
 68 ;login: VOL. 37, NO. 3

As a Python programmer, you know that lists, sets, and dictionaries are useful for
collecting data . For example, you use a list whenever you want to store data and
keep it in order:

>>> names = [‘Dave’, ‘Paula’, ‘Thomas’, ‘Lewis’]

>>>

If you simply want a collection of unique items and don’t care about the order, you
can make a set:

>>> colors = set([‘red’,’blue’,’green’,’purple’,’yellow’])

>>>

You use a dictionary whenever you want to make key-value lookup tables:

>>> prices = { ‘AAPL’ : 613.20, ‘ACME’ : 71.23, ‘IBM’ : 174.11 }

>>> prices[‘AAPL’]

613.20

>>>

Using just these three primitives, you can build just about any other data structure
in the known universe . However, why would you? In this article, we reach into
Python’s collections library and look at some of the tools it provides for manipulat-
ing collections of data . If you’re like me, these will quickly become a part of your
day-to-day programming .

Tabulating Data

How many times have you ever needed to tabulate data or build a histogram? For
example, suppose you want to tabulate and count all of the IP addresses that made
requests on your Web site from a server log such as this:

78.192.56.97 - - [15/Mar/2012:01:50:37 -0500] “GET /ply/ HTTP/1.1” 200 11875

69.237.118.150 - - [15/Mar/2012:01:51:52 -0500] “GET /ply/ply.html HTTP/1.1”

200 107623

69.237.118.150 - - [15/Mar/2012:01:51:57 -0500] “GET /ply/example.html

HTTP/1.1” 200 2393

91.35.214.71 - - [15/Mar/2012:01:52:13 -0500] “GET /ply/ HTTP/1.1” 200 11875

91.35.214.71 - - [15/Mar/2012:01:52:13 -0500] “GET /favicon.ico HTTP/1.1” 404

369

Becoming a Master Collector
D A V I D B E A Z L E Y

David Beazley is an open

source developer and author of

the Python Essential Reference

(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig

(http://www.swig.org) and Python Lex-Yacc

(http://www.dabeaz.com/ply.html). He is

based in Chicago, where he also teaches a

variety of Python courses.

dave@dabeaz.com

 ;login: JUNE 2012 Becoming a Master Collector 69

You might be inclined to write a small fragment of code using a Python dictionary,
like this:

hits_by_ipaddr = {}

for line in open(“access-log”):

 fields = line.split()

 ipaddr = fields[0]

 if ipaddr in hits_by_ipaddr:

 hits_by_ipaddr[ipaddr] += 1

 else:

 hits_by_ipaddr[ipaddr] = 1

Although this code “works,” it’s also a bit clunky . For example, you have to add a
special check for first initialization (otherwise the attempt to increment the count
will fail with a KeyError on first access) . On top of that, after you have populated
the dictionary, you will probably want to do some further analysis . For example,
maybe you want to print a table showing the 25 most common IP addresses in
descending order:

popular_ips = sorted(hits_by_ipaddr,

 key=lambda x: hits_by_ipaddr[x],

 reverse=True)

for ipaddr in popular_ips[:25]:

 print(“%5d: %s” % (hits_by_ipaddr[ipaddr],ipaddr))

As output, this will produce a table such as this:

 1096: 78.192.56.97

 1040: 206.15.64.54

 473: 212.85.154.246

 226: 89.215.101.39

 209: 212.85.154.254

 185: 82.226.112.70

 180: 78.192.56.101

...

Although this code is relatively easy to write, you still need to think about it a bit—
especially the tricky sort with the lambda . However, you can avoid all of this if you
simply use Counter objects from the collections module . Here is a much simplified
version of the same code:

from collections import Counter

hits_by_ipaddr = Counter()

for line in open(“access-log”):

 fields = line.split()

 ipaddr = fields[0]

 hits_by_ipaddr[ipaddr] += 1

for ipaddr, count in hits_by_ipaddr.most_common(25):

 print(“%5d: %s” % (count, ipaddr))

First added to Python 2 .7, Counter objects are perfectly suited for tabulation . They
automatically take care of initializing elements on first access . Not only that, they
provide useful methods such as most_common([n]) that return the n most com-
mon items . However, this is really only scratching the surface .

 70 ;login: VOL. 37, NO. 3

If you want, counters can be automatically initialized from iterables . For example,
let’s make letter counts from strings:

>>> a = Counter(“Hello”)

>>> b = Counter(“World”)

>>> a

Counter({‘l’: 2, ‘H’: 1, ‘e’: 1, ‘o’: 1})

>>> b

Counter({‘d’: 1, ‘r’: 1, ‘o’: 1, ‘W’: 1, ‘l’: 1})

>>>

Or, if you’re inclined and a bit more sophisticated, you can populate a counter from
a generator expression:

>>> f = open(“access-log”)

>>> hits_by_ipaddr = Counter(line.split()[0] for line in f)

>>> hits_by_ipaddr[‘78.192.56.97’]

1096

>>>

You can also do math with counters:

>>> a + b # Adds counts together

Counter({‘l’: 3, ‘o’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘r’: 1, ‘W’: 1})

>>> a - b # Takes away counts in b

Counter({‘H’: 1, ‘e’: 1, ‘l’: 1})

>>> b - a # Takes away counts in a

Counter({‘r’: 1, ‘d’: 1, ‘W’: 1})

>>> a & b # Minimum counts

Counter({‘l’: 1, ‘o’: 1})

>>> a | b # Maximum counts

Counter({‘l’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘o’: 1, ‘r’: 1, ‘W’: 1})

>>>

Adding and subtracting counts are also available in-place using update() and sub-
tract methods, respectively . For example:

>>> a = Counter(“Hello”)

>>> a

Counter({‘l’: 2, ‘H’: 1, ‘e’: 1, ‘o’: 1})

>>> a.update(“World”)

>>> a

Counter({‘l’: 3, ‘o’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘r’: 1, ‘W’: 1})

>>>

Using some of these techniques, we can refine our script to process an entire direc-
tory of log files:

from collections import Counter

from glob import glob

hits_by_ipaddr = Counter()

logfiles = glob(“*.log”)

for filename in logfiles:

 f = open(filename)

 ;login: JUNE 2012 Becoming a Master Collector 71

 hits_by_ipaddr.update(line.split()[0] for line in f)

 f.close()

for ipaddr, count in hits_by_ipaddr.most_common(25):

 print(“%5d: %s” % (count, ipaddr))

By now, hopefully, you’ve gotten the idea that Counter objects are the way to go for
tabulation . Frankly, they’re one of my favorite new additions to Python .

Dictionaries with Multiple Values

Normally, dictionaries map a single key to a single value . However, a common ques-
tion that sometimes arises is how you map a key to multiple values . Naturally, the
solution is to map a key to a list or set . For example, suppose you wanted to make
a dictionary that mapped URLs to all of the unique IP addresses that accessed it .
Here is some code that would do it:

url_to_ips = {}

for line in open(“access-log”):

 fields = line.split()

 ipaddr = fields[0]

 url = fields[6]

 # Create a set on first access

 if url not in url_to_ips:

 url_to_ips[url] = set()

 url_to_ips[url].add(ipaddr)

Again, we are faced with the problem of creating the first entry for each URL
(hence, the check that makes the set on first access) . We can’t use Counter objects
here, but not to worry—the defaultdict class is built just for this case . Here is an
alternative implementation:

from collections import defaultdict

url_to_ips = defaultdict(set)

for line in open(“access-log”):

 fields = line.split()

 ipaddr = fields[0]

 url = fields[6]

 url_to_ips[url].add(ipaddr)

After running this code, you could do things like find out which IP addresses are
likely to be robots:

>>> url_to_ips[‘/robots.txt’]

set([‘173.11.97.115’, ‘107.20.104.146’, ‘61.135.249.76’, ...])

>>>

defaultdict is a special Python dictionary that allows you to supply a callable for
creating the initial entry to be used on first access . In the above code, we’ve speci-
fied that a set be used . Here are some examples to try:

>>> from collections import defaultdict

>>> a = defaultdict(set)

>>> a

defaultdict(<type ‘set’>, {})

>>> a[‘x’].add(2)

 72 ;login: VOL. 37, NO. 3

>>> a[‘y’].add(3)

>>> a[‘x’].add(4)

>>> a

defaultdict(<type ‘set’>, {‘y’: set([3]), ‘x’: set([2, 4])})

>>>

In effect, the function provided to defaultdict is triggered to create the first value
whenever a non-existent key is accessed . Here are more examples:

>>> a[‘q’]

set()

>>> a[‘r’]

set()

>>> a

defaultdict(<type ‘set’>, {‘y’: set([3]), ‘x’: set([2, 4]), ‘r’: set([]), ‘q’:

set([])})

>>>

Notice how entries for ‘q’ and ‘r’ were added simply by being referenced .

Underneath the covers, defaultdict uses a little-known special method called __
missing__() . It’s called on a dictionary whenever you read from a missing key . For
example:

>>> class mydict(dict):

... def __missing__(self, key):

... return 0 # Return the missing value

...

>>> d = mydict()

>>> d[‘x’]

0

>>> d[‘y’]

0

>>>

Counter objects are implemented using the __missing__() function shown above .
defaultdict objects create the missing value using a user-supplied function .

Dictionaries, Views, and Sets

One of the more subtle improvements to Python over the years has been related to
the relationship between dictionaries and sets . In many respects, a set is just a col-
lection of dictionary keys with no values . In fact, the underlying implementation of
sets and dictionaries is very similar and shares much of the same code .

Despite their similarities, dictionaries have not traditionally provided a natural
way to interact with sets of keys or values . Instead, there are simple methods to
return the keys, values, and items as a list:

>>> a = { ‘x’ : 2, ‘y’ : 3, ‘z’: 4 }

>>> a.keys()

[‘y’, ‘x’, ‘z’]

>>> a.values()

[3, 2, 4]

>>> a.items()

[(‘y’, 3), (‘x’, 2), (‘z’, 4)]

>>>

 ;login: JUNE 2012 Becoming a Master Collector 73

Starting with Python 2 .7, it is possible to express the keys and values of a dictio-
nary as a “view” (which is also the default behavior of the above methods in Python
3) . Unlike a list, a view offers a direct window inside the dictionary implementa-
tion . Changes to the underlying dictionary directly change the view:

>>> k = a.viewkeys()

>>> k

dict_keys([‘y’, ‘x’, ‘z’])

>>> v = a.viewvalues()

>>> v

dict_values([3, 2, 4])

>>> # Now change the dictionary and observe how the views change

>>> a[‘w’] = 5

>>> k

dict_keys([‘y’, ‘x’, ‘z’, ‘w’])

>>> v

dict_values([3, 2, 4, 5])

>>>

At first glance, it might not be immediately obvious how views are useful . On a
superficial level, they support iteration, allowing them to be useful in many of the
same ways as having a list . However, one of their unique features is the ability to
interact with sets and other sequences more elegantly . To illustrate, here are some
simple examples you can try:

>>> a = { ‘x’ : 1, ‘y’: 2, ‘z’ : 3 }

>>> b = { ‘x’ : 4, ‘y’: 2 }

>>> # Find all keys in common

>>> a.viewkeys() & b.viewkeys()

set([‘y’, ‘x’])

>>> # Iterate over all keys except ‘z’

>>> for k in a.viewkeys() - [‘z’]:

... print(“%s = %s” % (k, a[k]))

...

y = 2

x = 1

>>> # Make a set of all key/value pairs

>>> a.viewitems() | b.viewitems()

set([(‘z’, 3), (‘y’, 2), (‘x’, 4), (‘x’, 1)])

>>>

In more practical terms, understanding the nature of views can simplify your code .
For example, if you wanted to find all of the IP addresses that accessed your site
but didn’t look at the robots .txt file, you could simply write this:

>>> nonrobots = hits_by_ipaddr.viewkeys() - url_to_ips[‘/robots.txt’]

>>>

Other Goodies: Queues, Ring Buffers, and Ordered Dictionaries

The collections module has a variety of other data structures that are also worth a
look . For instance, if you ever need to build a queue, use the deque object . A deque
is like a list except that it’s optimized for insertion and deletion operations on both

 74 ;login: VOL. 37, NO. 3

ends; in contrast, a list has O(n) performance for operations that insert or delete
items from the front of the list:

>>> from collections import deque

>>> q = deque()

>>> q.appendleft(1)

>>> q.appendleft(2)

>>> q

deque([2, 1])

>>> q.append(3)

>>> q

deque([2, 1, 3])

>>> q.pop()

3

>>> q.popleft()

2

>>>

If you specify a maximum size, a deque turns into a ring-buffer or circular queue:

>>> q = deque(maxlen=3)

>>> q.extend([1,2,3])

>>> q

deque([1, 2, 3], maxlen=3)

>>> q.append(4)

>>> q

deque([2, 3, 4], maxlen=3)

>>> q.append(5)

>>> q

deque([3, 4, 5], maxlen=3)

>>>

Last, but not least, there is an OrderedDict class . This is used if you want to store
information in a dictionary while preserving its insertion order . This can be useful
if you’re reading data that you later want to output in the same order in which it
was read . For example, suppose you had a file of parameters like this:

FILENAME foo.txt

DIRNAME /users/beazley

MODE a

You could read it into an OrderedDict like this:

>>> from collections import OrderedDict

>>> parms = OrderedDict()

>>> for line in open(“parms.txt”):

... name,value = line.split()

... parms[name] = value

...

>>> p[‘DIRNAME’] ‘

/users/beazley’

>>> for p in parms.items():

... print(p)

... (‘FILENAME’, ‘foo.txt’)

 ;login: JUNE 2012 Becoming a Master Collector 75

(‘DIRNAME’, ‘/users/beazley’)

(‘MODE’, ‘a’)

>>>

Carefully observe how iterating over the dictionary contents preserves data in the
same order as read .

Final Words

If you’re using Python to manipulate data, the collections module is definitely
worth a look . Even if you’ve been using Python for a while, the contents of this
module have been expanded with each new Python release . In modern Python
releases, you might be surprised at what you find .

