
 ;login: OCTOBER 2012 61

One of the most significant additions to Python’s standard library in recent years
is the inclusion of the multiprocessing library . First introduced in Python 2 .6,
multiprocessing is often pitched as an alternative to programming with threads .
For example, you can launch separate Python interpreters in a subprocess, interact
with them using pipes and queues, and write programs that work around issues
such as Python’s Global Interpreter Lock, which limits the execution of Python
threads to a single CPU core .

Although multiprocessing has been around for many years, I needed some time to
wrap my brain around how to use it effectively . Surprisingly, I have found my own
use differs from those often provided in examples and tutorials . In fact, some of my
favorite features of this library tend not to be covered at all .

In this column, I decided to dig into some lesser-known aspects of using the multi-
processing module .

Multiprocessing basics

To introduce the multiprocessing library, briefly discussing thread programming
in Python is helpful . Here is a sample of how to launch a simple thread using the
threading library:

import time

import threading

def countdown(n):

 while n > 0:

 print “T-minus”, n

 n -= 1

 time.sleep(5)

 print “Blastoff!”

t = threading.Thread(target=countdown, args=(10,))

t.start()

Go do other processing

...

Wait for the thread to exit

t.join()

Secrets of the Multiprocessing Module
d a v i d b E a z l E y

david Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python lex-yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses.
dave@dabeaz.com

62 ;login: vOl. 37, NO. 5

Granted, this is not a particularly interesting thread example . Threads often want
to do things, such as communicate with each other . For this, the Queue library
provides a thread-safe queuing object that can be used to implement various forms
of producer/consumer problems . For example, a more enterprise-ready countdown
program might look like this:

import threading

import Queue

import time

def producer(n, q):

 while n > 0:

 q.put(n)

 time.sleep(5)

 n -= 1

 q.put(None)

def consumer(q):

 while True:

 # Get item

 item = q.get()

 if item is None:

 break

 print “T-minus”, item

 print “Blastoff!”

if __name__ == ‘__main__’:

 # Launch threads

 q = Queue.Queue()

 prod_thread = threading.Thread(target=producer, args=(10, q))

 prod_thread.start()

 cons_thread = threading.Thread(target=consumer, args=(q,))

 cons_thread.start()

 cons_thread.join()

But aren’t I supposed to be discussing multiprocessing? Yes, but the above example
serves as a basic introduction .

One of the core features of multiprocessing is that it clones the programming
interface of threads . For instance, if you wanted to make the above program run
with two separate Python processes instead of using threads, you would write code
like this:

import multiprocessing

import time

def producer(n, q):

 while n > 0:

 q.put(n)

 time.sleep(5)

 n -= 1

 q.put(None)

 ;login: OCTOBER 2012 Secrets of the Multiprocessing Module 63

def consumer(q):

 while True:

 # Get item

 item = q.get()

 if item is None:

 break

 print “T-minus”, item

 print “Blastoff!”

if __name__ == ‘__main__’:

 q = multiprocessing.Queue()

 prod_process = multiprocessing.Process(target=producer, args=(10, q))

 prod_process.start()

 cons_process = multiprocessing.Process(target=consumer, args=(q,))

 cons_process.start()

 cons_process.join()

A Process object represents a forked, independently running copy of the Python
interpreter . If you view your system’s process viewer while the above program
is running, you’ll see that three copies of Python are running . As for the shared
queue, that’s simply a layer over interprocess communication where data is serial-
ized using the pickle library .

Although this example is simple, multiprocessing provides a whole assortment of
other low-level primitives, such as pipes, locks, semaphores, events, condition vari-
ables, and so forth, all modeled after similar constructs in the threading library .
Multiprocessing even provides some constructs for implementing shared-memory
data structures .

no! no! no!

From the previous example, you might get the impression that multiprocessing is
a drop-in replacement for thread programming . That is, you just replace all of your
thread code with multiprocessing calls and magically your code is now running in
multiple interpreters using multiple CPUs; this is a common fallacy . In fact, in all
of the years I’ve used multiprocessing, I don’t think I have ever used it in the man-
ner I just presented .

The first problem is that one of the most common uses of threads is to write I/O
handling code in servers . For example, here is a multithreaded TCP server using a
thread-pool:

from socket import socket, AF_INET, SOCK_STREAM

from Queue import Queue

from threading import Thread

def echo_server(address, nworkers=16):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.bind(address)

 sock.listen(5)

 # Launch workers

 q = Queue(nworkers)

64 ;login: vOl. 37, NO. 5

 for n in range(nworkers):

 t = Thread(target=echo_client, args=(q,))

 t.daemon = True

 t.start()

 # Accept connections and feed to workers

 while True:

 client_sock, addr = sock.accept()

 print “Got connection from”, addr

 q.put(client_sock)

def echo_client(work_q):

 while True:

 client_sock = work_q.get()

 while True:

 msg = client_sock.recv(8192)

 if not msg:

 break

 client_sock.sendall(msg)

 print “Connection closed”

if __name__ == ‘__main__’:

 echo_server((“”,15000))

If you try to change this code to use multiprocessing, the code doesn’t work at all
because it tries to serialize and pass an open socket across a queue . Because sock-
ets can’t be serialized, this effort fails, so the idea that multiprocessing is a drop-in
replacement for threads just doesn’t hold water .

The second problem with the multiprocessing example is that I don’t want to write
a lot of low-level code . In my experience, when you mess around with Process and
Queue objects, you eventually make a badly implemented version of a process-
worker pool, which is a feature that multiprocessing already provides .

MapReduce Parallel Processing with Pools

Instead of viewing multiprocessing as a replacement for threads, view it as a
library for performing simple parallel computing, especially parallel computing
that falls into the MapReduce style of processing .

Suppose you have a directory of gzip-compressed Apache Web server logs:

logs/

 20120701.log.gz

 20120702.log.gz

 20120703.log.gz

 20120704.log.gz

 20120705.log.gz

 20120706.log.gz

 ...

And each log file contains lines such as:

124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] “GET /robots.txt HTTP/1.1” 200 71

 ;login: OCTOBER 2012 Secrets of the Multiprocessing Module 65

210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] “GET /ply/ HTTP/1.0” 200

11875

210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] “GET /favicon.ico HTTP/1.0”

404 369

61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] “GET /blog/atom.xml HTTP/1.1”

304 -

...

This simple script takes the data and identifies all hosts that have accessed the
robots .txt file:

findrobots.py

import gzip

import glob

def find_robots(filename):

 ‘’’

 Find all of the hosts that access robots.txt in a single log file

 ‘’’

 robots = set()

 with gzip.open(filename) as f:

 for line in f:

 fields = line.split()

 if fields[6] == ‘/robots.txt’:

 robots.add(fields[0])

 return robots

def find_all_robots(logdir):

 ‘’’

 Find all hosts across an entire sequence of files

 ‘’’

 files = glob.glob(logdir+”/*.log.gz”)

 all_robots = set()

 for robots in map(find_robots, files):

 all_robots.update(robots)

 return all_robots

if __name__ == ‘__main__’:

 robots = find_all_robots(“logs”)

 for ipaddr in robots:

 print(ipaddr)

The above program is written in the style of MapReduce . The function find_
robots() is mapped across a collection of filenames, and the results are combined
into a single result—the all_robots set in the find_all_robots() function .

Suppose you want to modify this program to use multiple CPUs . To do so, simply
replace the map() operation with a similar operation carried out on a process pool
from the multiprocessing library . Here is a slightly modified version of the code:

findrobots.py

import gzip

66 ;login: vOl. 37, NO. 5

import glob

import multiprocessing

Process pool (created below)

pool = None

def find_robots(filename):

 ‘’’

 Find all of the hosts that access robots.txt in a single log file

 ‘’’

 robots = set()

 with gzip.open(filename) as f:

 for line in f:

 fields = line.split()

 if fields[6] == ‘/robots.txt’:

 robots.add(fields[0])

 return robots

def find_all_robots(logdir):

 ‘’’

 Find all hosts across and entire sequence of files

 ‘’’

 files = glob.glob(logdir+”/*.log.gz”)

 all_robots = set()

 for robots in pool.map(find_robots, files):

 all_robots.update(robots)

 return all_robots

if __name__ == ‘__main__’:

 pool = multiprocessing.Pool()

 robots = find_all_robots(“logs”)

 for ipaddr in robots:

 print(ipaddr)

If you make these changes, the script produces the same result, but runs about four
times faster on my machine, which has four CPU cores . The actual performance
will vary according to the number of CPUs available on your machine .

using a Pool as a Thread Coprocessor

Another handy aspect of multiprocessing pools is their use when combined with
thread programming . A well-known limitation of Python thread programming is
that you can’t take advantage of multiple CPUs because of the Global Interpreter
Lock (GIL); however, you can often use a pool as a kind of coprocessor for computa-
tionally intensive tasks .

Consider this slight variation of our network server that does something a bit more
useful than echoing data—in this case, computing Fibonacci numbers:

from socket import socket, AF_INET, SOCK_STREAM

from Queue import Queue

from threading import Thread

from multiprocessing import Pool

 ;login: OCTOBER 2012 Secrets of the Multiprocessing Module 67

pool = None # (Created below)

A horribly inefficient implementation of Fibonacci numbers

def fib(n):

 if n < 3:

 return 1

 else:

 return fib(n-1) + fib(n-2)

def fib_client(work_q):

 while True:

 client_sock = work_q.get()

 while True:

 msg = client_sock.recv(32)

 if not msg:

 break

 # Run fib() in a separate process

 n = pool.apply(fib, (int(msg),))

 client_sock.sendall(str(n))

 print “Connection closed”

def fib_server(address, nworkers=16):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.bind(address)

 sock.listen(5)

 # Launch workers

 q = Queue(nworkers)

 for n in range(nworkers):

 t = Thread(target=fib_client, args=(q,))

 t.daemon = True

 t.start()

 # Accept connections and feed to workers

 while True:

 client_sock, addr = sock.accept()

 print “Got connection from”, addr

 q.put(client_sock)

if __name__ == ‘__main__’:

 pool = Pool()

 fib_server((“”,15000))

If you run this server, you’ll find that it performs a neat little trick . For each client
that needs to compute fib(n), the operation is handed off to a pool worker using
pool .apply() . While the work takes place, the calling thread goes to sleep and waits
for the result to come back . If multiple client threads make requests, the work is
handed off to different workers and you’ll find that your server is processing in
parallel . Under heavy load, the server will take full advantage of every available
CPU . The fabled GIL is not an issue here because all of the threads spend most of
their time sleeping .

68 ;login: vOl. 37, NO. 5

Note that this technique of using a pool as a coprocessor also works well in applica-
tions involving asynchronous I/O (i .e ., code based on select-loops or event han-
dlers), but because of space constraints, you’ll just have to take my word for it .

Multiprocessing as a Messaging Library

Perhaps the most underrated feature of multiprocessing is its use as a messaging
library from which you can build simple distributed systems . This functionality
is almost never mentioned, but you can find it in the multiprocessing .connection
submodule .

Setting up a connection between independent processes is easy . The following is
an example of a simple echo-server:

server.py

from multiprocessing.connection import Listener

from threading import Thread

def handle_client(c):

 while True:

 msg = c.recv()

 c.send(msg)

def echo_server(address, authkey):

 server_c = Listener(address, authkey=authkey)

 while True:

 client_c = server_c.accept()

 t = Thread(target=handle_client, args=(client_c,))

 t.daemon = True

 t.start()

if __name__ == ‘__main__’:

 echo_server((“”,16000), “peekaboo”)

Here is an example of how you would connect to the server and send/receive mes-
sages:

>>> from multiprocessing.connection import Client

>>> c = Client((“localhost”,16000), authkey=”peekaboo”)

>>> c.send(“Hello”)

>>> c.recv()

‘Hello’

>>> c.send([1,2,3,4])

>>> c.recv()

[1, 2, 3, 4]

>>> c.send({‘name’:’Dave’,’email’:’dave@dabeaz.com’})

>>> c.recv()

{‘name’: ‘Dave’, ‘email’: ‘dave@dabeaz.com’}

>>>

As you can see, this is not just a simple echo-server as with sockets . You can actu-
ally send almost any Python object—including strings, lists, and dictionaries—
back and forth between interpreters . Thus, this connection becomes an easy way
to pass data structures around . In fact, any data compatible with the pickle module

 ;login: OCTOBER 2012 Secrets of the Multiprocessing Module 69

should work . Further, there is even authentication of endpoints involving the auth-
key parameter, which is used to seed a cryptographic HMAC-based authentication
scheme .

Although the messaging features of multiprocessing don’t match those found in a
library such as ZeroMQ (0MQ), you can use the messaging to perform much of the
same functionality, if you’re willing to write a bit of code . For example, here is a
server that implements a Remote Procedure Call (RPC):

rpcserver.py

from multiprocessing.connection import Listener, Client

from threading import Thread

class RPCServer(object):

 def __init__(self, address, authkey):

 self._functions = { }

 self._server_c = Listener(address, authkey=authkey)

 def register_function(self, func):

 self._functions[func.__name__] = func

 def serve_forever(self):

 while True:

 client_c = self._server_c.accept()

 t = Thread(target=self.handle_client, args=(client_c,))

 t.daemon = True

 t.start()

 def handle_client(self, client_c):

 while True:

 func_name, args, kwargs = client_c.recv()

 try:

 r = self._functions[func_name](*args,**kwargs)

 client_c.send(r)

 except Exception as e:

 client_c.send(e)

class RPCProxy(object):

 def __init__(self, address, authkey):

 self._conn = Client(address, authkey=authkey)

 def __getattr__(self, name):

 def do_rpc(*args, **kwargs):

 self._conn.send((name, args, kwargs))

 result = self._conn.recv()

 if isinstance(result, Exception):

 raise result

 return result

 return do_rpc

Sample usage

if __name__ == ‘__main__’:

 # Remote functions

70 ;login: vOl. 37, NO. 5

 def add(x,y):

 return x+y

 def sub(x,y):

 return x-y

 # Create and run the server

 serv = RPCServer((“localhost”,17000),authkey=”peekaboo”)

 serv.register_function(add)

 serv.register_function(sub)

 serv.serve_forever()

To access this server as a client, in another Python invocation, you would simply do
this:

>>> from rserver import RPCProxy

>>> c = RPCProxy((“localhost”,17000), authkey=”peekaboo”)

>>> c.add(2,3)

5

>>> c.sub(2,3)

-1

>>> c.sub([1,2],4)

Traceback (most recent call last):

 File “”, line 1, in

 File “rpcserver.py”, line 37, in do_rpc

 raise result

TypeError: unsupported operand type(s) for -: ‘list’ and ‘int’

>>>

Final words

The multiprocessing module is a tool worth keeping in your back pocket . If you are
performing MapReduce-style data analysis, you can use process pools for simple
parallel computing . If you are writing programs with threads, pools can be used
like a coprocessor to offload CPU-intensive tasks . Finally, the messaging features
of multiprocessing can be used to pass data around between independent Python
interpreters and build simple distributed systems .

References

[1] Multiprocessing official documentation: http://docs .python .org/library/
multiprocessing .html .

