
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

Estimating Unseen Deduplication—
from Theory to Practice

Danny Harnik, Ety Khaitzin, and Dmitry Sotnikov, IBM Research—Haifa

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harnik

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 277

Estimating Unseen Deduplication – from Theory to Practice

Danny Harnik, Ety Khaitzin and Dmitry Sotnikov
IBM Research–Haifa

{dannyh, etyk, dmitrys}@il.ibm.com

Abstract
Estimating the deduplication ratio of a very large
dataset is both extremely useful, but genuinely
very hard to perform. In this work we present a
new method for accurately estimating deduplica-
tion benefits that runs 3X to 15X faster than the
state of the art to date. The level of improve-
ment depends on the data itself and on the storage
media that it resides on. The technique is based
on breakthrough theoretical work by Valiant and
Valiant from 2011, that give a provably accurate
method for estimating various measures while see-
ing only a fraction of the data. However, for the use
case of deduplication estimation, putting this theory
into practice runs into significant obstacles. In this
work, we find solutions and novel techniques to en-
able the use of this new and exciting approach. Our
contributions include a novel approach for gauging
the estimation accuracy, techniques to run it with
low memory consumption, a method to evaluate the
combined compression and deduplication ratio, and
ways to perform the actual sampling in real storage
systems in order to actually reap benefits from these
algorithms. We evaluated our work on a number of
real world datasets.

1 Introduction
1.1 Deduplication and Estimation
After years of flourishing in the world of back-
ups, deduplication has taken center stage and is
now positioned as a key technology for primary
storage. With the rise of all-flash storage systems
that have both higher cost and much better random
read performance than rotating disks, deduplication
and data reduction in general, makes more sense
than ever. Combined with the popularity of modern
virtual environments and their high repetitiveness,
consolidating duplicate data reaps very large bene-
fits for such high-end storage systems. This trend
is bound to continue with new storage class memo-
ries looming, that are expected to have even better
random access and higher cost per GB than flash.

This paper is about an important yet extremely
hard question – How to estimate the deduplication
benefits of a given dataset? Potential customers
need this information in order to make informed
decisions on whether high-end storage with dedu-
plication is worthwhile for them. Even more so, the

question of sizing and capacity planning is deeply
tied to the deduplication effectiveness expected on
the specific data. Indeed, all vendors of deduplica-
tion solutions have faced this question and unfortu-
nately there are no easy solutions.

1.2 The hardness of Deduplication Es-
timation and State of the Art

The difficulty stems from the fact that deduplication
is a global property and as such requires searching
across large amounts of data. In fact, there are the-
oretical proofs that this problem is hard [12] and
more precisely, that in order to get an accurate esti-
mation one is required to read a large fraction of the
data from disk. In contrast, compression is a local
procedure and therefore the compression estimation
problem can be solved very efficiently [11].

As a result, the existing solutions in the market
take one of two approaches: The first is simply to
give an educated guess based on prior knowledge
and based on information about the workload at
hand. For example: Virtual Desktop Infrastructure
(VDI) environments were reported (e.g. [1]) to give
an average 0.16 deduplication ratio (a 1:6 reduc-
tion). However in reality, depending on the specific
environment, the results can vary all the way be-
tween a 0.5 to a 0.02 deduplication ratio (between
1:2 and 1:50). As such, using such vague estimation
for sizing is highly inaccurate.

The other approach is a full scan of the data at
hand. In practice, a typical user runs a full scan on
as much data as possible and gets an accurate es-
timation, but only for the data that was scanned.
This method is not without challenges, since eval-
uating the deduplication ratio of a scanned dataset
requires a large amount of memory and disk opera-
tions, typically much higher than would be allowed
for an estimation scan. As a result, research on the
topic [12, 19] has focused on getting accurate esti-
mations with low memory requirement, while still
reading all data from disk (and computing hashes
on all of the data).

In this work we study the ability to estimate
deduplication while not reading the entire dataset.

1.3 Distinct Elements Counting
The problem of estimating deduplication has sur-
faced in the past few years with the popularity of

278 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

the technology. However, this problem is directly
linked to a long standing problem in computer sci-
ence, that of estimating the number of distinct el-
ements in a large set or population. With motiva-
tions ranging from Biology (estimating the number
of species) to Data Bases (distinct values in a ta-
ble/column), the problem received much attention.
There is a long list of heuristic statistical estima-
tors (e.g. [4, 9, 10]), but these do not have tight
guarantees on their accuracy and mostly target sets
that have a relatively low number of distinct ele-
ments. Their empirical tests perform very poorly
on distributions with a long tail (distributions in
which a large fraction of the data has low duplica-
tion counts) which is the common case with dedu-
plication. Figure 1 shows examples of how inaccu-
rate heuristic estimations can be on a real dataset.
It also shows how far the deduplication ratio of the
sample can be from that of the entire dataset.

Figure 1: An example of the failure of current sampling
approaches: Each graph depicts a deduplication ratio es-
timate as a function of the sampling percent. The points
are an average over 100 random samples of the same
percent. We see that simply looking at the ratio on the
sample gives a very pessimistic estimation while the esti-
mator from [4] is always too optimistic in this example.

This empirical difficulty is also supported by the-
oretical lower bounds [16] proving that an accurate
estimation would require scanning a large fraction
of the data. As a result, a large bulk of the work on
distinct elements focused on low-memory estima-
tion on data streams (including a long list of studies
starting from [7] and culminating in [14]). These
estimation methods require a full scan of the data
and form the foundation for the low-memory scans
for deduplication estimation mentioned in the pre-
vious section.

In 2011, in a breakthrough paper, Valiant and
Valiant [17] showed that at least Ω(n

logn) of the
data must be inspected and more over, that there is a
matching upper bound. Namely, they showed a the-
oretical algorithm that achieves provable accuracy
if at least O(n

log n) of the elements are examined.

Subsequently, a variation on this algorithm was also
implemented by the same authors [18]. Note that
the Valiants work, titled “Estimating the unseen” is
more general than just distinct elements estimation
and can be used to estimate other measures such as
the Entropy of the data (which was the focus in the
second paper [18]).

This new ”Unseen” algorithm is the starting
point of our work in which we attempt to deploy
it for deduplication estimation.

1.4 Our Work
More often than not, moving between theory and
practice is not straightforward and this was defi-
nitely the case for estimating deduplication. In this
work we tackle many challenges that arise when
trying to successfully employ this new technique in
a practical setting. For starters, it is not clear that
performing random sampling at a small granular-
ity has much benefit over a full sequential scan in
a HDD based system. But there are a number of
deeper issues that need to be tackled in order to ac-
tually benefit from the new approach. Following is
an overview of the main topics and our solutions:

Understanding the estimation accuracy. The
proofs of accuracy of the Unseen algorithm are the-
oretic and asymptotic in nature and simply do not
translate to concrete real world numbers. Moreover,
they provide a worst case analysis and do not give
any guarantee for datasets that are easier to analyze.
So there is no real way to know how much data to
sample and what fraction is actually sufficient. In
this work we present a novel method to gauge the
accuracy of the algorithm. Rather than return an
estimation, our technique outputs a range in which
the actual result is expected to lie. This is practical
in many ways, and specifically allows for a gradual
execution: first take a small sample and evaluate its
results and if the range is too large, then continue by
increasing the sample size. While our tests indicate
that a 15% sample is sufficient for a good estimation
on all workloads, some real life workloads reach a
good enough estimation with a sample as small as
3% or even less. Using our method, one can stop
early when reaching a sufficiently tight estimation.

The memory consumption of the algorithm. In
real systems, being able to perform the estimation
with a small memory footprint and without addi-
tional disk IOs is highly desirable, and in some
cases a must. The problem is that simply running
the Unseen algorithm as prescribed requires map-
ping and counting all of the distinct chunks in the
sample. In the use case of deduplication this num-
ber can be extremely large, on the same order of
magnitude as the number of chunks in the entire

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 279

dataset. Note that low memory usage also benefits
in lower communication bandwidth when the esti-
mation is performed in a distributed system.

Existing solutions for low-memory estimation of
distinct elements cannot be combined in a straight-
forward manner with the Unseen algorithm. Rather,
they require some modifications and a careful com-
bination. We present two such approaches: one
with tighter accuracy, and a second that loses more
estimation tightness but is better for distributed and
adaptive settings. In both cases the overall algo-
rithm can run with as little as 10MBs of memory.
Combining deduplication and compression.
Many of the systems deploying deduplication also
use compression to supplement the data reduction.
It was shown in multiple works that this combina-
tion is very useful in order to achieve improved data
reduction for all workloads [5, 13, 15]. A natural
approach to estimating the combined benefits is to
estimate each one separately and multiply the ratios
for both. However, this will only produce correct
results when the deduplication effectiveness and
compression effectiveness are independent, which
in some cases is not true. We present a method to in-
tegrate compression into the Unseen algorithm and
show that it yields accurate results.

How to perform the sampling? As stated above,
performing straightforward sampling at a small
granularity (e.g. 4KB) is extremely costly in HDD
based systems (in some scenarios, sampling as little
as 2% may already take more than a full scan). In-
stead we resort to sampling at large “super-chunks”
(of 1MB) and performing reads in a sorted fashion.
Such sampling runs significantly faster than a full
scan and this is the main source of our time gains.

Equally as important, we show that our methods
can be tuned to give correct and reliable estimations
under this restriction (at the cost of a slightly looser
estimation range). We also suggest an overall sam-
pling strategy that requires low memory, produces
sorted non-repeating reads and can be run in grad-
ual fashion (e.g. if we want to first read a 5% sam-
ple and then enlarge the sample to a 10% one).

Summary of our results. In summary, we design
and evaluate a new method for estimating dedupli-
cation ratios in large datasets. Our strategy uti-
lizes less than 10MBs of RAM space, can be dis-
tributed, and can accurately estimate the joint ben-
efits of compression and deduplication (as well as
their separate benefits). The resulting estimation is
presented as a range in which the actual ratio is ex-
pected to reside (rather than a single number). This
allows for a gradual mode of estimation, where one
can sample a small fraction, evaluate it and con-
tinue sampling if the resulting range is too loose.

Note that the execution time of the actual estima-
tion algorithms is negligible vs. the time that it
takes to scan the data, so being able to stop with a
small sampling fraction is paramount to achieving
an overall time improvement.

We evaluate the method on a number of real life
workloads and validate its high accuracy. Overall
our method achieves at least a 3X time improve-
ment over the state of the art scans. The time
improvement varies according to the data and the
medium on which data is stored, and can reach time
improvements of 15X and more.

2 Background and the Core algorithm
2.1 Preliminaries and Background
Deduplication is performed on data chunks of size
that depends on the system at hand. In this paper we
consider fixed size chunks of 4KB, a popular choice
since it matches the underlying page size in many
environments. However the results can be easily
generalized to different chunking sizes and meth-
ods. Note that variable-sized chunking can be han-
dled in our framework but adds complexity espe-
cially with respect to the actual sampling of chunks.

As is customary in deduplication, we represent
the data chunks by a hash value of the data (we
use the SHA1 hash function). Deduplication occurs
when two chunks have the same hash value.

Denote the dataset at hand by S and view it
as consisting of N data chunks (namely N hash
values). The dataset is made up from D distinct
chunks, where the ith element appears ni times in
the dataset. This means that

∑D
i=1 ni = N .

Our ultimate target is to come up with an esti-
mation of the value D, or equivalently of the ratio
r = D

N . Note that throughout the paper we use
the convention where data reduction (deduplication
or compression) is a ratio between in [0, 1] where
lower is better. Namely, ratio 1.0 means no reduc-
tion at all and 0.03 means that the data is reduced
to 3% of its original size (97% saving).

When discussing the sampling, we will consider
a sample of size K out of the entire dataset of N
chunks. The corresponding sampling rate is de-
noted by p = K

N (for brevity, we usually present
p in percentage rather than a fraction). We denote
by Sp the random sample of fraction p from S.

A key concept for this work that is what we term
a Duplication Frequency Histogram (DFH) that is
defined next (note that in [17] this was termed the
“fingerprint” of the dataset).

Definition 1. A Duplication Frequency His-
togram (DFH) of a dataset S is a histogram x =
{x1, x2, ...} in which the value xi is the number of
distinct chunks that appeared exactly i times in S.

280 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

For example, the DFH of a dataset consisting of
N distinct elements will have x1 = N and zero
elsewhere. An equal sized dataset where all ele-
ments appear exactly twice will have a DFH with
x2 = N

2 and zero elsewhere. Note that for a legal
DFH it must hold that

∑
i xi · i = N and more-

over that
∑

i xi = D. The length of a DFH is set
by the highest non-zero xi. In other words it is the
frequency of the most popular chunk in the dataset.
The same definition of DFH holds also when dis-
cussing a sample rather than entire dataset.

The approach of the Unseen algorithm is to es-
timate the DFH of a dataset and from it devise an
estimation of the deduplication.

2.2 The Unseen Algorithm
In this section we give a high level presentation of
the core Unseen algorithm. The input of the algo-
rithm is a DFH y of the observed sample Sp and
from it the algorithm finds an estimation x̂ of the
DFH of the entire dataset S. At a high level, the
algorithm finds a DFH x̂ on the full set that serves
as the ”best explanation” to the observed DFH y on
the sample.

As a preliminary step, for a DFH x′ on the dataset
S define the expected DFH y′ on a random p sam-
ple of S. In the expected DFH each entry is ex-
actly the statistical expectancy of this value in a ran-
dom p sample. Namely y′i is the expected number
of chunks that appear exactly i times in a random
p fraction sample. For fixed p this expected DFH
can be computed given x′ via a linear transforma-
tion and can be presented by a matrix Ap such that
y′ = Ap · x′.

The main idea in the Unseen algorithm is to find
an x′ that minimizes a distance measure between
the expected DFH y′ and the observed DFH y. The
distance measure used is a normalized L1 Norm
(normalized by the values of the observed y). We
use the following notation for the exact measure be-
ing used:

Δp(x
′, y) =

∑
i

1√
yi + 1

|yi − (Ap · x′)i| .

The algorithm uses Linear Programming for the
minimization and is outlined in Algorithm 1.

The actual algorithm is a bit more complicated
due to two main issues: 1) this methodology is
suited for estimating the duplication frequencies of
unpopular chunks. The very popular chunks can be
estimated in a straightforward manner (an element
with a high count c is expected to appear approx-
imately p · c times in the sample). So the DFH is
first broken into the easy part for straightforward
estimation and the hard part for estimation via Al-
gorithm 1. 2) Solving a Linear program with too

Algorithm 1: Unseen Core
Input: Sample DFH y, fraction p, total size N
Output: Estimated deduplication ratio r̂
/* Prepare expected DFH transformation*/

Ap ← prepareExpectedA(p);

Linear program:
Find x′ that minimizes: Δp(x

′, y)
Under constraints: /* x′ is a legal DFH */∑

i x
′
i · i = N and ∀i x′

i ≥ 0

return r̂ =
∑

i x
′
i

N

many variables is impractical, so instead of solving
for a full DFH x, a sparser mesh of values is used
(meaning that not all duplication values are allowed
in x). This relaxation is acceptable since this level
of inaccuracy has very little influence for high fre-
quency counts. It is also crucial to make the running
time of the LP low and basically negligible with re-
spect to the scan time.

The matrix Ap is computed by a combination
of binomial probabilities. The calculation changes
significantly if the sampling is done with repetition
(as was used in [18]) vs. without repetition. We re-
fer the reader to [18] for more details on the core
algorithm.

3 From Theory to Practice
In this section we present our work to actually
deploying the Unseen estimation method for real
world deduplication estimation. Throughout the
section we demonstrate the validity of our results
using tests on a single dataset. This is done for
clarity of the exposition and only serves as a repre-
sentative of the results that where tested across all
our workloads. The dataset is the Linux Hypervisor
data (see Table 1 in Section 4) that was also used in
Figure 1. The entire scope of results on all work-
loads appears in the evaluation section (Section 4).

3.1 Gauging the Accuracy
We tested the core Unseen algorithm on real life
workloads and it has impressive results, and in gen-
eral it thoroughly outperforms some of the estima-
tors in the literature. The overall impression is that
a 15% sample is sufficient for accurate estimation.
On the other hand the accuracy level varies greatly
from one workload to the next, and often the esti-
mation obtained from 5% or even less is sufficient
for all practical purposes. See example in Figure 2.

So the question remains: how to interpret the es-
timation result and when have we sampled enough?
To address these questions we devise a new ap-
proach that returns a range of plausible deduplica-

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 281

Figure 2: The figure depicts sampling trials at each of the
following sample percentages 1%, 2%, 5%, 7.5%, 10%.
15% and 20%. For each percentage we show the results
of Unseen on 30 independent samples. The results are
very noisy at first, for example, on the 1% samples they
range from ∼ 0.17 all the way to ∼ 0.67. But we see a
nice convergence starting at 7.5%. The problem is that
seeing just a single sample and not 30, gives little indica-
tion about the accuracy and convergence.

tion ratios rather than a single estimation number.
In a nut shell, the idea is that rather than give the
DFH that is the ”best explanation” to the observed
y, we test all the DFHs that are a ”reasonable ex-
planation” of y and identify the range of possible
duplication in these plausible DFHs.

Technically, define criteria for all plausible solu-
tions x′ that can explain an observed sample DFH
y. Of all these plausible solutions we find the ones
which give minimal deduplication ratio and max-
imal deduplication ratio. In practice, we add two
additional linear programs to the first initial opti-
mization. The first linear program helps in identi-
fying the neighborhood of plausible solutions. The
second and third linear programs find the two lim-
its to the plausible range. In these linear programs
we replace the optimization on the distance mea-
sure with an optimization on the number of distinct
chunks. The method is outlined in Algorithm 2.

Note that in [18] there is also a use of a second
linear program for entropy estimation, but this is
done for a different purpose (implementing a sort
of Occam’s razor).

Why does it work? We next describe the intu-
ition behind our solution: Consider the distribu-
tion of Δp(x, y) for a fixed x and under random y
(random y means a DFH of a randomly chose p-
sample). Suppose that we knew the expectancy
E(Δp) and standard deviation σ of Δp. Then given
an observed y, we expect, with very high probabil-
ity, that the only plausible source DFHs x′ are such
that Δp(x

′, y) is close to E(Δp) (within α · σ for
some slackness variable α). This set of plausible x′

can be fairly large, but all we really care to learn

Algorithm 2: Unseen Range
Input: Sample DFH y, fraction p, total size N,

slackness α (default α = 0.5)
Output: Deduplication ratio range [r, r]

/* Prepare expected DFH transformation*/
Ap ← prepareExpectedA(p);

1st Linear program:
Find x′ that minimizes: Δp(x

′, y)
Under constraints: /* x′ is a legal DFH */∑

i x
′
i · i = N and ∀i x′

i ≥ 0

For the resulting x′ compute: Opt = Δp(x
′, y)

2nd Linear program:
Find x that minimizes:

∑
i xi

Under constraints:
∑

i xi · i = N and ∀i xi ≥ 0 and
Δp(x, y) < Opt+ α

√
Opt

3rd Linear program:
Find x that maximizes:

∑
i xi

Under constraints:
∑

i xi · i = N and ∀i xi ≥ 0 and
Δp(x, y) < Opt+ α

√
Opt

return [r =
∑

i xi

N , r =
∑

i xi

N]

about it is its boundaries in terms of deduplication
ratio. The second and third linear programs find out
of this set of plausible DFHs the ones with the best
and worst deduplication ratios .

The problem is that we do not know how to
cleanly compute the expectancy and standard de-
viation of Δp, so we use the first linear program
to give us a single value within the plausible range.
We use this result to estimate the expectancy and
standard deviation and give bounds on the range of
plausible DFHs.

Setting the slackness parameter.. The main tool
that we have in order to fine tune the plausible so-
lutions set is the slackness parameter α. A small
α will result in a tighter estimation range, yet risks
having the actual ratio fall outside of the range. Our
choice of slackness parameter is heuristic and tai-
lored to the desired level of confidence. The choices
of this parameter throughout the paper are made by
thorough testing across all of our datasets and the
various sample sizes. Our evaluations show that
a slackness of α = 0.5 is sufficient and one can
choose a slightly larger number for playing it safe.
A possible approach is to use two different levels of

282 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

slackness and present a “likely range” along with a
“safe range”.

In Figure 3 we see an evaluation of the range
method. We see that our upper and lower bounds
give an excellent estimation of the range of possible
results that the plain Unseen algorithm would have
produced on random samples of the given fraction.

Figure 3: This figure depicts the same test as in Fig-
ure 2, but adds the range algorithm results. This gives
a much clearer view – For example, one can deduce that
the deduplication ratio is better than 50% already at a
5% sample and that the range has converged significantly
at this point, and is very tight already at 10%.

An interesting note is that unlike many statistical
estimation in which the actual result has a high like-
lihood to be at the center of the range, in our case
all values in the range can be equally likely.

Evaluating methods via average range tightness.
The range approach is also handy in comparing the
success of various techniques. We can evaluate the
average range size of two different methods and
choose the one that gives tighter average range size
using same sample percentage. For example we
compare running the algorithm when the sampling
is with repetitions (this was the approach taken in
[18]) versus taking the sample without repetitions.
As mentioned in Section 2.2, this entails a differ-
ent computation of the matrix Ap. Not surprisingly,
taking samples without repetitions is more success-
ful, as seen in Figure 4. This is intuitive since rep-
etitions reduce the amount of information collected
in a sample. Note that sampling without repetition
is conceptually simpler since it can be done in a to-
tally stateless manner (see Section 3.4). Since the
results in Figure 4 were consistent with other work-
loads, we focus our attention from here on solely on
the no repetition paradigm.

3.2 Running with Low Memory
Running the estimation with a 15% sample requires
the creation of a DFH for the entire sample, which
in turn requires keeping tab on the duplication fre-
quencies of all distinct elements in the sample.

Figure 4: An average range size comparison of sampling
with repetitions vs. without repetitions. For each sam-
pling percentage the averages are computed over 100
samples. Other than the 1% sample which is bad to begin
with, the no repetition sampling is consistently better.

Much like the case of full scans, this quickly be-
comes an obstacle in actually deploying the algo-
rithm. For example, in our largest test data set,
that would mean keeping tab on approximately 200
Million distinct chunks, which under very strict as-
sumptions would require on the order of 10GBs of
RAM, unless one is willing to settle for slow disk
IOs instead of RAM operations. Moreover, in a
distributed setting it would require moving GBs of
data between nodes. Such high resource consump-
tion may be feasible in a dedicated system, but not
for actually determining deduplication ratios in the
field, possibly at a customer’s site and on the cus-
tomers own servers.

We present two approaches in order to handle
this issue, both allowing the algorithm to run with
as little as 10MBs of RAM. The first achieves rel-
atively tight estimations (comparable to the high
memory algorithms). The second produces some-
what looser estimations but is more flexible to us-
age in distributed or dynamic settings.

The base sample approach. This approach fol-
lows the low-memory technique of [12] and uses
it to estimate the DFH using low memory. In this
method we add an additional base step so the pro-
cess is as follows:

1. Base sample: Sample C chunks from the data
set (C is a “constant” – a relatively small num-
ber, independent of the database size). Note
that we allow the same hash value to appear
more than once in the base sample.

2. Sample and maintain low-memory chunk
histogram: Sample a p fraction of the chunks
and iterate over all the chunks in the sample.
Record a histogram (duplication counts) for all
the chunks in the base sample (and ignore the
rest). Denote by cj the duplication count of the
jth chunk in the base sample (j ∈ {1, ..., C}).

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 283

3. Extrapolate DFH: Generate an estimated
DFH for the sample as follows:

∀i, yi = |{j|cj = i}|
i

pN

C
.

In words, use the number of chunks in the base
sample that had count i, extrapolated to the en-
tire sample.

The crux is that the low-memory chunk his-
togram can produce a good approximation to the
DFH. This is because the base sample was repre-
sentative of the distribution of chunks in the en-
tire dataset. In our tests we used a base sample
of size C = 50, 000 which amounts to less than
10MBs of memory consumption. The method does,
however, add another estimation step to the process
and this adds noise to the overall result. To cope
with it we need to increase the slackness parameter
in the Range Unseen algorithm (from α = 0.5 to
α = 2.5). As a result, the estimation range suffers
a slight increase, but the overall performance is still
very good as seen in Figure 5.

Figure 5: The graph depicts the average upper and lower
bounds that are given by the algorithm when using the
base sample method. Each point is the average over 100
different samples, and the error bars depict the maximum
and minimum values over the 100 tests.

The only shortcoming of this approach is that the
dataset to be studied needs to be set in advance,
otherwise the base sample will not cover all of it.
In terms of distribution and parallel execution, the
base sample stage needs to be finished and finalized
before running the actual sampling phase which is
the predominant part of the work (this main phase
can then be easily parallelized). To overcome this
we present a second approach, that is more dynamic
and amenable to parallelism yet less tight.

A streaming approach. This method uses tech-
niques from streaming algorithms geared towards
distinct elements evaluation with low memory. In
order to mesh with the Unseen method the basic
technique needs to be slightly modified and collect
frequency counts that were otherwise redundant.

The core principles, however, remain the same: A
small (constant size) sample of distinct chunks is
taken uniformly over the distinct chunks in the sam-
ple. Note that such a sampling disregards the popu-
larity of a specific hash value, and so the most pop-
ular chunks will likely not be part of the sample.
As a result, this method cannot estimate the sam-
ple DFH correctly but rather takes a different ap-
proach. Distinct chunk sampling can be done using
several techniques (e.g. [2, 8]). We use here the
technique of [2] where only the C chunks that have
the highest hash values (when ordered lexicograph-
ically) are considered in the sample. The algorithm
is then as follows:

1. Sample and maintain low-memory chunk
histogram: Sample a p fraction of the chunks
and iterate over all the chunks in the sample.
Maintain a histogram only of chunks that have
one of the C highest hash values:

• If the hash is in the top C, increase its
counter.

• If it is smaller than all the C currently in
the histogram then ignore it.

• Otherwise, add it to the histogram and
discard the lowest of the current C
hashes.

Denote by δ the fraction of the hash domain
that was covered by the C samples. Namely,
if the hashes are calibrated to be numbers in
the range [0, 1] then δ is the distance between
1 and the lowest hash in the top-C histogram.

2. Run Unseen: Generate a DFH solely of the
C top hashes and run the Range Unseen al-
gorithm. But rather than output ratios, output
a range estimation on the number of distinct
chunks. Denote this output range by [d, d].

3. Extrapolation to full sample: Output estima-
tion range [r = d

δ·N , r = d
δ·N].

Unlike the base sample method, the streaming
approach does not attempt to estimate the DFH of
the p-sample. Instead, it uses an exact DFH of a
small δ fraction of the hash domain. The Unseen
algorithm then serves as a mean of estimating the
actual number of distinct hashes in this δ sized por-
tion of the hash domain. The result is then extrapo-
lated from the number of distinct chunks in a small
hash domain, to the number of hashes in the entire
domain. This relies on the fact that hashes should
be evenly distributed over the entire range, and a δ
fraction of the domain should hold approximately a
δ portion of the distinct hashes.

The problem here is that the Unseen algorithm
runs on a substantially smaller fraction of the data
than originally. Recall that it was shown in [18]

284 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

that accuracy is achieved at a sample fraction of
O(1

logN) and therefore we expect the accuracy to
be better when N is larger. Indeed, when limit-
ing the input of Unseen to such a small domain (in
some of our tests the domain is reduced by a factor
of more than 20, 000) then the tightness of the es-
timation suffers. Figure 6 shows an example of the
estimation achieved with this method.

Figure 6: The graph depicts the average upper and lower
bounds that are given by the algorithm with the streaming
model as a function of sample percentage. Each point
is the average over 100 different samples, and the error
bars depict the maximum and minimum values over the
100 tests.

In Figure 7 we compare the tightness of the
estimation achieved by the two low-memory ap-
proaches. Both methods give looser results than
the full fledged method, but the base sampling tech-
nique is significantly tighter.

Figure 7: An average range size comparison of the two
low-memory methods (and compared to the full memory
algorithm). We see that the base method achieves tighter
estimation ranges, especially for the higher and more
meaningful percentages.

On the flip side, the streaming approach is much
simpler to use in parallel environments where each
node can run his sample independently and at the
end all results are merged and a single Unseen exe-
cution is run. Another benefit is that one can run an
estimation on a certain set of volumes and store the
low-memory histogram. Then, at a later stage, new

volumes can be scanned and merged with the exist-
ing results to get an updated estimation. Although
the streaming approach requires a larger sample in
order to reach the same level of accuracy, there are
scenarios where the base sample method cannot be
used and this method can serve as a good fallback
option.

3.3 Estimating Combined Compres-
sion and Deduplication

Deduplication, more often than not, is used in con-
junction with compression. The typical usage is to
first apply deduplication and then store the actual
chunks in compressed fashion. Thus the challenge
of sizing a system must take into account compres-
sion as well as deduplication. The obvious solution
to estimating the combination of the two techniques
is by estimating each one separately and then look-
ing at their multiplied effect. While this practice has
its merits (e.g. see [6]), it is often imprecise. The
reason is that in some workloads there is a correla-
tion between the duplication level of a chunk and
its average compression ratio (e.g. see Figure 8).

We next describe a method of integrating com-
pression into the Unseen algorithm that results in
accurate estimations of this combination.

The basic principle is to replace the DFH by a
compression weighted DFH. Rather than having
xi hold the number of chunks that appeared i times,
we define it as the size (in chunks) that it takes to
store the chunks with reference count i. Or in other
words, multiply each count in the regular DFH by
the average compression ratio of chunks with the
specific duplication count.

The problem is that this is no longer a legal DFH
and in particular it no longer holds that

∑
i

xi · i = N.

Instead, it holds that
∑
i

xi · i = CR ·N

where CR is the average compression ratio over the
entire dataset (plain compression without dedupli-
cation). Luckily, the average compression ratio can
be estimated extremely well with a small random
sample of the data.

The high level algorithm is then as follows:

1. Compute a DFH {y1, y2, ...} on the observed
sample, but also compute {CR1,CR2, ...}
where CRi is the average compression ratio for
all chunks that had reference count i. Denote
by z = {y1 · CR1, y2 · CR2, ...} the compres-
sion weighted DFH of the sample.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 285

2. Compute CR, the average compression ratio
on the dataset. This can be done using a very
small random sample (which can be part of the
already sampled data).

3. Run the Unseen method where the optimiza-
tion is for Δp(x, z) (rather than Δ(x, y)p) and
under the constraint that

∑
i xi · i = CR ·N .

Figure 8 shows the success of this method on the
same dataset and contrasts it to the naive approach
of looking at deduplication and compression inde-
pendently.

Figure 8: The graph depicts the average upper and lower
bounds that are given by the algorithm with compression.
Each point is based on 100 different samples. The naive
ratio is derived by multiplying independent compression
and deduplication ratios.

Note that estimating CR can also be done ef-
ficiently and effectively under our two models of
low-memory execution: In the base sample method,
taking the average compression ratio on the base
chunks only is sufficient. So compression needs to
be computed only in the initial small base sample
phase. In the streaming case, things are a bit more
complicated, but in a nutshell, the average CR for
the chunks in the fraction of hashes at hand is esti-
mated as the weighted average of the compression
ratios of the chunks in the top C hashes, were the
weight is their reference counts (a chunk that ap-
peared twice is given double the weight).

3.4 How to Sample in the Real World

Thus far we have avoided the question of how to ac-
tually sample chunks from the dataset, yet our sam-
pling has a long list of requirements:

• Sample uniformly at random over the entire
(possibly distributed) dataset.

• Sample without repetitions.
• Use low memory for the actual sampling.
• We want the option to do a gradual sample,

e.g., first sample a small percent, evaluate it,
and then add more samples if needed (without
repeating old samples).

• Above all, we need this to be substantially
faster than running a full scan (otherwise there
is no gain). Recall that the scan time domi-
nates the running time (the time to solve the
linear programs is negligible).

The last requirement is the trickiest of them all, es-
pecially if the storage medium is based on rotating
disks (HDDs). If the data lies on a storage system
that supports fast short random reads (flash or solid
state drive based systems), then sampling is much
faster than a full sequential scan. The problem is
that in HDDs there is a massive drop-off from the
performance of sequential reads to that of small ran-
dom reads.

There are some ways to mitigate this drop off:
sorting the reads in ascending order is helpful, but
mainly reading at larger chunks than 4KB, where
1MB seems the tipping point. In Figure 9 we see
measurements on the time it takes to sample a frac-
tion of the data vs. the time a full scan would take.
While it is very hard to gain anything by sampling
at 4KB chunks, there are significant time savings
in sampling at 1MBs, and for instance, sampling a
15% fraction of the data is 3X faster than a full scan
(this is assuming sorted 1MB reads).

Figure 9: The graph depicts the time it takes to sample
different percentages at different chunk sizes with respect
to a full scan. We see that sampling at 4K is extremely
slow, and while 64K is better, one has to climb up to 1MB
to get decent savings. Going higher than 1MB shows lit-
tle improvement. The tests where run on an Intel Xeon
E5440 @ 2.83GHz CPU with a 300GB Hitachi GST Ul-
trastar 15K rpm HDD.

Accuracy with 1MB reads? The main question is
then: does our methodology work with 1MB reads?
Clearly, estimating deduplication at a 1MB granu-
larity is not a viable solution since deduplication ra-
tios can change drastically with the chunk size. In-
stead we read super-chunks of 1MB and break them
into 4KB chunks and use these correlated chunks
for our sample. The main concern here is that
the fact that samples are not independent will form

286 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Name Description Size Deduplication
Ratio

Deduplication +
Compression

VM Repository A large repository of VMs used by a development unit. This
is a VMWare environment with a mixture of Linux and Win-
dows VMs.

8TB 0.3788 0.2134

Linux Hypervisor Backend store for Linux VMs of a KVM Hypervisor. The
VMs belong to a research unit.

370 GB 0.4499 0.08292

Windows Hypervi-
sor

Backend store for Windows VMs of a KVM Hypervisor. The
VMs belong to a research unit.

750 GB 0.7761 0.4167

VDI A VDI benchmark environment containing 50 Windows VMs
generated by VMWare’s ViewPlanner tool

770 GB 0.029 0.0087

DB An Oracle Data Base containing data from a TPCC bench-
mark

1.2TB 0.37884 0.21341

Cloud Store A research unit’s private cloud storage. Includes both user
data and VM images.

3.3TB 0.26171 –

Table 1: Data generation approaches for several widely adopted benchmarks in various storage domains.

high correlations between the reference counts of
the various chunks in the sample. For example, in
many deduplication friendly environments, the rep-
etitions are quite long, and a repetition of a single
chunk often entails a repetition of the entire super-
chunk (and vice-versa, a non repetition of a single
chunk could mean high probability of no repetitions
in the super-chunk).

The good news is that due to linearity of expecta-
tions, the expected DFH should not change by sam-
pling at a large super-chunk. On the other hand the
variance can grow significantly. As before, we con-
trol this by increasing the slackness parameter α to
allow a larger scope of plausible solutions to be ex-
amined. In our tests we raise the slackness from
α = 0.5 to α = 2.0 and if combined with the base
sample it is raised to α = 3.5. Our tests show
that this is sufficient to handle the increased vari-
ance, even in workloads where we know that there
are extremely high correlations in the repetitions.
Figure 10 shows the algorithm result when read-
ing with 1MB super-chunks and with the increased
slackness.

Figure 10: The graph depicts the average upper and
lower bounds that are given by the algorithm when read-
ing at 1MB super-chunks. Each point is based on 100
different samples.

How to sample? We next present our sampling
strategy that fulfills all of the requirements listed
above with the additional requirement to generate
sorted reads of a configurable chunk size. The pro-

cess iterates over all chunk IDs in the system and
computes a fast hash function on the chunk ID (the
ID has to be a unique identifier, e.g. volume name
and chunk offset). The hash can be a very efficient
function like CRC (we use a simple linear function
modulo a large number). This hash value is then
used to determine if the chunk is in the current sam-
ple or not. The simple algorithm is outlined in Al-
gorithm 3.

Algorithm 3: Simple Sample
Input: Fraction bounds p0, p1, Total chunks M
Output: Sample S(p1−p0)

for j ∈ [M] do
q ←− FastHash(j)
/* FastHash outputs a number in [0, 1) */
if p0 ≤ q < p1 then

Add jth chunk to sample

This simple technique fulfills all of the require-
ments that we listed above. It can be easily par-
allelized and in fact there is no limitation on the
enumeration order. However, within each disk, if
one iterates in ascending order then the reads will
come out sorted, as required. It is nearly stateless,
one only need to remember the current index j and
the input parameters. In order to run a gradual sam-
ple, for example, a first sample of 1% and then add
another 5% – run it first with p0 = 0, p1 = 0.01
and then again with p0 = 0.01, p1 = 0.06. The
fast hash is only required to be sufficiently random
(any pairwise independent hash would suffice [3])
and there is no need for a heavy full-fledged cryp-
tographic hash like SHA1. As a result, the main
loop can be extremely fast, and our tests show that
the overhead of the iteration and hash is negligible
(less than 0.5% of the time that it takes to sample a
1% fraction of the dataset). Note that the result is a
sample of fraction approximately (p1 − p0) which
is sufficient for all practical means.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 287

4 Evaluation

4.1 Implementation and Test Data
We implemented the core techniques in Matlab and
evaluated the implementation on data from a variety
of real life datasets that are customary to enterprise
storage systems. The different datasets are listed in
Table 1 along with their data reduction ratios. It was
paramount to tests datasets from a variety of dedu-
plication and compression ratios in order to vali-
date that our techniques are accurate for all ranges.
Note that in our datasets we remove all zero chunks
since identifying the fraction of zero chunks is an
easy task and the main challenge is estimating the
deduplication ratio on the rest of the data.

For each of the datasets we generated between
30-100 independent random samples for each sam-
ple percentage and for each of the relevant sampling
strategy being deployed (e.g., with or without repe-
titions/ at 1MB super-chunks). These samples serve
as the base for verifying our methods and fine tun-
ing the slackness parameter.

4.2 Results
Range sizes as function of dataset. The most
glaring phenomena that we observe while testing
the technique over multiple datasets is the big dis-
crepancy in the size of the estimation ranges for
different datasets. The most defining factor was
the data reduction ratio at hand. It turns out that
deduplication ratios that are close to 1

2 are in gen-
eral harder to approximate accurately and require a
larger sample fraction in order to get a tight estima-
tion. Highly dedupable data and data with no du-
plication, on the other hand tend to converge very
quickly and using our method, one can get a very
good read within the first 1-2% of sampled data.
Figure 12 shows this phenomena clearly.

Note that the addition of compression ratios in
the mix has a different effect and it basically re-
duces the range by a roughly a constant factor that
is tied to the compression benefits. For example, for
the Windows Hypervisor data the combine dedupli-
cation and compression ratio is 0.41, an area where
the estimation is hardest. But the convergence seen
by the algorithm is significantly better – it is sim-
ilar to what is seen for deduplication (0.77 ratio)
with a roughly constant reduction factor. See ex-
ample in Figure 13. According to the other dataset
we observe that this reduction factor is more signif-
icant when the compression ratio is better (as seen
in other datasets).

The accumulated effect on estimation tightness.
In this work we present two main techniques that
are critical enablers for the technology but reduce

Figure 12: The graph depicts the effect that the dedupli-
cation ratio has on the tightness of our estimation method
(based on the 6 different datasets and their various dedu-
plication ratios). Each line stands for a specific sample
percent and charts the average range size as a function
of the deduplication ratio. We see that while the bottom
lines of 10% and more are good across all deduplication
ratios, the top lines of 1-5% are more like a “Boa di-
gesting an Elephant” – behave very well at the edges but
balloon in the middle.

Figure 13: A comparison of the estimation range sizes
achieved on the Windows Hypervisor data. We see a con-
stant and significantly tighter estimation when compres-
sion is involved. This phenomena holds for all datasets.

the tightness of the initial estimation. The accu-
mulated effect on the tightness of estimation by us-
ing the combination of these techniques is shown in
Figure 14. It is interesting to note that combining
the two techniques has a smaller negative effect on
the tightness than the sum of their separate effects.

Putting it all together. Throughout the paper we
evaluated the effect of each of our innovations sepa-
rately and sometimes understanding joint effects. In
this section we aim to put all of our techniques to-
gether and show a functional result. The final con-
struction runs the Range Unseen algorithm, with
the Base Sample low-memory technique while sam-
pling at 1MB super-chunks. We test both estimating
deduplication only and estimation with compres-
sion. Each test consists of a single gradual execu-

288 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Figure 11: Execution of the full real life setting algorithm on the various datasets. This is a gradual run of the low-
memory, 1MB read algorithm, with and without compression. Note that some of the tests reach very tight results with a
3% sample and can thus achieve a much improved running time.

Figure 14: A comparison of the estimation range sizes
achieved with various work methods: The basic method,
the method with sampling at 1MB, using the base sam-
ple low-memory technique and the combination of both
the base sample and 1MB sampling. There is a steady
decline in tightness when moving from one to the next.
This is shown on two different datasets with very differ-
ent deduplication ratios.

tion starting from 1% all the way through 20% at
small intervals of 1%. The results are depicted in
Figure 11.

There are two main conclusions from the results
in Figure 11. One is that the method actually works
and produces accurate and useful results. The sec-
ond is the great variance between the different runs
and the fact that some runs can end well short of
a 5% sample. As mentioned in the previous para-
graph, this is mostly related to the deduplication
and compression ratios involved. But the bottom
line is that we can calibrate this into the expected
time it takes to run the estimation. In the worst
case, one would have to run read at least 15% of
the data, which leads to a time improvement of ap-
proximately 3X in HDD systems (see Section 3.4).
On the other hand, we have tests that can end with a
sample of 2-3% and yield a time saving of 15-20X
over a full scan. The time improvement can be even
more significant in cases where the data resides on
SSDs and if the hash computation is a bottle neck
in the system.

5 Concluding remarks

Our work introduced new advanced algorithms into
the world of deduplication estimation. The main
challenges were to make these techniques actually
applicable and worthwhile in a real world scenario.
We believe we have succeeded in proving the value
of this approach, which can be used to replace full
scans used today.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 289

Acknowledgements. We thank Evgeny Lipovet-
sky for his help and thank Oded Margalit and
David Chambliss for their insights. Finally, we
are grateful to our many colleagues at IBM that
made the collections of the various datasets pos-
sible. This work was partially funded by the
European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) project ForgetIT under
grant No. 600826.

References
[1] XtremeIO case studies. http:

//xtremio.com/case-studies.

[2] BAR-YOSSEF, Z., JAYRAM, T. S., KUMAR,
R., SIVAKUMAR, D., AND TREVISAN, L.
Counting distinct elements in a data stream.
In Randomization and Approximation Tech-
niques, 6th International Workshop, RAN-
DOM 2002 (2002), pp. 1–10.

[3] CARTER, L., AND WEGMAN, M. N. Univer-
sal classes of hash functions. J. Comput. Syst.
Sci. 18, 2 (1979), 143–154.

[4] CHARIKAR, M., CHAUDHURI, S., MOT-
WANI, R., AND NARASAYYA, V. R. Towards
estimation error guarantees for distinct values.
In Symposium on Principles of Database Sys-
tems, PODS 2010 (2000), pp. 268–279.

[5] CONSTANTINESCU, C., GLIDER, J. S., AND
CHAMBLISS, D. D. Mixing deduplication
and compression on active data sets. In
Data Compression Conference, DCC (2011),
pp. 393–402.

[6] CONSTANTINESCU, C., AND LU, M. Quick
Estimation of Data Compression and De-
duplication for Large Storage Systems. In
Proceedings of the 2011 First International
Conference on Data Compression, Communi-
cations and Processing (2011), IEEE, pp. 98–
102.

[7] FLAJOLET, P., AND MARTIN, G. N. Proba-
bilistic counting algorithms for data base ap-
plications. J. Comput. Syst. Sci. 31, 2 (1985),
182–209.

[8] GIBBONS, P. B. Distinct sampling for highly-
accurate answers to distinct values queries
and event reports. In Very Large Data Bases
VLDB (2001), pp. 541–550.

[9] HAAS, P. J., NAUGHTON, J. F., SESHADRI,
S., AND STOKES, L. Sampling-based esti-
mation of the number of distinct values of an
attribute. In Very Large Data Bases VLDB’95
(1995), pp. 311–322.

[10] HAAS, P. J., AND STOKES, L. Estimating the
number of classes in a finite population. IBM

Research Report RJ 10025, IBM Almaden Re-
search 93 (1998), 1475–1487.

[11] HARNIK, D., KAT, R., MARGALIT, O., SOT-
NIKOV, D., AND TRAEGER, A. To Zip or Not
to Zip: Effective Resource Usage for Real-
Time Compression. In Proceedings of the
11th USENIX conference on File and Storage
Technologies (FAST 2013) (2013), USENIX
Association, pp. 229–241.

[12] HARNIK, D., MARGALIT, O., NAOR, D.,
SOTNIKOV, D., AND VERNIK, G. Estimation
of deduplication ratios in large data sets. In
IEEE 28th Symposium on Mass Storage Sys-
tems and Technologies, MSST 2012 (2012),
pp. 1–11.

[13] JIN, K., AND MILLER, E. L. The effective-
ness of deduplication on virtual machine disk
images. In The Israeli Experimental Systems
Conference, SYSTOR 2009 (2009).

[14] KANE, D. M., NELSON, J., AND
WOODRUFF, D. P. An optimal algo-
rithm for the distinct elements problem.
In Symposium on Principles of Database
Systems, PODS 2010 (2010), pp. 41–52.

[15] MEYER, D. T., AND BOLOSKY, W. J. A
study of practical deduplication. In FAST-
Proceedings of the 9th USENIX Conference
on File and Storage Technologies (FAST ’11)
(2011), pp. 1–13.

[16] RASKHODNIKOVA, S., RON, D., SHPILKA,
A., AND SMITH, A. Strong lower bounds for
approximating distribution support size and
the distinct elements problem. SIAM J. Com-
put. 39, 3 (2009), 813–842.

[17] VALIANT, G., AND VALIANT, P. Estimating
the unseen: an n/log(n)-sample estimator for
entropy and support size, shown optimal via
new clts. In 43rd ACM Symposium on Theory
of Computing, STOC (2011), pp. 685–694.

[18] VALIANT, P., AND VALIANT, G. Estimating
the unseen: Improved estimators for entropy
and other properties. In Advances in Neu-
ral Information Processing Systems 26. 2013,
pp. 2157–2165.

[19] XIE, F., CONDICT, M., AND SHETE, S. Es-
timating duplication by content-based sam-
pling. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference
(2013), USENIX ATC’13, pp. 181–186.

