
	 ;login:  OCTOBER 2012     61

One of the most significant additions to Python’s standard library in recent years
is the inclusion of the multiprocessing library. First introduced in Python 2.6,
multiprocessing is often pitched as an alternative to programming with threads.
For example, you can launch separate Python interpreters in a subprocess, interact
with them using pipes and queues, and write programs that work around issues
such as Python’s Global Interpreter Lock, which limits the execution of Python
threads to a single CPU core.

Although multiprocessing has been around for many years, I needed some time to
wrap my brain around how to use it effectively. Surprisingly, I have found my own
use differs from those often provided in examples and tutorials. In fact, some of my
favorite features of this library tend not to be covered at all.

In this column, I decided to dig into some lesser-known aspects of using the multi-
processing module.

Multiprocessing Basics

To introduce the multiprocessing library, briefly discussing thread programming
in Python is helpful. Here is a sample of how to launch a simple thread using the
threading library:

import time

import threading

def countdown(n):

 while n > 0:

 print “T-minus”, n

 n -= 1

 time.sleep(5)

 print “Blastoff!”

t = threading.Thread(target=countdown, args=(10,))

t.start()

Go do other processing

...

Wait for the thread to exit

t.join()

Secrets of the Multiprocessing Module
D a v i d Be a z l e y

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses.
dave@dabeaz.com

62    ;login:  Vol. 37, No. 5

Granted, this is not a particularly interesting thread example. Threads often want
to do things, such as communicate with each other. For this, the Queue library
provides a thread-safe queuing object that can be used to implement various forms
of producer/consumer problems. For example, a more enterprise-ready countdown
program might look like this:

import threading

import Queue

import time

def producer(n, q):

 while n > 0:

 q.put(n)

 time.sleep(5)

 n -= 1

 q.put(None)

def consumer(q):

 while True:

 # Get item

 item = q.get()

 if item is None:

 break

 print “T-minus”, item

 print “Blastoff!”

if __name__ == ‘__main__’:

 # Launch threads

 q = Queue.Queue()

 prod_thread = threading.Thread(target=producer, args=(10, q))

 prod_thread.start()

 cons_thread = threading.Thread(target=consumer, args=(q,))

 cons_thread.start()

 cons_thread.join()

But aren’t I supposed to be discussing multiprocessing? Yes, but the above example
serves as a basic introduction.

One of the core features of multiprocessing is that it clones the programming
interface of threads. For instance, if you wanted to make the above program run
with two separate Python processes instead of using threads, you would write code
like this:

import multiprocessing

import time

def producer(n, q):

 while n > 0:

 q.put(n)

 time.sleep(5)

 n -= 1

 q.put(None)

	 ;login:  OCTOBER 2012   Secrets of the Multiprocessing Module    63

def consumer(q):

 while True:

 # Get item

 item = q.get()

 if item is None:

 break

 print “T-minus”, item

 print “Blastoff!”

if __name__ == ‘__main__’:

 q = multiprocessing.Queue()

 prod_process = multiprocessing.Process(target=producer, args=(10, q))

 prod_process.start()

 cons_process = multiprocessing.Process(target=consumer, args=(q,))

 cons_process.start()

 cons_process.join()

A Process object represents a forked, independently running copy of the Python
interpreter. If you view your system’s process viewer while the above program
is running, you’ll see that three copies of Python are running. As for the shared
queue, that’s simply a layer over interprocess communication where data is serial-
ized using the pickle library.

Although this example is simple, multiprocessing provides a whole assortment of
other low-level primitives, such as pipes, locks, semaphores, events, condition vari-
ables, and so forth, all modeled after similar constructs in the threading library.
Multiprocessing even provides some constructs for implementing shared-memory
data structures.

No! No! No!

From the previous example, you might get the impression that multiprocessing is
a drop-in replacement for thread programming. That is, you just replace all of your
thread code with multiprocessing calls and magically your code is now running in
multiple interpreters using multiple CPUs; this is a common fallacy. In fact, in all
of the years I’ve used multiprocessing, I don’t think I have ever used it in the man-
ner I just presented.

The first problem is that one of the most common uses of threads is to write I/O
handling code in servers. For example, here is a multithreaded TCP server using a
thread-pool:

from socket import socket, AF_INET, SOCK_STREAM

from Queue import Queue

from threading import Thread

def echo_server(address, nworkers=16):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.bind(address)

 sock.listen(5)

 # Launch workers

 q = Queue(nworkers)

64    ;login:  Vol. 37, No. 5

 for n in range(nworkers):

 t = Thread(target=echo_client, args=(q,))

 t.daemon = True

 t.start()

 # Accept connections and feed to workers

 while True:

 client_sock, addr = sock.accept()

 print “Got connection from”, addr

 q.put(client_sock)

def echo_client(work_q):

 while True:

 client_sock = work_q.get()

 while True:

 msg = client_sock.recv(8192)

 if not msg:

 break

 client_sock.sendall(msg)

 print “Connection closed”

if __name__ == ‘__main__’:

 echo_server((“”,15000))

If you try to change this code to use multiprocessing, the code doesn’t work at all
because it tries to serialize and pass an open socket across a queue. Because sock-
ets can’t be serialized, this effort fails, so the idea that multiprocessing is a drop-in
replacement for threads just doesn’t hold water.

The second problem with the multiprocessing example is that I don’t want to write
a lot of low-level code. In my experience, when you mess around with Process and
Queue objects, you eventually make a badly implemented version of a process-
worker pool, which is a feature that multiprocessing already provides.

MapReduce Parallel Processing with Pools

Instead of viewing multiprocessing as a replacement for threads, view it as a
library for performing simple parallel computing, especially parallel computing
that falls into the MapReduce style of processing.

Suppose you have a directory of gzip-compressed Apache Web server logs:

logs/

 20120701.log.gz

 20120702.log.gz

 20120703.log.gz

 20120704.log.gz

 20120705.log.gz

 20120706.log.gz

 ...

And each log file contains lines such as:

124.115.6.12 - - [10/Jul/2012:00:18:50 -0500] “GET /robots.txt HTTP/1.1” 200 71

	 ;login:  OCTOBER 2012   Secrets of the Multiprocessing Module    65

210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] “GET /ply/ HTTP/1.0” 200

11875

210.212.209.67 - - [10/Jul/2012:00:18:51 -0500] “GET /favicon.ico HTTP/1.0”

404 369

61.135.216.105 - - [10/Jul/2012:00:20:04 -0500] “GET /blog/atom.xml HTTP/1.1”

304 -

...

This simple script takes the data and identifies all hosts that have accessed the
robots.txt file:

findrobots.py

import gzip

import glob

def find_robots(filename):

 ‘’’

 Find all of the hosts that access robots.txt in a single log file

 ‘’’

 robots = set()

 with gzip.open(filename) as f:

 for line in f:

 fields = line.split()

 if fields[6] == ‘/robots.txt’:

 robots.add(fields[0])

 return robots

def find_all_robots(logdir):

 ‘’’

 Find all hosts across an entire sequence of files

 ‘’’

 files = glob.glob(logdir+”/*.log.gz”)

 all_robots = set()

 for robots in map(find_robots, files):

 all_robots.update(robots)

 return all_robots

if __name__ == ‘__main__’:

 robots = find_all_robots(“logs”)

 for ipaddr in robots:

 print(ipaddr)

The above program is written in the style of MapReduce. The function find_
robots() is mapped across a collection of filenames, and the results are combined
into a single result—the all_robots set in the find_all_robots() function.

Suppose you want to modify this program to use multiple CPUs. To do so, simply
replace the map() operation with a similar operation carried out on a process pool
from the multiprocessing library. Here is a slightly modified version of the code:

findrobots.py

import gzip

66    ;login:  Vol. 37, No. 5

import glob

import multiprocessing

Process pool (created below)

pool = None

def find_robots(filename):

 ‘’’

 Find all of the hosts that access robots.txt in a single log file

 ‘’’

 robots = set()

 with gzip.open(filename) as f:

 for line in f:

 fields = line.split()

 if fields[6] == ‘/robots.txt’:

 robots.add(fields[0])

 return robots

def find_all_robots(logdir):

 ‘’’

 Find all hosts across and entire sequence of files

 ‘’’

 files = glob.glob(logdir+”/*.log.gz”)

 all_robots = set()

 for robots in pool.map(find_robots, files):

 all_robots.update(robots)

 return all_robots

if __name__ == ‘__main__’:

 pool = multiprocessing.Pool()

 robots = find_all_robots(“logs”)

 for ipaddr in robots:

 print(ipaddr)

If you make these changes, the script produces the same result, but runs about four
times faster on my machine, which has four CPU cores. The actual performance
will vary according to the number of CPUs available on your machine.

Using a Pool as a Thread Coprocessor

Another handy aspect of multiprocessing pools is their use when combined with
thread programming. A well-known limitation of Python thread programming is
that you can’t take advantage of multiple CPUs because of the Global Interpreter
Lock (GIL); however, you can often use a pool as a kind of coprocessor for computa-
tionally intensive tasks.

Consider this slight variation of our network server that does something a bit more
useful than echoing data—in this case, computing Fibonacci numbers:

from socket import socket, AF_INET, SOCK_STREAM

from Queue import Queue

from threading import Thread

from multiprocessing import Pool

	 ;login:  OCTOBER 2012   Secrets of the Multiprocessing Module    67

pool = None # (Created below)

A horribly inefficient implementation of Fibonacci numbers

def fib(n):

 if n < 3:

 return 1

 else:

 return fib(n-1) + fib(n-2)

def fib_client(work_q):

 while True:

 client_sock = work_q.get()

 while True:

 msg = client_sock.recv(32)

 if not msg:

 break

 # Run fib() in a separate process

 n = pool.apply(fib, (int(msg),))

 client_sock.sendall(str(n))

 print “Connection closed”

def fib_server(address, nworkers=16):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.bind(address)

 sock.listen(5)

 # Launch workers

 q = Queue(nworkers)

 for n in range(nworkers):

 t = Thread(target=fib_client, args=(q,))

 t.daemon = True

 t.start()

 # Accept connections and feed to workers

 while True:

 client_sock, addr = sock.accept()

 print “Got connection from”, addr

 q.put(client_sock)

if __name__ == ‘__main__’:

 pool = Pool()

 fib_server((“”,15000))

If you run this server, you’ll find that it performs a neat little trick. For each client
that needs to compute fib(n), the operation is handed off to a pool worker using
pool.apply(). While the work takes place, the calling thread goes to sleep and waits
for the result to come back. If multiple client threads make requests, the work is
handed off to different workers and you’ll find that your server is processing in
parallel. Under heavy load, the server will take full advantage of every available
CPU. The fabled GIL is not an issue here because all of the threads spend most of
their time sleeping.

68    ;login:  Vol. 37, No. 5

Note that this technique of using a pool as a coprocessor also works well in applica-
tions involving asynchronous I/O (i.e., code based on select-loops or event han-
dlers), but because of space constraints, you’ll just have to take my word for it.

Multiprocessing as a Messaging Library

Perhaps the most underrated feature of multiprocessing is its use as a messaging
library from which you can build simple distributed systems. This functionality
is almost never mentioned, but you can find it in the multiprocessing.connection
submodule.

Setting up a connection between independent processes is easy. The following is
an example of a simple echo-server:

server.py

from multiprocessing.connection import Listener

from threading import Thread

def handle_client(c):

 while True:

 msg = c.recv()

 c.send(msg)

def echo_server(address, authkey):

 server_c = Listener(address, authkey=authkey)

 while True:

 client_c = server_c.accept()

 t = Thread(target=handle_client, args=(client_c,))

 t.daemon = True

 t.start()

if __name__ == ‘__main__’:

 echo_server((“”,16000), “peekaboo”)

Here is an example of how you would connect to the server and send/receive mes-
sages:

>>> from multiprocessing.connection import Client

>>> c = Client((“localhost”,16000), authkey=”peekaboo”)

>>> c.send(“Hello”)

>>> c.recv()

‘Hello’

>>> c.send([1,2,3,4])

>>> c.recv()

[1, 2, 3, 4]

>>> c.send({‘name’:’Dave’,’email’:’dave@dabeaz.com’})

>>> c.recv()

{‘name’: ‘Dave’, ‘email’: ‘dave@dabeaz.com’}

>>>

As you can see, this is not just a simple echo-server as with sockets. You can actu-
ally send almost any Python object—including strings, lists, and dictionaries—
back and forth between interpreters. Thus, this connection becomes an easy way
to pass data structures around. In fact, any data compatible with the pickle module

	 ;login:  OCTOBER 2012   Secrets of the Multiprocessing Module    69

should work. Further, there is even authentication of endpoints involving the auth-
key parameter, which is used to seed a cryptographic HMAC-based authentication
scheme.

Although the messaging features of multiprocessing don’t match those found in a
library such as ZeroMQ (0MQ), you can use the messaging to perform much of the
same functionality, if you’re willing to write a bit of code. For example, here is a
server that implements a Remote Procedure Call (RPC):

rpcserver.py

from multiprocessing.connection import Listener, Client

from threading import Thread

class RPCServer(object):

 def __init__(self, address, authkey):

 self._functions = { }

 self._server_c = Listener(address, authkey=authkey)

 def register_function(self, func):

 self._functions[func.__name__] = func

 def serve_forever(self):

 while True:

 client_c = self._server_c.accept()

 t = Thread(target=self.handle_client, args=(client_c,))

 t.daemon = True

 t.start()

 def handle_client(self, client_c):

 while True:

 func_name, args, kwargs = client_c.recv()

 try:

 r = self._functions[func_name](*args,**kwargs)

 client_c.send(r)

 except Exception as e:

 client_c.send(e)

class RPCProxy(object):

 def __init__(self, address, authkey):

 self._conn = Client(address, authkey=authkey)

 def __getattr__(self, name):

 def do_rpc(*args, **kwargs):

 self._conn.send((name, args, kwargs))

 result = self._conn.recv()

 if isinstance(result, Exception):

 raise result

 return result

 return do_rpc

Sample usage

if __name__ == ‘__main__’:

 # Remote functions

70    ;login:  Vol. 37, No. 5

 def add(x,y):

 return x+y

 def sub(x,y):

 return x-y

 # Create and run the server

 serv = RPCServer((“localhost”,17000),authkey=”peekaboo”)

 serv.register_function(add)

 serv.register_function(sub)

 serv.serve_forever()

To access this server as a client, in another Python invocation, you would simply do
this:

>>> from rserver import RPCProxy

>>> c = RPCProxy((“localhost”,17000), authkey=”peekaboo”)

>>> c.add(2,3)

5

>>> c.sub(2,3)

-1

>>> c.sub([1,2],4)

Traceback (most recent call last):

 File “”, line 1, in

 File “rpcserver.py”, line 37, in do_rpc

 raise result

TypeError: unsupported operand type(s) for -: ‘list’ and ‘int’

>>>

Final Words

The multiprocessing module is a tool worth keeping in your back pocket. If you are
performing MapReduce-style data analysis, you can use process pools for simple
parallel computing. If you are writing programs with threads, pools can be used
like a coprocessor to offload CPU-intensive tasks. Finally, the messaging features
of multiprocessing can be used to pass data around between independent Python
interpreters and build simple distributed systems.

References

[1] Multiprocessing official documentation: http://docs.python.org/library/
multiprocessing.html.

