) represents a com-
parison of Butterfly and Reed-Solomon on HDFS when
k = 5 and k = 7. For HDFS we allow 12 reduce tasks
per node (1 task per core), i.e. each node can work on
repairing 12 blocks simultaneously. In Figure 5(a), it is
observable that in all cases the repair throughput has a
steep fall towards the end. In addition, RS(k = 7) experi-
ences very low repair throughput towards the end of the
repair process. If the number of blocks to be repaired
is lower than the number of available tasks, the repair
system does not run at the full capacity, resulting in the
steep decline of the aggregated repair throughput. Repair
process for RS (k= 7) experiences load imbalance result-
ing in low throughput towards the end. Providing repair
load-balancing in Hadoop is out of scope of this study.
We focus on the sustainable repair throughput rather than
the overall running time.

In HDFS, for k = 5, Butterfly reaches a repair through-
put between 500 and 600MB/s, which is 1.6x higher than
RS repair throughput. Although this is an encouraging
result, Butterfly does not reach twice the performance of
RS due to several reasons. The most important being
the higher storage media contention in case of Butter-
fly. During the repair process Butterfly accesses small
non-contiguous column elements (see gray components
in Figrue 3). Larger number of relatively small IOs in-
troduces more randomness in HDD behavior which in
turn reduces the overall repair performance of Butterfly.
Another performance degrading source is the data ma-
nipulation required by the vector-based communications
we introduced (see Section 4.3). Although vector-based
communication significantly improves the overall perfor-
mance, certain overhead is present due to data packing
and unpacking, i.e. high overhead memory manipulation
operations in Java.

It is interesting to note that for k = 7, the difference
in repair throughput between Butterfly and RS is ∼2x.
With larger values of k communication bandwidth re-
quirements increase due to large number of blocks re-
quired during the repair process. For k = 7 the benefits
of reducing the network contention with Butterfly sig-
nificantly outweigh possible drawbacks related to HDD
contention and vector communication.

In Figure 5(b),(c) we depict the repair throughput for
Ceph. In the case of 4MB stripe size, Figure 5(b), each
stripe forms a Butterfly data matrix of 2k−1 rows and
k columns. Consequently, the size of each data ele-
ment is of 50KB and 9KB for k = 5 and k = 7 respec-

tively. During the repair process, when non-contiguous
elements are accessed, the small element size results in
an inefficient HDD utilization and additional CPU oper-
ations due to element manipulation. This in turn leads
to a degraded an inconsistent repair throughput as we
can observe in Figure 5(b). Increasing the stripe size
to 64MB results into having element sizes of 800KB,
143KB, large enough sizes to make a better utilization
of the disk, and provide better repair throughput as we
depict in Figure 5(c).

6.3 CPU Utilization

We measure CPU utilization of Butterfly/RS repair and
evaluate the capability of each approach to possibly share
in-node resources with other applications. CPU utiliza-
tion understanding is of importance in distributed sys-
tems running in cloud-virtualized environments, or when
the data repair processes share resources with other ap-
plications (e.g., map-reduce tasks). Figure 6 represents
the CPU utilization of Butterfly and RS on a single node.
The presented results are averaged across all nodes in-
volved in computation.

For HDFS, in Figure 6(a) we observe that the CPU
utilization for Butterfly exceeds RS CPU utilization by
a factor of 3-4x, for both k = 5 and k = 7. Partially,
this is due to the fact that RS spends more time waiting
for network IO, because it requires higher communica-
tion costs compared to Butterfly. However, the number
of total CPU cycles spent on computation in Butterfly is
significantly higher than in RS. Compared to RS, But-
terfly spends ∼2.1x and ∼1.7x more cycles, for k = 5
and k = 7 respectively. The observed CPU utilization
is strongly tied to Java as the programming language of
choice for HDFS. Butterfly implementation frequently
requires non-contiguous data accesses and vector-based
communication. Java does not have slice access to buffer
arrays, requiring extra memory copies for packing and
unpacking non-contiguous data.

Figure 6(b),(c) represents the CPU utilization for
Ceph-Butterfly and RS, when the Ceph stripe size is
4MB and 64MB. For Ceph stripe size of 4MB and k = 5,
the Butterfly repair process operates on large number of
elements that are only ∼50K in size. The fine granu-
larity computation, together with frequent and fine gran-
ularity communication, causes erratic and unpredictable
CPU utilization, presented in Figure 6(b). Similar obser-
vation applies for k = 7. Note that the CPU utilization
for RS is somewhat lower compared to Butterfly, but still
unstable and with high oscillations. The RS repair pro-
cess operates on somewhat coarser data chunks, but the
software overhead (memory management, function calls,
cache misses, etc.) is still significant.

With the Ceph stripe size of 64M, Figure 6(c), the But-
terfly element size as well as the I/O size increases sig-
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(a) HDFS. (b) Ceph with 4MB stripes. (c) Ceph with 64MB stripes.

Figure 5: Repair throughput aggregated across all nodes involved in the repair process. Each system configuration we
run with RS and Butterfly, with k = 5 and k = 7.

(a) HDFS. (b) Ceph with 4MB stripes. (c) Ceph with 64MB stripes.

Figure 6: Average CPU utilization per server. Each system configuration we run with RS and Butterfly, with k = 5 and
k = 7. The graphs represent the average utilization across all 12 nodes involved in the repair process.

nificantly, resulting in lower and more predictable CPU
utilization. Although Butterfly algorithm requires more
operations compared to RS, our cache-aware implemen-
tation, carefully optimized with vector instructions in
C/C++, achieves CPU utilization comparable to that of
RS. Furthermore, both Butterfly and RS achieve ∼2-3%
CPU utilization across all observed k values.

The presented results show that MSR codes over
GF(2) achieve low CPU usage and are a good candi-
date for running in multi-user environments. However,
achieving efficient CPU utilization requires a program-
ming language that allows appropriate set of optimiza-
tions, and relatively coarse data chunks. In an on-line
encoding system, such as Ceph, the size of the stripe size
is of extreme importance for achieving efficient CPU us-
age and good repair performance.

6.4 Network Traffic

In all systems used in this study we monitor network and
storage traffic, and compare the observed results to the
theoretical expectations. Figure 7 presents the results.

Figure 7(a) depicts the network traffic comparison.
The optimal bars represent the lower bound on the
amount of traffic. The optimal + 1 bars represent the
minimum increased by the size of a single HDFS block

(we use 64MB block size). The original implementation
of Reed-Solomon in Facebook - HDFS [2] unnecessar-
ily moves an extra HDFS block to the designated repair
node, causing somewhat higher network utilization. op-
timal + 1 matches the amount of data pushed through the
network in case of Reed-Solomon on HDFS.

We can observe in Figure 7(a) that HDFS-Butterfly
implementation is very close to the theoretical minimum.
The small difference between Butterfly and the optimal
value is due to the impact of metadata size. Similarly,
Reed-Solomon on HDFS is very close to optimal + 1
with the additional metadata transfer overhead. In case of
Ceph, the network traffic overhead is significantly higher.
For Ceph-4MB, the large overhead comes from the very
small chunks being transferred between the nodes and
the per-message overhead introduced by the system. The
communication overhead reduces for larger stripe sizes,
i.e. Ceph-64MB. However, even with Ceph-64MB the
communication overhead increases with k, again due to
reduced message size and larger per-message overhead.
Small message sizes in Ceph come as a consequence of
the on-line encoding approach that significantly reduces
the size of encoded messages, and hence the sizes of the
symbol elements.

The results presented in Figure 7(a) reveal that if care-
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(a) Overall Network Traffic in GB (b) Overall Disk Reads in GB (c) Overall Disk Writes in GB

Figure 7: The aggregate amount (across all 11 nodes included in the repair process) of network traffic and IOs during
the repair process. We observe RS and Butterfly with k = 5 and k = 7.

fully implemented, MSR codes can reduce the repair net-
work traffic by a factor of 2x compared to traditional era-
sure codes. Higher amount of network traffic in case of
Ceph suggests that a specific system designs that avoid
fine-grain communication is necessary.

6.5 Storage Traffic

Figures 7(b),(c) represent the observed HDD read/write
traffic, as well as the theoretically optimal values pre-
dicted from the code design. We record the total amount
of traffic across all HDDs in the system. HDFS-Butterfly
achieves nearly optimal amount of read traffic, with the
addition of metadata. HDFS-RS read traffic is also very
close to optimal + 1, again the extra overhead comes
from the HDFS metadata.

The results become somewhat more interesting with
Ceph. It is noticeable that the difference between Ceph-
-Butterfly and optimal increases as we move from k = 5
to k = 7. Due to the small read I/O sizes with Ceph-
-Butterfly, reads suffer two drawbacks: (i) misaligned
reads may cause larger data transfer (smallest HDD I/O
is 4K and it needs to be 4K aligned), and (ii) read-ahead
mechanism (128K by default) increases the amount of
data transferred from an HDD. While read-ahead can be
disabled, the entire system would suffer when reading
sequential data, which is likely the most frequent sce-
nario. The mentioned two drawbacks increase the influ-
ence on performance when the read size reduces, which
is the case when we move from k = 5 to k = 7. With
large enough Ceph stripes, the read I/O size increases in
size, and the read overhead converges to zero. Exam-
ple of large read I/Os is Ceph-RS, where the read over-
head becomes negligible, Figure 7(b). In case of Butter-
fly, achieving large read I/Os requires impractically large
Ceph stripe sizes.

For both systems and for both erasure code schemes,
the overall amount of writes exceeds the optimal (lost
data) amount by a factor of ∼2, as presented in Fig-
ure 7(c). Ceph allows updates of stored data, and for
maintaining consistency in case of a failure, Ceph re-
lies on journaling. In our experiments the journal for

each OSD was co-located with the data, sharing the
same HDD. In Ceph, all data being written have to pass
through the journal and as a consequence the write traf-
fic is doubled. Furthermore, the amount of data written
in Ceph exceeds 2 x optimal because of data balancing.
By examining the Ceph logs, we found that during the
repair process many OSDs become unresponsive for cer-
tain amount of time. When that happens the recovered
data is redirected to available OSDs, and load-balancing
is performed when the non-responsive OSDs come back
on-line. Note that the load-balancing can be performed
among OSDs on the same server, therefore not affect-
ing the network traffic significantly. Also, reads are not
affected by load balancing since the data being moved
around is “hot” and in large part cached in the local
filesystem. Tracking down the exact reason for having
OSDs temporarily unavailable is outside of scope of this
study.

In case of HDFS, there is an intermediate local file
where the recovered block is being written before com-
mitted back to the filesystem. This was the initial design
in HDFS-RS, and our HDFS-Butterfly currently uses the
same design. We will remove the extra write in the fu-
ture. The intermediate file is not always entirely synced
to HDD before the recovered data is further destaged to
HDFS, resulting in the overall write traffic being some-
times lower than 2 x optimal.

7 Related Work

Traditional erasure codes, such as Reed-Solomon, have
been implemented and tested in a number of large-
-scale distributed storage systems. Compared to replica-
tion, Reed-Solomon emerged as a good option for cost-
-effective data storage and good data durability. Most
widely used open source distributed systems HDFS and
Ceph implement Reed-Solomon variants [1, 5]. In addi-
tion, traditional erasure codes have been used in numer-
ous other studies and production systems, including stor-
age systems in Google and Facebook [3, 6, 15, 16, 18,
22]. Compared to the MSR code used in this study, the
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traditional erasure codes initiate up to 2x more network
and storage traffic during the repair process.

When it comes to practical usage of advanced erasure
coding schemes, previous work have mostly been fo-
cused on LRC-based implementations in distributed stor-
age systems. Sathiamoorthy et al. [28] introduce Xorbas,
an LRC-based erasure coding that they also implement in
HDFS. The study presents significant performance im-
provements in terms of both, disk and network traffic
during the repair process. Xorbas introduce 14% storage
overhead compared to RS.

Huang et al. [20] implement and demonstrate the ben-
efits of LRC-based erasure coding in Windows Azure
Storage. Khan et al. [21] designed a variation of Reed-
Solomon codes that allow to construct MDS array codes
with symbol locality, optimized to improve degraded
read performance. In case of Butterfly codes, the de-
graded reads performance would be equivalent to RAID
5 degraded reads, and not as efficient as the work pre-
sented in by Khan. Xia et al. [35] present an interest-
ing approach, where they combine two different erasure
coding techniques from the same family, depending on
the workload. They use the fast code for high recov-
ery performance, and compact code for low storage over-
head. They focus on two erasure coding families, prod-
uct codes and LRC. All of the mentioned studies focus on
the LRC erasure codes that cannot achieve the minimum
repair traffic described by MSRs.

Rashmi et al. [25] implemented a MSR code construc-
tion with a storage overhead above 2×. In the regime be-
low 2×, Hu et al. [11] presented functional MSR code,
capable of achieving significant performance improve-
ment over the traditional erasure codes when it comes to
repair throughput. However, upon the first data loss and
repair process, functional MSRs do not hold systematic
(raw) data in the system any more. Consequently, the
cost of reading systematic data increases significantly as
the system ages.

In recent years, several erasure code constructions
have attained the theoretical minimum repair traffic [7,
10, 12, 24, 31]. Although similar in the amount of repair
traffic, Butterfly codes are systematic MDS array codes
with node elements over GF(2). This small field size al-
lows relatively simple implementation and high compu-
tational performance.

8 Discussion, Future Work, Conclusions
In this study we captured the performance of MSR codes
in real-world distributed systems. Our study is based
on Butterfly codes, a novel MSR code which we imple-
mented in two widely used distributed storage systems,
Ceph and HDFS. Our study aims at providing answers
to important questions related to MSR codes: (i) can
the theoretical reduction in repair traffic translate to an

actual performance improvement, and (ii) in what way
the system design affects the MSR code repair perfor-
mance. Our analysis shows that MSR codes are capable
reducing network traffic and read I/O access during re-
pairs. For example, Butterfly codes in HDFS achieves
almost optimal network and storage traffic. However,
the overall encoding/decoding performance in terms of
latency and storage utilization heavily depends on the
system design, as well as the ability of the system to
efficiently manage local resources, such as memory al-
location/deallocation/movement. Java-based HDFS ex-
periences significant CPU overhead mainly due to non-
transparent memory management in Java.

The encoding approach is one of the most important
decisions the system architect faces when designing a
distributed erasure coding system. The initial decision
of using real-time or batch-based encoding strongly im-
pacts the overall system design and performance. The
real-time approach achieves efficient storage utilization,
but suffers high storage access overhead due to exces-
sive data fragmentation. We show that in Ceph, for
stripes of 4MB the repair network overhead exceeds
many times the expected one, while the storage access
overhead goes up to 60% higher than optimal (depend-
ing on code parameters). The situation improves with
larger stripe sizes but the communication and storage
overhead remains. Batch-based data encoding (imple-
mented in HDFS) achieves better performance, but re-
duces storage efficiency due to the required intermediate
persistent buffer where input data is stored before being
encoded.

To address the design issues, we suggest a system with
on-line data encoding with large stripes, able to use lo-
cal non-volatile memory (NVM) to accumulate enough
data before encoding it. The non-volatile device has to
be low-latency and high-endurance which are important
attributes of future NVM devices, some of which have
already been prototyped. Part of our on-going effort is
to incorporate this non-volatile and low-latency devices
into a distributed coding system.

When it comes to the features required to efficiently
implement MSR codes in distributed storage systems,
our results indicate that communication vectorization be-
comes necessary approach due to the non-contiguous
data access pattern. The interface between the system
and the MSR codes requires novel designs supporting the
specific requirements of these codes. In case of Ceph we
showed the necessity for chaining the plug-in API, and
we proposed a new model that is suitable for MSR codes.

While the overall performance of MSR codes in dis-
tributed storage systems depends on many factors, we
have shown that with careful design and implementation,
MSR-based repairs can meet theoretical expectations and
outperform traditional codes by up to a factor of 2x.
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